

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 7 CLASS II PERMISSIVE CHANGE

CERTIFICATION TEST REPORT

FOR

802.11 bgn 1X2 MINI CARD (TESTED INSIDE OF LIBRETTO W100)

MODEL: PA3758U-1MPC

FCC ID: CJ6UPA3758WL IC: 248H-DPA3758W

REPORT NUMBER: 10U13220-1

ISSUE DATE: MAY 18, 2010

Prepared for TOSHIBA AMERICA INFORMATION SYSTEMS, INC 9740 IRVINE BLVD. IRVINE, CA 92618-1697, U.S.A.

Prepared by COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev	lssue Date	Revisions	Revised By
	05/18/10	Initial Issue	T. Chan

Page 2 of 25

TABLE OF CONTENTS

1.	ATT	ESTATION OF TEST RESULTS	.4
2.	TEST	۲ METHODOLOGY	.5
3.	FAC	ILITIES AND ACCREDITATION	.5
4.	CAL	IBRATION AND UNCERTAINTY	.5
4	4.1.	MEASURING INSTRUMENT CALIBRATION	. 5
4	4.2.	SAMPLE CALCULATION	. 5
4	4.3.	MEASUREMENT UNCERTAINTY	. 5
5.	EQU	IPMENT UNDER TEST	.6
5	5.1.	DESCRIPTION OF EUT	. 6
5	5.2.	MAXIMUM OUTPUT POWER	. 6
5	5.3.	DESCRIPTION OF CLASS II PERMISSIVE CHANGE	. 6
5	5.4.	DESCRIPTION OF AVAILABLE ANTENNAS	. 6
5	5.5.	SOFTWARE AND FIRMWARE	.6
5	5.6.	WORST-CASE CONFIGURATION AND MODE	.6
5	5.7.	DESCRIPTION OF TEST SETUP	.7
6.	TEST	TAND MEASUREMENT EQUIPMENT	.9
7.	RAD	IATED TEST RESULTS	10
7	7.1.	LIMITS AND PROCEDURE	10
7	7.2.	TRANSMITTER ABOVE 1 GHz	11
	7.2.1	. 802.11b IN THE 2.4 GHz BAND	11
_	1.Z.Z		12
-	.J.	RECEIVER ABOVE 1 GHZ	10
7	.4.	WURST CASE BELOW 1 GHZ	17
8.	AC P	POWER LINE CONDUCTED EMISSIONS	20
9.	SETI	JP PHOTOS	23

Page 3 of 25

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	TOSHIBA AMERICA INFORMATION SYSTEMS, INC. 9740 IRVINE BLVD. CA 92618-1697, U.S.A.
EUT DESCRIPTION:	802.11 bgn 1X2 MINI CARD (TESTED INSIDE OF LIBRETTO W100)

MODEL NUMBER: PA3758U-1MPC

- SERIAL NUMBER: PCN2287CC201
- **DATE TESTED:** MAY 13-18, 2010

APPLICABLE STANDARDS	
STANDARD	TEST RESULTS
CFR 47 Part 15 Subpart C	Pass
INDUSTRY CANADA RSS-210 Issue 7 Annex 8	Pass
INDUSTRY CANADA RSS-GEN Issue 2	Pass

Compliance Certification Services, Inc. (CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For CCS By:

Tested By:

THU CHAN EMC MANAGER COMPLIANCE CERTIFICATION SERVICES

Chin Pany

CHIN PANG EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

Page 4 of 25

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2, FCC CFR 47 Part 15, FCC 06-96, RSS-GEN Issue 2, and RSS-210 Issue 7.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is an 802.11bgn 20/40MHz 1x2 mini radio card.

The radio module is manufactured by Realtek Semiconductor Corp.

5.2. MAXIMUM OUTPUT POWER

The test measurement passed within \pm 0.5dBm of the original output power.

5.3. DESCRIPTION OF CLASS II PERMISSIVE CHANGE

The major change filed under this application is adding portable tablet Toshiba Tablet (Libretto W100).

5.4. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a PIFA antenna with a maximum gain of -0.32 dBi for 2.4GHz band.

