

PRELIMINARY Technical Manual

The state of the s

INSERT PICTURE HERE, IF APPLICABLE

Created by: Lisa M. Campione 1/29/97

Checked by:

Released by:

Document #: 97-02022

REV: PI

TABLE OF CONTENTS

Warranty	13-00000
Top Level Description	11-01011
Specifications	95-01044
Theory of Operation	12-01014
Front and Rear Panel Descriptions	
Front View	
Rear View	
Block Diagram	
Top View	
Bottom View	HG3-01005
IF Processor	10-01A03
Schematic, Visual IF, Aux IF & ALC Adjust Precorrector &	
ALC On/Off	33-318-01
Automatic Level Control	14-04B01
Schematic, ALC Module	04-100-01
UHF Upconverter	10-03A02
Schematic, UHF Upconverter, 2 Pole	
Schematic, UHF Upconverter, 3 Pole	33-323-01
Schematic, UHF Synthesizer/Upconverter	
EPROM Board	10-10E01
Synthesizer	10-05003
Schematic, Microwave Synthesizer w/50KHz Step,	
4 Output RF Board	13-081-01
Mixer/Driver Amplifier	10-07001
Schematic, Driver Module	
Specifications	
Bandpass Filter	10-08A04
Specifications	
Aural Final Amplifier	10-06B02
Schematic, Aural Final SB050B	04-249-01
Specifications	
Pre-Final Amplifier	
Schematic, Pre-Final Amp SB050B	
Specifications	
Visual Final Amplifier A/B	
Schematic, High Power Amplifier	
Specifications	95-01049
Mother Board	

Created by: Kimberly Simeone 5/28/98

Checked by:

Released by:

	26.074.01
Schematic, Motherboard	
Power Supplies	
10 MHz Distribution Board	
Schematic, 10 MHz 2-Way Distribution Board	
Signal Distribution Board Schematic, Signal Distribution Board, SB050B Comview System	
Microcontroller Interface Board	
RS-485 Communications Interface, SB050B PS Chassis	33-304-01
Comview Status Monitoring Interconnection Metering	10.04404
Diagnostic LED Display	10-04A04
Schematic, Display Board SB050B	
AC Configuration Board	
Schematic, AC Configuration Board	
Schematic, AC Configuration Board	33-344-01
Installation	14 01005
Unpacking Information	14-01003
Environmental considerations	
Safety Considerations	
Input Line voltage Configuring	
Linear Power Supply Configuring for 117 or 230 V _{Ac}	HG3-01007
Switching Power Supply	1105-01007
Switching Power Supply 117/230 V _{AC} Jumper/MOV Configuring	-HG3-01008
Physical Installation	, 1105 01000
System Grounding	
by stom Grounding	
SBSA-50C System Cabling	14-03A03
TVM Modulator	
Interconnections with TVM-102 Modulator	HG3-01009
Barco Modulator	
Interconnections with Barco Modulator	HG3-01010
SBSA-50C Transmitter	
10 MHz/IF Reference Interconnections	HG3-01011
Operation	15-01005
Initial Turn-On Procedures	
Normal Operation	
•	
Troubleshooting	16-08001
Failure Mode Display	
Diagnostic Interface	
Troubleshooting Worksheet	
Analog Metering	
Equipment Fusing and Protection	16-02002

Maintenance	17-01003
Inspections/Cleaning	17-01005
Monthly Maintenance Record	17-01003A
Calibrations	14-04A02
System Power Calibrations	11 0 11102
Output Power	
Calibration Test Set-Up w/TVM Modulator	HG3-01012
Calibration Test Set-Up w/Barco Modulator	
Metering Adjustment	HG3-01014
Reflected Power	
+11 V _{DC} Switching Power Supply	
+11 VPS Metering Adjustment	HG3-01015
Customer Service	18-01001
Equipment Returns	
Packaging for Return	18-01001A
Drawing List	
Schematic, Visual IF, Aux IF &	
ALC Adjust Precorrector & ALC On/Off	33-318-01
Schematic, ALC Module	
Schematic, UHF Upconverter, 2 Pole	
Schematic, UHF Upconverter, 3 Pole	
Schematic, UHF Synthesizer/Upconverter	
Schematic, Microwave Synthesizer w/50KHz Step,	
4 Output RF Board	13-081-01
Schematic, Driver Module	
Schematic, Aural Final SB050B	
Schematic, Pre-Final Amp SB050B	
Schematic, High Power Amplifier	
Schematic, Motherboard	35-074-01
Schematic, 10 MHz 2-Way Distribution Board	33-317-01
Schematic, Signal Distribution Board, SB050B Comview System	33-312-01
RS-485 Communications Interface, SB050B PS Chassis	33-304-01
Schematic, Display Board SB050B	33-118-01
Schematic, AC Configuration Board	
Internal Cabling	14.02004
Standard Frequencies	18-02003

COMMUNICATION MICROWAVE CORP TWO YEAR LIMITED WARRANTY

Communication Microwave Corp warrants each product of its manufacture to be free from any defect in material and workmanship for a period of two years after delivery to, and return by the original purchaser. No returns, however, will be accepted unless accompanied by a written factory return authorization.

The limit of liability under this warranty shall be to repair or replace any product, or part thereof, which proves to be defective after inspection by Communication Microwave Corp with the exception of tubes, semiconductor devices, lamps, fuses or equipment (i.e. modulators) manufactured by others, which are subject to only such loss adjustment as Communication Microwave Corp may obtain for the suppliers thereof.

This warranty shall not apply to any Communication Microwave Corp product which has been modified, physically or electrically damaged, or to modules which seals have been broken, or any product which has been subjected to conditions exceeding the applicable specifications or ratings or improper service techniques.

Communication Microwave Corp will not be liable for any direct or consequential injury, loss or damage incurred through the use, or the inability to use, any Communication Microwave Corp product.

Communication Microwave Corp reserves the right to make design changes to any Communication Microwave Corp product without incurring any obligation to make the same changes to previously purchased units.

This warranty is the full extent of the obligation and liability assumed by Communication Microwave Corp with respect to any and all Communication Microwave Corp products. Communication Microwave Corp neither makes, nor authorizes any person to make, any other guarantee or warranty concerning Communication Microwave Corp products.

Created by: Kimberly Simeone 5/26/98

Checked by:

Released by:

TOP LEVEL DESCRIPTION

The model SBSA-50C, 50 watt frequency agile television transmitter, generates a high quality vestigial sideband television signal on all MMDS and ITFS channels. Advanced circuit design which includes broadband gallium arsenic microwave amplifiers, high efficiency switching power supply, extensive monitoring capability, EMI shielding, and easy access compact design are but a few of the unit's features.

This transmitter consists of an IF processor, a UHF upconverter, an aural ALC, three final amplifiers, a synthesizer, a precorrector, two drivers and two bandpass filters.

The modulator accepts composite video and audio signals and provides an AM modulated visual carrier at 45.75 MHz and an FM modulated aural carrier at 41.25 MHz. The modulator provides these carriers separately to a UHF upconverter (350 MHz). This second IF frequency is then upconverted to microwave and amplified for the desired power level output. The second IF frequency was chosen so that the upconverted microwave image frequency would be outside the microwave bandpass filter pass range.

The visual and aural final amplifier microwave outputs are combined in a passive combiner to form a single six MHz wide television channel output.

Created by: Kimberly Simeone	Checked by:	Released by:
5/26/1998		

Document #: 11-01011 REV: P1

SPECIFICATIONS

Visual Performance

1 to 50 Watts			
Any 6,7, 8 MHz Channel 2000-2700 MHz			
Visual: 5M75C3F			
Input: 75 Ohms/BNC			
Output: 50 Ohms/N			
Video 1V P-P ± 6 dB			
±500 Hz (higher stability options available)			
-70 dB			
3%			
2°			
-60 dB			

Aural Performance

Emission	Aural: 250KF3E	
Output Power	1.5 Watts	
Pre-Emphasis	75 Microseconds (50 Microseconds PAL)	
Deviation:	± 25 KHz (±50 KHz PAL)	

General

Power Requirements	117/220 VAC 50/60 Hz (factory set)		
Ambient Temperature	-30° C to +50° C		
Dimensions			
Weight			

Created by: Kimberly Simeone	Checked by:	Released by:
5/26/98		

*Specifications subject to change without notice

Document #: 95-01044 REV: P1

THEORY OF OPERATION

SBSA-50C 50 Watt Agile Transmitter

The SBSA-50C transmitter receives an Intermediate Frequency (IF) AM modulated visual and two FM modulated aural carriers which are converted to S-band frequency. These signals are sent through driver and final amplifiers for a combined RF output signal. The transmitter provides a visual output of 50 watts peak sync and a 15 dB ratio of visual to aural power.

The SBSA-50C receives a visual (-8 dBm) carrier and auxiliary (-23 dBm) carrier which proceed to the IF Processor where precorrection is introduced to eliminate amplitude distortions of the visual final amplifiers. An aural (-8 dBm) carrier is also received and enters, along with the visual carrier. The UHF upconverter module carries out an upconversion function from a TV IF to a second IF at around 350 MHz.

After being upconverted, the visual signal enters a mixer/driver where the IF signal is heterodyned with a local oscillator (LO). The aural signal enters an aural ALC (Automatic Level Control) module. After amplitude distortions are eliminated in the aural carrier, the signal continues onto its own mixer/driver. Bandpass filters follow the mixers to prevent out-of-band products from being amplified and transmitted. The signals then go back to the drivers, where they are amplified.

From the driver, the visual signal is amplified further by a pre-amplifier, it then splits and enters one of two 2 drive 6 final amplifiers which are broad band, fixed gain linear amplifiers that do not require any tuning. Following the mixer driver, the aural signal enters directly into a one drive two final amplifier.

After final amplification, the visual and aural signals are combined by a combiner and a series of couplers to provide +47 dBm peak visual and +32 dBm aural power for the RF output. Refer to Document # HG2-01012 for a signal path diagram.

SBSA-50C Front & Rear Panel Descriptions

This section explains the SBSA-50C front and rear panel features. Figures accompany the text providing numerical indexed references.

Front Panel

1. METER: Provides an indication of transmitter status and performance of $+11~V_{DC}$ switching power supply, reflected power, or forward average power. The meter is calibrated to display relative measurements. Its function is controlled by the six position rotary function switch.

Created by: Kimberly Simeone 5/26/1998	Checked by:	Released by:
	Спескей бу.	

Document #: 12-01014

REV: P1

2. FUNCTION SWITCH: A six position, user selectable, rotary switch controls front panel analog meter monitoring. The following parameters are selectable for monitoring by the function switch.

STANDBY: Disables transmitting. Power remains applied to all circuits.

Meter will read approximately 0%.

METER OFF: Transmitter is enabled. Metering disabled. Meter will read approximately 0%.

+ 11 VPS: Provides status of main switching power supply. Meter reads 100

% indicating proper power supply voltage.

REF PWR: Relative reflected power measurement. Readings less than 10% are typical.

AUR PWR: Relative average aural output power measurement. 100% meter

reading confirms .63 watts average output power.

VIS PWR: Relative average visual output power measurement. 100% meter reading confirms 50 watts average output power.

3. LEDs: Status monitoring LEDs, which provide indication of operating parameters and internal diagnostics. The following status monitoring LEDs illuminate GREEN during normal operation. Absence of an LED indicates a missing signal or parameter, which results in a controlled automatic transmitter shut down.

IN SIGNAL: Presence of an input signal.

INTERLOCK: Interlock logic conditions are satisfied.

TRANSMIT: In transmit mode.

The following status monitoring RED LEDs remain OFF during normal operation. When a failure is detected, the appropriate LED will illuminate RED. Controlled automatic transmitter shut down is a function of failure severity. Presence of a RED status LED with normal meter readings and/or normal transmitter operation indicates an out of tolerance condition with that circuit.

TEMPERATURE: Internal chassis temperature has exceeded + 160 degrees Fahrenheit (71 degrees Celsius). Transmitter shut down occurs. Allow transmitter to cool. Transmitter reset can beattempted by rotating the front panel function switch to STANDBY.

VIS DRIVER: A failure or an out of tolerance condition with the driver module. Transmitter usually operates at reduced output power.

VIS PRE-FINAL: A failure or an out of tolerance condition with the pre-final module. Transmitter typically operates at reduced output power.

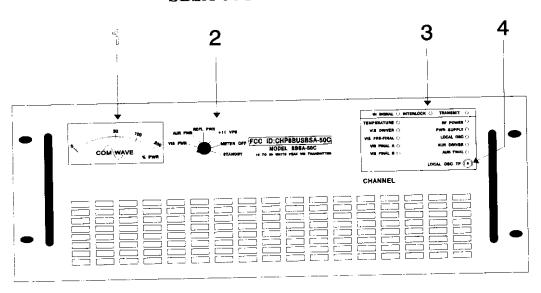
VIS FINAL A/B: A failure or an out of tolerance condition with a final module(s). Transmitter usually operates at reduced output power.

RF POWER: Transmitter average output power has decreased to less than 50% of full output. Transmitter shut down occurs.

PWR SUPPLY: A failure in the +11 volt DC main switching power supply or an out of tolerance condition has been detected by the diagnostic and monitoring circuitry. Transmitter shut down occurs.

LOCAL OSC: Absence of the local oscillator reference signal. Transmitter shut down occurs.

AUR DRIVER: A failure or an out of tolerance condition with the aural driver module(s). The transmitter usually operates at reduced visual output.


AUR FINAL: A failure or an out of tolerance condition with the aural final module(s). The transmitter usually operates at reduced visual output.

4. OSC TP: A front panel mounted VCXO local oscillator test point at + 5 dBm

CONTWAVE

SBSA-30C Front View

SBSA-50C FRONT VIEW

Created by: Kimberly Simeone 5/27/98

Checked by:

All information continued in this Assument is confidented and proprietary to CONTYAVE and shall not be declared millioned to prior softwar precisation of CONTYAVE.

Rear Panel

1. J1:

9 pin connector that supplies a video presence signal between the modulator and the SBSA-50C transmitter.

2. RF OUT:

RF output female N type connector.

3. COMVIEW:

Two jacks in parallel to serve as either an input or output

for the ComView Monitoring System.

4. AGILE CONTROLLER:

Synthesizer agile controller input.

5. AUX:

75 ohm termination option.

6. VISUAL IN:

Provides -8dBm of visual input coming from the TVM-102

modulator.

7. AURAL IN:

Provides -8dBm of aural input coming from the TVM-102

modulator.

8. 10 MHZ REF IN:

An external 10 MHz reference signal input connector

(female F connector).

9. Power Switch:

Main chassis ON/OFF power switch.

10. Fuse:

Main line fuse location.

11. AC Input:

AC Line input power cord connector.

12. Fans:

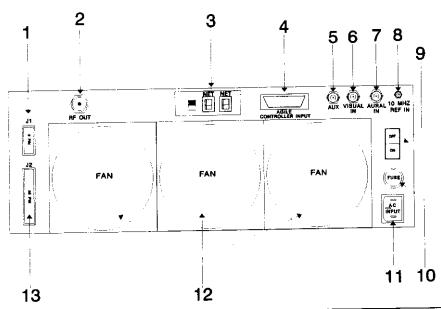
Three rear mounted fans provide for cooling. Fans are

wired for 117 V_{AC} or 230 V_{AC} depending upon the user

application.

