1.0 INTRODUCTION

This report contains all the required data for type acceptance of the Communication Microwave Corp model SBSA-50C television transmitter. The data presented was taken from tests performed on a production transmitter tuned to operate on ITFS channel D-4 (2590 – 2596 MHz). Other information required for type acceptance, such as circuit diagrams and descriptions, photographs, and tune-up and maintenance procedures may be found in the Comwave SBSA-50C instruction manual. The transmitter design and resultant test data reflect the revised MMDS/ITFS requirements imposed November 1, 1991.

2.0 CERTIFICATION OF DATA

FCC Paragraph 2.909 (d)

Having personally conducted the tests contained in this report, I certify that the statements and data submitted are true and correct to the best of my knowledge.

Paulo Correa
Director of Engineering
Communication Microwave Corp

3.0 TEST EQUIPMENT

FCC Paragraph 2.947 (d)

The following is a list of major test equipment, which was used in testing the SBSA-50C transmitter for this report:

1)	Spectrum Analyzer	HP Model 8564E
2)	Spectrum Analyzer	HP Model 8593E
3)	Power Meter	HP Model 436A
4)	Frequency Counter	HP Model 5350B
5)	Digital Multimeter	Fluke Model 87
6)	TV Demodulator	TEK Model 1450-1
7)	Audio Analyzer	TEK Model VM700
8)	NTSC Test Set	TEK Model VM700
9)	NTSC Video Generator	TEK Model 1910
10)	Oscilloscope	TEK Model 2215
11)	Test Oscillator	HP 651B
/		

4.0 DESCRIPTION OF EQUIPMENT

FCC Paragraph 2.983

1)	Type of Emission	Visual – 5M75C3F
,	7-	Aural – 250KF3E
2)	Frequency Range	2000 - 2700 MHz
3)	Operating Range	10-50 watts peak visual
ŕ	•	0.3 - 1.5 watts average aural
4)	Power Rating	50 watts peak visual
	-	1.58 watts average aural
5)	E & I on Final	Drain voltage 10 V
•		Drain current 2.2 A each

6) Function of Active Devices

The following is a list of active devices in the RF and LO chains of the transmitter. The relative position of each device may be found by referring to the transmitter block diagram in the technical manual.

Microwave Upconverter/Amplifier

	c opconverter//xmpmier
Microwave Synthes	
U1	Dual Modulus Prescaler
U2	Synthesizer
U3	Comparator
U4	Regulator
U5, U 7	Dividers
U6	Operational Amplifier
Voltage Controlled Oscill	lator Board 33-291-01
U1	Voltage Controlled
	Oscillator
U2	RF Amplifier
U3	Operational Amplifier
U4	Microwave Prescaler
U6	5 V Voltage Regulator
U 7	Shunt Regulator
Distribution	Board 40-207-01
Amplifier	
U1	RF Amplifier
U2	RF Amplifier
U8	5 V Regulator
IF Processor	Board 33-315-01
D1, D2, D3,	Attenuator Diodes
D4, D11, D12	
D5, D6, D7,	Linearity Correctors
D8	
U1, U2, U4	IF Amplifier
D9	Protection Diode
U3	Voltage Regulator
U6	Operational Amplifiers

