

FCC CFR47 PART 15 SUBPART C CERTIFICATION

TEST REPORT

FOR

802.11a/b/g COMBO MINI PCI MODULE

MODEL NUMBER: PA3297U-1MPC

BRAND NAME: TOSHIBA

FCC ID: CJ6UPA3297WL

REPORT NUMBER: 03U1876-1

ISSUE DATE: MAY 21, 2003

Prepared for TOSHIBA CORPORATION DIGITAL MEDIA NETWORK COMPANY 2-9 SUEHIRO-CHO, OME TOKYO, 198-8710 JAPAN

> Prepared by COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD, MORGAN HILL, CA 95037, USA TEL: (408) 463-0885 FAX: (408) 463-0888

TABLE OF CONTENTS

1.	TE	EST RESULT CERTIFICATION	
2.	EU	JT DESCRIPTION 4	1
3.	TE	EST METHODOLOGY	
4.	FA	CILITIES AND ACCREDITATION	
	4.1.	FACILITIES AND EQUIPMENT	
	4.2.	TABLE OF ACCREDITATIONS AND LISTINGS	
5.	CA	ALIBRATION AND UNCERTAINTY7	
	5.1.	MEASURING INSTRUMENT CALIBRATION	,
	5.2.	MEASUREMENT UNCERTAINTY	,
	5.3.	TEST AND MEASUREMENT EQUIPMENT 8	,
6.	SE	TUP OF EQUIPMENT UNDER TEST9	
7.	AF	PPLICABLE LIMITS AND TEST RESULTS 11	
	7.1.		
		6 dB BANDWIDTH	
	7.2.		
	7.2. 7.3.	6 dB BANDWIDTH11	
		6 dB BANDWIDTH	
	7.3.	6 dB BANDWIDTH	
	7.3. 7.4.	6 dB BANDWIDTH.11OUTPUT POWER.25MAXIMUM PERMISSIBLE EXPOSURE.28PEAK POWER SPECTRAL DENSITY.30	
	 7.3. 7.4. 7.5. 	6 dB BANDWIDTH.11OUTPUT POWER.25MAXIMUM PERMISSIBLE EXPOSURE.28PEAK POWER SPECTRAL DENSITY.30CONDUCTED SPURIOUS EMISSIONS.44	
	 7.3. 7.4. 7.5. 7.6. 	6 dB BANDWIDTH.11OUTPUT POWER.25MAXIMUM PERMISSIBLE EXPOSURE.28PEAK POWER SPECTRAL DENSITY.30CONDUCTED SPURIOUS EMISSIONS.44RADIATED EMISSIONS.72	

Page 2 of 117

1. TEST RESULT CERTIFICATION

COMPANY NAME: TOSHIBA CORPORATION DIGITAL MEDIA NETWORK COMPANY 2-9 SUEHIRO-CHO, OME TOKYO, 198-8710 JAPAN EUT DESCRIPTION: 802.11a/b/g COMBO MINI PCI MODULE MODEL: PA3297U-1MPC DATE TESTED: APRIL 30 – MAY 09, 2003 APPLICABLE STANDARDS STANDARD TEST RESULTS FCC PART 15 SUBPART C NO NON-COMPLIANCE NOTED

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: This document reports conditions under which testing was conducted and results of tests performed. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document.

Note: The 2.4 and 5.8 GHz bands are applicable to this report; another band of operation (5.2 GHz) is documented in a separate report

Approved & Released For CCS By:

Tested By:

MH

MIKE HECKROTTE CHIEF ENGINEER COMPLIANCE CERTIFICATION SERVICES

Wankon guyon

THANH NGUYEN EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

Page 3 of 117

2. EUT DESCRIPTION

The EUT is an 802.11a/b/g transceiver module. The EUT has a output power of 22.63 dBm (183mW) and highest antenna gain of 4.8 dBi in the 2400 - 2483.5 MHz band.

The EUT has an output power of 21.2 dBm (132 mW) and highest antenna gain of 4.8 dBi in the 5725 - 5850 MHz band.

Optionally the WLAN may be collocated with a Bluetooth transceiver, FCC ID: CJ6UPA3232BT.

