

Electromagnetic Compatibility Test Report

Tests Performed on a Westell, Inc.

Gateway with WIFI, Model A90-9100VM10-20

Radiometrics Document RP-6493

FCC ID	Product Detail: FCC ID: CH89100VMXX-10 Equipment type: Digital Transmission System								
US CF FCC Pa Industr	Test Standards: US CFR Title 47, Chapter I, FCC Part 15 Subpart C FCC Part 15 CFR Title 47: 2006 Industry Canada RSS-210, Issue 6 as required for Category I Equipment This report concerns: Class II Permissive Change FCC Part 15.247								
Tests Per Weste	rformed For: II, Inc.		Test Fac Radio	cility: metrics Midwest Corporation					
	est Commons Dr. , IL 60504		12 Ea	st Devonwood oville, IL 60446					
	Test Date(s): (Month-Day-Year) June 8 and 9, 2009								
Docum	ent RP-6493 Revisions:								
Rev.	Issue Date	Affected Pages		Revised By					
0	0 September 8, 2009								

Table of Contents

1 ADMINISTRATIVE DATA	
2 TEST SUMMARY AND RESULTS	3
2.1 RF Exposure Compliance Requirements	3
3 EQUIPMENT UNDER TEST (EUT) DETAILS	4
3.1 EUT Description	4
3.1.1 FCC Section 15.203 & RSS-GEN Antenna Requirements	4
3.2 Related Submittals	4
4 TESTED SYSTEM DETAILS	4
4.1 Tested System Configuration	
4.2 Special Accessories	
4.3 Equipment Modifications	
5 TEST SPECIFICATIONS AND RELATED DOCUMENTS	
6 RADIOMETRICS' TEST FACILITIES	
7 DEVIATIONS AND EXCLUSIONS FROM THE TEST SPECIFICATIONS	
8 CERTIFICATION	
9 TEST EQUIPMENT TABLE	
10 TEST SECTIONS	
10.1 AC Conducted Emissions; Section 15.207	
10.2 Occupied Bandwidth (6 dB)	
10.3 Peak Output Power	
10.4 Power Spectral Density	
10.5 Band-edge Compliance of RF Conducted Emissions	
10.6 Spurious RF Conducted Emissions	
10.7 Spurious Radiated Emissions (Restricted Band)	
10.7.1 Radiated Emissions Field Strength Sample Calculation	
10.7.2 Spurious Radiated Emissions Test Results (1 to 25 GHz)	
10.7.3 Radiated Emissions Below 1 GHz	. 33

Notice: This report must not be reproduced (except in full) without the written approval of Radiometrics Midwest Corporation.

1 ADMINISTRATIVE DATA

Equipment Under Test: A Westell, Inc., xDSL Gateway Model: A90-9100VM10-20 Serial Number: 08B403196860 This will be referred to as the EUT in this Report						
Date EUT Received at Radiometrics: (Month-Day-Year)	<i>Test Date(s): (Month-Day-Year)</i>					
June 8, 2009	June 8 and 9, 2009					
Test Report Written By:	Test Witnessed By:					
Joseph Strzelecki	Burak Balkuv					
Senior EMC Engineer	Westell, Inc.					
Radiometrics' Personnel Responsible for Test: Joseph Strzelecki Joseph Strzelecki Senior EMC Engineer NARTE EMC-000877-NE	Test Report Approved By Chris W. Carlson Director of Engineering NARTE EMC-000921-NE					

2 TEST SUMMARY AND RESULTS

The EUT (Equipment Under Test) is an xDSL Gateway, Model A90-9100VM10-20 with H/W Rev. C, manufactured by Westell, Inc. The detailed test results are presented in a separate section. The following is a summary of the test results.

Emissions Tests Results						
Environmental Phenomena	Frequency Range	Basic Standard	Test Result			
RF Radiated Emissions	30 MHz to 25 GHz	FCC Part 15	Pass			
Conducted Emissions, AC Mains	0.15 - 30 MHz	FCC Part 15	Pass			

Spread Spectrum Transmitter Requirements

Environmental Phenomena	Frequency Range	FCC Section	Test Result				
6 dB Bandwidth Test	2400 to 2483 MHz	15.247 a	Pass				
Peak Output Power	2400 to 2483 MHz	15.247 b	Pass				
Band-edge Compliance of RF Conducted Emissions	2400 to 2483 MHz	15.247 c	Pass				
Spurious RF Conducted Emissions	30 MHz to 25 GHz	15.247 c	Pass				
Spurious Radiated Emissions	30 MHz to 25 GHz	15.247 c	Pass				
Power Spectral Density	2400 to 2483 MHz	15.247 d	Pass				

2.1 RF Exposure Compliance Requirements

Since the peak power output is 290 mW, The EUT meets the FCC requirement for RF exposure. The detailed calculations for RF Exposure are presented in a separate document.