Q2	Transistor Switch
D10	IF Attenuator
UHF Upconverter	Module 09-058-02
UI .	IF to UHF Mixer
U2	IF to UHF Mixer
U3	RF Amplifier
U4	RF Amplifier
Upconverter Synthes	
U1	Voltage Comparator
U2	PAL
U3	Synthesizer IC
U4	Comparator
U5	Pre Scaler
U6	Operational Amplifier
U8 ,	Voltage Controlled
110 1110 1111	Oscillator
U7, U10, U11	RF Amplifier
U12	Voltage Regulator Diode
D1, D2, D3 U9	Power Splitter
= -	Module 04-128-01
Visual Mixer	Board 40-060-04
D1, D2	Visual IF to RF Mixer
Q1	RF Amplifier
Amplifier #1	Board 40-102-04
Q2	RF Amplifier
Q3	RF Amplifier
Amplifier #2	Board 40-103-04
Q4	RF Amplifier
Q5	RF Amplifier
Prefinal Amplific	
Q1	RF Amplifier
Final Amplifier	
Q1	RF Amplifier
Q2	RF Amplifier
Q3 Q4	RF Amplifier
Q4	RF Amplifier
Q5	RF Amplifier
Q6	RF Amplifier
Q7	RF Amplifier RF Amplifier
Q8 Driver Modu l	
Aural Mixer	Board 40-060-04
D1, D2	Aural IF to RF Mixer
Q1	RF Amplifier
Amplifier #1	Board 40-102-04
Q2	RF Amplifier
~ 2	

	Q3	RF Amplif	ier
	Amplifier #2		Board 40-103-04
	Q4	RF Amplif	ier
	Q5	RF Amplif	ier
	Aural Amplifier		Board 04-249-2G60-02
	Q1	RF Amplif	ier
	Q2	RF Amplif	fier
	Q3	RF Amplif	Tier
7)	Circuit Diagrams		See Technical Manual
8)	Instruction Books		Included
9)	Tune Up Procedures		See Technical Manual
10)	Description of Oscillator Circuit	and	See Technical Manual
,	Frequency Stability Devices		
11)	Describe Limiters		Not used.
11)	Describe Spurious Suppression	Circuits	Not used
12)	Describe Digital Modulation Ci		Not used

8.0 OVERALL ATTENUATION CHARACTERISTICS

FCC Paragraph 2.987/2.989/73.687

Visual Output Power 50 watts peak sync

% Video Modulation 87.5%

Type Video Modulation Per FCC 73.687 (a) (4)

Aural Output Power 0 watts

Method of Measurement Per FCC 73.687 (a) (2) & (4)

Overall Modulation:

Modulation Frequency (MHz)	Detected Output (dB)
0.2 (reference)	0
0.5	-0.32
0.75	-1.34
1.25	-6.02
2.1	-5.85
3.0	-6.52
3.58	-6.02
4.18	-6.20

9.0 FREQUENCY RESPONSE

FCC Paragraph 2.987/2.989/73.687 (a) (2) November 1, 1991, ITFS/MMDS Ruling

Visual Output Power 50 watts peak sync

% Video Modulation 87.5%

Type Video Modulation Per FCC 73.687 (a) (4)

Aural Output Power 0 watts

Method of Measurement Per FCC 73.687 (a) (2) & (4)

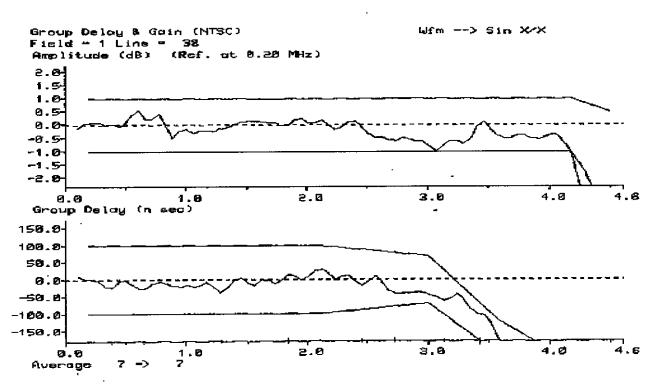
Frequency Response:

Output Frequency (MHz)	Sidebands (MHz)	Relative to +200 KHz (dB)	Relative to Visual Carrier (dBc)
2586.50	-4.75	-48.63	-65.49
2587.07	-4.18	-41.78	-58.64
2587.67	-3.58	-39.41	-56.27
2588.25	-3.00	-41.44	-58.30
2589.00	-2.25	-43.04	-59.90
2590.00	-1.25	-21.85	-38.71
2590.50	-0.75	-0.94	-17.80
2590.75	-0.50	-0.14	-17.00
2591.25	Visual Camer		Reference
2591.75	+0.50	+0.32	-16.54
2592.50	+1.25	+0.07	-16.79
2593.25	+2.00	+0.17	-16.69
2594.25	+3.00	-0.50	-17.36
2594.83	+3.58	0.00	-16.86
2595.43	+4.18	-0.14	-17.00
2596.00	+4.75	-15.13	-31.99
2596.50	+5.25	-49.60	-66.46
2597.25	+6.00	-50.44	-67.30
2598.00	+6.75	-50.37	-67.23

Spectrum Analyzer Settings:

Center Frequency	2591.25
Span	13.00 MHz
Log/Div	10 dB
Resolution BW	30 KHz
VBW	3 MHz
Sween	43.3 msec

10.0 ENVELOPE DELAY


FCC Paragraph 73.687 (a) (3)

50 watts peak sync
87.5%
Per FCC 73.687 (a) (4)
0 watts
Per EIA RS-240, Section B (12c)
Delay (ns)
0
0
-20.0
0
+10.0
-10.0
-50.0
-60
-80
-115
>-150
>-150

TEST DATA

Channel A COMMAVE

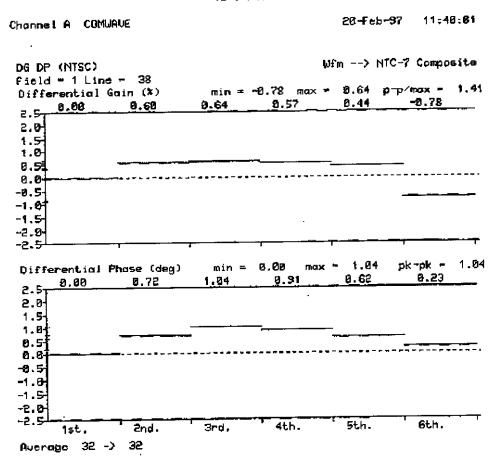
20-Feb-97 11:43:48

11.0 DIFFERENTIAL PHASE AND GAIN

FCC Paragraph 73.687 (a) (9)/73.682 (a) (20) (vii)

Visual Output Power 50 watts peak sync

% Video Modulation 87.5%


Type Video Modulation Per EIA RS-240, Section B (10c) & (11c)

Aural Output Power 1.58 watts average

Method of Measurement Per EIA RS-240, Section B (10c) & (11c)

Differential Phase 1.04 Differential Gain 1.41

TEST DATA

12.0 AURAL OCCUPIED BANDWIDTH

FCC Paragraph 2.202 (e) (5)

Visual Output Power 50 watts peak sync

% Video Modulation 87.5%

Type Video Modulation Standard 10 riser stairstep

Aural Output Power 1.58 watts average % Aural Modulation 85% (21.25 KHz)

Aural Modulation Signal 15 KHz

Method of Measurement Bandwidth was read at 0.5% (-23 dB) of mean

(Bn = 2M + 2DK): power on a spectrum analyzer

Aural Occupied Bandwidth 80 KHz

13.0 AURAL FREQUENCY RESPONSE

FCC Paragraph 73.687 (b) (10)

Visual Output Power 50 watts peak sync

% Video Modulation 87.5%

Type Video Modulation Standard 10 riser stairstep

Aural Output Power 1.58 watts average % Aural Modulation 100%, 50% and 25% Aural Modulation Signal 50 Hz to 15 KHz

Aural Frequency Response

Frequency (Hz) Output Relative to 1 KHz (dB) 100% Mod

> -0.5350 -0.53100 -0.44400 0.0 1000 +4.083000 +7.60 5000 +9.547000 +13.6212000 +16.1215000