Antennas filed under this report: Hitachi Cable, Dual Band Film antenna, model: HTL008, antenna gain 4.8dBi; Hitachi Cable, Wide band film antenna, model: HTL008, antenna gain 4.1 dBi; Tyco Electronics AMP, Dual band film antenna, TIAN01, antenna gain 1.0dBi.

Page 4 of 117

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4/1992, FCC CFR 47 Part 2 and FCC CFR 47 Part 15.

4. FACILITIES AND ACCREDITATION

4.1. FACILITIES AND EQUIPMENT

The open area test sites and conducted measurement facilities used to collect the radiated data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

Page 5 of 117

4.2. TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	FCC	3/10 meter Open Area Test Sites to perform FCC Part 15/18 measurements	FC 1300
Japan	VCCI	CISPR 22 Two OATS and one conducted Site	VCCI R-1014, R-619, C-640
Norway	NEMKO	EN50081-1, EN50081-2, EN50082-1, EN50082-2, IEC61000-6-1, IEC61000-6-2, EN50083-2, EN50091-2, EN50130-4, EN55011, EN55013, EN55014-1, EN55104, EN55015, EN61547, EN55022, EN55024, EN61000-3-2, EN61000-3-3, EN60945, EN61326-1	N _{ELA 117}
Norway	NEMKO	EN60601-1-2 and IEC 60601-1-2, the Collateral Standards for Electro-Medical Products. MDD, 93/42/EEC, AIMD 90/385/EEC	N _{ELA-171}
Taiwan	BSMI	CNS 13438	(本) SL2-IN-E-1012
Canada	Industry Canada	RSS210 Low Power Transmitter and Receiver	Canada IC2324 A,B,C, and F

Page 6 of 117

5. CALIBRATION AND UNCERTAINTY

5.1. MEASURING INSTRUMENT CALIBRATION

The measurement instruments utilized to perform the tests documented in this report have been calibrated in accordance with the manufacturer's recommendations, and are traceable to national standards.

5.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Radiated Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 7 of 117

5.3. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

	TEST EQUIPME	ENT LIST		
Name of Equipment	Manufacturer	Model No.	Serial No.	Due Date
SA RF Section, 1.5 GHz	HP	85680A	2314A02604	7/16/04
Quasi-Peak Adaptor	HP	85650A	2521A01038	7/16/04
SA Display Section 3	HP	85662A	2314A04793	7/16/04
LISN, 10 kHz ~ 30 MHz	FCC	50/250-25-2	114	9/6/2003
Line Filter	Lindgren	LMF-3489	497	CNR
LISN, 10 kHz ~ 30 MHz	Solar	8012-50-R-24-BNC	837990	9/6/2003
EMI Test Receiver	R & S	ESHS 20	827129/006	4/17/2004
Preamplifier, 1 ~ 26.5 GHz	HP	8449B	3008A00369	6/30/2003
Antenna, Horn 1 ~ 18 GHz	EMCO	3115	2238	2/4/2004
PSA Spectrum Analyzer	Agilent	E4446A	424446A	1/13/2004
EMI Receiver, 9 kHz ~ 2.9 GHz	HP	8542E	3942A00286	11/20/2003
RF Filter Section	HP	85420E	3705A00256	11/20/2003
BILOG ANTENNA	A.R.A	LPB-2520/A	1185	6/24/2003
Antenna, Horn 1 ~ 18 GHz	A.R.A	MWH-1826	1049	11/7/2003
Power Meter	HP	E4416A	GB4129116	C.N.R

Page 8 of 117

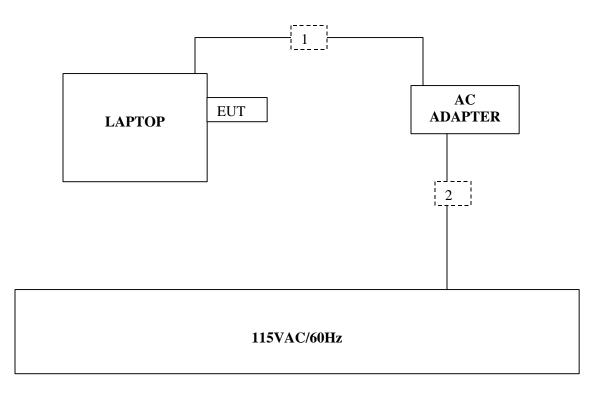
6. SETUP OF EQUIPMENT UNDER TEST

SETUP INFORMATION FOR TRANSMITTER TESTS

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST									
Device Type	Device Type Manufacturer Model Serial Number FCC ID								
Laptop	Toshiba	PP2002-00002	321029675	CJ6PA3171WL					
AC Adapter	Toshiba	PA3241U-1ACA	0211A00164506	N/A					

