

FCC OET BULLETIN 65 SUPPLEMENT C CLASS II PERMISSIVE CHANGE IC RSS-102 ISSUE 3

SAR EVALUATION REPORT

For

802.11 b/g/n 1x1 PCIe Minicard (Tested inside of NB 300/305)

FCC ID: CJ6UPA3722WL IC: 248H-DPA3722W Model: PA3722U-1MPC

REPORT NUMBER: 09U12936-1A

ISSUE DATE: November 24, 2009

Prepared for

TOSHIBA AMERICA INFORMATION SYSTEMS, INC. 9740 IRVINE BLVD. IRVINE, CA 92618, USA

Prepared by

COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET FREMONT, CA 94538, USA

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	November 24, 2009	Initial Issue	
А	November 24, 2009	Indicating Antenna-to-user separation distance in section 5 and KDB 447498 consideration.	S.H.

Page 2 of 21

TABLE OF CONTENTS

1.	Α	TTESTATION OF TEST RESULTS4
2.	т	EST METHODOLOGY
3.	F	ACILITIES AND ACCREDITATION5
	C 4.1. 4.2.	
5.	Е	QUIPMENT UNDER TEST9
6.	S	YSTEM SPECIFICATIONS10
7.	С	OMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS
8.	L	IQUID PARAMETERS CHECK12
	8.1.	LIQUID CHECK RESULTS FOR 2450 MHZ13
9.	S	YSTEM CHECK
	9.1.	SYSTEM CHECK RESULTS FOR D2450V214
10		OUTPUT POWER VERIFICATION15
11	•	SUMMARY OF TEST RESULTS16
12		WORST-CASE SAR TEST PLOTS17
13		ATTACHMENTS18
14		TEST SETUP PHOTO19
15		HOST DEVICE PHOTO

Page 3 of 21

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	TOSHIBA AMERICA INFORMATION SYSTEMS, INC. 9740 IRVINE BLVD. IRVINE, CA 92618, USA
EUT DESCRIPTION:	802.11 b/g/n 1x1 PCIe Minicard
	(Tested inside of NB 300 / NB305)
FCC ID:	CJ6UPA3722WL
MODEL:	PA3722U-1MPC
IC:	248H-DPA3722W
DEVICE CATEGORY:	Portable
EXPOSURE CATEGORY:	General Population/Uncontrolled Exposure
DATE TESTED:	November 24, 2009

THE HIGHEST SAR VALUES:

FCC / IC Rule Parts	Frequency Range [MHz]	The Highest 1-g SAR(mW/g)	Limit (mW/g)
15.247 / RSS-102	2400 – 2483.5	0.014	1.6

APPLICABLE STANDARDS AND TEST PROCEDURES:

STANDARD	TEST RESULTS			
FCC OET BULLETIN 65 SUPPLEMENT C	Pass			
RSS-102 ISSUE 3	Pass			

Compliance Certification Services, Inc. (CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For CCS By:

Seenay Shih

SUNNY SHIH ENGINEERING SUPERVISOR COMPLIANCE CERTIFICATION SERVICES

Page 4 of 21

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC OET Bulletin 65 Supplement C, KDB 248227 SAR Measurement Procedure for 802.11abg Transmitters, KDB 447498 D01 Mobile Portable RF Exposure v04, supplemental to KDB 616217 D03 and IC RSS 102 Issue 3.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com.</u>