5.5. SOFTWARE AND FIRMWARE

The test utility and driver software used during testing was Realtek 11n singlechip PCIE WLAN NIC mass production kit, file version: 5.1009.1229.2008

5.6. WORST-CASE CONFIGURATION AND MODE

Worst-Case data rates were utilized from preliminary testing of the Chipset, original FCC ID TX2-RTL819SE with grant date on 01/22/09, so worst-case data rates used during the radiated emissions testing are as follows:

_For Bandedge measurement: 802.11n HT40 mode, MCS0, 13.5Mbps, OFDM modulation. _All TX harmonic spurious, RX, below 1GHz spurious, and AC line condition measurements: 802.11b mode, 1Mbps, CCK modulation.

The EUT is a portable device, therefore, X, Y, Z position has been investigated and the X position was turned out as worst-case orientation.

5.7. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

	PERIPHERAL SUPPORT EQUIPMENT LIST												
Description Manufacturer Model Serial Number FCC													
LAPTOP	Toshiba	Libretto W100	PLW10U-AAAA1	DoC									
AC/DC Adaptor	Toshiba	PA3822U-1ACA	229100324000013	DoC									

I/O CABLES

	I/O CABLE LIST												
Cable Port		# of	Connector	Cable	Cable	Remarks							
No.		Identic Ports	Туре	Туре	Length								
1	AC	1	AC	Un-Shielded	1.0 m	N/A							
2	DC	1	DC	Un-Shielded	2.0 m	Ferrite at one End							

TEST SETUP

The EUT is installed in a host laptop computer during the tests. Test software exercised the radio card.

Page 7 of 25

SETUP DIAGRAM FOR TESTS

COMPLIANCE CERTIFICATION SERVICES FORM NO: CCSUP4701C 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of CCS.

Page 8 of 25

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

	TEST EQU	JIPMENT LIST			
Description	Manufacturer	Model	Asset	Cal Due	
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C01052	08/04/10	
Antenna, Horn, 18 GHz	EMCO	3115	C00945	07/29/10	
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00885	07/06/10	
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01016	07/14/10	
Spectrum Analyzer, 26.5 GHz	Agilent / HP	E4440A	C01176	08/24/10	
LISN, 30 MHz	FCC	LISN-50/250-25-2	N02625	11/06/10	
EMI Test Receiver, 30 MHz	R&S	ESHS 20	N02396	05/06/11	
Reject Filter, 2.4-2.5 GHz	Micro-Tronics	BRC13192	N02683	CNR	

Page 9 of 25

7. RADIATED TEST RESULTS

7.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

Frequency Range	Field Strength Limit	Field Strength Limit
(MHz)	(uV/m) at 3 m	(dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, and then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Page 10 of 25

7.2. TRANSMITTER ABOVE 1 GHz

7.2.1. 802.11b IN THE 2.4 GHz BAND

HARMONICS AND SPURIOUS EMISSIONS (WORST-CASE)