14.0 SPURIOUS EMISSIONS AT ANTENNA TERMINALS

FCC Paragraph 2.991, 2.997, 21.908 (b) November 1, 1991, ITFS/MMDS Ruling

Visual Output Power 50 watts peak sync

% Video Modulation 87.5%

Type Video Modulation Per EIA RS-240, Section A (6c)

Aural Output Power 1.58 watts average

% Aural Modulation 0%

Spectrum The Spectrum Analyzer setting used in conducting the

spurious emissions test at the equipment output terminals was

as follows

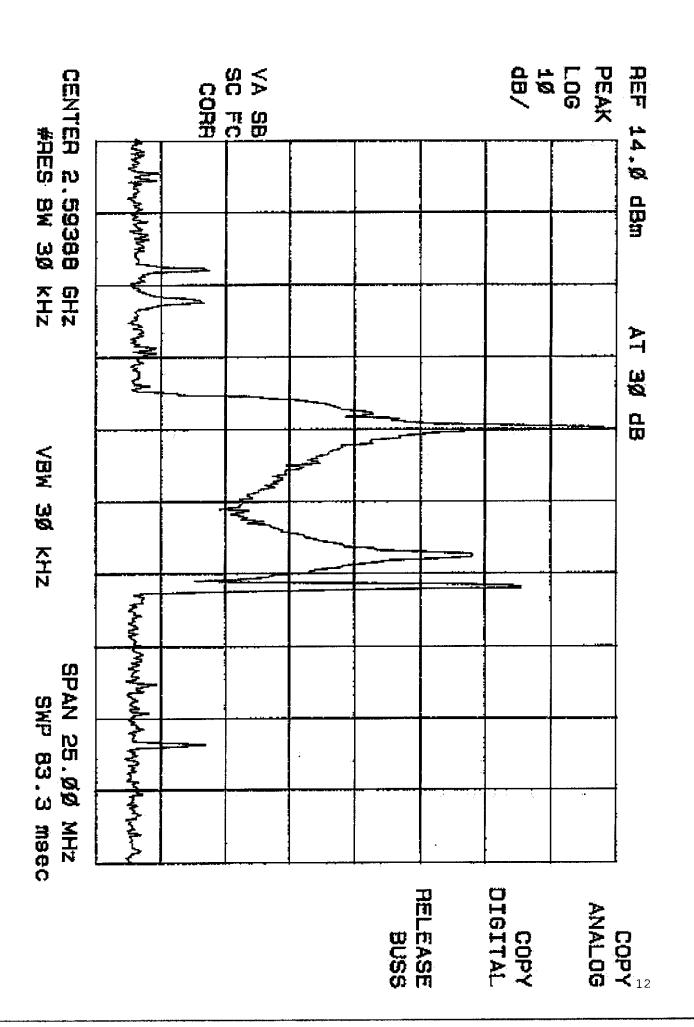
Frequency Span 2 MHz per Division

Center Frequency Adjusted continuously for 10

MHz to 10 GHz

Resolution Bandwidth 100 KHz

Video Filter Out


Input Attenuator Input level was set for a full-Setting scale calibration of the visual

carrier 2591.25 MHz. All other frequencies were referenced to this point.

Spurious Emissions

Analyzer Setting

Spurious Emission	ns			
Frequency (MHz)	Amplitude (dBc)		Relative to Peak Visual (MHz)	
2591.25	0	Visual Carrier	(reference)	
2587.67	-64	Visual Carrier	-3.58	3
2586.75	-63	Visual Carrier	-4.5	5
2584.09	<-70	Visual Carrier	-7.16	3
2594.83	-16	Visual Carrier	+3.58	3
2595.75	-15	Aural Carrier	+4.50)
2598.41	<-70	Visual Carrier	+7.16	3
2600.25	-64	Visual Carrier	+9.00)
395.00	-65	UHF LO	-2196.25	5
2242.00	-65	Microwave LO	-349.25	5
5182.50	<-70	Harmonic	x 2	
7773.75	<-70	Harmonic	x 3	3
10365.00	<-70	Harmonic	x 4	4
12956.25	<-70	Harmonic	x t	5
15547.50	>-70	Harmonic	x 6	3
18138.75	>-70	Harmonic	x	7
20730.00	>-70	Harmonic	x 8	3
23321.25	>-70	Harmonic	x S	9
25912.50	>-70	Harmonic	x 10	0