Page 5 of 21

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

Nome of Equipment	Monufacturar	Turne/Medal	Sarial Na	Cal. Due date			
Name of Equipment	Manufacturer	Type/Model	Serial No.	MM	DD	Year	
Robot - Six Axes	Stäubli	RX90BL	N/A		N/A		
Robot Remote Control	Stäubli	CS7MB	3403-91535			N/A	
DASY4 Measurement Server	SPEAG	SEUMS001BA	1041			N/A	
Probe Alignment Unit	SPEAG	LB (V2)	261			N/A	
SAM Phantom (SAM1)	SPEAG	QD000P40CA	1185			N/A	
SAM Phantom (SAM2)	SPEAG	QD000P40CA	1050			N/A	
Oval Flat Phantom (ELI 4.0)	SPEAG	QD OVA001 B	1003			N/A	
Electronic Probe kit	HP	85070C	N/A			N/A	
S-Parameter Network Analyzer	Agilent	8753ES-6	MY40001647	11	22	2010	
Signal Generator	Agilent	8753ES-6	MY40001647	11	22	2010	
E-Field Probe	SPEAG	EX3DV4	3686	3	23	2010	
Data Acquisition Electronics	SPEAG	DAE3 V1	500	9	15	2010	
System Validation Dipole	SPEAG	D900V2	108	1	21	2010	
System Validation Dipole	SPEAG	D1800V2	294	1	29	2010	
System Validation Dipole	SPEAG	D1900V2	5d043	1	29	2010	
System Validation Dipole	SPEAG	D2450V2	748	4	14	2010	
ESG Vector Signal Generator	Agilent	E4438C	US44271090	9	17	2010	
Power Meter	Giga-tronics	8651A	8651404	1	11	2010	
Power Sensor	Giga-tronics	80701A	1834588	1	11	2010	
Amplifier	Mini-Circuits	ZVE-8G	90606			N/A	
Amplifier	Mini-Circuits	ZHL-42W	D072701-5			N/A	
Simulating Liquid	SPAEG	H2450	N/A	Withir	Within 24 hrs of first test		
Simulating Liquid	SPAEG	M2450	N/A	Withir	ו 24 h	rs of first test	
Simulating Liquid	SPAEG	M5800	N/A	Withir	ו 24 h	rs of first test	

4.2. MEASUREMENT UNCERTAINTY

Measurement uncertainty for 300 MHz - 3000 MHz

Uncertainty component	Tol. (±%)	Probe Dist.	Div.	Ci (1g)	Ci (10g)	Std. Ur	nc.(±%)
oncertainty component	101. (±70)	TTODE DISt.	Div.	Or (Tg)		Ui (1g)	Ui(10g)
Measurement System							
Probe Calibration	4.80	N	1	1	1	4.80	4.80
Axial Isotropy	4.70	R	1.732	0.707	0.707	1.92	1.92
Hemispherical Isotropy	9.60	R	1.732	0.707	0.707	3.92	3.92
Boundary Effects	1.00	R	1.732	1	1	0.58	0.58
Linearity	4.70	R	1.732	1	1	2.71	2.71
System Detection Limits	1.00	R	1.732	1	1	0.58	0.58
Readout Electronics	1.00	N	1	1	1	1.00	1.00
Response Time	0.80	R	1.732	1	1	0.46	0.46
Integration Time	2.60	R	1.732	1	1	1.50	1.50
RF Ambient Conditions - Noise	1.59	R	1.732	1	1	0.92	0.92
RF Ambient Conditions - Reflections	0.00	R	1.732	1	1	0.00	0.00
Probe Positioner Mechnical Tolerance	0.40	R	1.732	1	1	0.23	0.23
Probe Positioning With Respect to Phantom Shell	2.90	R	1.732	1	1	1.67	1.67
algorithms for max. SAR evaluation	3.90	R	1.732	1	1	2.25	2.25
Test sample Related							
Test Sample Positioning	1.10	N	1	1	1	1.10	1.10
Device Holder Uncertainty	3.60	N	1	1	1	3.60	3.60
Power and SAR Drift Measurement	5.00	R	1.732	1	1	2.89	2.89
Phantom and Tissue Parameters							
Phantom Uncertainty	4.00	R	1.732	1	1	2.31	2.31
Liquid Conductivity - Target	5.00	R	1.732	0.64	0.43	1.85	1.24
Liquid Conductivity - Meas.	8.60	N	1	0.64	0.43	5.50	3.70
Liquid Permittivity - Target	5.00	R	1.732	0.6	0.49	1.73	1.41
Liquid Permittivity - Meas.	3.30	N	1	0.6	0.49	1.98	1.62
Combined Standard Uncertainty		I	RSS	l	l	11.44	10.49
Expanded Uncertainty (95% Confidence Interval)			K=2			22.87	20.98