3 EQUIPMENT UNDER TEST (EUT) DETAILS

3.1 EUT Description

The EUT is a Gateway, Model A90-9100VM10-20, manufactured by Westell, Inc. The EUT operates in the 2412 to 2462 MHz range. The EUT was in good working condition during the tests, with no known defects.

The A90-9000X series router has the same function as the previous model A90-9100VM15-10 approved under grant CH89100VMXX-10, except the Ikanos VDSL transceiver has been replaced by an Infineon VINAX DSL transceiver chipset. The new model is built with the same 802.11G radio transceiver as the existing models covered under grant CH89100VMXX-10.

3.1.1 FCC Section 15.203 & RSS-GEN Antenna Requirements

The antenna is permanently attached to the PCB internal to the EUT. The connector is not readily available to public. Therefore, it meets the 15.203 Requirement.

3.2 Related Submittals

Westell, Inc. is not submitting any other products simultaneously for equipment authorization related to the EUT.

4 TESTED SYSTEM DETAILS

4.1 Tested System Configuration

The system was configured for testing in a typical fashion. The EUT was placed on an 80-cm high, nonconductive test stand. The testing was performed in conditions as close as possible to installed conditions. Wiring was consistent with manufacturer's recommendations.

The EUT was tested as a remotely located device. Power was supplied at 115 VAC, 60 Hz single-phase to its external power supply. The identifications for all equipment, plus descriptions of all cables used in the tested system, are:

Item	Description Ty	pe*	Manufacturer	Model Number	Serial Number
1	xDSL Gateway	Е	Westell, Inc.	A90-9100VM10-20C	08B403196860
2	Power Supply	Е	Westell Mitra	585-200085 MPBS-12020000	None
3	Power Supply	E	Westell TESEC	585-200085 TS-0206B	None
4	Central Office (CO) simulator single port	S	Infineon	Easy 8300	None
5	Notebook PC	S	MPC	T2200	Not Available
6	Ikanos ULS3 Gateway (MoCA LAN)	S	Westell, Inc	A90-9100VM15-10	4027

Tested System Configuration List

* Type: E = EUT, P = Peripheral, S = Support Equipment; H = Host Computer

QTY	Length (m)	Cable Description	Connected to	Shielded?
1	1.8	Low Voltage Power Cord	Power to EUT	No
4	10	Ethernet Cable	EUT and Laptop PC	No
1	10	Coax Cable	EUT and Moca LAN	Yes
1	10	Phone Cable	EUT and CO simulator	No

List of System Cables

The coax and Ethernet cables were routed outside the test enclosure to the support equipment.

4.2 Special Accessories

No special accessories were used during the tests in order to achieve compliance.

4.3 Equipment Modifications

No modifications were made to the EUT during the tests in order to achieve compliance.

5 TEST SPECIFICATIONS AND RELATED DOCUMENTS

Document	Date	Title
FCC CFR Title 47	2008	Code of Federal Regulations Title 47, Chapter 1, Federal Communications Commission, Part 15 - Radio Frequency Devices
ANSI C63.4-2003	2003	Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
IC RSS-210 Issue 7	2007	Low Power Licence-Exempt Radiocommunication Devices (All Frequency Bands) Category I Equipment
IC RSS-Gen Issue 2	2007	General Requirements and Information for the Certification of Radiocommunication Equipment (RSS-Gen)
FCC 558074	2005	Measurement of Digital Transmission Systems Operating under Section 15.247

The test procedures used are in accordance with the FCC 558074, Industry Canada RSS-212 and ANSI document C63.4-2003, "Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz". The specific procedures are described herein. Radiated testing was performed at an antenna to EUT distance of 3 meters. The antenna was raised and lowered from 1 to 4 meters.

6 RADIOMETRICS' TEST FACILITIES

The results of these tests were obtained at Radiometrics Midwest Corp. in Romeoville, Illinois, USA. Radiometrics is accredited by A2LA (American Association for Laboratory Accreditation) to conform to ISO/IEC 17025: 1999 "General Requirements for the Competence of Calibration and Testing Laboratories". Radiometrics' Lab Code is 121191 and Certification Number is 1495.01. Radiometrics' scope of accreditation includes all of the test methods listed herein. A copy of the accreditation can be accessed on our web site (www.radiomet.com). Radiometrics accreditation status can be verified at A2LA's web site (www.a2la2.org).