I/O CABLES


Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length	Remarks
1	DC	1	DC PWR	Unshielded	1.86 m	N/A
2	AC	1	AC PWR	Unshielded	1.86 m	N/A

TEST SETUP

The EUT is installed on extender card of laptop

Page 9 of 117

SETUP DIAGRAM FOR TRANSMITTER TESTS

Page 10 of 117

7. APPLICABLE LIMITS AND TEST RESULTS

7.1. 6 dB BANDWIDTH

<u>LIMIT</u>

§15.247 (a) (2) For direct sequence systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The sweep time is coupled.

2.4 GHz BAND RESULTS

No non-compliance noted:

802.11b Mode

Channel	Frequency	6 dB Bandwidth	Minimum Limit		
	(MHz)	(kHz)	(kHz)		
Low	2412	12500	500		
Middle	2437	12550	500		
High	2462	12750	500		

802.11g Mode

Channel	Frequency 6 dB Bandwidth		Minimum Limit
	(MHz)	(kHz)	(kHz)
Low	2412	16600	500
Middle	2437	16700	500
High	2462	16850	500

802.11g Turbo Mode

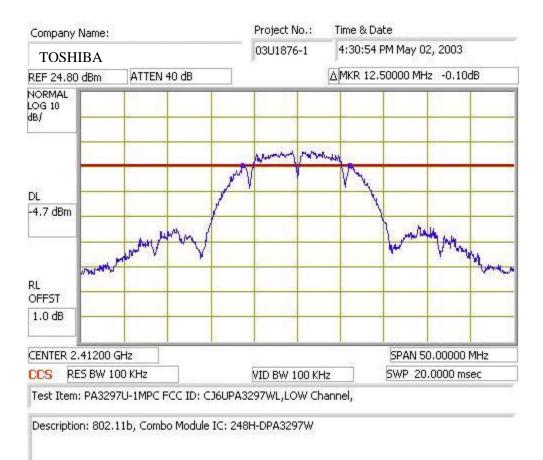
Channel Frequence		6 dB Bandwidth	Minimum Limit		
	(MHz)	(kHz)	(kHz)		
Middle	2437	33050	500		

Page 11 of 117

5.8 GHz BAND RESULTS

802.11a Normal Mode

Channel	Frequency	6 dB Bandwidth	Minimum Limit		
	(MHz)	(kHz)	(kHz)		
Low	5745	16500	500		
Middle	5785	16580	500		
High	5825	16580	500		

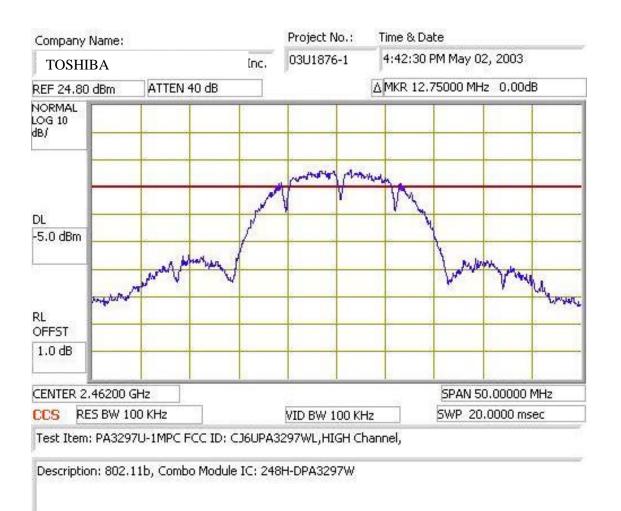

802.11a Turbo Mode

Channel	Frequency	6 dB Bandwidth	Minimum Limit		
	(MHz)	(kHz)	(kHz)		
Low	5760	32670	500		
High	5800	32750	500		

No non-compliance noted:

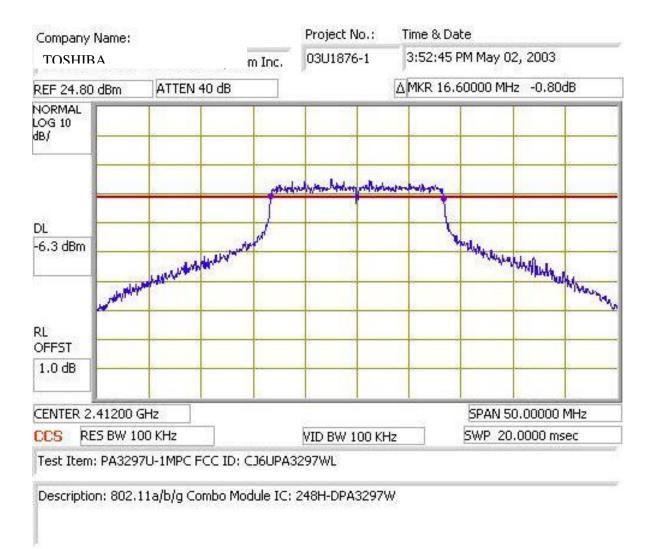
Page 12 of 117

6 DB BANDWIDTH (2.4 GHZ BAND b MODE)



Page 13 of 117

Company	ompany Name:				Project N	o.:	Time & Date			
TOSH	IBA				03U1876-1		4:39:09 PM May 02, 2003			
	REF 24.80 dBm ATTEN 40				40 1		AMKR 12.55000 MHz 0.00dB			
NORMAL LOG 10 dB/										
					whenty	phone	4			
DL		- /		AM	7		N			
-5.0 dBm		- sh pri	mal					In	M1	
RL OFFST	Antany	Merry	~~/					(m	Vm	HAN HANNEN
1.0 dB										
CENTER 2	.43700 GF	Hz			1 1		F.	SPAN 5	0.00000 1	ИHz
CCS RES BW 100 KHz		1		VID BW 100 KHz			SWP 20,0000 msec			

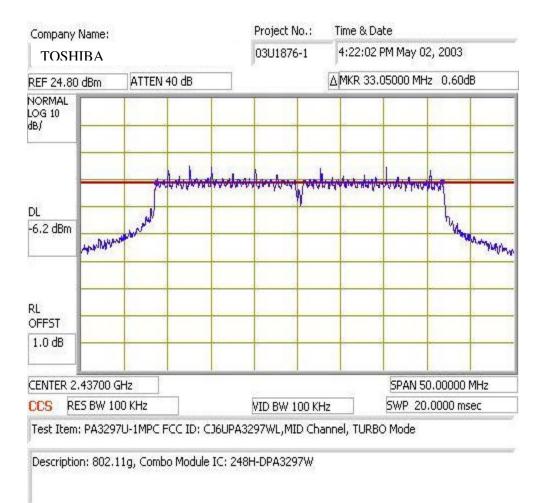

Description: 802.11b, Combo Module IC: 248H-DPA3297W

Page 14 of 117

Page 15 of 117

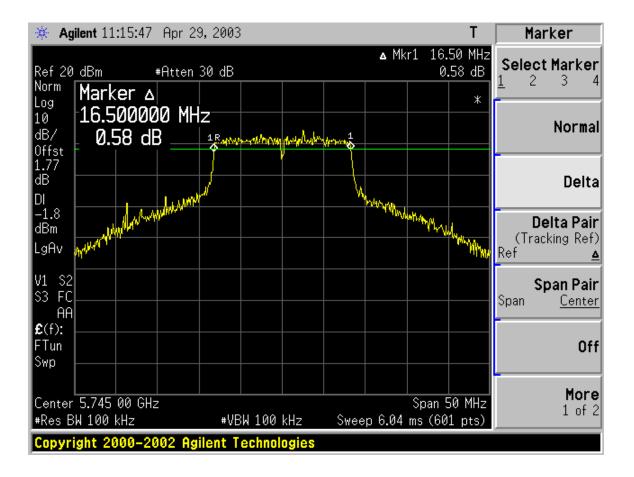
6 DB BANDWIDTH (2.4 GHZ BAND g NORMAL MODE)