1. Tol. - tolerance in influence quaitity

2. N - Nomal

3. R - Rectangular

4. Div. - Divisor used to obtain standard uncertainty

5. Ci - is te sensitivity coefficient

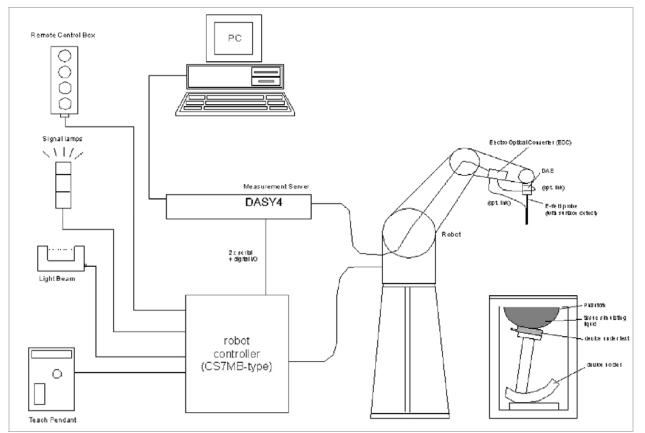
Page 7 of 21

Measurement uncertainty for 3 GHz – 6 GHz

Uncertainty component	Tol. (±%)	Probe	Div.	Ci (1g)	Ci (10g)	Std. Un	C.(±%)
Uncertainty component		Dist.			Cr(rug)	Ui (1g)	Ui(10g)
Measurement System							
Probe Calibration	4.80	Ν	1	1	1	4.80	4.80
Axial Isotropy	4.70	R	1.732	0.707	0.707	1.92	1.92
Hemispherical Isotropy	9.60	R	1.732	0.707	0.707	3.92	3.92
Boundary Effects	1.00	R	1.732	1	1	0.58	0.58
Linearity	4.70	R	1.732	1	1	2.71	2.71
System Detection Limits	1.00	R	1.732	1	1	0.58	0.58
Readout Electronics	1.00	Ν	1	1	1	1.00	1.00
Response Time	0.80	R	1.732	1	1	0.46	0.46
Integration Time	2.60	R	1.732	1	1	1.50	1.50
RF Ambient Conditions - Noise	3.00	R	1.732	1	1	1.73	1.73
RF Ambient Conditions - Reflections	3.00	R	1.732	1	1	1.73	1.73
Probe Positioner Mechnical Tolerance	0.40	R	1.732	1	1	0.23	0.23
Probe Positioning With Respect to Phantom Shell	2.90	R	1.732	1	1	1.67	1.67
Extrapolation, interpolation, and integration							
algorithms for max. SAR evaluation	3.90	R	1.732	1	1	2.25	2.25
Test sample Related							
Test Sample Positioning	1.10	Ν	1	1	1	1.10	1.10
Device Holder Uncertainty	3.60	Ν	1	1	1	3.60	3.60
Power and SAR Drift Measurement	5.00	R	1.732	1	1	2.89	2.89
Phantom and Tissue Parameters							
Phantom Uncertainty	4.00	R	1.732	1	1	2.31	2.31
Liquid Conductivity - Target	5.00	R	1.732	0.64	0.43	1.85	1.24
Liquid Conductivity - Meas.	8.60	Ν	1	0.64	0.43	5.50	3.70
Liquid Permittivity - Target	5.00	R	1.732	0.6	0.49	1.73	1.41
Liquid Permittivity - Meas.	3.30	Ν	1	0.6	0.49	1.98	1.62
Combined Standard Uncertainty			RSS	•		11.66	10.73
Expanded Uncertainty (95% Confidence Interval)			K=2			23.32	21.46
Notes for table							
1. Tol tolerance in influence quaitity							
2. N - Nomal							
3. R - Rectangular							