15.0 FIELD STRENGTH OF SPURIOUS RADIATION

FCC Paragraph 2.993, 2.997

Visual Output Power 50 watts peak sync

% Video Modulation 87.5%

Type Video Modulation Standard 10 riser stairstep

Aural Output Power 1.58 watts average

% Aural Modulation 0%

Spectrum Analyzer setting used to measure the spurious

Analyzer Setting emissions at 10 meters from the transmitter was set as follows

Frequency Span 1 MHz per Division

Center Frequency Adjusted continuously from

10 MHz to 10 GHz

Resolution Bandwidth 10 KHz Video Bandwidth 10 KHz Analyzer Noise >-89 dBm

Threshold

Method of Measurement:

Absolute power of the spurious radiation was measured on a spectrum analyzer at a distance of 10 meters from the transmitter. The radiation was received with a half-wave dipole antenna (gain = 2.15 dB) and measured as an absolute power level; therefore, all measurements include the dipole gain. The relative levels of the received spurious signals were calculated with respect to the absolute power level of the transmitter's visual output received with a dipole at 10 meters. The visual received power level was calculated using:

Received Level (a) 10 meters (dBm) = EIRP (dBm) - Path Loss (dB) + 2.15 dB

Path Loss (dB) = $20 \log \text{distance}(\text{Km}) + 20 \log \text{frequency} (2591.25/1000)(\text{GHz}) + 92.4 dB$

 $= 20 \log (.010 \text{ Km}) + 20 \log (2.59125) + 92.4 \text{ dB}$

=60.67

EIRP (dBmW) = 47 dBm (tx output) + 2.15 dB (transmit dipole gain)

= 49.15 dBm

Received Level = EIRP dBm - Path Loss <math>dB + 2.15 dB

= -9.37

The Electric Field Intensity E(v/m) incident on a receive dipole antenna was found using:

$$E (v/m) = Antilog [(Received Level - 2.15 dB) - 20 log wavelength(m) + 6.75]$$

$$= Antilog -9.37 dBm - 20 log [0.115774m] + 6.75$$

$$= Antilog 0.6979$$

$$= Antilog 0.6979$$

Spurious Radiation:

The following measurements of radiation were taken and are given in terms of absolute and relative to the visual carrier

		Absolute Field	Relative to Level
MHz	Absolute Received (dBm)	Intensity (v/m)	visual, dBc
2591.25	-79	0.006685	N/A
2242.00	*Below analyzer threshold	N/A	<-89
45.75	*Below analyzer threshold	N/A	<-89
41.25	*Below analyzer threshold	N/A	<-89
395.00	*Below analyzer threshold	N/A	<-89
Harmonics	*Below analyzer threshold	N/A	<-89

^{*} Analyzer threshold = -89 dBm

The range of examination in these tests was from 10 MHz to 27 GHz.

16.0 FREQUENCY STABILITY

FCC Paragraph 2.995 (a) (3)/74.950 (a)/21.908, 21.101 (a)

Method of Measurement:

The modulator and upconverter were tested individually per FCC 21.995.