Complia	nce Cer	tification	Service	s, fre	mont 51	n Chamb	er						
lest Engi													
Date: Deciset #	_	10111322											
Ртојест # Сописат	:	Techille	.0										
Company FIIT Dece	r: mintion:	207 11 h	an Mini	Card	I								
EUT Desc FIIT M/N-	гфцои:	PA37581	EL MPC										
Test Targ	et:	FCC 15.	247	, 									
Mode Op	er:	TX, b mo	de										
	f	Measuren	nent Fred	mencv	Amp	Preamp (Fain			Average	Field Stren	eth Limit	
	Dist	Distance	to Anter	nna	D Corr	Distance	Correc	rt to 3 me	ters	Peak Fie	ld Strength	Limit	
	Read	Analyzer	Reading		Avg	Average	Field S	trength @	3 m	Margin v	vs. Average	Limit	
	AF	Antenna	Factor		Peak	Calculate	d Peak	Field Stre	ength	Margin	rs. Peak Lii	nit	
	CL	Cable Los	55		HPF	High Pas	s Filter	r					
f	Dist	Read	AF	CL	Атр	D Corr	Fltr	Согт.	Limit	Margin	Ant. Pol.	Det.	Notes
GHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	
Low Ch,	2412MH	[z					~ ~ ~						
4.824	3.0	40.0	33.0	5.8	-36.5	0.0	0.0	42.4	74.0	-31.6	H	P	
4.824	3.0	32.0	33.0	5.8 5.9	-30.5	0.0	0.0	34.4 14.0	54.U 74.0	-19.0	н v	A D	
4 824	3.0	37.4	33.0	5.8	-36.5	0.0	0.0	39.7	54.0	-14.3	v	A	
		· · · · ·									•		
Mid Ch, 2	2437MH	Z	<u>.</u>					1					
4.874	3.0	40.2	33.1	5.8	-36.5	0.0	0.0	42.7	74.0	-31.3	H	P	
4.874	3.0	32.3	33.1	5.8	-36.5	0.0	0.0	34.8	54.0	-19.2	H	A	
7.311	3.0	39.8	35.3	7.3	-36.2	0.0	0.0	46.1	74.0	-27.9	H	P	
7.311	3.0	30.5	35.3	7.3	-36.2	0.0	0.0	36.8	54.0	-17.2	H	A	
4.874	3.0	42.5	33.1	5.8	-36.5	0.0	0.0	44.9	74.0	-29.1	V	P	
4.874	3.0	37.0	33.1	5.8	-36.5	0.0	0.0	39.4	54.0	-14.6	V U	A	
7 311	3.0	39.4 79.4	35.3	7.3	-36.2	0.0	0.0	45./	74.U 54.0	-28.5	v V	r A	
r.J11	3.0	£6.0		(.J	-J0.2	0.0	0.0	J457	24.0	-17.1	v	A	
Hizh Ch	2462MI	Hz											
4.924	3.0	40.7	33.1	5.9	-36.5	0.0	0.0	43.3	74.0	-30.7	Н	Р	
4.924	3.0	33.0	33.1	5.9	-36.5	0.0	0.0	35.6	54.0	-18.4	H	A	
7.386	3.0	38.1	35.4	7.3	-36.2	0.0	0.0	44.6	74.0	-29.4	H	Р	
7.386	3.0	25.4	35.4	7.3	-36.2	0.0	0.0	31.9	54.0	-22.1	H	A	
4.924	3.0	42.2	33.1	5.9	-36.5	0.0	0.0	44.7	74.0	-29.3	V	Р	
	3.0	36.1	33.1	5.9	-36.5	0.0	0.0	38.7	54.0	-15.3	V	A	
4.924	3.0	37.7	35.4	7.3	-36.2	0.0	0.0	44.2	74.0	-29.8	V	Р	
4.924 7.386								: 20.4	540	01.0	: 17		

Page 11 of 25

7.2.2. 802.11n HT40 MODE IN THE 2.4 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

Page 12 of 25

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

Page 13 of 25

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

Page 14 of 25

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

•	, ,,		ML 4 3 4	07.047.5.011-	
(440 ID \)			MKF1 2.4	8/04/5 GHZ	
1110 dBµ∨ eak	#Atten 0 dB			72.88 dBµ∨	Next Peak
a					
5 <u> </u>					
/					Next Pk Right
st					
9					
	1				Next Pk Left
11.000					
0 Will with the state	VYWWWWWWWWWWW	Real Million Holes of	a shi as	d	
µv		WIT I I I I I I I I I I I I I I I I I I	and a marity the	Mary reading the second	Min Search
4γ					
					Pk-Pk Search
FC					
.					
n					
					More
art 2.483 500 0 G	Hz		Stop 2.5	00 000 0 GHz	1.47