Page 16 of 117


Company Name: TOSHIBA			Project No.:	Time & Da	ne & Date				
				03U1876-1	3:59:11 PM May 02, 2003				
REF 24.80	dBm	ATTEN	40 dB			∆MKR 16.	70000 MH	lz 0.60d	в
NORMAL LOG 10 dB/									
				- An	hateraria	anthormoreling			
DL -5.5 dBm			will when when	J			Manyayin day		
	and the month	phone half					Namado Mandall	When we are a second	and a state
RL OFFST									
1.0 dB									
CENTER 2.43700 GHz		-			SPAN 50.00000 MHz				
CCS RES	5 BW 10	D KHz			VID BW 100 KHz SWP 20.0000 msec			ec	
Test Item:	PA3297	U-1MPC F	CC ID: C	J6UPA:	3297WL, MID Cł	nannel			
Description	n: 802.1	1a/b/g Co	imbo Mod	lule IC:	248H-DPA3297	w			-

Page 17 of 117

Company Name:			Project No.: Time & Date							
TOS	TOSHIBA			03U1876-1 5:03			03:29 PM May 02, 2003			
REF 26	.80 dBm	ATTEN ·	10 dB			Δ	MKR 16.8	85000 MH	łz -0.10	dB
NORMA LOG 10 dB/		-							-	
				, bu	d vilan managenting	portandant	whyrredy			
DL -3.7 dB	m	a doctari	white white				ł	model	hui	
	im	unal hand							MANNAN N	and the way
RL OFFST 1.0 dB										
CENTER		Hz	_	-				SPAN 5	0.00000	MHz
CCS	RES BW 100) KHz			VID BW 10	00 KHz		SWP 20	.0000 ms	ec
Test It	em: PA32971	U-1MPC F			3297WL,HIG	iH Char	nnel,			

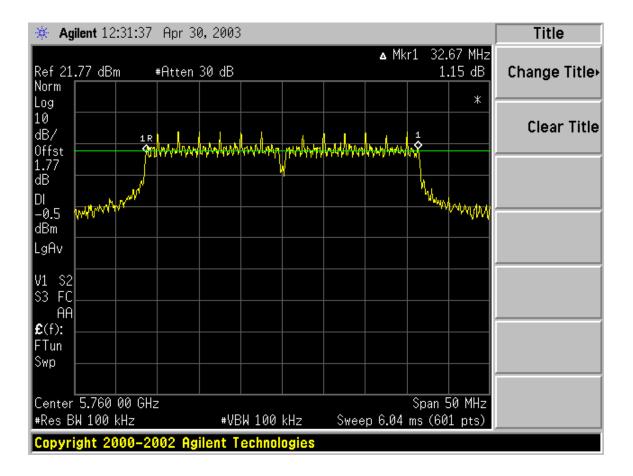

Page 18 of 117

6 DB BANDWIDTH (2.4 GHZ BAND g TURBO MODE)

Page 19 of 117

6 DB BANDWIDTH (5.8 GHZ BAND, NORMAL MODE)

Page 20 of 117


🔆 Agilent 11:27:06	Apr 29, 2003			Т	Title
Ref 20 dBm	#Atten 30 dB			6.58 MHz 1.02 dB	Change Title
Norm Log				*	
10 dB/	18				Clear Title
Offst		When have been a start and a start and a start and a start and a start a start a start a start a start a start a			
dB	h.nM		m		
DI -2.9 dBm	AMM AND A		Vound Ango and Ango ang ango ang		
uch LgAv vvⁿ₩ ₩				and the formation of the	
V1 S2					
S3 FC					
£ (f):					
Swp					
Center 5.785 00 GH			Snan	50 MHz	
#Res BW 100 kHz	#VBW 1	.00 kHz Swe	ep 6.04 ms (6		
File Operation Sta	tus, A:\SCREN25	5.GIF file save	d		

Page 21 of 117

Page 22 of 117

6 DB BANDWIDTH (5.8 GHZ BAND, TURBO MODE)

Page 23 of 117

₩ Agilent 12:33:40 Apr 30, 2003	Title
▲ Mkr1 32.75 MHz Ref 21.77 dBm #Atten 30 dB 0.44 dB Norm	Change Title
Log * 10 dB/ 1R 1 Offer ON subbly shalls on such than what shalls what have	Clear Title
1.77 dB	
DI -1.2 dBm LgAv	
V1 S2 S3 FC	
AA £(f): FTun	
Swp Center 5.800 00 GHz Span 50 MHz	
#Res BW 100 kHz #VBW 100 kHz Sweep 6.04 ms (601 pts) File Operation Status, A:\SCREN275.GIF file saved	

Page 24 of 117

7.2. OUTPUT POWER

PEAK POWER LIMIT

§15.247 (b) The maximum peak output power of the intentional radiator shall not exceed the following:

15.247 (b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz , and 5725-5850 MHz bands: 1 watt.