The following is a list of sites located in Romeoville, Illinois used for testing:

- Chamber E: Is a custom made anechoic chamber that measures 52' L X 30' W X 18' H. The walls and ceiling are fully lined with RF absorber. Pro-shield of Collinsville, Oklahoma manufactured the chamber.
- Test Station F: Is an area that measures 10' D X 12' W X 10' H. The floor and back wall are metal shielded. This area is used for conducted emissions measurements.

A separate ten-foot long, brass plated, steel ground rod attached via a 6 inch copper braid grounds each of the above chambers. Each enclosure is also equipped with low-pass power line filters.

Open Area Test Site (OATS): Is located on 8625 Helmar Road in Newark, Illinois, USA and measures 56' L X 24' W X 17' H. The entire open field test site has a metal ground screen. The FCC has accepted these sites as test site number US1065. The FCC test site Registration Number is 732175. Details of the site characteristics are on file with the Industry Canada as file number IC3124.

A complete list of the test equipment is provided herein. The calibration due dates are indicated on the equipment list. The equipment is calibrated in accordance to ANSI/NCSL Z540-1 with traceability to the National Institute of Standards and Technology (NIST).

7 DEVIATIONS AND EXCLUSIONS FROM THE TEST SPECIFICATIONS

There were no deviations or exclusions from the test specifications.

8 CERTIFICATION

Radiometrics Midwest Corporation certifies that the data contained herein was taken under conditions that meet or exceed the requirements of the test specification. The results relate only to the EUT listed herein. Any modifications made to the EUT subsequent to the indicated test date will invalidate the data and void this certification.

9 TEST EQUIPMENT TA	ABLE
---------------------	------

					Frequency	Cal	Cal
RMC ID	Manufacturer	Description	Model No.	Serial No.	Range	Period	Date
AMP-05	RMC/Celeritek	Pre-amplifier	MW110G	1001	1.0-12GHz	12 Mo.	02/01/09
AMP-20	Avantek	Pre-amplifier	SF8-0652	15221	8-18GHz	12 Mo	02/01/09
AMP-22	Anritsu	Pre-amplifier	MH648A	M23969	0.1-1200MHz	12 Mo.	02/03/09
ANT-13	EMCO	Horn Antenna	3115	2502	1.0-18GHz	24 Mo.	10/22/08
ANT-44	Impossible	Super Log Antenna	SL-20M2G	1002	20-2000MHz	24 Mo.	12/26/07
	Machine						
HPF-01	Solar	High Pass Filter	7930-100	HPF-1	0.15-30MHz	24 Mo.	10/04/07
HPF-03	Mini-Circuits	High Pass Filter	VHP-39	HPF-03	3-10 GHz	12 Mo.	01/30/09
LSN-01	Electrometrics	50 uH LISN	FCC/VDE 50/2	1001	0.01-30MHz	24 Mo.	06/01/09
REC-03	Anritsu	Spectrum Analyzer	MS2601B	MT94589	0.01-2200MHz	12 Mo.	03/09/09
				2106A02115,			
REC-01	HP / Agilent	Spectrum Analyzer	8566A	2209A01349	30Hz-22GHz	12 Mo.	10/23/08
THM-02	Fluke	Temp/Humid Meter	971	93490471	N/A	12 Mo.	02/23/09

Note: All calibrated equipment is subject to periodic checks.

10 TEST SECTIONS

10.1 AC Conducted Emissions; Section 15.207

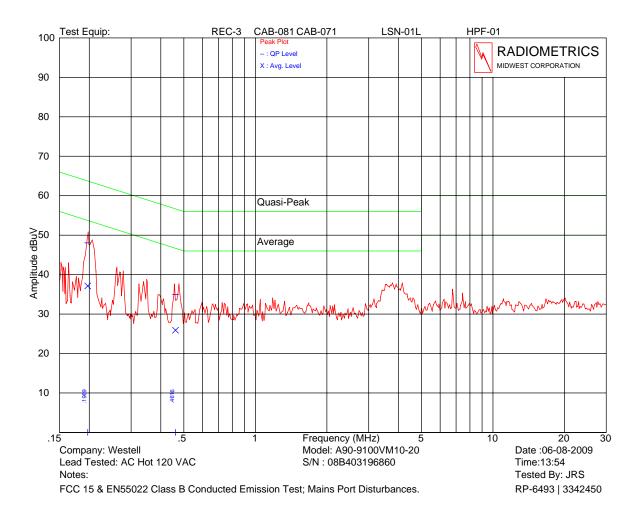
A computer-controlled analyzer was used to perform the conducted emissions measurements. The frequency range was divided into 500 subranges equally spaced on a logarithmic scale. The computer recorded the peak of each subrange. This data was then plotted on semi-log graph paper generated by the computer and plotter. Adjusting the positions of the cables and orientation of the test system then maximizes the highest emissions.