Page 15 of 25

7.3. RECEIVER ABOVE 1 GHz

	High	Frequency	Measurem	ent											
Complia	nnce Ce	ertification S	Services, Fr	emont :	5m Ch	amber									
ompan	v:	Toshiha													
roiect	#:	101113220													
ate:		5/17/2010													
est En	gineer:	Chin Pang													
onfigu	ration:	EUT and AC	Adapter												
Iode:		RX mode (W	orst Case)												
est Eq	uipmen	. <u>t:</u>													
н	orn 1-	18GHz	Pre-ar	nplifer	1-260	SHz	Pre-am	plifer	26-40GH	z	Но	orn > 18G	Hz		Limit
															ECC 15 200
1/3; 9	5/N: 671	/@03m	- 1144 N	Aiteq 30	08A009	31 -				-				-	FCC 13.205
- Hi Fred	juency Ca	bles												_	
			101				001		007500					Peal	- Measurements
3.0	cable 2	22807700	12° c	able 2	28076	00	20 ca		807500		HPF	Re	ject Filte	RB	W=VBW=1MHz
3' c	able 228	807700	12' ca	blo 228	07600		20' cab	le 2280	7500	i				Avera	ge Measurements
				510 220	01000	-			•					RBW=	1MHz; VBW=10Hz
			,												
f	Dist	Read Pk	Read Avg.	AF	CL	Amp	D Corr	Fltr	Peak	Avg	Pk Lim	Avg Lim	Pk Mar	Avg Mar	Notes
GHz	(m)	dBuV	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dBuV/m	dBuV/m	dB	dB	(V/H)
252	20	527	26.5	24.7	27	20.1	0.0	0.0	40.0	24.7	74	54	22.1	20.2	ч
585	3.0	51.5	35.0	25.8	3.0	-39.1	0.0	0.0	40.5	24.7	74	54	-32.3	-29-3	Н
873	3.0	52.0	43.8	33.1	5.8	-36.5	0.0	0.0	54.5	46.3	74	54	-19.5	-7.7	H
253	3.0	53.0	36 <i>.</i> 3	24.7	2.7	-39.1	Q.O	0.0	41.2	24.5	74	54	- 32.8	- 29.5	v
583	3.0	51.8	34.8	25.8	3.0	-38.7	0.0	0.0	42.0	25.0	74	54	-32.0	-29,0	V
873	3.0	47.0	39.5	33.1	5.8	-30.5	UU.	0.0	50.1	42.0	74	54	-23.9	-12,0	• •
									1					1	
are 07.22	0.00														
ote: No (other em	issions were d	letected above	the syste	m noise	floor.									
	f	Measureme	nt Frequency	у		Amp	Preamp (Gain				Avg Lim	Average 1	Field Strengt	h Limit
	Dist	Distance to	Antenna			D Corr	Distance	Corre	ct to 3 mete	ers		Pk Lim	Peak Fiel	d Strength L	imit
	Read	Analyzer R	eading			Avg	Average	Field S	Strength @	3 m		Avg Mar	Margin vs	. Average L	imit
	AF	Antenna Fa	ctor			Peak	Calculate	d Peal	c Field Stre	ngth		Pk Mar	Margin vs	. Peak Limit	:
	OT	Califa Tana				HDE	High Dag	e Filter							