\$15.247 (b) (4) Except as shown in paragraphs (b)(3) (i), (ii) and (iii) of this section, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum antenna gain is 4.8 dBi, therefore the limit is 30 dBm.

AVERAGE POWER LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter. The power meter is set to simultaneously read peak power and average power.

Page 25 of 117

2.4 GHz BAND RESULTS

The cable assembly insertion loss of 11.02 dB (including 10 dB pad and 1.02 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

No non-compliance noted:

802.11b Mode

Channel	Frequency Average Power		Peak Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	2412	14.9	18.21	30	-11.79
Middle	2437	15.34	18.32	30	-11.68
High	2462	15.68	18.68	30	-11.32

802.11g Mode

Channel	Frequency	Average Power	Peak Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	2412	15.74	22.43	30	-7.57
Middle	2437	15.83	22.51	30	-7.49
High	2462	15.04	21.03	30	-8.97

802.11g Turbo Mode

Channel	Frequency	Average Power	Peak Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Middle	2437	15.95	22.63	30	-7.37

Page 26 of 117

5.8 GHz BAND RESULTS

The cable assembly insertion loss of 11.02 dB (including 10 dB pad and 1.02 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

No non-compliance noted:

Channel	Frequency	Average Power	Peak Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5745	16.65	21.02	30	-8.98
Middle	5785	16.72	21.2	30	-8.80
High	5825	16.86	21.17	30	-8.83

802.11a Turbo Mode

Channel	Frequency	Average Power	Peak Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5760	16.71	20.24	30	-9.76
High	5800	17	20.74	30	-9.26

Page 27 of 117

7.3. MAXIMUM PERMISSIBLE EXPOSURE

<u>LIMITS</u>

15.247 (b) (5) Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See 1.1307(b)(1) of this chapter.

CALCULATIONS

Given

and

 $E = \sqrt{(30 * P * G)} / d$ $S = E^{2} / 3770$

where

$$\begin{split} E &= Field \; Strength \; in \; Volts \; / \; meter \\ P &= Power \; in \; Watts \\ G &= Numeric \; antenna \; gain \\ d &= distance \; in \; meters \\ S &= Power \; Density \; in \; milliwatts \; / \; square \; centimeter \end{split}$$

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

 $d = \sqrt{((30 * P * G) / (3770 * S))}$

Changing to units of mW and cm, using:

P(mW) = P(W) / 1000 andd (cm) =100 * d (m)

yields

where

d = distance in cm P = Power in mW G = Numeric antenna gain S = Power Density in mW / cm^2

Page 28 of 117

Substituting the logarithmic form of power and gain using: P (mW) = 10 ^ (P (dBm) / 10) and G (numeric) = 10 ^ (G (dBi) / 10) yields $d = 0.282 * 10 ^ ((P + G) / 20) / \sqrt{S}$ Equation (1) where d = MPE distance in cm P = Power in dBm G = Antenna Gain in dBi S = Power Density Limit in mW / cm^2

Equation (1) and the measured peak power is used to calculate the MPE distance.

LIMITS

 $S = 1.0 \text{ mW} / \text{cm}^2 \text{ from } 1.1310 \text{ Table } 1$

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.