13. J2:

25 pin connector for diagnostics and module voltage level


monitoring.

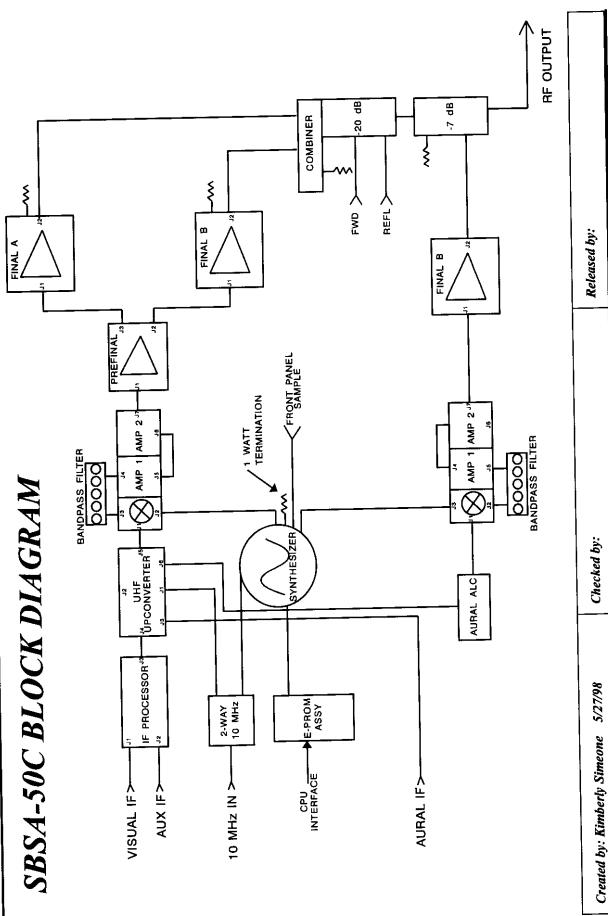
CONTWAVE

SBSA-50C Rear View

SBSA-50C REAR VIEW

Created by: SBSA-50C Rear View

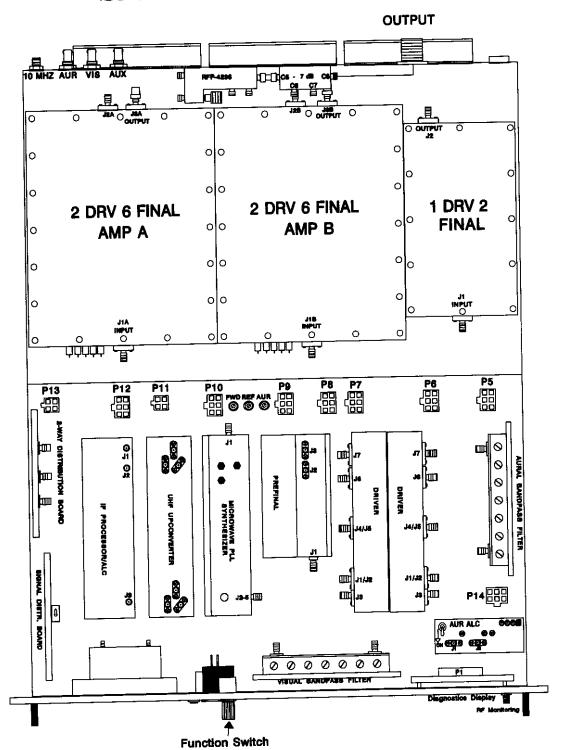
Checked by:


All information contained in this throusen is continued.

Dосименя #: HG3-01003

REV: PI

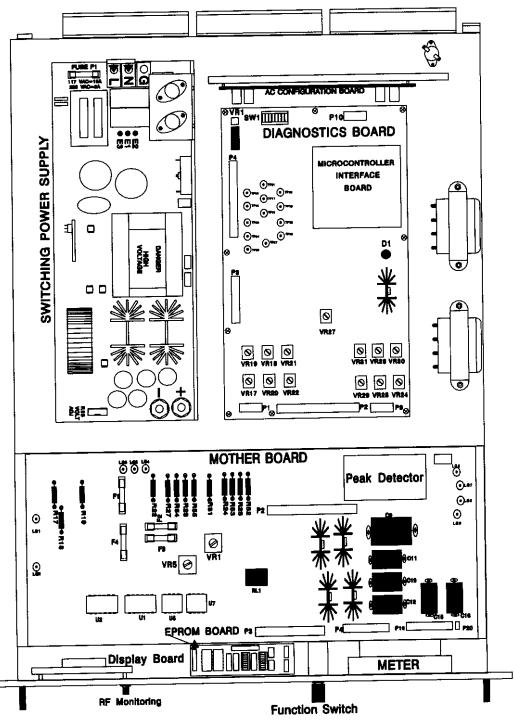
All information command in this discenses is confidential and propeletary to COMWAVE and shall are be successed without the prior written parallellan of COMWAVE.



All information confused in this document is confidential and proprietary to COMWAVE and stiell not be disclosed without the prior written permission of COMWAVE.

Document #:HG2-01012 REV: P1

SBSA-50C TOP VIEW


Created by: Kimberly Simeone 5/27/98 Checked by: Released by:

Document #: HG3-01004

REV: P1

SBSA-50C BOTTOM VIEW

Created by: Kimberly Simeone 5/27/98 Checked by: Released by:

Document #: HG3-01005

REV: P1

IF PROCESSOR

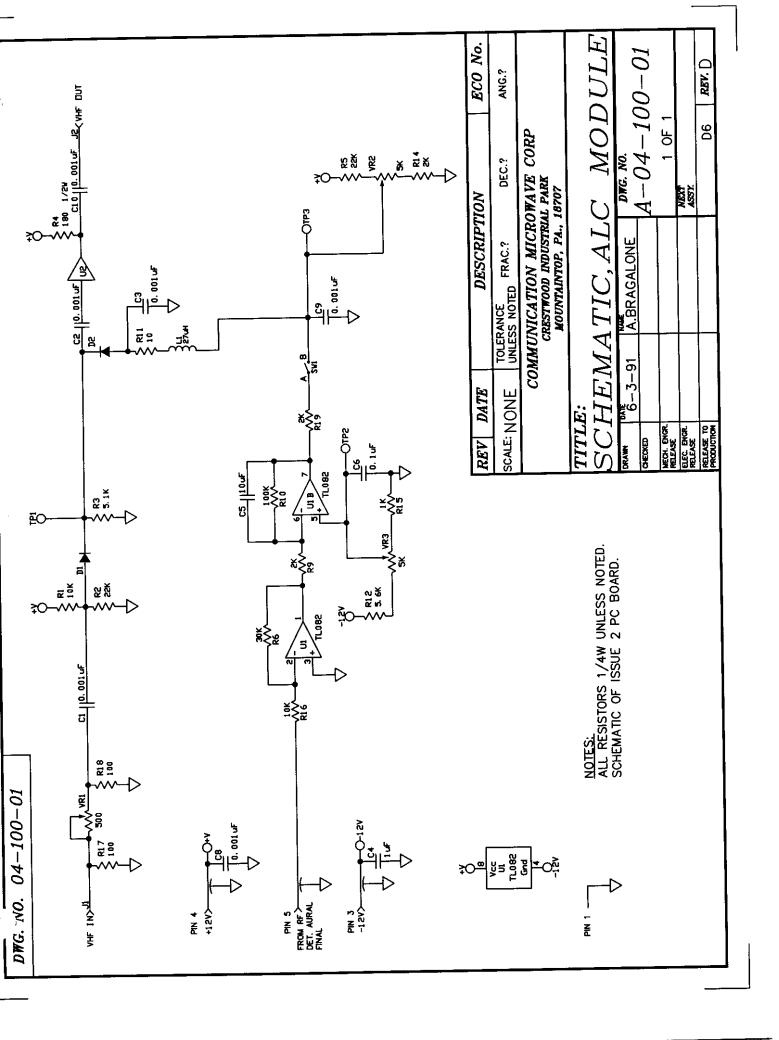

The IF Processor contains linearity correction circuitry and automatic level control (ALC) circuits, as well as an IF amplifier.

The linearity corrector is a proprietary circuit. It corrects all non-linearities developed in the solid state final amplifiers. It is factory adjusted and no field adjustment is needed, however, a switch is provided to turn the corrector off.

The ALC circuitry compares a voltage proportional to peak output power to a pre-set reference and adjusts a variable attenuator as needed to make the two voltages equal. The ALC voltage is brought into the module and amplified by an integrated circuit (IC) and compared to the reference voltage in a second IC. The reference voltage is set by a potentiometer. The error voltage is produced by the second IC and sent to a variable attenuator consisting of two pin diodes. A potentiometer sets the proper attenuation when the second switch is open. The ALC circuit may be turned off with this switch.

Created by: Kimberly Simeone	Checked by:	Released by:
5/26/98		

Document #: 10-01A03 REV: P1


AUTOMATIC LEVEL CONTROL (ALC)

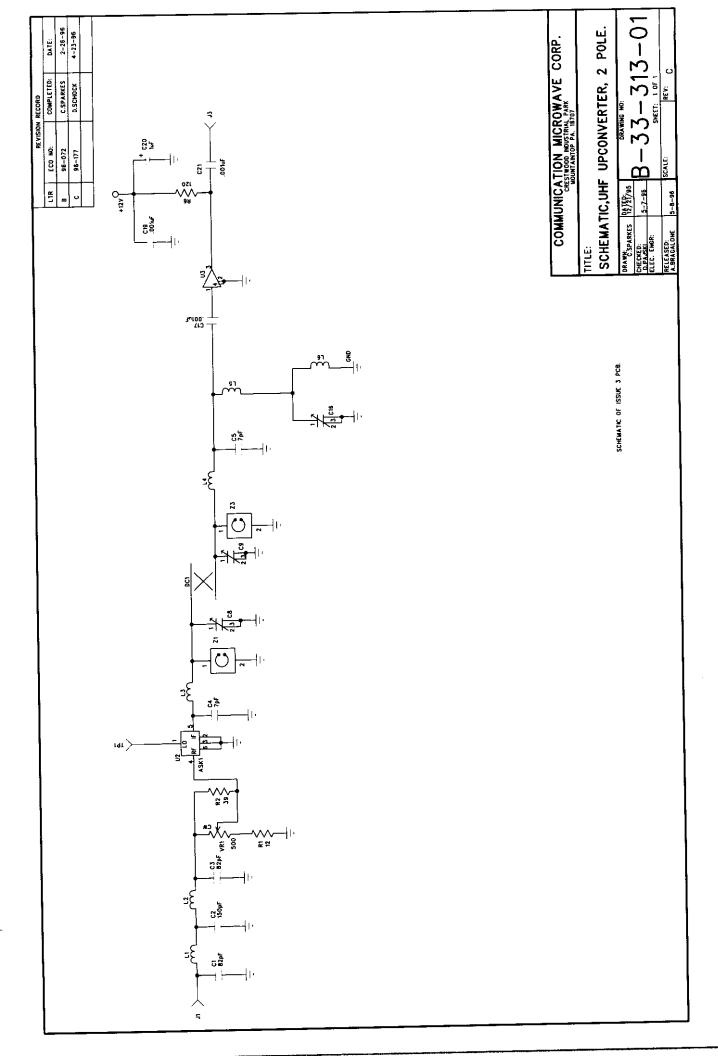
A DC voltage originating in the aural peak detector (proportional to the RF level at the aural final) is brought into the ALC module from the motherboard and is amplified by an op amp. It is then compared to the reference voltage which is generated by two resistors and a potentiometer from -12 V. A difference results in an error voltage which is sent to the variable attenuator consisting of two pin diodes, four resistors, and a capacitor. A switch allows the ALC to be disabled at any time.

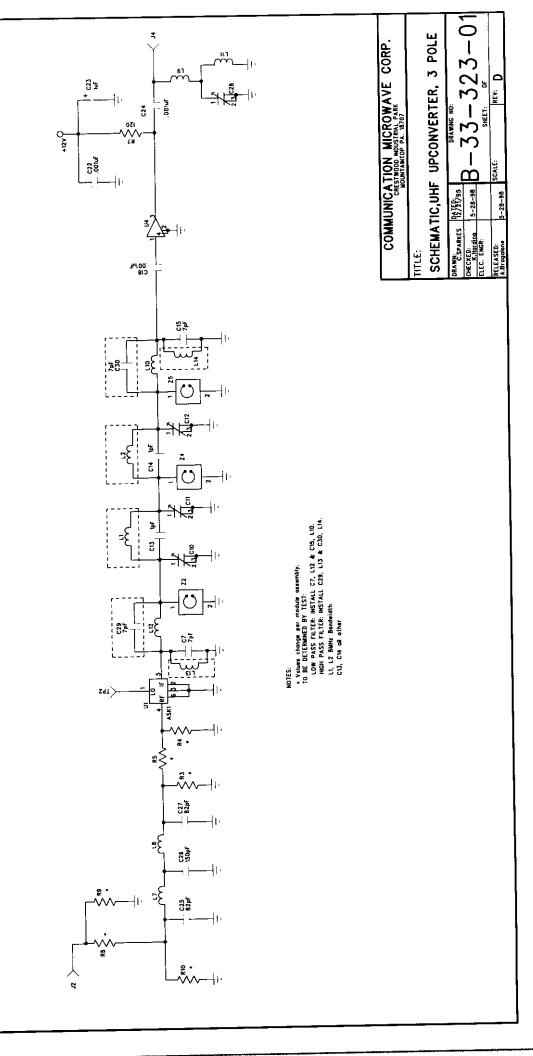
In order to adjust the ALC for optimum control, an attenuator is set to the mid-attenuation range of the first diode with the ALC switch off. (This does not require readjustment). Another attenuator is then adjusted for 100% output power reading. Finally, ALC is enabled with the switch; and the potentiometer is adjusted to restore 100% reading.