Page 16 of 25

7.4. WORST CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

Page 18 of 25

HORIZONTAL AND VERTICAL DATA

Complian	Hz Frequ ce Certif	ency Meas icotion Se	urement wices. Fr	t memon	+5m Ch	mher							
Compilan	te vera	nanon sei	lvices, 11	CHOA	l Vill Oak	шыст							
Test Engr: Chin Pang													
Date:		05/17/10 10U13220 Toshiba 802.11 bgn 1x2 Mini Card PA3758U-1MPC FCC 15B											
Project #:													
Company	:												
EUT Descr	iption:												
EUT M/N:													
Test Targe	et:												
Mode Ope	:r:	TX (Worst Case)											
	f	Measurem	ent Frequ	ency	Amp	Preamp (Gain			Margin	Margin vs.	Limit	
	Dist	Distance to	o Antenn	a	D Corr	Distance	Correct	to 3 meters					
	Read	Analyzer F	Reading		Filter	Filter Ins	ert Loss						
	AF	Antenna F	tenna Factor Corr. Calculated Field Strength										
	CL	Cable Loss	;		Limit	Field Stre	ength Lir	nit					
		. D 1	. LT .			100			.		• • D 1		NT :
1	Dist	Kead JD., U		UL JD	Amp	D Corr	filter	Corr.	Lamit	Margin	Ant Pol	Det. D///OD	Notes
	: (m)	: anuv	; œ/m ;	, w	: a D	: OD :	: and		· · · · · · · · · · · · · · · · · · ·		· • • • • • • •		
191112	1 2 2		<u> </u>		<u>+</u>			ubuv/m	dBuV/m	dB	V/H	P/A/QP	
33.600	3.0	39.9	18.5	0.5	28.4	0.0	0.0	30.6	dBuV/m 40.0	-9.4	V/H V	PAQP	
33.600 88.922	3.0	39.9 44.8	18.5 7.5	0.5 0.8	28.4 28.3	0.0	0.0 0.0	30.6 24.9	40.0 43.5	-9.4 -18.6	V/H V V	P/ADQP P P	
33.600 88.922 129.004	3.0 3.0 3.0	39.9 44.8 43.3	18.5 7.5 13.6	0.5 0.8 1.1	28.4 28.3 28.3	0.0 0.0 0.0	0.0 0.0 0.0	30.6 24.9 29.6	40.0 43.5 43.5	-9.4 -18.6 -13.9	V/H V V V	P P P P	
33.600 88.922 129.004 346.093	3.0 3.0 3.0 3.0 3.0	39.9 44.8 43.3 42.6	18.5 7.5 13.6 14.1	0.5 0.8 1.1 1.6	28.4 28.3 28.3 28.1	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	30.6 24.9 29.6 30.2	40.0 43.5 43.5 46.0	-9.4 -18.6 -13.9 -15.8	V/H V V V V	P P P P P	
33.600 88.922 129.004 346.093 399.975	3.0 3.0 3.0 3.0 3.0 3.0	39.9 44.8 43.3 42.6 43.9	18.5 7.5 13.6 14.1 14.9	0.5 0.8 1.1 1.6 1.8	28.4 28.3 28.3 28.1 28.1	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	30.6 24.9 29.6 30.2 32.5	40.0 43.5 43.5 43.5 46.0 46.0	-9.4 -18.6 -13.9 -15.8 -13.5	V/H V V V V V	P P P P P P	
33.600 88.922 129.004 346.093 399.975 633.625	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	39.9 44.8 43.3 42.6 43.9 37.9	18.5 7.5 13.6 14.1 14.9 18.8	0.5 0.8 1.1 1.6 1.8 2.3	28.4 28.3 28.3 28.1 28.1 28.1 27.4	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	30.6 24.9 29.6 30.2 32.5 31.6	40.0 43.5 43.5 46.0 46.0 46.0	-9.4 -18.6 -13.9 -15.8 -13.5 -14.4	V/H V V V V V V	PAUQP P P P P P P P P P	
33.600 88.922 129.004 346.093 399.975 633.625 712.468	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	39.9 44.8 43.3 42.6 43.9 37.9 37.0	18.5 7.5 13.6 14.1 14.9 18.8 19.8	0.5 0.8 1.1 1.6 1.8 2.3 2.5	28.4 28.3 28.3 28.1 28.1 27.4 27.2	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	30.6 24.9 29.6 30.2 32.5 31.6 32.0	48uV/m 40.0 43.5 43.5 46.0 46.0 46.0 46.0 46.0	415 -9.4 -18.6 -13.9 -15.8 -13.5 -14.4 -14.0	V/H V V V V V V V	PAUQP P P P P P P P P P P P	
33.600 88.922 129.004 346.093 399.975 633.625 712.468 128.764	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	39.9 44.8 43.3 42.6 43.9 37.9 37.0 42.2	18.5 7.5 13.6 14.1 14.9 18.8 19.8 19.8 13.6	0.5 0.8 1.1 1.6 1.8 2.3 2.5 1.1	28.4 28.3 28.3 28.1 28.1 27.4 27.2 28.3 28.3	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	30.6 24.9 29.6 30.2 32.5 31.6 32.0 28.5	484V/m 40.0 43.5 43.5 46.0 46.0 46.0 46.0 46.0 46.0	dB -9.4 -18.6 -13.9 -15.8 -13.5 -14.4 -14.0 -15.0	V/H V V V V V V V	PAUGP P P P P P P P P P	