2.4 GHz BAND RESULTS

Mode	Power Density Limit	Output Power	Antenna Gain	MPE Distance
	(mW/cm^2)	(dBm)	(dBi)	(cm)
802.11b	1.0	18.68	4.80	4.21
802.11g Base	1.0	22.51	4.80	6.54
802.11g Turbo	1.0	22.63	4.80	6.63

No non-compliance noted:

5.8 GHz BAND RESULTS

No non-compliance noted:

Mode	Power Density Limit	Output Power	Antenna Gain	MPE Distance
	(mW/cm^2)	(dBm)	(dBi)	(cm)
802.11a Base	1.0	21.20	4.80	5.63
802.11a Turbo	1.0	20.74	4.80	5.34

Page 29 of 117

7.4. PEAK POWER SPECTRAL DENSITY

<u>LIMIT</u>

§15.247 (d) For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer, the maximum level in a 3 kHz bandwidth is measured with the spectrum analyzer using RBW = 3 kHz and VBW >= 3 kHz, sweep time = span / 3 kHz, and video averaging is turned off. The PPSD is the highest level found across the emission in any 3 kHz band.

2.4 GHz BAND RESULTS

No non-compliance noted:

2.4 GHz Band, 802.11b Mode

Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	-7.00	8	-15.00
Middle	2437	-7.60	8	-15.60
High	2462	-9.10	8	-17.10

2.4 GHz Band, 802.11g Mode

Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	-8.70	8	-16.70
Middle	2437	-9.00	8	-17.00
High	2462	-9.40	8	-17.40

802.11g Turbo Mode

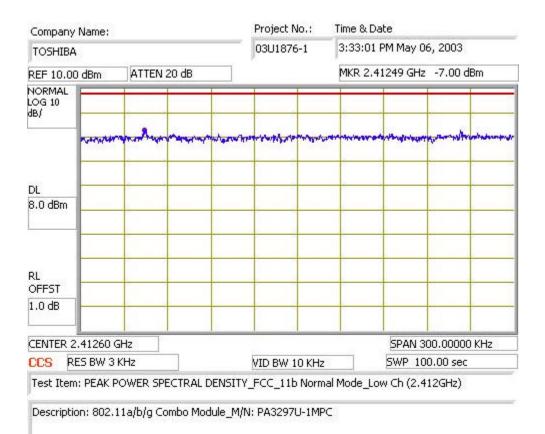
Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Middle	2437	-9.30	8	-17.30

Page 30 of 117

5.8 GHz BAND RESULTS

No non-compliance noted:

802.11a Normal Mode


Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5745	-8.20	8	-16.20
Middle	5785	-8.60	8	-16.60
High	5825	-10.30	8	-18.30

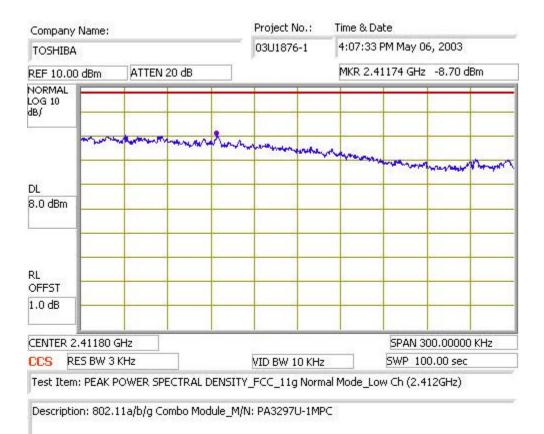
802.11a Turbo Mode

Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5760	-14.30	8	-22.30
High	5800	-11.10	8	-19.10

Page 31 of 117

PPSD (2.4 GHZ BAND b MODE)

Page 32 of 117


Company Name:					Project No.: Time & Date					
TOSHIBA	TOSHIBA				03U1876-1		3:49:16 PM May 06, 2003			
REF 10.0	0 dBm	ATTEN	20 dB				MKR 2.4	3549 GHz	-7.60 c	Bm
NORMAL LOG 10 dB/										
6.	* white	nanywan	New York Strategical	L Marana M	wound	harrin	manut	n a star and	******	-
DL 8.0 dBm										
RL										
OFFST 1.0 dB										
CENTER 2.43550 GHz					5PAN 300.00000 KHz) KHz
CCS R	ES BW 3	KHz			VID BW 1	0 KHz		SWP 10	10.00 sec	