Channel

UHF LO (Upconverter)

I.F. Frequency (Modulator)

Microwave L.O. (Synthesized)

On Channel Frequency

395.00 MHz

45.75 MHz

349.25 MHz

2242.00 MHz

2519.25 MHz

Frequency Stability over Temperature: Modulator

Temp. (C)	Visual (MHz)	Aural (MHz)	4.5 MHz	Visual Carrier
			Error (Hz)	Error (Hz)
+50	45.749972	41.249974	-2	-28
+40	45.750035	41.250030	+5	+35
+30	45.750124	41.250112	+12	+124
+20	45.750164	41.250146	+18	+164
+10	45.750238	41.250208	+30	+238
0	45.750297	41.250272	+25	+297
-10	45.750268	41.250242	+26	+268
-20	45.750161	41.250145	+16	+161
-30	45.749879	41.249896	-17	-121

Frequency Stability over AC Input Voltage: Modulator

AC Line (V)	Visual (MHz)	Aural (MHz)	4.5 MHz	Visual Carrier
			Error (Hz)	Error (Hz)
85	45.749971	41.249972	-1	-29
90	45.749998	41.249996	+2	-2
95	45.750002	41.250002	0	+2
100	45.750003	41.250001	+2	+3
110	45.750004	41.250001	+3	+4
115	45.750004	41.250001	+3	+4
120	45.750003	41.250001	+2	+3
130	45.750004	41.250001	+3	+4
135	45.750004	41.250000	+4	+4

30

Frequency Stability over Temperature: Microwave Upconverter PLL Local Oscillator

Temp. (C)	Oscillator (MHz)	Error (Hz)
+50	2196.000051	+51
+40	2196.000039	+39
+30	2196.000031	+31
+20	2196.000018	+18
+10	2196.000015	+15
0	2196.000010	+10
-10	2196.000012	+12
-20	2196.000025	+25
-30	2196.000035	+35

352 51 51 5 H

Frequency Stability over AC Input Voltage: Microwave Upconverter PLL Local Oscillator

AC Line (V)	Local Oscillator	Error (Hz)
	Frequency (MHz)	
95	2195.999985	-15
100	2196.000011	+11
110	2196.000011	+11
115	2196.000010	+10
120	2196.000011	+11
125	2196.000010	+10
130	2196.000011	+11
135	2196.000011	+11

NOTE:

Frequency stability of the microwave synthesizer was totally dependent on the accuracy and stability of the 10 MHz reference oscillator. This is a purchased item with 1×10^{-7} minimum stability specification.

Frequency Stability over Temperature: UHF Upconverter PLL Local Oscillator

Temp. (C)	Oscillator (MHz)	Error (Hz)
+50	395.000065	+65
+40	395.000067	+67
+30	395.000067	+67
+20	395.000067	+67
+10	395.000065	+65
0	395.000065	+65
-10	395.000065	+65
-20	395.000066	+66
-30	395.000066	+66

Combining the worst case of modulator, UHF oscillator, and microwave oscillator frequency shift result in a 222 Hz channel error. This represents accuracy, which is well within the required channel \pm 1,000 Hz tolerance requirement set on November 1, 1991, for ITFS/MMDS transmitters. The aural carrier also remained within the required 4.5 MHz \pm 1,000 Hz tolerance.

Frequency Stability over AC Input Voltage: UHF Upconverter PLL Local Oscillator

AC Line (V)	Local Oscillator	Error (Hz)
	Frequency (MHz)	
95	394.999995	-5
100	394.999996	-4
110	394.999995	-5
115	394.999996	-4
120	394.999996	-4
125	394.999996	-4
130	394.999995	-5
135	394.999996	-4

NOTE:

Frequency stability of the UHF Upconverter Local Oscillator was totally dependent on the accuracy and stability of the 10 MHz reference oscillator. This is a purchased item with 1 x 10^{-7} minimum stability specification.

17.0 SUMMARY

This report demonstrates that the SBSA-50C television transmitter meets or exceeds the FCC type acceptance criteria. Peak output power was verified with direct measurement of power at microwave. Measurement of spurious emissions at the RF output revealed no emissions above –60 dBc. Field strength measurements of spurious emissions revealed no detectable emissions down to the analyzer noise threshold of <-89 dBm. Frequency stability tests of the modulator and the voltage controlled crystal oscillator/multiplier over variations in temperature or input AC line voltage showed a maximum worst case frequency shift of 222 Hz.