Created by: Kimberly Simeone S/26/98 Checked by: Released by:

Document #: 14-04B01 REV: P1

UHF UPCONVERTER

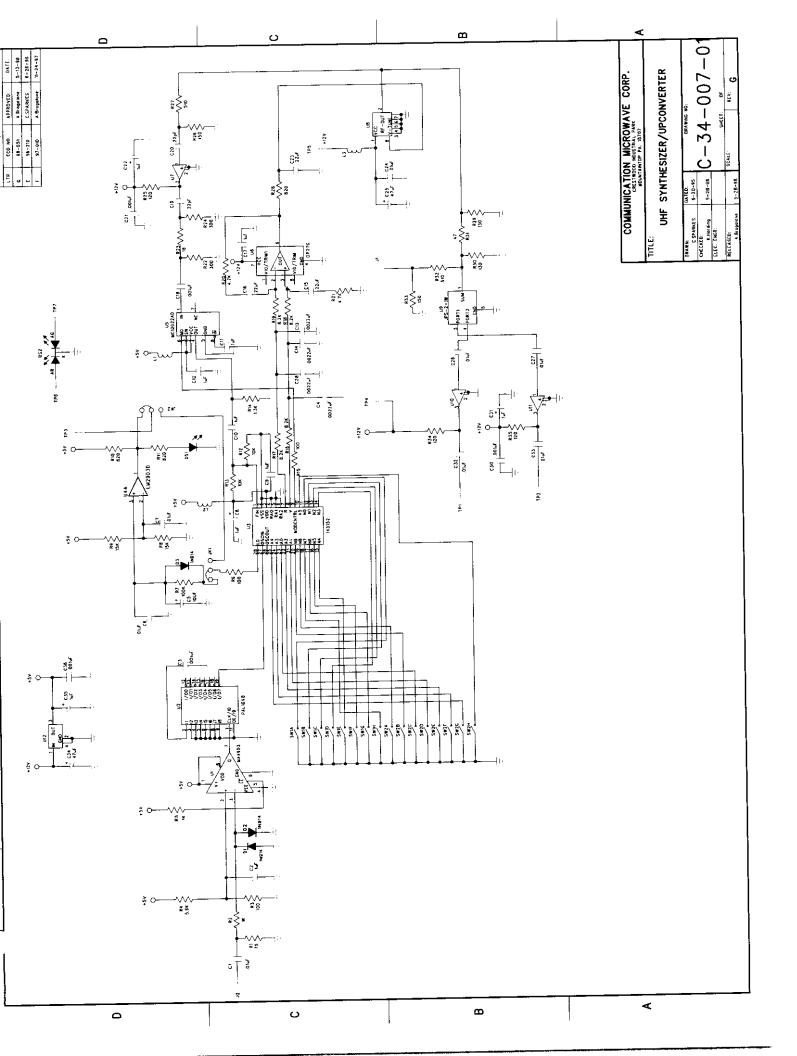

The UHF upconverter module carries out an upconversion function from a TV IF to send an IF at around 350 MHz. This second IF frequency, when mixed with the LO, produces the desired microwave frequency. The second IF is necessary to make filtering of the microwave LO and other undesired signals manageable in broadband agile systems. The visual and aural TV IFs are treated separately through the module, each chain providing the necessary filtering to get rid of the image frequency and the UHF Local Oscillator. Features of the module include adjustable bandpass filters, LO notches, phase lock indication, LO sample, adjustable aural carrier level, and access of all user adjustments from the exterior of the module.


Created by: Kimberly Simeone 5/26/1998

Checked by:

Released by:

Document #: 10-03A02 REV: P1



2-26-96

REVISION RECORD
COMPLETED:

ECO NO: 96-072 96-177 96-151

C.SPARKES
D.SCHOCK
A.Bragalone

EPROM BOARD

The 16 bit EPROM Board contains two specially programmed EPROM's that interface the channel thumb wheel selector switch, synthesizer, and an external chassis called the Frequency Agile Auto Controller. These EPROM's contain specific data that control programming of the synthesizer according to the selections made manually with the thumb wheel selector or from inputs received from the Frequency Agile Auto Controller.

Created by: Kimberly Simeone 5/26/98

Checked by:

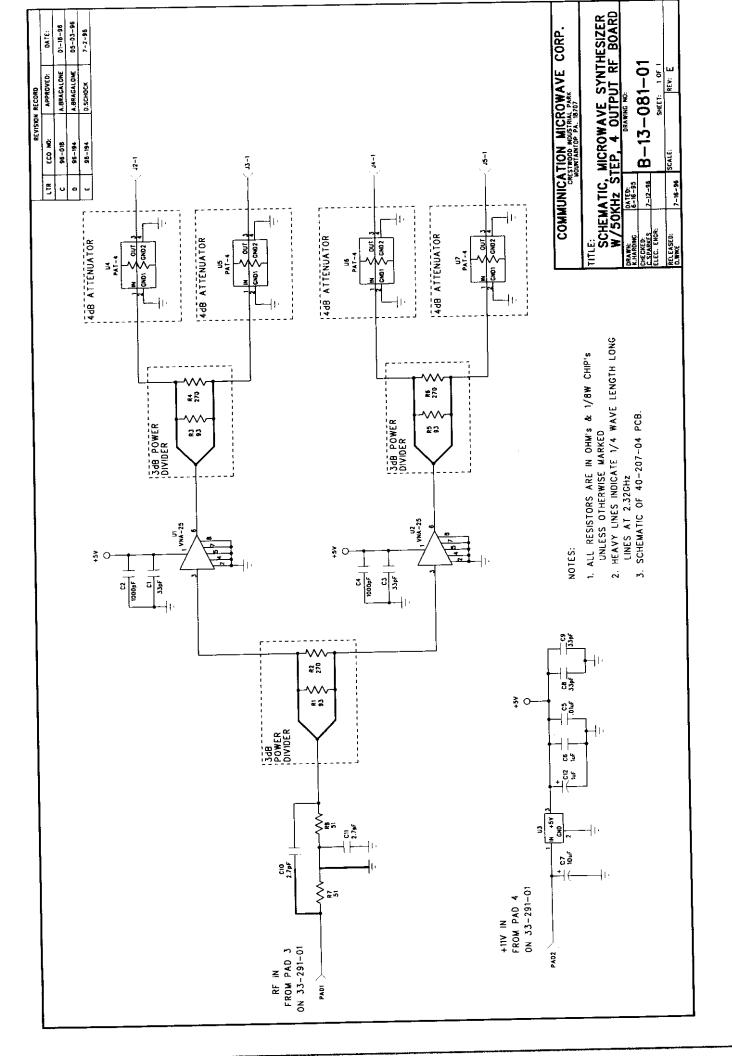
Released by:

Document #: 10-10E01 REV: P1

SYNTHESIZER

The synthesizer is a voltage controlled oscillator (VCO) which provides the LO (Local Oscillator) frequency of the transmitter. The VCO is phase locked to a high stability reference (10 MHz) in order to achieve a precise microwave carrier. The 10 MHz is then mixed with an Intermediate Frequency (IF) which produces the desired on channel frequency of the transmitter.

The input of the synthesizer is a 10 MHz reference source which can vary between 0 dBm and +15 dBm. The input proceeds through a series of programmable dividers providing a 25 KHz reference frequency at the phase detector. The frequency status of the VCO is continuously monitored through a control loop. This frequency is divided by a microwave prescaler and a dual modulous prescaler. The synthesizer's integrated circuits control the logic level and aquires lock. The final desired output frequency is achieved by the N and A dividers. An error voltage is generated by the integrator if this frequency is unequal to that of the reference. This will pull the VCO back to the desired output frequency.


Following the integrator stage are two active filters which notch the 25 KHz pulses that may cause unwanted spurs.

Created by: Kimberly Simeone 5/26/1998

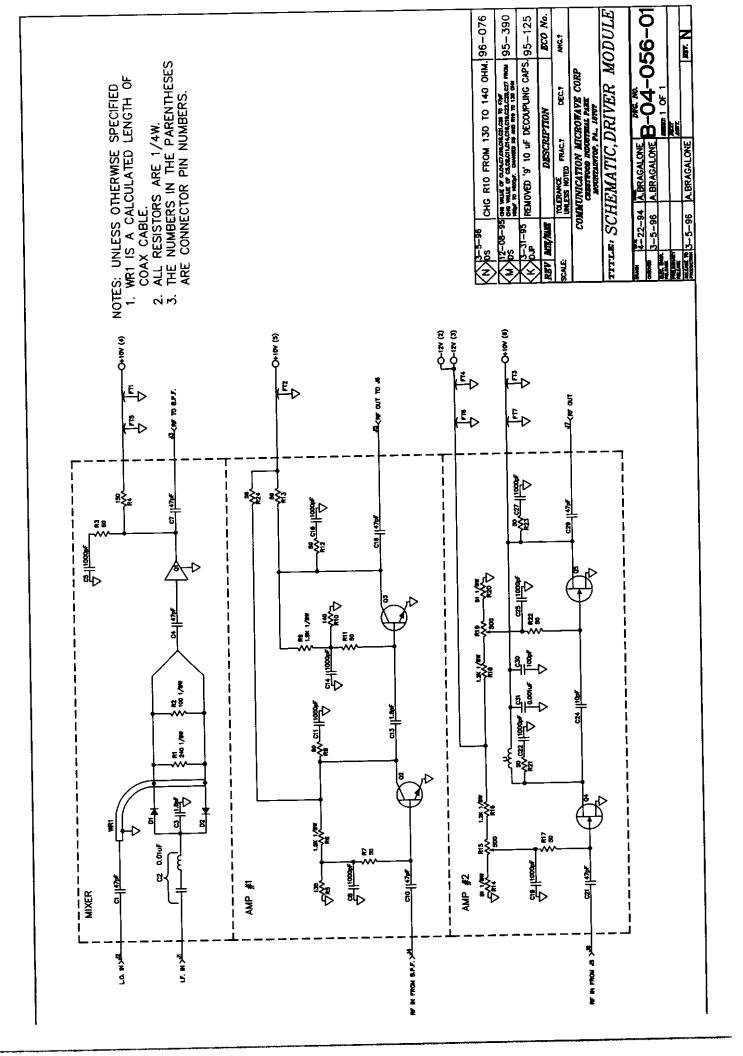
Checked by:

Released by:

Document #: 10-05003 REV: P1

MIXER/DRIVER AMPLIFIER

This module consists of three compartments: a mixer, an intermediate amplifier #1, and a driver amplifier #2. No tuning adjustments are needed or provided.


Mixer: This section consist of a balanced mixer being driven from the LO injection input via the 180° balun and an I.F. signal input via a low pass filter. A microwave short is formed by a capacitor. The heterodyned product is coupled out of the diodes by a printed Wilkinson hybrid. This hybrid will substantially reduce the LO injection signal at the output due to its out of phase cancellation. A low noise, 50 ohm hybrid amplifier is biased by a resistor. Decoupling of the supply is by a printed decoupling line, two capacitors, and a resistor.

Intermediate Amplifier #1: This amplifier consists of two identical bi-polar transistor amplifiers in cascade. A transistor base bias via two resistors is derived from a common collector resistor. As current attempts to rise above the nominal 14 mA, voltage to the base circuit is reduced, thus causing a stabilizing feedback. Base decoupling is provided by a printed decoupling line, two capacitors and a resistor. Collector decoupling is accomplished by a printed line, two capacitors and a resistor.

<u>Drive Amplifier #2</u>: This amplifier consists of two similar FET transistor amplifier stages in cascade. From a common module feedthrough filter, $+10~V_{DC}$ is supplied to each transistor's drain circuit via a drain printed decoupling line and two capacitors. From a common -12 volt feedthrough, negative gate voltage is divided down and calibrated by two resistor networks. The potentiometers set the drain current of each device.

Created by: Kimberly Simeone Checked by: 5/26/98

Released by:

Mixer/Driver Specifications:

Power Supply Requirements	+10 V @ 1.1 Amp -12 V @ 12 mA	
Device Current	Q-1 - 45 mA Q-2 - 14 mA Q-3 - 14 mA Q-4 - 360 mA Q-5 - 720 mA	
Sectional Gain	Mixer -1 dB ± 1 dB Amp #1 22 dB +1, -2 dB Amp #2 24 dB ± 1dB	
Center Frequency	MDS 2.15 GHz ITFS/MMDS 2.6 GHz	
1 dB Bandwidth	MDS 50 MHz ITFS/MMDS 200 MHz/min.	
Input/Output Impedance	50 ohms	

		T
Created by: Kimberly Simeone	Checked by:	Released by:
5/26/98		

*Specifications subject to change without notice

Document #: 95-01045 REV: P1

BANDPASS FILTER

The bandpass filter is used after both the visual and aural mixers to remove out of band mixing products. The filter is a multi-section bandpass filter. The tuned elements are variable length lines inside each cavity. Coupling between each section consists of fixed apertures which set the bandwidth.

Created by: Kimberly Simeone

5/26/98

Checked by:

Released by:

Document #: 10-08A04

REV: P1

SPECIFICATIONS

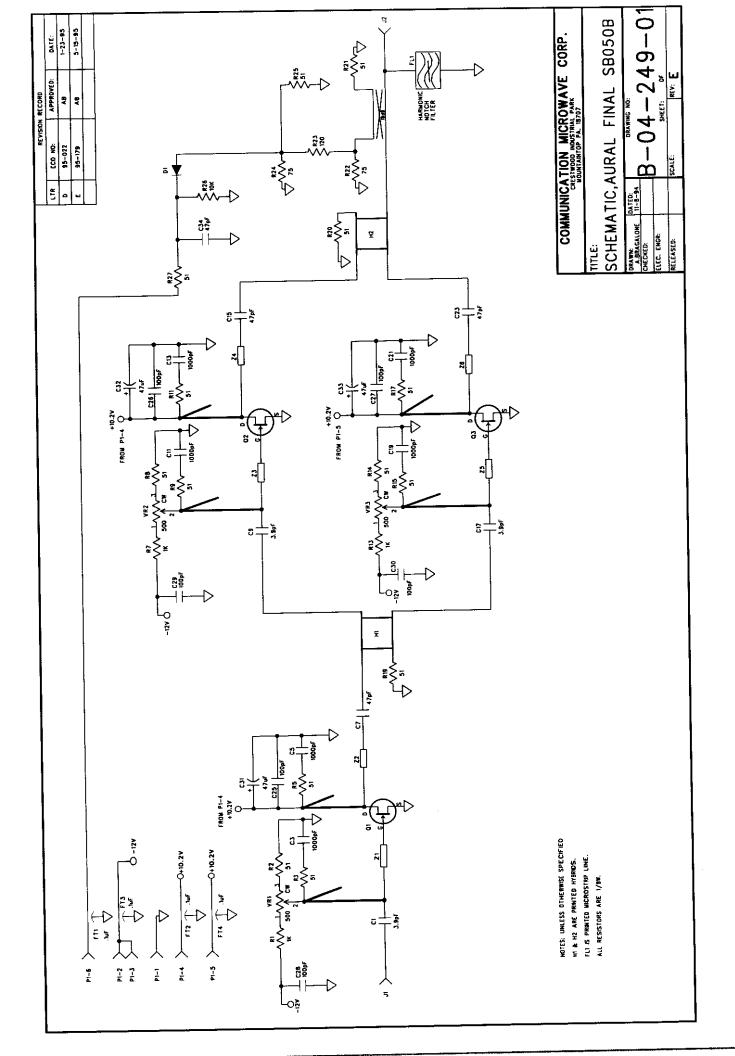
Bandwidth (1 dB)	186 MHz	
Insertion Loss	1 dB ± 0.5 dB	
Center Frequency	2593 MHz	

Created by: Kimberly Simeone 5/26/98	Checked by:	Released by:

Specifications subject to change without notice

Document #: 95-01046 REV: P1

AURAL FINAL AMPLIFIER


The Aural Final Amplifier receives an input signal at J1 from the Aural Driver and the amplified output appears at J2. The amplifier module consists of three identical FET transistors in a one driving two in parallel configuration. Biasing of each transistor is identical, therefore, only one will be discussed.

A housing feed through filter supplies $+10~V_{DC}$ to the drain of the first transistor from a microstrip decoupling line. Negative 12 volts DC gate bias enters the module from a common EMI feed through filter. This voltage is divided down and calibrated by two resistors and a potentiometer. The potentiometer sets the operating drain current of the transistor. A printed decoupling line, consisting of two capacitors and a resistor, decouple the gate bias circuit.

Microstrip hybrids provide signal splitting and combining respectively for the second and third transistors. Aural power sampling is built into the output circuitry for aural metering. The sampling circuit consists of a printed directional coupler, a termination, a rectifier, and a capacitor. The sample is converted to a DC voltage and is used for transmitter aural output metering. No tuning adjustments are needed or provided.