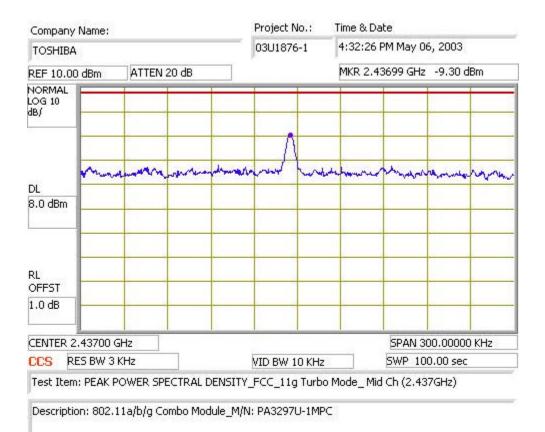
Page 33 of 117

Company Name:					Project No.: Time & Date						
TOSHIBA	4				03U1876-1 3:54			3:54:08 PM May 06, 2003			
REF 10.0	0 dBm	ATTEN	20 dB				MKR 2.46	5499 GHz	-9.10 d	Bm	
NORMAL LOG 10 dB/					,				-		
	Marcarda	nundrev	-	nt for the second	nerdekter ran	ny worth	narrighted	ndrahhar have	withmost	mym	
DL 8.0 dBm				6	i i				-		
RL OFFST											
1.0 dB											
CENTER 2.46510 GHz					5PAN 300.00000 KHz						
CCS R	ES BW 3 K	Hz			VID BW 1	LO KHz		SWP 10	0.00 sec		

Page 34 of 117

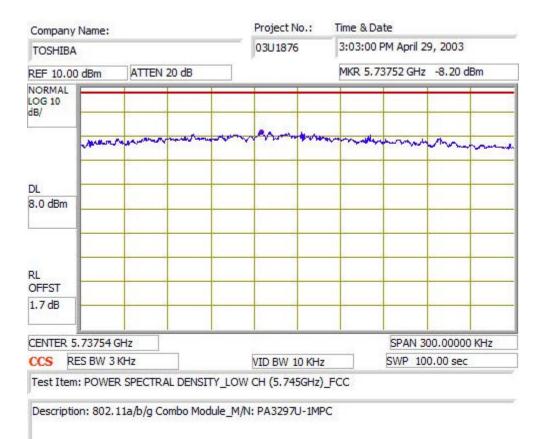
PPSD (2.4 GHZ BAND g NORMAL MODE)

Page 35 of 117


Company Name:					Project No.: Time & Date						
TOSHIBA	TOSHIBA				03U1876-1 4:1			4:12:20 PM May 06, 2003			
REF 10.0	0 dBm	ATTEN	20 dB				MKR 2.43	3262 GHz	-9.00 d	Bm	
NORMAL LOG 10 dB/					-						
0,	www.	the way	mound	Henry	where why in	-gg-hat/hg-land	white	Num	may	minim	
DL		; ;					6 5				
8.0 dBm					-						
RL OFFST				-							
1.0 dB											
CENTER 2.43268 GHz				SPAN 300.00000 KHz) KHz		
CCS R	ES BW 3 K	Hz			VID BW 1	0 KHz		SWP 10	0.00 sec		

Page 36 of 117

Company Name:				Project	Project No.: Time & Date						
TOSHIB	4			03U187	03U1876-1		4:20:35 PM May 06, 2003				
REF 10.0	0 dBm	ATTEN	20 dB]		MKR 2.4	6233 GHz	-9.40 d	Bm		
NORMAL LOG 10 dB/				-				-			
	whent	netto	monund	m	mennew	مراجع در را م می	helin	Men Mayor	umanu		
DL	-				-			-	-		
8.0 dBm											
RL OFFST											
1.0 dB											
CENTER 2.46225 GHz				SPAN 300.00000 KHz							
CCS F	ES BW 3 K	Hz		VID BW	10 KHz		SWP 10	0.00 sec			


Page 37 of 117

PPSD (2.4 GHZ BAND g TURBO MODE)

Page 38 of 117

PPSD (5.8 GHZ BAND, NORMAL MODE)

Page 39 of 117

20 dB		:42:14 PM April 29 KR 5.78351 GHz	1000 COM - 100		
20 dB	M	KR 5.78351 GHz	-8.60 dBm		
and the state of t	mound	man	man		
			6 - 1 - 9		
<u> </u>	SPAN 300.00000 KHz				
VIC	BW 10 KHz	SWP 100	SWP 100.00 sec		
		VID BW 10 KHz RAL DENSITY_MID CH 5.785GHz_FCC	SPAN 30 VID BW 10 KHz SWP 100		

Page 40 of 117