4. Div. - Divisor used to obtain standard uncertainty

5. Ci - is te sensitivity coefficient


Page 8 of 21

5. EQUIPMENT UNDER TEST

802.11 b/g/n 1x1 PCIe Minicard (Display sizes: 10.1"	Tested inside of NB 300 NB 305)						
Normal operation:	Lap-held only						
Antenna tested:	VendorAntennaPart numberHitachiTX 1HFT60-CP43W						
Antenna-to-user distance	a) 9.5 cm when WWAN modem is also installed in the host.b) 17 cm when WWAN modem is not installed in the host						
Antenna-to-antenna distance:	WLAN-to-Bluetooth main antenna: > 18 cm WLAN-to-WWAN TX : 8.22 cm						
Co-located Tx:	802.11bgn can transmit simultaneously with Bluetooth						
Require SAR evaluation for Simultaneous transmission?	According to KDB447498 2) a) i) Bluetooth's output power is ≤ 60/f(GHz) mW and measured WLAN 1-g SAR are < 0.4 W/kg, therefore simultaneous transmission SAR is not required. WWAN co-located RF exposure assessment will be addressed in a separate FCC application filed under WWAN application.						
KDB 447498 consideration	9.5 cm is considered as the most conservative antenna-to-user separation distance thus it is selected for final SAR evaluation.						

Page 9 of 21

6. SYSTEM SPECIFICATIONS

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validate the proper functioning of the system.

COMPLIANCE CERTIFICATION SERVICESFORM NO: CCSUP4031B47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of CCS.

Page 10 of 21

7. COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients	Frequency (MHz)										
(% by weight)	4	450		835		915		1900		50	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2	
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04	
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0	
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0	
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0	
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0	
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7	
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5	
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78	

Salt: 99+% Pure Sodium Chloride

Sugar: 98+% Pure Sucrose

Water: De-ionized, 16 M Ω + resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

Page 11 of 21

8. LIQUID PARAMETERS CHECK

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values. The relative permittivity and conductivity of the tissue material should be within \pm 5% of the values given in the table below.

Reference Values of Tissue Dielectric Parameters for Head and Body Phantom (for 150 – 3000 MHz and 5800 MHz)

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in IEEE Standard 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

Target Frequency (MHz)	He	ad	Body		
raiget Frequency (Mirz)	ε _r	σ (S/m)	٤ _r	σ (S/m)	
150	52.3	0.76	61.9	0.8	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.9	55.2	0.97	
900	41.5	0.97	55	1.05	
915	41.5	0.98	55	1.06	
1450	40.5	1.2	54	1.3	
1610	40.3	1.29	53.8	1.4	
1800 – 2000	40	1.4	53.3	1.52	
2450	39.2	1.8	52.7	1.95	
3000	38.5	2.4	52	2.73	
5800	35.3	5.27	48.2	6	

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

Page 12 of 21

8.1. LIQUID CHECK RESULTS FOR 2450 MHZ

Simulating Liquid Dielectric Parameters for Muscle 2450 MHz

Room Ambient Temperature = 24°C; Relative humidity = 40%

Measured by: Sunny Shih

f (MHz)		Liquid	Parameters	Measured	Target	Delta (%)	Limit (%)			
2450	e'	54.01	Relative Permittivity (ε_r):	54.007	52.7	2.48	± 5			
2450	e"	14.89	Conductivity (o):	2.029	1.95	4.07	± 5			
Liquid Check										
Ambient temperature: 24 deg. C; Liquid temperature: 23 deg. C										
November 24, 2	2009 10:0	8 AM								
Frequency	(e'	e"							
2400000000.		54.1394	14.6473	3						
2405000000.		54.1219	14.6763							
2410000000.		54.1081	14.7165							
2415000000.		54.0965	14.7461							
2420000000.		54.0680	14.7866	5						
2425000000.		54.0645	14.7977							
2430000000.		54.0500	14.8240							
2435000000.		54.0504	14.8462	2						
2440000000.		54.0468	14.8622	2						
2445000000.		54.0367	14.8789)						
2450000000.		54.0074	14.8899)						
2455000000.		53.9850	14.9117	,						
2460000000.		53.9713	14.9219)						
2465000000.		53.9531	14.9226	6						
2470000000.		53.9274	14.9175	5						
2475000000.		53.9004	14.9465	5						
2480000000.		53.8894	14.9458	3						
2485000000.		53.8771	14.9672	2						
2490000000.		53.8493	14.9860)						
2495000000.		53.8231	15.0230)						
2500000000.		53.7925	15.0624	ŀ						
The conductivity	y (σ) can	be given a	s:							
$\sigma = \omega \varepsilon_0 e'' = 2$	$2\pi f \varepsilon_0 \epsilon$	e"								
where $f = target$	et f * 10 ⁶									
E ₀ = 8.85	54 * 10 ⁻¹²									