Created by: Kimberly Simeone 5/26/98 Checked by: Released by:

Document #: 10-06B02 REV: PI

SPECIFICATIONS

Power Supply Requirements	+10 V _{DC} @ 6.6 Amp	
	-12 V _{DC} @ 20 mA	
Drain Current	Q-1 - 2.2 Amp	
	Q-2 - 2.2 Amp	
	Q-3 - 2.2 Amp	
Module Gain	16 dB ± 1 dB	
Center Frequency	ITFS/MMDS -2.6 GHz	
Com	MDS -2.15 GHz	
1 dB Bandwidth	ITFS/MMDS -200 MHz/min	
	MDS -50 MHz	
Minimum Output Power	+ 41 dBmW	
Input/Output Impedance	50 ohm	

Created by: Kimberly Simeone	Checked by:	Released by:
5/26/98		

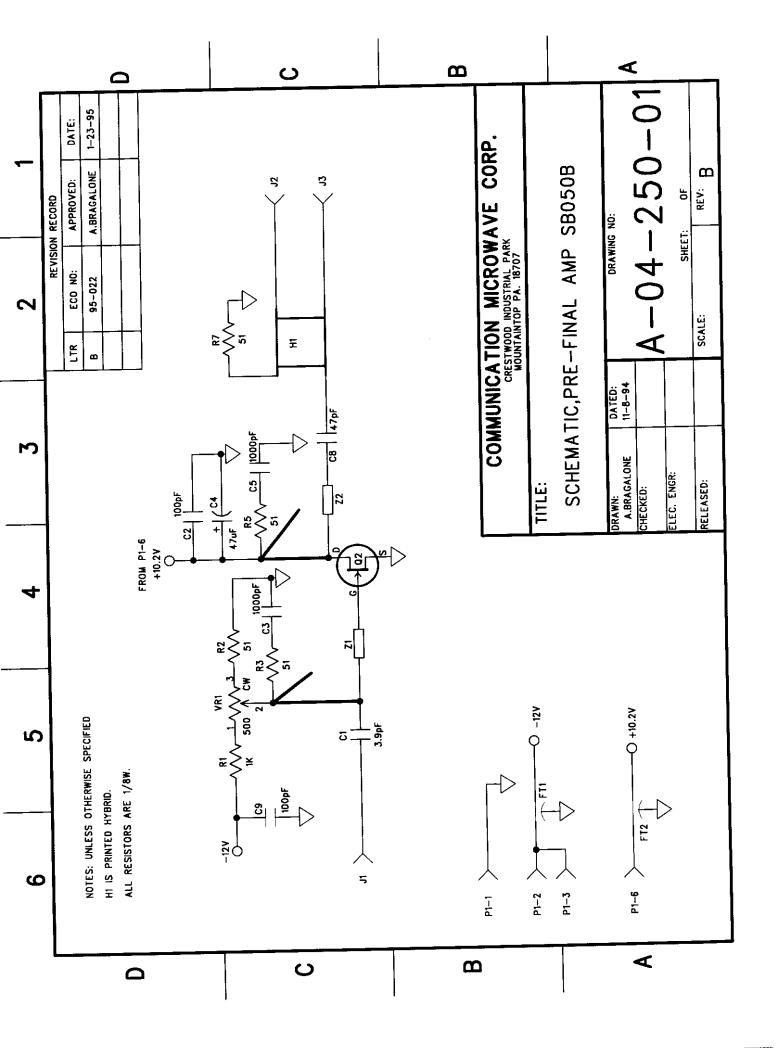
*Specifications subject to change without notice

Document #: 95-01047

REV: P1

PRE-FINAL AMPLIFIER

The Pre-Final amplifier module receives an input signal at J1 and provides an amplified output to J2 and J3. The amplifier module consists of one FET device. A signal is amplified and split by printed hybrid, H1, providing equal signal levels to outputs J2 and J3.


Plus ten V_{DC} is supplied to the drain through an EMI feed through filter. A printed decoupling line decouples the drain circuit. Negative 12 volts DC gate bias enters the module through a common EMI feed through filter. This voltage is divided and calibrated by three resistors and a potentiometer. The potentiometer sets the operating drain current. A printed decoupling line decouples the gate circuit. No tuning adjustments are needed or provided.

Created by: Kimberly Simeone 5/26/98

Checked by:

Released by:

Document #: 10-06B03 REV: P1

SPECIFICATIONS:

Power Supply Requirements	+10 V _{DC} @ 2.2 Amperes	
11 2	-12 V _{DC} @ 7.5 mA	
Drain Current	Q1 2.2 Amperes	
Module Gain	5.5 dB ± 1 dB	
Center Frequency	ITFS/MMDS -2.6 GHz	
1 dB Bandwidth	200 MHz	
Minimum Output Power	+ 22 dBm	
Input/Output Impedance	50 ohm	

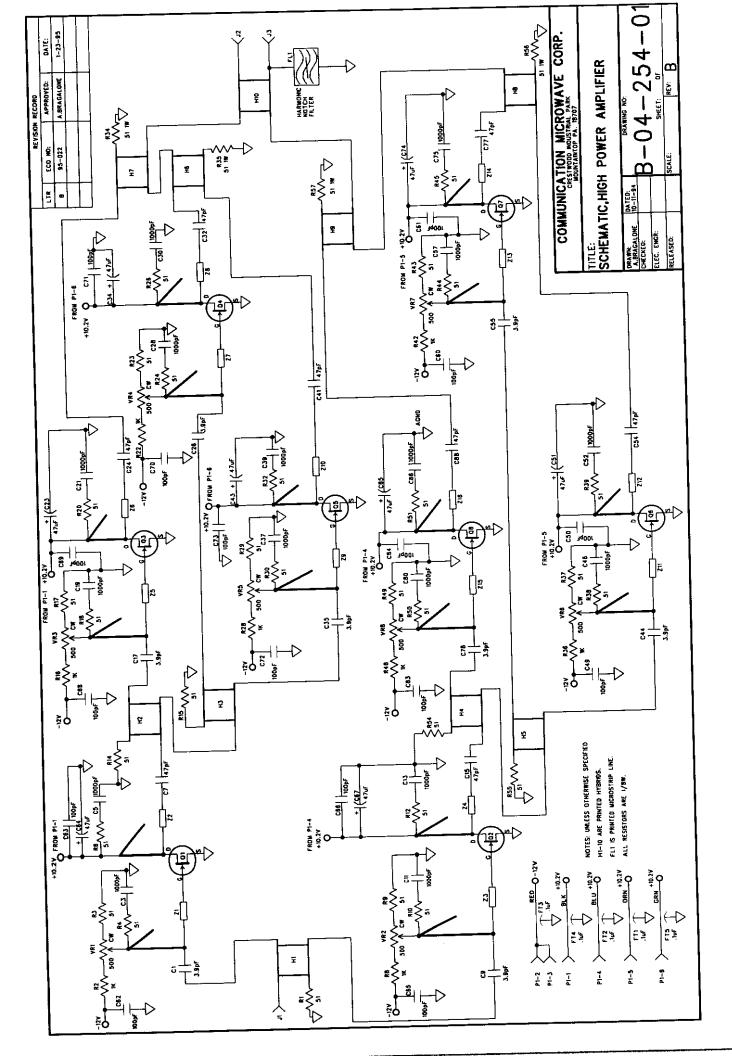
_		
Created by: Kimberly Simeone	Checked by:	Released by:
5/26/98		

VISUAL FINAL AMPLIFIER A/B

The Visual Final Amplifier module receives an input signal at J1 and provides an amplified output at J3. The amplifier module consists of eight FET amplifier transistors operating in a two driving six parallel configuration, a printed input hybrid, H1, splits the input signal to two input FET transistors. These signals are further divided by hybrids H2, H3, H4, and H5) to drive the six transistors equally. Output hybrids (H6, H7, H8, H9 and H10) recombine the amplified signals to a common output.

Biasing of each FET is identical, therefore, only one transistor is discussed. Plus ten V_{DC} is supplied to the drain circuit through an EMI feed through filter. A printed decoupling line and a resistor decouple the drain circuit. Negative 12 volts DC gate bias enters the module through a common EMI feed through filter. This voltage is divided and calibrated by three resistors and a potentiometer. A potentiometer sets the operating drain current. A printed decoupling line and a resistor decouple the gate circuit. No tuning adjustments are needed or provided.

Created by: Kimberly Simeone 5/26/1998


Checked by:

Released by:

Document #: 10-06B04

REV: P1

All information contained in this document is confidential and proprietary to COMWAVE and shall not be disclosed without the prior written permission of COMWAVE.

SPECIFICATIONS

Power Supply Requirements	+10 V _{DC} @ 17.6 Amp -12 V _{DC} @ 52.5 mA		
	Q1 to Q8 -2.2 Amp each		
Drain Current			
Module Gain	17 dB ± 1 dB		
Center Frequency	ITFS/MMDS -2.6 GHz		
1 dB Bandwidth	200 MHz		
Minimum Output Power	+ 43 dBm		
Input/Output Impedance	50 ohms		

Checked by:	Released by:
	Checked by:

MOTHERBOARD

The Mother Board performs a variety of functions allowing operation for both analog and digital applications. Located on the underside of the transmitter, it provides the majority of the interconnections among other circuit boards and modules. The board contains linear power supplies, current sampling resistors, metering adjustments, one +12 volt power supply fuse, and three +11 volt power supply fuses.

<u>Jumper configurations:</u> The motherboard is factory set with all jumpers positioned in accordance to the system architecture. Changing these jumpers is only necessary if upgrading to/from digital transmission. In the case of Common Amplification, configure as a digital transmitter. The following will help in choosing the proper settings.

Note: If a two position jumper is to be opened, attach the plastic jumper cap to one of the pins so you will not lose it.

• Jumper JK1: (3-pin jumper) Allows for operation with an Aural Final amplifier in analog applications providing the signal path for the power detector, and in the case of digital completes the logic path for the IF Detector module.

Setting	Description
1 & 2	Aural Final
2 & 3	IF Detector

• Jumper JK2: (3-pin jumper) This jumper provides +11 volt power to the aural driver module, or +12 volt power to the IF Equalizer for use in a digital transmitter.

Setting	Description
1 & 2	Aural Driver
2 & 3	Dig, IF. EQ.

• Jumper JK3: (2-pin jumper) Remains shorted in analog and digital applications. However, in a digital repeater system removing the jumper allows for the AGC voltage of the receiver to be monitored.

Settings	Description Analog & Digital TX.	
shorted		
Open	Digital Repeater	

		T
Created by: Kimberly Simeone	Checked by:	Released by:
5/26/98		

Document #: 10-10A03

• Jumper JK4: (3-pin jumper) This high current jumper provides +11 volt power to the Aural final in analog applications and +12 volt power to the IF Detector module in digital operation.

Settings	<u>Description</u>	
1 & 2	Aur. Final Pwr.	
2 & 3	IF Det. Pwr.	

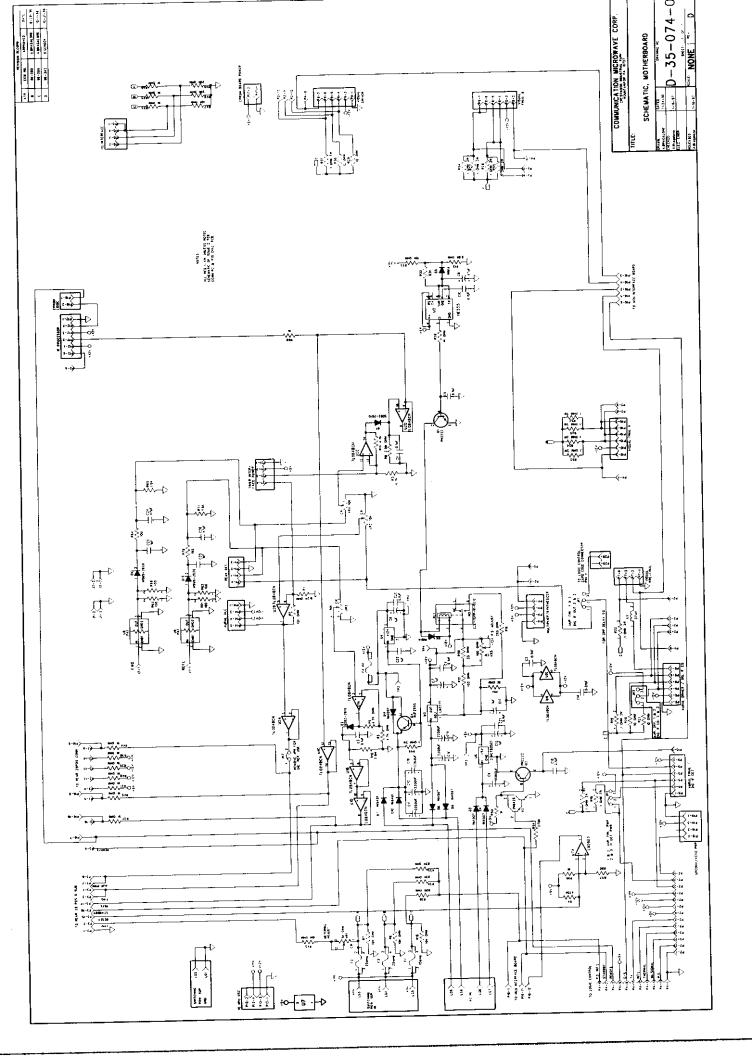
Interconnections: Power and logic signals are routed to/from various module or circuit card assemblies via the motherboard and main harness. Consult the interconnection diagram for guidance. The Synthesizer, IF Processor, and amplifier modules plug directly into this board for DC supply and monitoring.

<u>Linear Power Supplies:</u> -12, + 12, and +5 volt linear power supplies are located on this printed circuit board. These DC power supplies provide power to operational amplifiers, comparitors, gating circuits, and other modules.

 The negative 12 volt circuit consists of a center tapped full wave rectifier, filtering capacitors, and an adjustable regulator. The voltage can be calibrated adjusting VR5 on the board, while monitoring TP1. Short circuit protection is provided internal to the regulator.

Note: This adjustment should only be done in operation mode, due to FET gate pinch off during transmitter turn on. While in a standby or reset condition the negative supply will read approximately -15 vdc. When rotated from standby a small time delay will occur before returning to - 12 volts.

- The positive 12 volt circuit consists of a center tapped full wave rectifier, filtering capacitors, fixed 12 volt regulator and a current boost transistor. The current boost transistor, when conducting, provides a parallel path for added current to the 1.5 amp. regulator. A fuse (F4) is provided on the motherboard for short circuit protection. A voltage test point (TP2) is provided for monitoring.
- The positive 5 volt circuit consists of a full wave rectifier, filtering capacitor, and a
 fixed 5 volt regulator. Short circuit protection is provided internal to the regulator. A
 voltage test point (TP3) is provided for monitoring.


Sampling Resistors: The +11 volt switching power supply connects to screw terminals 3, 4, & 5 to distribute power to the driver, prefinal, and final A/B amplifier modules. Power is distributed through series current sample resistors. These resistors develop voltage drops proportional to the supplied drain current. Samples are routed to the diagnostics board for processing.

