RF Exposure statement

TÜV SÜD Japan Ltd. 5-4149-7 Hachimanpara, Yonezawa-shi, Yamagata 992-1128 Japan

To whom it may concern:

TÜV SÜD Japan Ltd. is authorized as an agency from **Applicant: Japan Radio Co., Ltd.** (FCC ID: CKEJRN-330K, IC: 768B-JRN330K) to act on their behalf in all matters relating to applications for equipment authorization, including testing the device and the signing of all documents relating to these matters.

MAXIMUM PERMISSIBLE EXPOSURE

FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)	
	(A) Limits for (Occupational/Controlled Expo	sure	*	
0.3-3.0	614	1.63	*100	6	
3.0-30	1842/	f 4.89/1	f *900/f ²	6	
30-300	61.4	0.163	3 1.0	6	
300-1,500			f/300	6	
1,500-100,000			5	6	
	(B) Limits for Gene	ral Population/Uncontrolled	Exposure		
0.3- <mark>1</mark> .34	614	1.63	*100	30	
1.34-30	824/	f 2.19/1	f *180/f ²	30	
30-300	27.5	0.073	0.2	30	
300-1,500			f/1500	30	
1,500-100,000			1.0	30	

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

f = frequency in MHz * = Plane-wave equivalent power density

IC RULES

Canada Safety Code 6, Section 2.2.2, Electric Field Strength, Magnetic Field Strength and Power Density (10MHz-300GHz)

To ensure compliance with the basic restrictions outlined in Section 2.1, at frequencies between 10 MHz and 300 GHz, the reference levels for electric- and magnetic-field strength and power density must be complied with.

TABLE 5: Reference Levels for Electric Field Strength, Magnetic Field Strength and Power Density in Uncontrolled Environments

Frequency (MHz)	Electric Field Strength (E _{RL}), (V/m, RMS)	Magnetic Field Strength (H _{RL}), (A/m, RMS)	Power Density (S _{RL}), (W/m²)	Reference Period (minutes)
10-20	27.46	0.0728	2	6
20-48	58.07 / f 0.25	0.1540 / f ^{0.25}	8.944 / f ^{0.5}	6
48-300	22.06	0.05852	1.291	6
300-6000	3.142 f ^{0.3417}	0.008335 f ^{0.3417}	0.02619 f ^{0.6834}	6
6000-15000	61.4	0.163	10	6
15000-150000	61.4	0.163	10	616000 / f 12
150000-300000	0.158 f ^{0.5}	4.21x10 ⁻⁴ f ^{0.5}	6.67x10 ⁻⁵ f	616000 / f 1.2

Frequency, f, is in MHz.

CALCULATIONS

Given

 $E = \ddot{O}(30 * P * G) / d$

and

where

E = Field Strength in Volts/meter

P = Power in Watts

G = Numeric antenna gain

- d = Distance in meters
- S = Power Density in milliwatts/square centimeter

Combining equations, rearranging the terms to express the distance as a function of the remaining variables, changing to units of Power to mW and Distance to cm, and substituting the logarithmic form of power and gain yields:

where

d = MPE distance in cm

P = Power in dBm

G = Antenna Gain in dBi

S = Power Density Limit in mW/cm^2

Rearranging terms to calculate the power density at a specific distance yields

$$S = 0.0795 * 10 ^ ((P + G) / 10) / (d^2)$$

The power density in units of mW/cm² is converted to units of W/m² by multiplying by a factor of 10.

LIMITS

From FCC §1.1310 Table 1 (B), the maximum value of S: S (850 MHz) = f/1500 = 836/1500 = 0.557 mW/cm^2, S (1900 MHz) = 1.0 mW/cm^2

From Canada Safety Code 6, Section 2.2.2, TABLE 5, S: S (850 MHz) = $0.02619 \text{ f}^{0.6834} = 0.002619 * 836^{0.6834} = 0.26 \text{ W/m}^2$ S (1900 MHz) = $0.02619 \text{ f}^{0.6834} = 0.002619 * 1880 = 0.453 \text{ W/m}^2$

<u>RESULTS</u>

The antenna of this product, under normal use condition, is at least 20cm away from the body of the user.

So, this device is classified as **Mobile Device**.

For IC, please refer to the value of the output power.

(MPE distance equals 20 cm)

Mode	Band	MPE Distance (cm)	Output Power (dBm)	Antenna Gain (dBi)	FCC Power Density (mW/cm^2)	IC Power Density (W/m^2)
WCDMA B5	850MHz	20.0	22.96	-2.2	0.0237	0.237
WCDMA B2	1900MHz	20.0	22.65	-0.7	0.0311	0.311

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.