Page 13 of 21

9. SYSTEM CHECK

The system performance check is performed prior to any usage of the system in order to guarantee reproducible results. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the SAM twin phantom filled with Head or Body simulating liquid of the following parameters.
- The DASY4 system with an Isotropic E-Field Probe EX3DV4 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
 For 5 GHz band The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 fine cube was chosen for cube
- Distance between probe sensors and phantom surface was set to 3 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was 250 mW±3%.
- The results are normalized to 1 W input power

Reference SAR Values for HEAD & BODY-tissue from calibration certificate of SPEAG. Certificate no: D2450V2-748_Apr08

ſ	f (MHz)	Head	Tissue	Body Tissue		
		SAR _{1g}	SAR 10g	SAR _{1g}	SAR 10g	
	2450			50.8	23.7	

9.1. SYSTEM CHECK RESULTS FOR D2450V2

System Validation Dipole: D2450V2 SN: 748

Date: November 24, 2009

Ambient Temperature = 24°C; Relative humidity = 40%

Measured by: Sunny Shih

Medium	CW Signal (MHz)	Forward power (mW)	Measured (Normalized to 1 W)		Target	Delta (%)	Tolerance (%)	
Body	2450	250	1g SAR:	55.2	50.8	8.66	±10	
Воцу	2400	2450	250	10g SAR:	25.3	23.7	6.75	10

Page 14 of 21

10. OUTPUT POWER VERIFICATION

The following procedures had been used to prepare the EUT for the SAR test.

The client provided a special driver and program, ART v9B7, which enable a user to control the frequency and output power of the module.

The modes with highest output power channel were chosen for the conducted output power measurement. Since 802.11g output power is not ¼ dB higher than 802.11b mode, only 802.11b mode is tested during final SAR evaluation.

Results:

				Output Pwr
Mode	Channel	f (MHz)	Antenna	(dBm)
802.11b	6	2437 (M)	Main	18.20
802.11n 20 MHz	6	2437 (M)	Main	17.50

Page 15 of 21

11. SUMMARY OF TEST RESULTS

<u>Results</u>

Lap-held

Mode	Ch. No.	Freq. (MHz)	Antenna	SAR_1g (mW/g)	SAR_10g (mW/g)
802.11b	6	2437	Main	0.014	0.0038

Page 16 of 21

12. WORST-CASE SAR TEST PLOTS

WORST-CASE SAR PLOT

Date/Time: 11/24/2009 12:02:08 PM

Test Laboratory: Compliance Certification Services

A_Laptop mode - Lapheld

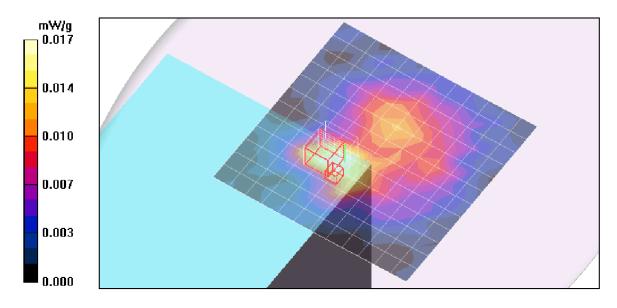
DUT: Toshiba; Type: NA; Serial: NA

Communication System: 802.11bg; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2437 MHz; σ = 2.01 mho/m; ϵ_r = 54; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3686; ConvF(6.48, 6.48, 6.48); Calibrated: 3/23/2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn500; Calibrated: 9/15/2009
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


802.11b M-ch/Area Scan (13x13x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.017 mW/g

802.11b M-ch/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 2.47 V/m; Power Drift = 0.337 dB Peak SAR (extrapolated) = 0.090 W/kg SAR(1 g) = 0.014 mW/g; SAR(10 g) = 0.00378 mW/g Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.022 mW/g

Page 17 of 21

13. ATTACHMENTS

No.	Contents	No. of page (s)
1	System Performance Check Plots	2
2	Certificate of E-Field Probe – EX3DV4 SN 3686	10
3	Certificate of System Validation Dipole - D2450V2 SN:748	6

Page 18 of 21