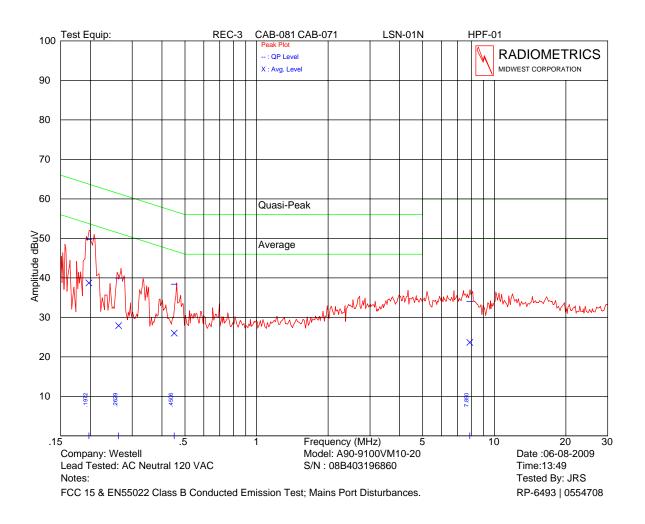
Mains Conducted emission measurements were performed using a 50 Ohm/50 uH Line Impedance Stabilization Network (LISN) as the pick-up device. Measurements were repeated on both leads within the power cord. If the EUT power cord exceeded 80 cm in length, the excess length of the power cord was made into a 30 to 40 cm bundle near the center of the cord. The LISN was placed on the floor at the base of the test platform and electrically bonded to the ground plane.

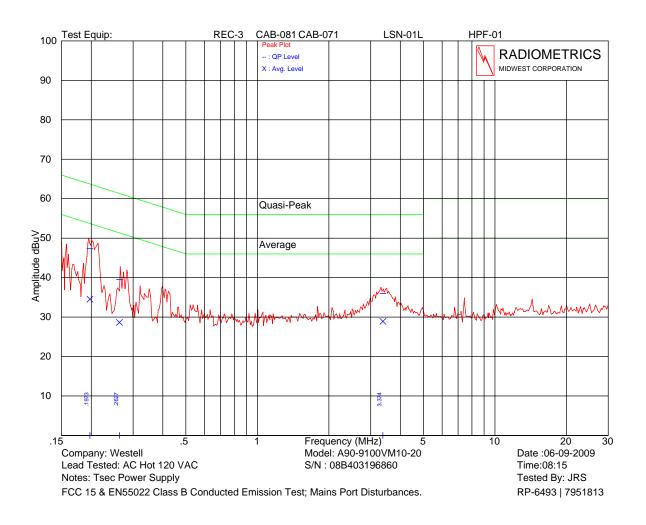
Broadband conducted emissions may exceed the following limits by no more than 13 dB. An emission is defined as broadband if the average detector amplitude is 6 dB or more under the quasi-peak detector amplitude.

Frequency Range	Class B Limits (dBuV)					
(MHz)	Quasi-Peak	Average				
0.150 - 0.50*	66 - 56	56 - 46				
0.5 – 5.0	56	46				
5.0 - 30	60	50				
* The limit decreases	linearly with the logarithm of	the frequency in this range.				

FCC Limits of Conducted Emissions at the AC Mains Ports


The initial step in collecting conducted data is a peak detector scan and the plotting of the measurement range. Significant peaks are then marked as shown on the following table, and these signals are then measured with the quasi-peak detector. The following represents the worst case emissions from power cord, after testing all modes of operation and the three tested channels.


Test Date : June 8, 2009


The Amplitude is the final corrected value with cable and LISN Loss.