+11 Volt Power Supply Fusing: The motherboard contains three fuses that protect the switching power supply. F1 (15 Amperes) provides power to the driver and prefinal.

F2 (25 Amperes) provides power to final amplifier B and F3 (25 Amperes) to final amplifier A.

Metering Calibration: The front panel analog meter or LCD display is calibrated by trim potentiometers located on the motherboard. These adjustments calibrate the +11 V_{DC} switching power supply (VR1), Aural (VR2) when applicable, Reflected (VR3), and Forward (VR4). These potentiometers are accessible when the transmitter's cover is removed. Consult the Calibration section of the manual for detailed procedure.

POWER SUPPLIES

There are four power supplies within the transmitter chassis: $+12 \text{ V}_{DC}$, $+5 \text{ V}_{DC}$, and -12 V_{DC} linear power supplies as well as a $+11 \text{ V}_{DC}$ switching power supply.

- \pm 12 V_{DC} Power Supply: Transformer T-1, located on the chassis underside, is a 28 volt center taped transformer which supplies power to the linear power supply located on the mother board. Full wave rectifiers supply voltage to two filter capacitors and a series regulator. The +12 volt non-adjustable regulator is short circuit proof and internally thermal protected. This +12 V_{DC} power supply powers the crystal oscillator and microwave multiplier when used or the microwave phase locked oscillator as well as all operation amplifiers.
- $\pm 5~V_{DC}$ Power Supply: Transformer, T-2, also located on the chassis underside, is a 12 volt center taped transformer which supplies power to the mother board ± 5 volt power supply. Two diodes supply unregulated voltage to a capacitor and the fixed voltage regulator. This supply powers all the ± 5 volt needs for the TTL -logic and synthesis.
- <u>-12 V_{DC} Power Supply</u>: In addition, transformer, T-1, also supplies voltage to two rectifiers. Capacitors filter the input to the non-adjustable voltage regulator. This IC is internally current and temperature protected. The voltage regulator supplies power to all FET amplifier gate circuits and all operational amplifiers located in the RF power detectors and IF processor.
- $\pm 11~V_{DC}$ Switching Power Supply: This is the largest of the power supplies and is capable of 45 amperes. It powers the RF driver amplifiers, final amplifiers, sections of the diagnostic interface board, and the 10 MHz reference oscillator oven.

Created by: Kimberly Simeone 5/26/98	Checked by:	Released by:
3/20/70		

Document #: 10-12005

10 MHz DISTRIBUTION BOARD

A 10 MHz two way distribution board receives a 10 MHz reference input signal that is split equally using a 2 port passive divider. Each output signal is amplified providing a common 10 MHz reference signal to the Microwave Synthesized Local Oscillator and the UHF Upconverter.

External Reference:

An external 10 MHz reference source with a distribution amplifier/splitter system provides the 10 MHz distribution board with the 10 MHz reference. The external reference source can be obtained from a precision 10 MHz drawer, LORAN C, or Global Positioning System (GPS). The 10 MHz signal is cabled to each individual transmitter providing a common reference.

Created by: Kimberly Simeone 5/26/98

Checked by:

Released by:

4.50 \$ 4.50 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	1220pf 430	COMMUNICATION MICROWAVE CORP. TITLE: 10 MHz 2-WAY DISTRIBUTION BOARD DRAWN: ONTIC: OPECATO DRAWN: ONTIC: OPECATO SCALE: 100 1 ELEG. FING: RELEASED: SCALE: NONE REV. D
100 m	CC2 CC4 CC4 CC4 CC4 CC4 CC4 CC4 CC4 CC4	
PI-14 PI-14 PI-14 PI-14	11-2 ESD1 11-2 END 11-3 END 11	

SIGNAL DISTRIBUTION BOARD

The Signal Distribution Board receives and distributes various interlock and turn on signals that control transmit operation. The board contains 3 LEDs and a switch. Under normal operating conditions all LEDs illuminate.

> DS2 green: Video input signal is present. DS₃ Power supply enable present. vellow: DS4 red: Interlock conditions present.

Switch, SW1, is a video bypass enable switch. It provides +5 V_{DC} to bias Q1 on, thereby enabling DS2. The normal position for the switch is OFF. When the switch is OFF, an external input video presence signal must be supplied to turn the transmitter ON. This signal typically originates from a video presence board contained inside the modulator. When this switch is positioned ON, this places the transmitter into

BYPASS mode or in a constant ON condition. This enables the transmitter to continue transmitting even though there is no video signal present.

The following chart cross references these input/output signals.

SIGNAL	INPUT	OUTPUT	ORIGIN/DESTINATION
PS Enable		X	Switching Power Supply
Thermal	X		Thermal Relay
Remote A	X		External connector J1-2
PS Interlock	X		Motherboard P4-10
Remote A		X	Motherboard P4-15
IN-Signal		X	Motherboard P4-14
Interlock	X		Motherboard P4-12
TX-ON	X		Motherboard P4-11
Stand-by	X	X	Motherboard P4-2
Thermal		X	Motherboard P4-13
+5 V _{DC}	X		Motherboard P4-5
Gate 5	X		Motherboard P4-9
Gate 4	X		Motherboard P4-8
Gate 3	X		Motherboard P4-7
Gate 2	X		Motherboard P4-6
Gate 1	X		Motherboard P4-4
Remote B	X		Motherboard P4-3
Video Presence	X		External Connector J1-1

Created by: Kimberly Simeone	Checked by:	Released by:
5/26/98		

Document #: 10-10P03

REVISION RECORD	LTR ECD NG: APPROVED: DATE: B 96-023 D.PAJSKI 1-25-96 C 96-023 D.PAJSKI 1-25-96						SCHEMATIC OF ISSUE 2 PCB	COMMUNICATION MICROWAVE CORP. CRESTINGO MUSTRAL PARK MOUNTAINTOP PA. 18707	TITLE: SCHEMATIC, SIGNAL DISTRIBUTION BRD, SBO50B COMVIEW SYSTEM	ORAWINE DATES BANDER WG: 10-04-95 B-33-312-01 STEEL FINGE GATE STEEL FOR STE
		270K PI S 1984.	××××	100k	7	3K 820	H. WF-3502 R6 H. WF-3502 R6 M. CREEN R20 R7 R7 R7 R7			
		E1 - CAMBEDGE COMN W 506 CHASSIS	\$ 100 pt.		(F) E1-24 FRENALL FREN	(V) E1-38 WIDEO PRESSINCE				

MICROCONTROLLER INTERFACE BOARD

The optional Microcontroller interface board is a second generation diagnostic and control interface function. It, along with the GCB-11, provides full diagnostics and control, along with network communications capabilities required to support the ComView monitoring system.

The Microcontroller Interface Board controls the front panel LED or LCD display, MUX addressing, and interlock, transmit functions through octal latches. The MCU receives various input signals, scales these inputs, and forwards them over a multiplex buss to the Microcontroller unit (MCU, GCB11) for processing. The scaling amplifiers receive current converted voltage samples from amplifier modules, amplifying them by appropriate factors for common working levels. Scaled outputs are sent to 16 channel analog multiplexers. The multiplexers receive addressing information from the Microcontroller through a hex level translator. The multiplexed output is further scaled (reduced by a voltage divider network and is sent to the Microcontroller for processing).

The following chart cross references the signal, scaling amp, and multiplex output.

INPUT SIGNAL	SCALING AMP	MULTIPLEX OUTPUT
Final A (Q2, 6, 7)	U1D	MUXBUSI 11
Final A (Q1, 3, 4, 5)	U2A	MUXBUS1 12
Final B (Q2, 6, 7)	U3A	MUXBUS1 14
Final B (Q1, 3, 4, 5)	U3C	MUXBUS1 13
Driver #1 (Q2, 3)	U2C	MUXBUS1 08
Driver #2 (Q4, 5)	U2D	MUXBUS1 07
Mixer (Q1)	U2B	MUXBUS1 09
PreFinal (Q2)	U3D	MUXBUS2 03
LO Locked	U1A	MUXBUS1 05
ALC IN	U1B	MUXBUS1 10
+12 V _{DC}	U1C	MUXBUS2 04
-12 V _{DC}	U3B	MUXBUS2 08
+11 V _{DC}	U4B	MUXBUS2 02
Thermal	U5D	MUXBUS2 01
IN SIGNAL	U5C	MUXBUS2 00
PS INTERLOCK	U17A	MUXBUSI 06
Gate 1	U17B	MUXBUS2 09
Gate 2	U17C	MUXBUS2 10
Gate 3	U17D	MUXBUS2 11
Gate 4	U18A	MUXBUS2 12
Gate 5	U18B	MUXBUS2 13
Forward Power	U18C	MUXBUS2 07
N/A	U18D	MUXBUS2 06
REFL Power	U19A	MUXBUS2 05

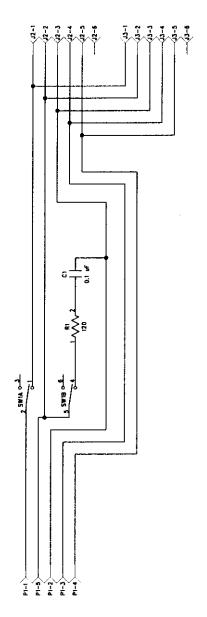
Created by: Kimberly Simeone	Checked by:	Released by:
5/26/98		

Document #: 10-10H01 REV: P1 All information contained in this document is confidential and proprietary to COMWAVE and shall not be disclosed without the prior written permission of COMWAVE.

RS-485 COMMUNICATIONS BOARD

An RS-485 communications board is mounted to the inside rear of the chassis. The communications board has two functions. It receives and forwards Driver information for use with an Agile Controller and interfaces each transmitter's Microcontroller Unit (MCU) to a communication buss for status monitoring to a common computer/Master Control Station. The system is capable of monitoring up to 32 individual transmitters.

The board has two 5 pin board mounted connectors, J1 and J4, with connections to three rear panel mounted 6 pin telephone type receptacles J9, J10, and J11. J1 functions as the interface between the transmitter's MCU, the daisy chain communication buss, and a computer monitoring system connected to J9 and J10. The buss consists of a double twisted shielded pair cable which daisy-chain links (parallels) transmitters to a common computer for complete system status monitoring.


A board mounted mini DPDT DIP switch labeled as NETWORK END TERMINATION is accessible at the rear of the chassis. When a status monitoring computer system is used, all transmitter ordinarily have this switch set to the "OUT" position with the exception of the last transmitter in the daisy chain series. The last transmitter normally has the switch set to "TERM". This action terminates the communication buss at the last transmitter of the daisy link chain establishing proper buss impedance.

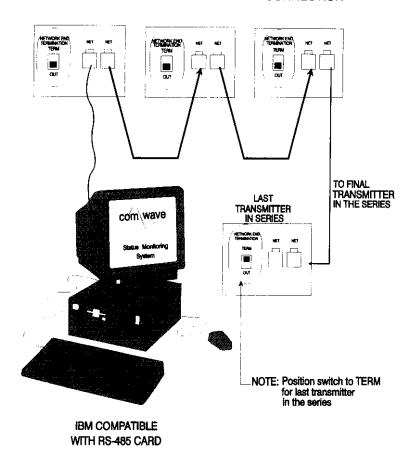
J4 provides a feed through path to receptacle J11. Driver information (GND, TURN-OFF, INSIGNAL, ALC, and PWR) is available for use with an optional Agile Controller.

Citates Cy. Almeriy Building	Checked by:	Released by:
5/28/98		

Document #: 10-10102 REV: P1

	REVISION RECORD	RECORD	
LTR	ECO NO:	APPROVED:	DATE:

NOTES:


1. DPDT SWITCH SW1 IS CLOSED ONLY AT LAST UNIT IN NETWORK TO TERMINATE PC TX NET & PROVIDE FRAME GND.

2. SCHEMATIC OF ISSUE 1 PC BOARD.

00		STWGOD	COMMUNICATION MICKOWAYE CORP. CORESTROOD INDUSTRAL PARK MOUNTARTOP PA. 18707	A V E	CORP.	
TITLE:	RS-	485	RS-485 COMMUNICATIONS	ICAT	SNOI	
	INTERF/	ACE,	INTERFACE, SB050B PS CHASSIS	PS	CHASSIS	
DRAWN: 0. PAJSKI	DATED: 6-20-95		ORAWING NO:	'		,
CHECKED:		ا م	-5.5-	>	3.5-304-01	•
ELEC. ENGR:		<u> </u>) SHEET:) }	> - -	-
PEI FASEN.				ž		ľ

COMVIEW STATUS MONITORING INTERCONNECTION

METERING

Front panel metering of +11 V_{DC} power supply, forward power, and reflected power are provided by a panel switch and a meter. The meter is a 2 V_{DC} full scale meter.

+11 V_{DC} Power Supply:

Voltage from the switching power supply is metered from the mother board via a resistor and a calibration potentiometer. The meter will read 100% for normal operation.

Forward Power:

A sample of the RF power from the output -20 dB directional coupler and 3 dB attenuator is envelope detected by a diode and a capacitor in the detector module assembly located on the top rear side of the chassis. The video and DC component from this assembly is delivered to a connector on the mother board. A buffer amplifier drives a diode and a capacitor to the peak value of the signal. Another buffer amplifier then buffers this voltage to a meter calibration potentiometer. This voltage is approximately 1.4 V_{DC} for a 100% meter reading and is present at the first buffer amplifier and at a connector for delivery to the front panel meter rotary switch. In addition, the output voltage from the second buffer amplifier is delivered to the visual IF processor.

Reflected Power:

A sample of the reflected power from the -20 dB port of the output directional coupler via a 3 dB attenuator is envelope detected by a diode and a capacitor in the detector module assembly. This voltage is applied to the motherboard. On the motherboard, a buffer amplifier drives the diode and capacitor to the peak of the reflected signal. Another amplifier buffers the resulting voltage to a meter calibration potentiometer. A third amplifier buffers the adjusted voltage which is output to the meter rotary switch.

The forward power and reflected power metering voltages are also output through a current limiting resistor to the rear panel connector for external diagnostic monitoring, as in a COMWAVE Agile Transmitter System.

Created by: Kimberly Simeone 5/26/98 Checked by: Released by:

Document #: 10-04A04 REV: P1

DIAGNOSTIC LED DISPLAY

The Diagnostic Display consists of three green and seven red LEDs which provide a status of various parameters. LED drive signals are received from the Diagnostic Interface Board. All green LEDs (In Signal, Interlock, and Transmit) continuously illuminate verifying normal operation. Absence of a green LED indicates a missing signal or parameter. The remaining LEDs illuminate red to indicate a fault or a parameter that has deviated beyond a set tolerance.

GREEN:

IN SIGNAL	D1
INTERLOCK	D2
TRANSMIT	D3

RED:

TEMPERATURE	D4	RF POWER	D5
DRIVER	D6	PWR SUPPLY	D7
FINAL A	D10	LOCAL OSC	D11
FINAL B	D12		

Created by: Kimberly Simeone 5/26/98 Checked by: Released by:

Document #: 10-13001 REV: PI

H_MP1841	H_MP1841	H_MP1841	HLMP1 801	H_MP1 801	D6 HLMP1 801	HLMP1 801	HLMP1 801	HLMP1 801	H_MP1 801	HLMP1 801	012 HUMP1 801	DI 3 H. H. 1901	
E	32	E	Ä	g	92	10	8	6	D10	HIL	012	M3	
IN-SIGNAL	INTERLOCK	TRANSMIT	TEMPERATURE	RF POWER	VIS. DRIVER	POWER SUPPLY	MS. PRE-FINAL	LOCAL OSC.	MS. FINAL A	AUR. DRIVER	VIS. FINAL B	AUR. FINAL	
-	_	œ	<u>. </u>	9	9	so.	=	→	51	e	13	N.	7

NOTES: SCHEMATIC OF ISSUE 2 PC BOARD.