33.600 88.922 129.004 346.093 399.975 633.625 712.468 128.764 185.526	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	39.9 44.8 43.3 42.6 43.9 37.9 37.0 42.2 45.1	18.5 7.5 13.6 14.1 14.9 18.8 19.8 13.6 11.2	0.5 0.8 1.1 1.6 1.8 2.3 2.5 1.1 1.2	28.4 28.3 28.3 28.1 28.1 27.4 27.2 28.3 28.2 28.2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	30.6 24.9 29.6 30.2 32.5 31.6 32.0 28.5 29.3	4840/m 40.0 43.5 43.5 46.0 46.0 46.0 46.0 46.0 43.5 43.5 43.5	dB -9.4 -18.6 -13.9 -15.8 -13.5 -14.4 -14.0 -15.0 -14.2 -14.2	V/H V V V V V H H	PANOP P P P P P P P P P P P P	
33.600 88.922 129.004 346.093 399.975 633.625 712.468 128.764 185.526 265.210	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	39.9 44.8 43.3 42.6 43.9 37.9 37.0 42.2 45.1 43.7	18.5 7.5 13.6 14.1 14.9 18.8 19.8 13.6 11.2 12.3	0.5 0.8 1.1 1.6 1.8 2.3 2.5 1.1 1.2 1.4	28.4 28.3 28.3 28.1 28.1 27.4 27.2 28.3 28.2 28.2 28.2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	30.6 24.9 29.6 30.2 32.5 31.6 32.0 28.5 29.3 29.2	484V/m 40.0 43.5 43.5 46.0 46.0 46.0 46.0 43.5 46.0 43.5 46.0 43.5 46.0 40.0	dB -9.4 -18.6 -13.9 -15.8 -13.5 -14.4 -14.0 -15.0 -14.2 -14.2 -14.2	V/H V V V V V H H H	PADUP P P P P P P P P P P P P P P P P P P	
33.600 88.922 129.004 346.093 346.093 346.093 346.093 346.093 346.093 129.75 633.625 712.468 128.764 185.526 265.210 346.093	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	39.9 44.8 43.3 42.6 43.9 37.9 37.0 42.2 45.1 43.7 43.2	18.5 7.5 13.6 14.1 14.9 18.8 19.8 13.6 11.2 12.3 14.1	0.5 0.8 1.1 1.6 1.8 2.3 2.5 1.1 1.2 1.4 1.6	28.4 28.3 28.3 28.1 27.4 27.2 28.3 28.2 28.2 28.2 28.2 28.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	30.6 24.9 29.6 30.2 32.5 31.6 32.0 28.5 29.3 29.2 30.9	484V/m 40.0 43.5 43.5 46.0 46.0 46.0 46.0 43.5 43.5 46.0 46.0 46.0 43.5 46.0	435 -9.4 -18.6 -13.9 -15.8 -13.5 -14.4 -14.0 -15.0 -14.2 -16.8 -15.1 -15.1	V/H V V V V V V H H H H	PASQP P P P P P P P P P P P P P P P P	
33.600 388.922 129.004 346.093 399.975 633.625 712.468 128.764 128.764 185.526 265.210 346.093 419.896	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	39.9 44.8 43.3 42.6 43.9 37.9 37.0 42.2 45.1 43.7 43.2 43.2 43.2	18.5 7.5 13.6 14.1 14.9 18.8 19.8 13.6 11.2 12.3 14.1 15.3	0.5 0.8 1.1 1.6 1.8 2.3 2.5 1.1 1.2 1.4 1.6 1.9	28.4 28.3 28.3 28.1 27.4 27.2 28.3 28.2 28.2 28.2 28.2 28.1 28.0 28.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	30.6 24.9 29.6 30.2 32.5 31.6 32.0 28.5 29.3 29.2 30.9 31.8	484V/m 40.0 43.5 45.0 46.0	db -9.4 -18.6 -13.9 -15.8 -13.5 -14.4 -14.0 -15.0 -14.2 -16.8 -15.1 -14.2	V/H V V V V V H H H H H	PASQP P P P P P P P P P P P P P P P P	

Page 19 of 25

8. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted Limit (dBuV)			
	Quasi-peak	Average		
0.15-0.5	66 to 56 *	56 to 46 "		
0.5-5	56	46		
5-30	60	50		

Decreases with the logarithm of the frequency.

TEST PROCEDURE

ANSI C63.4

RESULTS

6 WORST EMISSIONS

CONDUCTED EMISSIONS DATA (115VAC 60Hz)										
Freq.		Closs	Limit	EN_B	Margin		Remark			
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV (dB)	L1 / L2	
0.19	59.46		38.60	0.00	64.04	54.04	-4.58	-15.44	L1	
0.26	49.99		27.54	0.00	61.43	51.43	-11.44	-23.89	L1	
24.01	47.42		38.17	0.00	60.00	50.00	-12.58	-11.83	L1	
0.20	57.12		35.91	0.00	63.69	53.69	-6.57	-17.78	L2	
0.26	47.43		26.24	0.00	61.50	51.50	-14.07	-25.26	L2	
24.01	47.28		38.02	0.00	60.00	50.00	-12.72	-11.98	L2	
6 Worst Data										

LINE 1 RESULTS

Page 21 of 25

LINE 2 RESULTS

Page 22 of 25