		Frequency	QP		Average	Average
EUT Mode	Lead Tested	MHz	Amplitude	QP Limit	Amplitude	Limit
TSEC PS	AC Neutral	0.208	51.9 Q	63.3	36.6	53.3
TSEC PS	AC Neutral	0.264	39.5 Q	61.3	29.4	51.3
TSEC PS	AC Neutral	3.373	39.3 Q	56.0	33.1	46.0
TSEC PS	AC Hot	0.197	47.3 Q	63.7	34.5	53.7
TSEC PS	AC Hot	0.263	39.5 Q	61.3	28.6	51.3
TSEC PS	AC Hot	3.375	36.0 Q	56.0	28.9	46.0
Mitra PS	AC Neutral	0.197	49.8 Q	63.7	38.7	53.7
Mitra PS	AC Neutral	0.263	39.9 Q	61.3	27.9	51.3
Mitra PS	AC Neutral	0.451	38.4 Q	56.9	26.0	46.9
Mitra PS	AC Neutral	7.891	34.0 Q	60.0	23.6	50.0
Mitra PS	AC Hot	0.197	48.0 Q	63.7	37.1	53.7
Mitra PS	AC Hot	0.462	35.0 Q	56.7	25.9	46.7

The above are the worst case results with three frequencies test for each EUT * QP readings are quasi-peak with a 9 kHz bandwidth and no video filter. Judgment: Passed by 11.4 dB

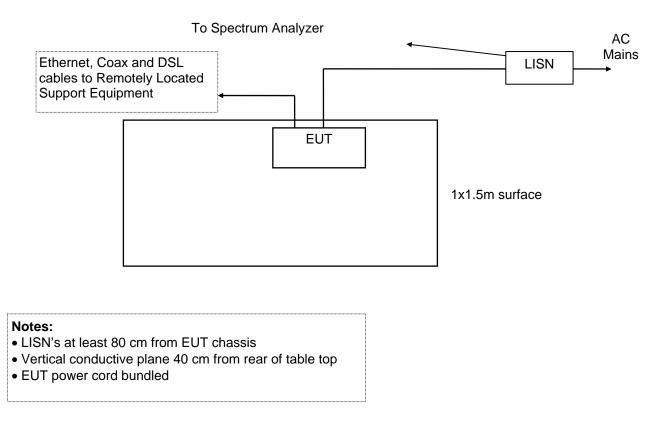
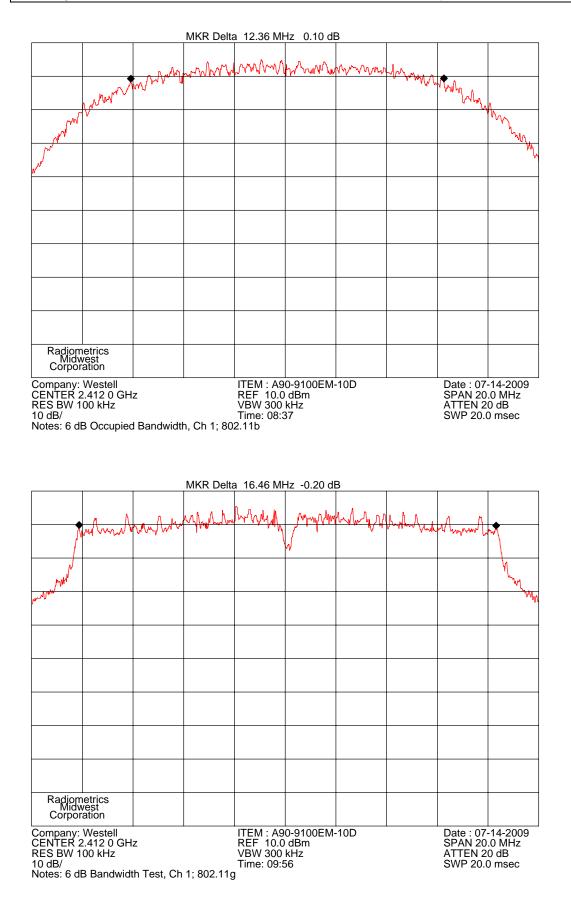
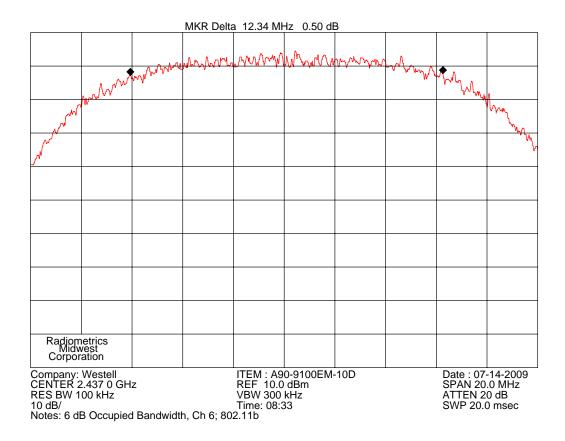
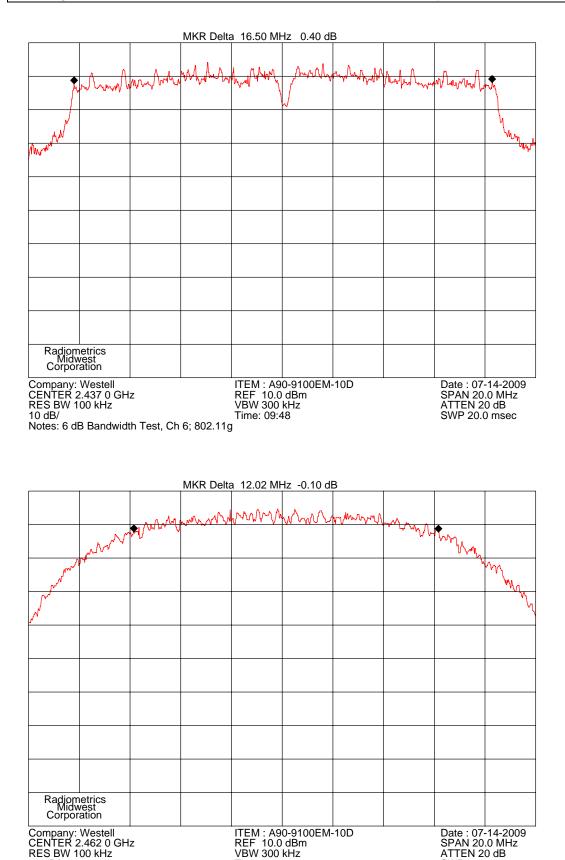