R 112-17	-93	R 12-17-93 ENLARGED PADS ON SOLDERMASK LAYER	RMASK LAYER 93-233
REV DATE	37	DESCRIPTION	V ECO No.
SCALE:		TOLERANCE FRAC.? UNLESS NOTED	-DEC.? -ANG.?
	ા	COMMUNICATION MICROWAVE CORP CRESTWOD INDUSTRIAL PARK MOUNTAINTOP, PA., 18707	AVE CORP MRK 07
TITLE: SCHEI	MA.	TITLE: SCHEMATIC, DISPLAY BOARD SB050B	OARD SB050
DRAWN DATE	-25	4-25-91 A.BRAGALONE L	DWG. NO.
OFECKED			A - 33 - 118 - 01
WECH. ENGR.			1 OF 1
BEC. DWGR. REEASE	,	**	NEXT ASSY:
DE 15.45			REV. B

AC CONFIGURATION BOARD

The AC Configuration Board is responsible for configuring the fans, MOVs, and transformer, to accept a 117v or 230v AC signal. This is accomplished via a Molex jumper located on the board.

CONTWAVE

AC Configuration Board

AC CONFIGURATION BOARD

CONFIGURATION FOR THE 110V

CONFIGURATION FOR THE 220V

Created by: Kimberly Simeone 5/27/98

Checked by:

Released by:

Document #: HG3-01006

REV: PI

Created by: Kimberly Simeone

5/28/98

Checked by:

Released by:

Document #: 10-10C03 REV: PI

All information contained in this document is confidential and proprietary to COMWAVE and shall not be disclosed without the prior written permission of COMWAVE.

			REVISION MECORD	CORD	
		15		ä	DATE:
		-		-	10-9-96
		╀┼		A.BRAGALONE 1	1017-96
-35 CMO -31 CMO -30 CMO -30 CMO -32 CMO -32 CMO -32 CMO -33 CMO -34 CMBC-5 -34 CMBC-6 -3	2-54 5-54 5-54 5-24 5-24 1-24 1-24	9-93 Z-63 C-63 1-63 +-93 Z-93 L-94			
)			
	1104 701	2200			
		COMMUNICA	COMMUNICATION MICROWAVE CORP. CRESTHOOD MOUSTRAL, PARK WOUNTAINTOP PA. 18707	WAVE (CORP.
	NOTES: SCHEWATIC OF ISSUE 2 BOARD INSERT JUNPER INTO P4 & P5 FOR 110- OPERATION INSERT JUNPER INTO P4 & P5 FOR 220- OPERATION	SCHEMATIC, AC CONFIGURATION BOARD DRAWK, C.SPARKES DSTIG-56 GEGEGGGG DSTIG-56 CLEC. ENGR. RELEASED. RELEA		DRAWING NO. 33-344-01 SHEET: OF	4 - C
		and an analysis of the state of			

INSTALLATION

Unpacking Information

While unpacking, carefully compare packing list with the equipment, checking for intransit damage at the same time. Should any damage be noted, notify the freight carrier at once to file a freight claim. Do not discard any packing material until told to do so by the carrier. Also, notify Communication Microwave Corp (COMWAVE) of any damages or of missing materials from the shipment.

Retain original boxes and internal packing materials in order to adequately protect equipment to be returned to the factory for repairs, upgrades, or modifications.

Environmental Considerations

The equipment can be safely operated in ambient temperatures of -30 to +50 degrees Celsius (-22 to +122 degrees Fahrenheit). However, moderate temperatures generally extend equipment life. Although the equipment may be operated with relative humidity of up to 95%, the equipment must be protected from conditions which cause condensation within the equipment.

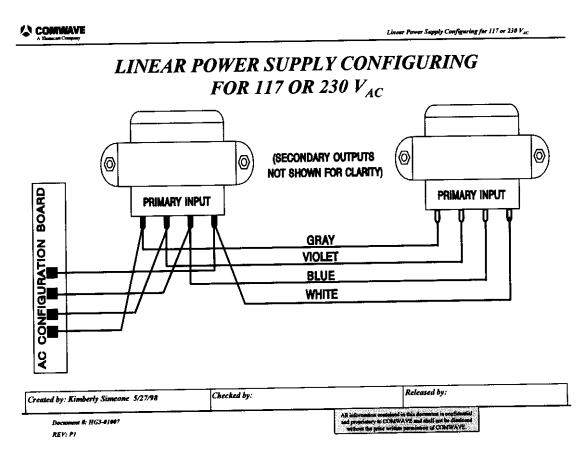
If a rear door is used to secure the rack cabinet, forced ventilation through the cabinet is required (600 cfm minimum per transmitter is recommended). An air or temperature interlock should be incorporated for protection against interruption of ventilation. The area should be kept dry and clean.

There should be sufficient space in front of the transmitter cabinet for the serviceman and test equipment, plus the full extension of the racked 27" deep chassis. A minimum of 36" behind the cabinet should be free for rear cabinet access and air movement. Also, ample room must be available at the cabinet rear for cable placement.

Safety Considerations

This equipment utilizes a grounding plug on all power cords. For personal safety, do not defeat this safety feature. As with all similar types of equipment, high voltage can be accessed when the chassis cover is removed. Special care should be given in areas of fuses, line switches, and power supplies.

Created by: Kimberly Simeone 5/28/98	Checked by:	Released by:
3/20/70		
		The second secon


Document #: 14-01005

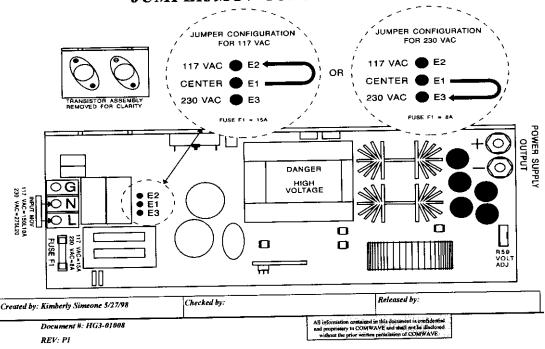
Modern high power solid state equipment contain low output voltage power supplies with very high current capability. To prevent severe burns, avoid contact of rings, watches etc., with these circuits. When servicing the transmission line and antenna, care must be taken to avoid exposure to high energy microwave.

Input Line Voltage Configuring

This transmitter can be configured to operate at 117 to 230 V_{AC}. The transmitter is normally configured by the factory for the user's AC operating line voltage. However, circumstances may develop that dictates using the transmitter at a different input AC line voltage. The following information describes how to reconfigure a transmitter for a different input AC line voltage. Note, this procedure is only applicable to Deltron Switching Power Supplies.

Switching Power Supply

The transmitter is easily converted to accept a 117v or 230v AC signal by changing two jumpers to the desired operating voltage and changing two fuses to the required current rating. To reconfigure the transmitter to a different input line voltage, perform the following:



- 1. Turn off transmitter's AC power and disconnect the AC line cord from the power receptacle. Locate the switching power supply.
- 2. Refer to attached figure to reconfigure the main switching power supply jumper. If necessary, remove power supply to gain access. Locate the wire jumper. Using needle-nosed pliers, carefully pull jumper from stud mount labeled either E2 or E3. Move jumper to stud mount corresponding to desired AC line input voltage.
- 3. Replace switching power supply input line fuse, F1, with an appropriate ampere rating depending upon the input voltage selected. Use an eight-ampere fuse for 117 V_{AC} and a four-ampere fuse for 230 V_{AC} . See Document # HG3-01008, below.
- 4. Locate the AC configuration board.
- 5. Refer to Document # HG3-01006, located on Document # 10-10C03, to reconfigure the AC configuration board. If necessary, remove board to gain access. Locate the Molex jumper and move the jumper to the desired voltage according to the diagram.
- 6. Replace rear panel AC input fuse with a fuse of an appropriate ampere rating depending upon the input voltage selected. Use a six and a quarter ampere fuse for 117 VAC and a four-ampere fuse for 230 VAC.

COMWAVE

SBSA-50C Switching Power Supply 117/230 V_{AC} Jumper/Mov Configuring

SBSA-50C SWITCHING POWER SUPPLY 117/230 V_{AC} JUMPER/MOV CONFIGURING

Document #: 14-01005

REV: P1

All information contained in this document is confidential and proprietary to COMWAVE and shall not be disclosed without the prior written permission of COMWAVE.

Physical Installation

COMWAVE transmitters have been designed to accept standard 19 inch rackmounts with slide rails. Slide rails enable easy access to internal adjustable controls and other maintenance/adjustments. In most cases, COMWAVE provides a system equipment rack layout diagram that will assist in the proper installation and orientation of equipment.

The SBSA-50C transmitter system requires 8.75 inches of vertical rack space (including a modulator). Generally, all equipment is mounted in close proximity in the same rack for the convenience of cabling. Mount the slide rails into the rack with the hardware supplied. Use tapered screws for mounting the front brackets (tapered screws allow the drawer to be fully seated).

Pull slide rails outward until they lock into place. Carefully align drawer with slide rails and mate. Unlock slide rails by depressing the lock button on each rail while pushing drawer inward. Drawer should slide easily into rack. If binding occurs, rail mounting brackets are in need of adjustment. Loosen brackets and manipulate drawer to seat rails to match transmitter drawer. Tighten brackets once free sliding motion has been achieved.

System Grounding

For proper system operation, it is imperative that the system be adequately grounded. Each individual equipment rack requires grounding to the main building ground. When bolting ground wires to racks, sand finish to remove paint ensuring a good bond.

Document #: 14-01005

SBSA-50C SYSTEM CABLING

This section explains cabling and interconnections between the SBSA-50C transmitter and the TVM-102 or the Barco modulator. Refer to the diagrams for cabling.

TVM-102 Modulator

INPUT:

The modulator requires a baseband video input program source signal. Connect the baseband input source to the modulator VIDEO IN using RG59/U 75 ohm cable.

IF OUTPUT:

The IF OUTPUT is the visual IF signal Cable using a male to male BNC RG-59/U 75 ohm cable directly to the Visual In (VIS IN) jack of the SBSA-50C transmitter.

VIDEO IF LOOP:

A small coaxial RG-59/U jumper is provided and is required to loop the VIDEO IF OUT back into the VIDEO IF INPUT.

AUDIO IF LOOP:

AUDIO IF LOOP IN is typically not used.

Cable AUDIO IF LOOP OUT using RG-59 directly to the Aural In (AUR IN) of the SBSA-50C transmitter.

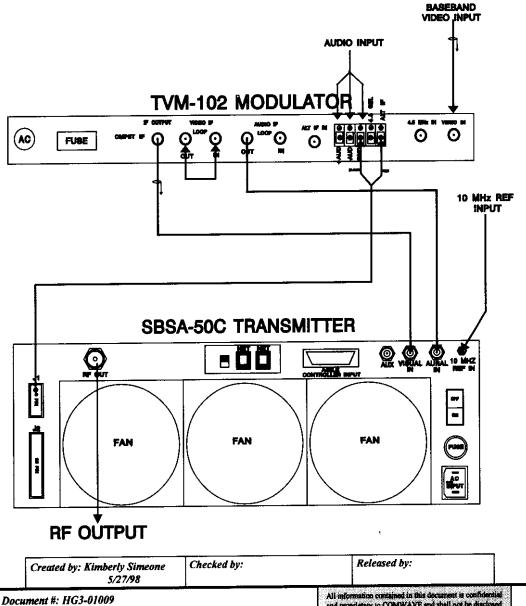
Connect the Audio input from the satellite receiver to small screw connectors labeled as +Audio, -Audio, and GND for the shield.

INTERLOCK SIGNAL:

A signal presence interlock is established by a pre-made cable assembly provided by COMWAVE. Connect the two pre-tinned bare wires to the small screw type terminals labeled ALT IF (RED wire)/GND (BLACK wire) and the remaining end to the 9 pin connector J1 of the SBSA-50C transmitter.

Created by: Kimberly Simeone 5/26/1998

Checked by:


Released by:

SBSA-50C System Interconnections w/TVM-102 Modulator

SBSA-50C SYSTEM INTERCONNECTIONS WITH TVM-102 MODULATOR

REV: P1

All information contained in this document is confidential and proprietary to COMWAVE and shall not be disclosed without the prior written permission of COMWAVE.

Document #: 14-03A03 REV: P1

All information contained in this document is confidential and proprietary to COMWAVE and shall not be disclosed without the prior written permission of COMWAVE.

Barco Modulator

INPUT:

The Barco Modulator provides an optional Alternate IF (ALT IF) input connector. If used, connect the ALT IF source with a BNC connector.

The modulator requires a baseband video input program source signal. This video input usually originates from a satellite receiver system. Apply this input signal to a rear mounted BNC connector labeled as VIDEO PROG INPUT.

Connect the Audio input from the satellite receiver to AUDIO PROG IN using a 6 pin plug.

VIDEO OUTPUT:

The Intermediate Frequency Video (IFV) is cabled from the Barco Modulator to the Visual IF (Vis IF) of the SBSA-50C transmitter using an RG-59/U cable.

AURAL OUTPUT:

The Intermediate Frequency Sound 1 (IFS1) is cabled from the Barco Modulator to the Aural In (AUR IN) of the SBSA-50C transmitter using a RG-59/U cable.

The Intermediate Frequency Sound 2 (IFS2) is cabled from the Barco Modulator to the Auxiliary In (AUX IN) of the SBSA-50C transmitter using an RG-59/U cable.


Video Presence Cable is established by a pre-made cable assembly by COMWAVE. It is connected from the 9 pin connector of the Barco Modulator to the 9 pin connector of the SBSA-50C Transmitter.

SBSA-50C System Interconnections w/Barco Modulator

SBSA-50C SYSTEM INTERCONNECTIONS WITH BARCO MODULATOR

Document #: 14-03A03

REV: PI

All information contained in this document is confidential and proprietary to COMWAVE and shall not be disclosed without the prior written permission of COMWAVE.

SBSA-50C Transmitter

RF OUTPUT:

Cable the microwave RF output signal from the SBSA-50C Transmitter to the antenna system (channel combiner, coax, or wave guide). Use 1/2 inch super flex cable.

10 MHZ REF IN:

An externally applied 10 MHz reference signal is an option. This signal can originate from an optional 10 MHz Reference Drawer, Loran C, GPS receiver, or from another transmitter which contains a 10 MHz reference oscillator internally. An internal 10 MHz reference can drive up to three additional transmitters. Use RG-59/U 75 ohm cable.