Figure 1. Conducted Emissions Test Setup

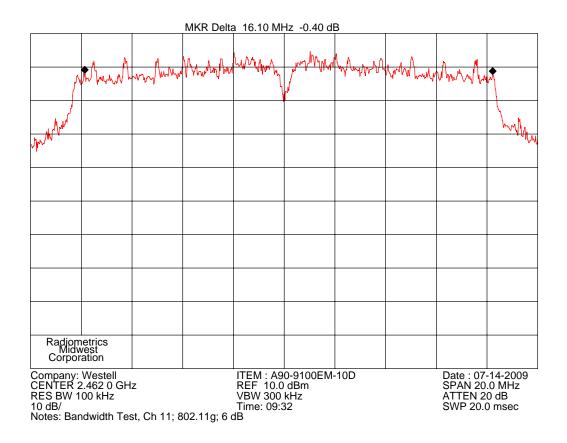



10.2 Occupied Bandwidth (6 dB)


The spectrum analyzer was set to the MAX HOLD mode to record the worst case of the modulation. The EUT was transmitting at its maximum data rate. The trace was allowed to stabilize.

The marker-to-peak function was set to the peak of the emission. Then the marker-delta function was used to measure 6 dB down one side of the emission. The marker-delta function was reset and then moved to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 6 dB bandwidth of the emission. The minimum occupied is required to be 0.5 MHz.

	802.11b	802.11g				
Channel	6 dB EBW MHz	6 dB EBW MHz				
1	12.36	16.46				
6	12.34	16.50				
11	12.02	16.10				



Time: 08:16

ATTEN 20 dB SWP 20.0 msec

Notes: 6 dB Occupied Bandwidth, Channel 11

10 dB/

10.3 Peak Output Power

The EUT antenna port was connected to the spectrum analyzer via a low loss coaxial cable. The power output option 2; Method #3 from FCC rules 558074 was used for this test. The spectrum analyzer was set to the following settings:

Span = 2 MHz; RBW = 1 MHz; VBW = 3 MHz; Sweep = auto Detector function = peak; Trace = max hold

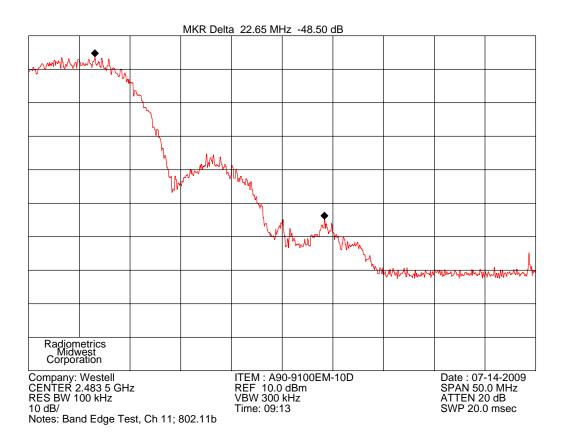
The trace was allowed to stabilize. The marker-to-peak function was used to measure the peak of the emission. The indicated level is the peak output power. The BW correction factor is 10*Log(BW). Note 30 dBm = 1 watt. Since the gain of the antenna is always less than 6 dB, the limit is not reduced.