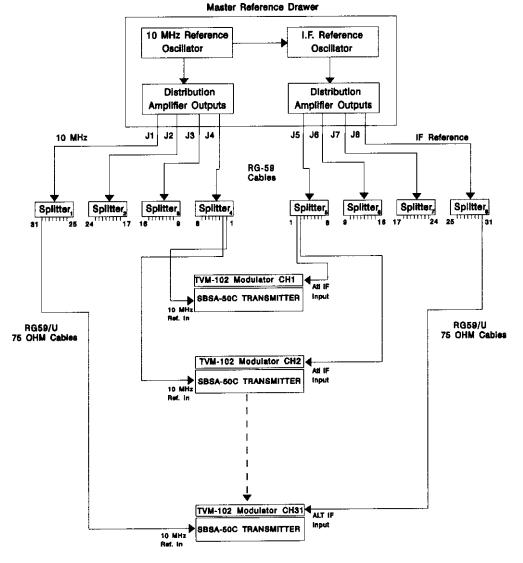
Reference signals

An external reference drawer is used to apply 10 MHz reference signals to phase lock a transmitter system. A 10 MHz two-way distribution board receives the 10 MHz reference from the external drawer and splits the signal equally. The reference signal level should be +10 dBm +5 dB/-10dB.

External Phaselocking of Transmitters:

When more than four transmitters are co-located, the 10 MHz reference normally located inside the lowest transmitter channel of the group is removed and an external 10 MHz reference drawer along with a 10 MHz cable kit are used. This drawer contains a precision 10 MHz reference oscillator and distribution system. Located on the reference drawer rear panel are four "F" type female connectors labeled J-1 through J-4. Connectors J-1 through J-4 are 10 MHz at a level of approximately +17 dBm. See diagram for details of reference interconnections.

NOTE: The 10 MHz output signals are of a high level and should NOT be directly cabled to any transmitter/modulator. These signals must first be routed through splitters to reduce the signals to acceptable levels. Located in the 10 MHz cable kit are four 8-way CATV splitters with cable and appropriate connectors. When connected to any rear panel 10 MHz jack of the reference drawer, each output of the 8-way splitter may be connected directly to any transmitter 10 MHz input. The 8-way splitter has -10 dB typical loss.



10 MHz/IF Reference Interconnections

10 MHz/IF REFERENCE **INTERCONNECTIONS**

Released by: Checked by: Created by: Kimberly Simeone 5/27/98 All information contained in this document is confidential and proprietary to COMWAYE and shall not be disclosed without the prior written permission of COMWAYE. Document #: HG3-01011 REV: P1

Document #: 14-03A03

REV: P1

All information contained in this document is confidential and proprietary to COMWAVE and shall not be disclosed without the prior written permission of COMWAVE.

OPERATION

This section covers initial unit turn-on and explains normal operation of the SBSA-50C Transmitter. Prior to any initial equipment turn-on, verify that all appropriate wiring interconnections have been accomplished.

Initial Turn-On Procedures

- 1. Ensure the rear mounted main power ON/OFF switch is in the OFF position.
- 2. Position the front panel rotary function switch to STANDBY.
- 3. Insert the power plug into a power outlet.
- 4. Position the main power switch to ON.
 - *Fan noise should be heard.
- 5. The following GREEN LEDs continuously illuminate verifying successful turn ON.
 - *IN SIGNAL (if an input signal is applied; requires modulator operation)
 - *INTERLOCK

Normal Operation

Operation is enabled by rotating the function switch from STANDBY to any other position. At that time, the following GREEN LEDs continuously illuminate confirming normal operation.

- *IN SIGNAL (must have an input signal applied to transmit; requires modulator operation)
- *INTERLOCK
- *TRANSMIT

Absence of a green LED indicates a missing signal or parameter. Continuous illumination of any red status LED indicates a failure has been detected by the diagnostic circuitry. Refer to the troubleshooting section for failures.

To verify other transmitter parameters using the front panel meter, rotate the function switch. +11 V PS, VIS PWR and AUR PWR should have meter readings of 100%. REFL PWR is a function of the combiners, transmission line, and antenna. Reflected power readings less than 10% are typical.

Created by: Kimberly Simeone | Checked by: | Released by:

Document #: 15-01005

FAILURE MODE DISPLAYS

COMWAVE transmitters employ comprehensive diagnostic circuitry that monitor the status of power amplifier modules and critical circuits. Failures can be readily interpreted by observing front panel LED Diagnostic Display and/or monitoring the analog panel meter. By observing the Diagnostic Display and metering, complete transmitter operational status is known. Due to the internal transmitter design, there are no user serviceable modules, parts, or components. Repair of these modules is not recommended or advised. Contact COMWAVE customer support should a failure occur. This section explains the various failure mode displays that may be encountered and possible solutions.

The following status monitoring LEDs continuously illuminate GREEN during normal operation. Absence of an LED indicates a missing signal or parameter which results in a controlled automatic transmitter shut down.

IN SIGNAL: Missing IF input signal from modulator.

Causes: Defective cabling to modulator baseband video input

Defective cabling from modulator IF output to SBSA-50C Visual IF

Modulator

Missing baseband source signal

Solutions: Check cabling

Verify source signal Replace modulator

Measure voltages at 25 pin Diagnostic Interface J2

Contact Comwave customer support

INTERLOCK: Missing system Interlock signal.

Causes: RF module unplugged or shorted

Solutions: Check for disconnected module(s)

Measure voltages at 25 pin Diagnostic Interface J2

Contact Comwave customer support

TRANSMIT: No transmit.

Causes: Missing IN SIGNAL

Missing INTERLOCK signal See other diagnostic LEDs

Solutions: Check cabling

Created by: Kimberly Simeone 5/26/1998 Checked by: Released by:

Document #: 16-08001 REV: P1 All information contained in this document is confidential and proprietary to COMWAVE and shall not be disclosed without the prior written permission of COMWAVE.

Troubleshoot per highlighted LEDs

Replace modulator

Measure voltages at 25 pin Diagnostic Interface J2

Contact Comwave customer support

When a failure is detected by the diagnostic circuitry, the appropriate RED status monitoring LED continuously illuminates. Controlled automatic transmitter shut down is a function of the failure and severity. Presence of a RED status LED with normal meter readings and/or normal transmitter operation indicates an out of tolerance condition with that circuit.

TEMPERATURE: Internal chassis temperature exceeded + 160 degrees Fahrenheit (+

71degrees Celsius).

Causes: Fans inoperative

Heavy accumulation of debris on fans or heatsinks

Module(s) overheating Site air conditioning

Remedy: Check fan operation

Check site air conditioning

Allow transmitter to cool: Reset latched failure logic by rotating function

knob momentarily to "STANDBY" Contact Comwave customer support

VIS DRIVER: Defective visual driver module.

Causes: Visual driver module(s)

Switching power supply

Remedy: Measure voltages at 25 pin Diagnostic Interface J2

Contact Comwave customer support

VIS PRE-FINAL: Visual Pre-Final defective.

Causes: Visual Pre-Final

Switching power supply

Remedy: Measure voltages at 25 pin Diagnostic Interface J2

Contact Comwave customer support

VIS FINAL A or B: Defective visual final module.

Causes:

Visual final module A or B

Switching power supply

Remedy:

Measure voltages at 25 pin Diagnostic Interface J2

Contact Comwave customer support

RF POWER: Visual output power has decreased to less than 50 % of full output.

Causes:

Visual driver module(s)

Final output module(s)

Power supply

Remedy:

Check final output RF power levels

Contact Comwave customer support

PWR SUPPLY: Defective + 11 volt DC switching power supply.

Causes:

Main input line fuse

Switching power supply fuse

Power Supply Shorted module(s)

Remedy:

Check fuses

Measure voltages at 25 pin Diagnostic Interface J2

Contact Comwave customer support

LOCAL OSC: Local Oscillator failure.

Causes:

Oscillator failure

External cabling 10 MHZ Reference

Remedy:

Check external cabling

Measure voltages at 25 pin Diagnostic Interface J2

Contact Comwave customer support

AUR DRIVER: Defective aural driver module(s).

Causes:

Aural driver module(s)

Power supply

Remedy:

Measure voltages at 25 pin Diagnostic Interface J2

Contact Comwave customer support

AUR FINAL: Defective aural final module(s).

Causes: Aural final module(s)

Power supply

Remedy: Measure voltages at 25 pin Diagnostic Interface J2

Contact Comwave customer support

Diagnostic Interface

To assist in troubleshooting, COMWAVE transmitters employ a 25 pin computer type diagnostic interface connector located at the rear of the chassis. This connector is identified as J2. Critical power supply, module, and motherboard voltage test points can be accessed/monitored at this connector. Should a failure occur, the combination of meter readings, diagnostic LED status lights, and the diagnostic interface voltage test points help identify the failure.

Attached is an example of a diagnostic interface High/Low Window blank data sheet. The High/Low Window data sheet identifies each interface pin, the associated internal test point, nominal value, and the expected voltage range.

The majority of internal assemblies that comprise a transmitter are modular. Modular design enables quick, efficient failure troubleshooting and ease of repair. This concept results in cost effective troubleshooting and less equipment downtime. Once a module has been identified as defective, COMWAVE can send a replacement, which can be easily replaced by the customer.

SBSA-50C TRANSMITTER

TROUBLESHOOTING WORKSHEET

J2: REAR	FUNCTION	LOW	NOMINAL	HIGH	MEASURED
PANEL	CHECKED	LIMIT	VOLTAGE	LIMIT	VOLTAGE
DIAGNOSTIC	CHECKED	"VDC"	"VDC"	"VDC"	, 0211102
PIN		, , ,		, 20	
1	Ground	0	0	0	
2	+12 VDC PS	+11.5	+12	+12.5	
3	-12 VDC PS	-11.8	-12	-12.2	
4	+11 VDC PS	+10.7	+11	+11.1	
5	+5 VDC PS	+4.5	+5	+5.5	
6	Mixer Q1	2.5	4.1	5.74	
7	AMP 1 Q2,3	2.0	4.5	7.0	,
8	AMP 2 Q4,5	.9	1.08	1.5	
9	Pre-Final Q2	1.5	2.2	3.0	
10	Final A Q1, 3,4, 5	7.0	8.8	20.6	
11	Final A Q2, 6, 7	4.8	6.6	8.5	
12	Final B Q2, 6, 7	4.8	6.6	8.5	
13	Final B Q1,3, 4, 5	7.0	8.8	10.6	
14	N/A				
15	N/A			· -	
16	N/A			-	
17	N/A				
18	N/A				
19	Remote off	N/A	+5	N/A	
20	IN SIGNAL	N/A	+5	N/A	
21	LO	N/A	>1.3	N/A	
22	Remote Fault	N/A	0	N/A	
23	Average Power	N/A	1.40	N/A	
24		N/A	N/A	N/A	
25	REFL Power	N/A	.10	N/A	
	EILL IN ALL TH	C ADOUG DI	ANIZ CDACEC C	OMDIETEI	v

FILL IN ALL THE ABOVE BLANK SPACES COMPLETELY

COMPANY NAME:		CUSTOMER'S NAME:
PHONE NUMBER:		FAX NUMBER:
MODEL:	CHANNEL:	SERIAL NUMBER (REAR PANEL):
		•

SEND RESULTS TO:

TO: COMWAVE-ATTENTION TECHNICAL SUPPORT

TOLL FREE PHONE ("USA" only)

1-800-COMWAVE (1-800-266-9283) 1-717*-474-6751 *see note on document #18-01001 1-717*-474-5469 FAX *see note on document #18-01001

Document #: 16-08001

REV: P1

Analog Metering

The front panel analog meter provides an indication of the $+11~V_{DC}$ Switching Power Supply, Reflected, Aural and Visual output power. The $+11~V_{DC}$ switching power supply, aural and visual output power should indicate 100%. Reflected power meter readings less than 10% are typical. By observing the meter readings, transmitter performance can be interpreted. Analog meter readings in conjunction with the front panel Diagnostic status LEDs help to identify/isolate failures(s). The following information is provided to assist in troubleshooting analog meter anomalies.

+11 VPS: Meter does not indicate 100%.

Causes: Defective switching power supply

Shorted module

Open switching power supply fuse F2

Open main AC input fuse

Switching power supply out of adjustment

Metering out of adjustment

Solutions: Replace defective fuse(s)

Check switching power supply output voltage

Troubleshoot per front panel LED Diagnostic display

Adjust switching power supply output voltage per Document #14-04A02

Calibrate meter per Document # HG3-01015 Measure voltages at 25 pin Diagnostic Interface J2

Contact Comwave customer support

REFL PWR: Reflected power is greater than 10%.

Causes: Loose RF cable connection(s).

RF cable kinked

Wave guide leak/depressurized Reflected metering out of adjustment

Solutions: Check integrity of all RF cable connections

Check cabling for kinks or severe bends

Check wave guide pressure

Calibrate reflected metering per Document #14-04A02 Measure voltages at 25 pin Diagnostic Interface J2

Contact Comwave customer support

AUR PWR: Meter does not indicate 100% power.

Causes: Driver module

Final module(s)

Switching power supply

Document #: 16-08001 REV: P1

Metering out of adjustment

Solutions: Confirm output power

Troubleshoot per front panel LED Diagnostic display

Replace defective module

Calibrate forward power metering per Document #'s 14-04A02 & HG3-01014

Measure voltages at 25 pin Diagnostic Interface J2

Contact Comwave customer support

VIS PWR: Meter does not indicate 100% power.

Causes: Driver module

Final module(s)

Switching power supply Metering out of adjustment

Solutions: Confirm output power

Troubleshoot per front panel LED Diagnostic display

Replace defective module

Calibrate forward power metering per Document #'s 14-04A02 & HG3-01014

Measure voltages at 25 pin Diagnostic Interface J2

Contact Comwave customer support

EQUIPMENT FUSING AND PROTECTION

Fuses:

Location	Name	Value
Mother Board	F1	15 amperes
Mother Board	F2	25 amperes
Mother Board	F3	25 amperes
		4 amperes
		15 amps @ 117 V _{AC} or 8 amps @ 230 V _{AC}
Rear Panel AC		12 amps @ 117 V _{AC} or 7 amps @ 230 V _{AC}

<u>Surge Suppression</u>: COMWAVE transmitters employ a metal oxide varistor (MOV) voltage suppresser across the AC line input for protection from moderate power surges. The surge suppresser value is dependent upon the AC line input voltage. 117 V_{AC} employs a 150 V_{AC} MOV and 230 V_{AC} uses a 275 V_{AC} MOV.

<u>Thermal Protection</u>: Thermal protection is accomplished using thermostats that close when the internal temperature exceeds +160 degrees Fahrenheit (+71 degrees Celsius). When thermal shut down occurs, a logic control board removes power from the final until the unit is sufficiently cooled.

Interlocks: Interlocks are designed for transistor bias protection for both the FET gate and drain power supply voltages. See Document #10-10P03.

Created by: Kimberly Simeone 5/28/98 Checked by: Released by:

Document #: 16-02002 REV: P1

MAINTENANCE

COMWAVE products have been carefully designed to be maintenance free. Only periodic inspection and cleaning is necessary.

Inspections:

- 1. Periodically inspect cooling fans on the rear door of the rack and the heatsinks of the Power Amplifier Segments for heavy accumulations of dirt and/or insects. Heavy accumulation of foreign debris impedes cooling effectiveness and could lead to premature failure. Should any debris be detected, shut down the transmitter and follow the cleaning instructions to remove debris from transmitter. NOTE: The Agile Transmitter will automatically recover the channel of the transmitter, which is being cleaned.
- 2. Record analog meter readings of each Driver on a monthly basis. This establishes a performance historical database. These entries can identify degraded performance before it becomes a hard failure.
- 3. After performing routine maintenance, be sure to check the tightness of all cable connections and especially the integrity of crimp type connectors.

Cleaning:

Clean faceplate and outside cover using a damp non-abrasive cloth with a mixture of a mild detergent and water.

Document #: 17-01003 REV: P1

MONTHLY MAINTENANCE RECORD

Date	Channel	Ai	ialog Mei	ering	Failure LEDs	Comments
		VIS A	UR RI	EF +11VPS		
		Section Commission Com				

<u>.</u>						
		*				

Created by: Kimberly Simeone	Checked by:	Released by:
5/26/98		

Document #: 17-01003A

REV: P1

The following section explains calibration of the SBSA-50C transmitter. The user must be thoroughly familiar with use of applicable test equipment. All calibrations, alignments, and adjustments have been performed at the factory by qualified service personnel prior to shipping. Additional adjustments are not necessary or advised.

SYSTEM POWER CALIBRATIONS

This section covers adjustments of SBSA-50C average output power and calibrations of the front panel output power and reflected metering.

*NOTE: This procedure is applicable for only making MINOR adjustments to output power and analog metering. Do NOT adjust power more than \pm .5 dB. Adjustments more \pm .5 dB may result in increased intermodulation distortion products

This procedure sets the transmitter output power while transmitting a modulated signal. Calibration of output power and metering circuitry is a straight forward task. For proper calibration, adjustments are performed in a specific sequence. The following information is provided to assist in proper calibration.

OUTPUT POWER:

Required Equipment:

Spectrum Analyzer 30 dB Directional Coupler Two N to N Male Barrels N to BNC Adapter Video Generator Microwave Power Meter 50 Watt, 50 Ohm Load Small Flat Blade Screwdriver Alignment Tuning Tool

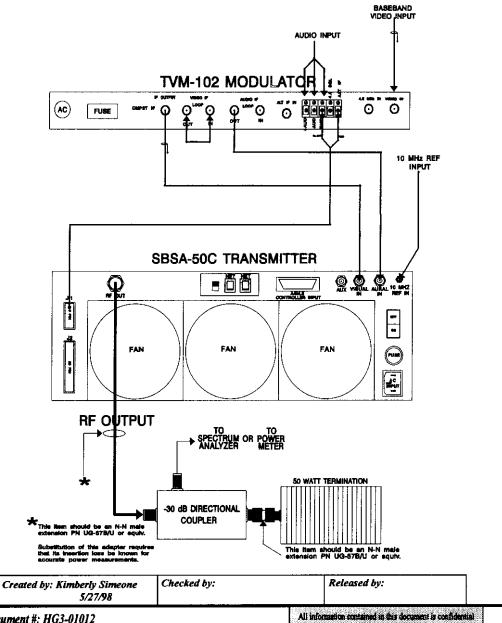
- 1. Place the SBSA-50C to STANDBY to disable transmitting.
- 2. Attach a -30 dB directional coupler to the transmitter output. See Figure 8.0 and 8.0.1. Terminate the coupler output into a 50 watt, 50 ohm load. Connect a microwave power meter to the -30 dB coupled port.
- 3. Apply a modulated signal to the transmitter IF input. Set video generator to black picture (No set up/0 IRE).
- 4. Turn IF Precorrector ALC switch S2 to "OFF."
- 5. Rotate function switch from STANDBY to "FWD PWR" to enable transmit.
- 6. Calculate power meter reading necessary for 100% output, accounting for the coupler loss.

Created by: Kimberly Simeone	Checked by:	Released by:	
5/26/98			

Document #: 14-04A02 REV: P1

EXAMPLE

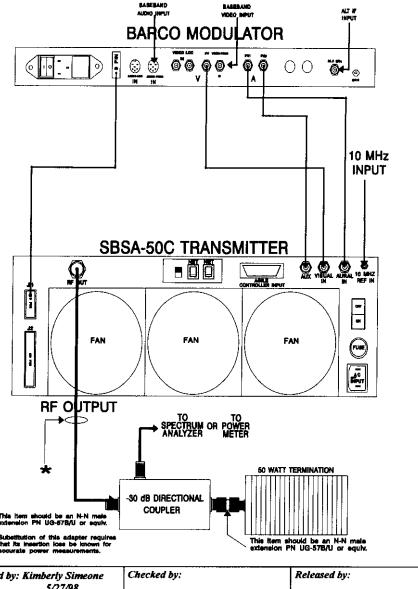
=	+ 47.00 dBm
=	- 30.00 dBm
	+ 17.00 dBm
no set up) =	2.20 dBm
=	14.80 dBm
•	=


- 7. Adjust motherboard variable potentiometer VR4 and VR2 to indicate 100% visual and aural power output, respectively.
- 8. Turn ALC switch S2 "ON."

SBSA-50C Transmitter Power Calibration Test Set-Up

SBSA-50C TRANSMITTER POWER **CALIBRATION TEST SET-UP**

Document #: HG3-01012

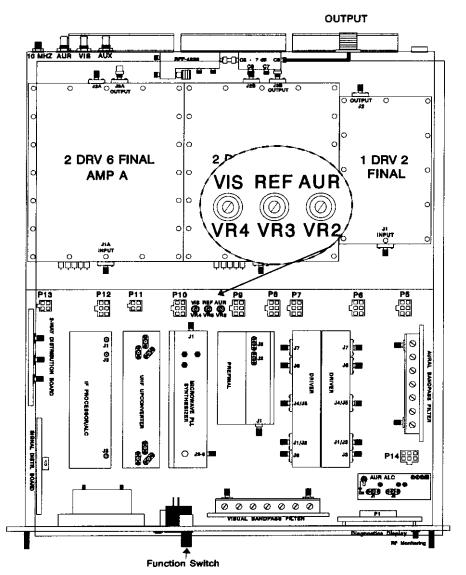

REV: P1

SBSA-50C Transmitter Power Calibration Test Set-Up

SBSA-50C TRANSMITTER POWER **CALIBRATION TEST SET-UP**

Created by: Kimberly Simeone 5/27/98

Document #: HG3-01013


REV: PI

SBSA-50C Metering Adjustment

SBSA-50C METERING ADJUSTMENT

Created by: Kimberly Simeone S/27/98 Checked by: Released by:

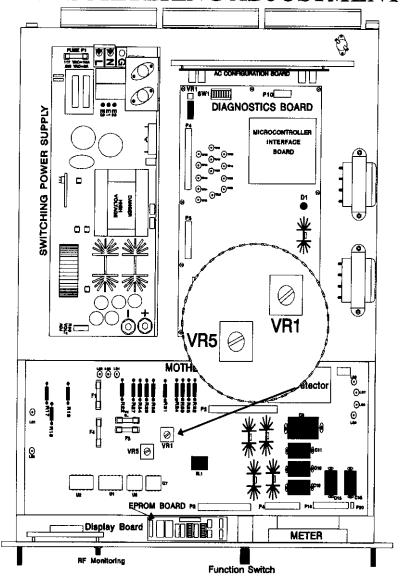
Document #: HG3-01014

REV:P1

REFLECTED POWER:

- 1. Rotate the function switch to STANDBY.
- Turn the IF Precorrector ALC switch S2 "OFF."
- 3. Momentarily interchange the coax cables at the Peak Detector ports.
- 4. Rotate the function knob from STANDBY to REF to enable transmit.
- Adjust motherboard potentiometer VR3 for 100% reflected power reading.
- 6. Rotate function knob to STANDBY.
- 7. Return Peak Detector coax cables to their original configuration.
- 8. Turn IF Precorrector ALC switch S2 "ON."
- 9. Rotate the function switch to REF. The meter should indicate less than 7% residual reflected power reading into a resistive termination.

+ 11 VDC SWITCHING POWER SUPPLY METERING:


- 1. Using a digital voltmeter, measure the switching power supply output.
- 2. Confirm switching power supply voltage output is + 11 VDC. If required, adjust switching power supply VR59 (Deltron switching power supplies).
- 3. Rotate function switch to +11 VPS.
- 4. Adjust mother board potentiometer VR1 to correspond to 100% +11 VPS metering.
- 5. Connect a voltmeter to TP1 and adjust the potentiometer, VR5, to a -12 V reading.

+11 VPS Metering Adjustment

+11 VPS METERING ADJUSTMENT

Created by: Kimberly Simeone | Checked by: | Released by:

Document #: HG3-01015

REV: P1

CUSTOMER SERVICE

Comwave's customer service personnel are available 24 hours a day to assist with any questions or complications that may arise.

Communication Microwave Corp Crestwood Industrial Park 395 Oakhill Road Mountaintop, PA 18707

1-800-266-9283

USA only

1-717-474-6751

(Please note as of 12/98, our area code will change to 507)

1-717-474-5469

FAX

(Please note as of 12/98, our area code will

change to 507)

EQUIPMENT RETURNS

In the event the equipment requires return for factory service, please follow the guidelines listed. Comwave cannot be held responsible for damaged equipment received due to improper packing. Contact Comwave with any questions or concerns regarding returning or packaging of equipment.

- 1. <u>Contact Comwave:</u> Call Comwave to report the problem and to obtain a "Return Authorization" number (RA). This enables Comwave to accurately track and identify returned equipment for prompt and efficient service.
- Obtain packaging materials: Use original boxes and packing materials when returning any equipment. This will safe guard against most in-transit damages. If original boxes and packing materials are not available, contact Comwave to obtain replacement materials. Replacement materials are provided at a nominal cost.
- 3. <u>Pack equipment:</u> Using original packing materials, equipment is packed in a box within another box. Double boxing provides maximum protection.

Caution: Do not pack equipment using "PEANUTS." Equipment packed using "PEANUTS" as filler does NOT provide sufficient protection during shipping. Rough handling by the carrier may cause permanent damage to the equipment being returned.

Created by: Kimberly Simeone 5/26/98	Checked by:	Released by:
3/20/98		<u></u> _

Document #: 18-01001 REV: P-B

PACKAGING FOR RETURN

Refer to the diagram below which corresponds to each step.

- 1. Place the cardboard inserts above and below the equipment.
- 2. Insert foam against the front panel, between the handle and the corner of the inner box.
- 3. Insert the foam block securely behind the fans to prevent equipment from shifting upon transit.
- 4. Place the protective foam pieces on each corner of the inner box.
- 5. Place the inner box into the outer box.

Created by: Kimberly Simeone 5/26/98

Checked by:

Released by:

DRAWING LIST

SBSA-50C DRAWINGS

Module/Board	Module #	Board #
IF Processor	04-277-02	33-315-02
ALC	04-129-02	04-100-02
UHF Upconverter	09-058-02	34-007-02
EPROM Board		35-316-02
Synthesizer	09-052-02	35-064-02
		33-291-02
		13-081-02
Visual Driver		04-128-02
Aural Driver		04-060-02
Aural Final Amp		04-249-02
Pre-Final Amp		04-250-02
Visual Final Amp A & B		04-248-02
Mother Board		35-074-02
10 MHz Distribution Board	d	
Signal Distribution Board.		33-312-02
Microcontroller Interface I	30ard	34-006-02
RS-485 Communications I	Board	
Diagnostics Board		33-118-02

Created by: Kimberly Simeone 5/26/98

Checked by:

Released by:

Document #: 18-02003

REV: P1

INTERNAL SBSA-50C CABLING

CABLE TYPE	FROM	то
60-036-430	Visual IF (Rear Panel)	IF Processor (J1)
60-036-430	Aural IF (Rear Panel)	IF Processor (J2)
60-043-380	10 MHz IN (Rear Panel)	10 MHz Distribution Board
60-036-410	Aur IF (Rear Panel)	UHF Upconverter (J3)
60-003-100	10 MHz Distribution Board	UHF Upconverter (J1)
60-003-120	10 MHz Distribution Board	Synthesizer
16-048-390	CPU Interface	EPROM Assembly
16-163-140	EPROM Assembly	Synthesizer
60-003-050	IF Processor (J3)	UHF Upconverter (J4)
60-003-200	UHF Upconverter (J5)	Visual Mixer
60-067-150	Visual Mixer	Synthesizer
60-011-050	Visual Mixer	Visual Bandpass Filter (IN)
60-011-062	Visual Bandpass Filter (OUT)	Visual Amp 1
60-011-050	Visual Amp 1	Visual Amp 2
60-011-100	Visual Amp 2	Pre-Final Amplifier
60-011-070	Pre-Final Amplifier	Final Amplifier A
60-011-102	Pre-Final Amplifier	Final Amplifier B
60-011-090	Final Amplifier A	Combiner/-20 dB Coupler
60-011-052	Final Amplifier B	Combiner/-20 dB Coupler
SF2993-6001	Combiner/-20 dB Coupler	-7 dB Coupler
60-067-300	Combiner/-20 dB Coupler	FWD Power (Front Panel)
60-067-300	Combiner/-20 dB Coupler	REFL Power (Front Panel)
60-003-220	UHF Upconverter (J6)	Aural ALC
60-003-060	Aural ALC	Aural Mixer
60-067-110	Synthesizer	Aural Mixer
60-068-160	Synthesizer	Front Panel Sample (LO OSC)
60-067-080	Aural Mixer	Aural Bandpass Filter (OUT)
60-011-050	Aural Bandpass Filter (OUT)	Aural Amp 1
60-011-050	Aural Amp 1	Aural Amp 2
60-011-062	Aural Amp 2	Aural Final
60-011-060	Aural Final	-7 dB Coupler
60-010-060	-7 dB Coupler	RF Out (Rear Panel)

Created by: Kimberly Simeone	Checked by:	Released by:
5/26/98	·	

STANDARD FREQUENCIES NTSC FORMAT 6 MHz

Group	Bandwidth (MHz)
A1	2500-2506
A2	2512-2518
A3	2524-2530
A4	2536-2542
C1	2548-2554
C2	2560-2566
C3	2572-2578
C4	2584-2590
E1	2596-2602
E2	2608-2614
E3	2620-2626
E4	2632-2638
G1	2644-2650
G2	2656-2662
G3	2668-2674
G4	2680-2686
B1	2506-2512
B2	2518-2524
B3	2530-2536
B4	2542-2548
D1	2554-2560
D2	2566-2572
D3	2578-2584
D4	2590-2596
F1	2602-2608
F2	2614-2620
F3	2626-2632
F4	2638-2644
H1	2650-2656
H2	2662-2668
Н3	2674-2680
MDS1	2150-2156
MDS2	2156-2162
MDS2A	2156-2160

Created by: Kimberly Simeone 5/26/1998	Checked by:	Released by:
3/20/1998		

Document #: 18-02003

REV: P1

SBSA-50C TOP VIEW

OUTPUT 00 OUTPUT 00 0 00 o 0 2 DRV 6 FINAL 2 DRV 6 FINAL 1 DRV 2 \circ 00 **FINAL** AMP A AMP B 0 0 0 o 00 0 00 ŲŲŲŲ P10 PAP REF AUR P12 P5 P7 铝 岫 量の **III** 17 Ö 0 ๒ **III** 10 **JA** 0 Ø J4/J6 J4/J6 0 BIGHAL DISTR. BOARD J1/J2 J1/J2 9 衈 O 35-5 IIII P14888 000000 Function Switch

Created by: Kimberly Simeone 5/27/98 Checked by: Released by:

Document #: HG3-01004

REV: P1