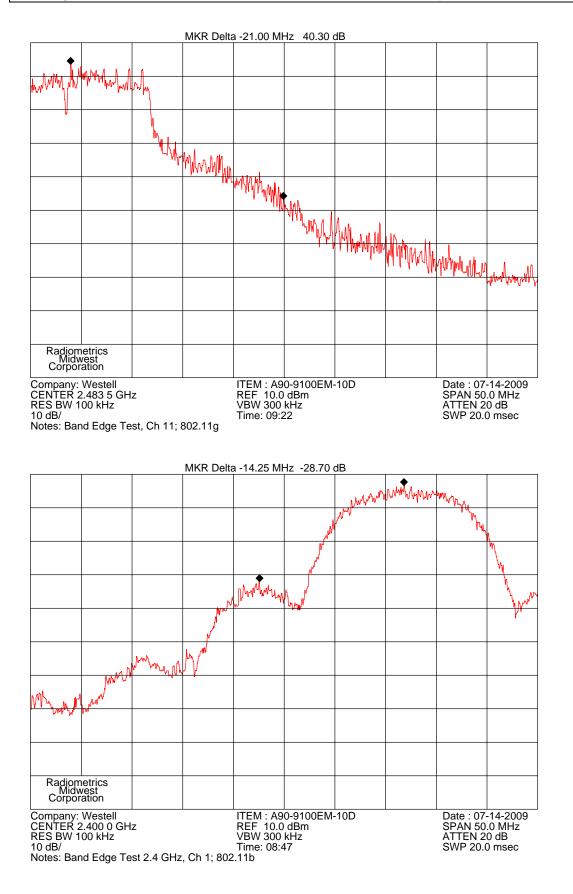
	Freq.	Reading	BW Corr	Cable Loss	Total Power (dBm)		Limit
Mode	(MHz)	(dBm)	Factor (dB)	(dB)	dBm	Watts	(dBm)
802.11b	2412	10.6	10.8	0.3	21.7	0.148	30
802.11b	2437	11.5	10.9	0.3	22.7	0.185	30
802.11b	2462	11.2	11.1	0.3	22.6	0.180	30
802.11g	2412	11.7	11.9	0.3	23.9	0.246	30
802.11g	2437	12.3	12.0	0.3	24.6	0.290	30
802.11g	2462	11.8	12.0	0.3	24.1	0.257	30

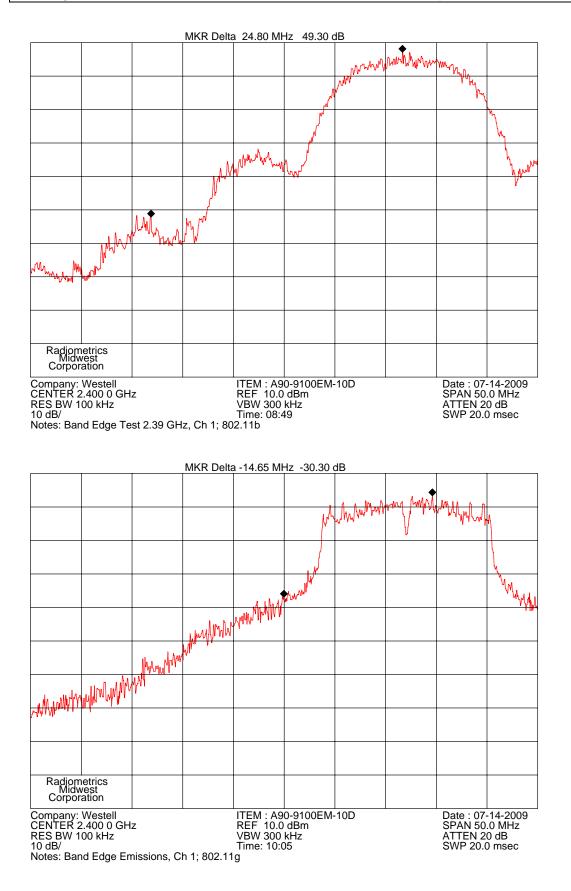
Judgement pass by 4.6 dB

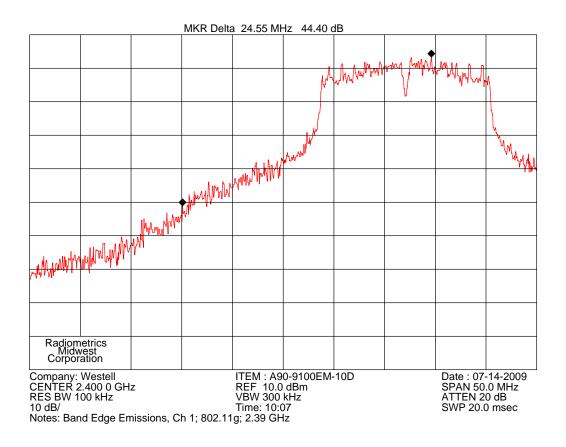
10.4 Power Spectral Density

PSD option 1 was used for this test. No external attenuator was used. The spectrum analyzer was set to the following settings:

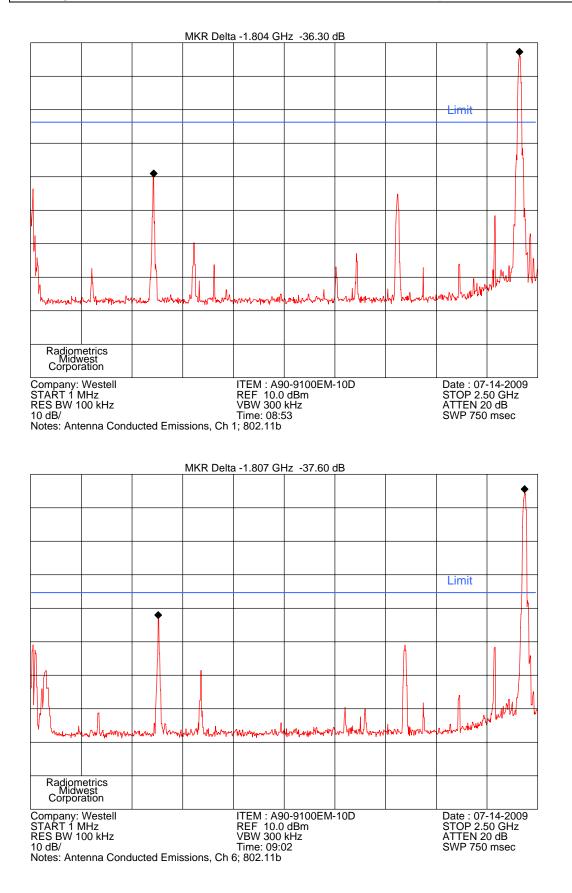

Span = 500 kHz RBW = 3 kHz; VBW = 10 kHz; Sweep = 167 seconds Detector function = Peak

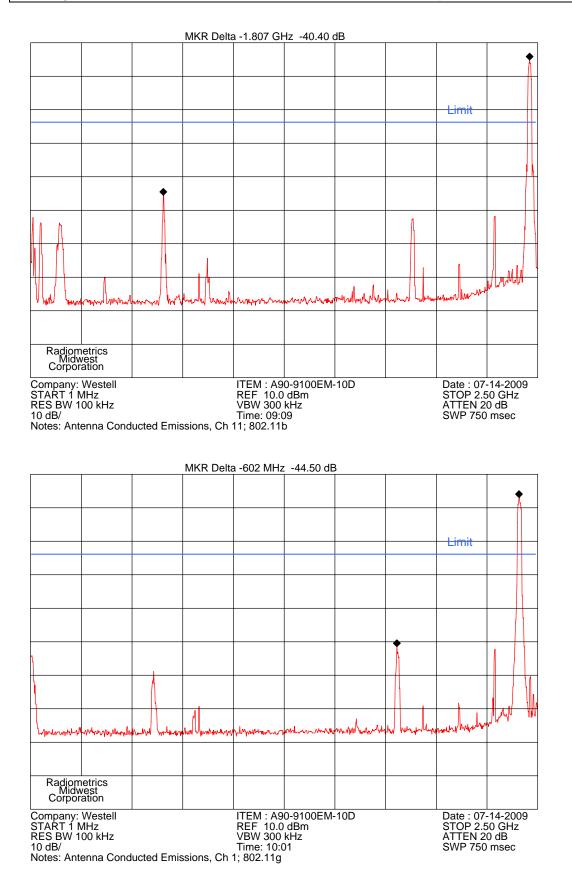

Mode	Frequency (MHz)	Reading dBm	Cable Loss (dB)	3 kHz Spectral Density (dBm)	Limit (dBm)
802.11b	2412	-7.1	0.3	-6.8	8.0
802.11b	2437	-8.2	0.3	-7.9	8.0
802.11b	2462	-6.9	0.3	-6.6	8.0
802.11g	2412	-8.2	0.3	-7.9	8.0
802.11g	2437	-7.4	0.3	-7.1	8.0
802.11g	2462	-7.8	0.3	-7.5	8.0

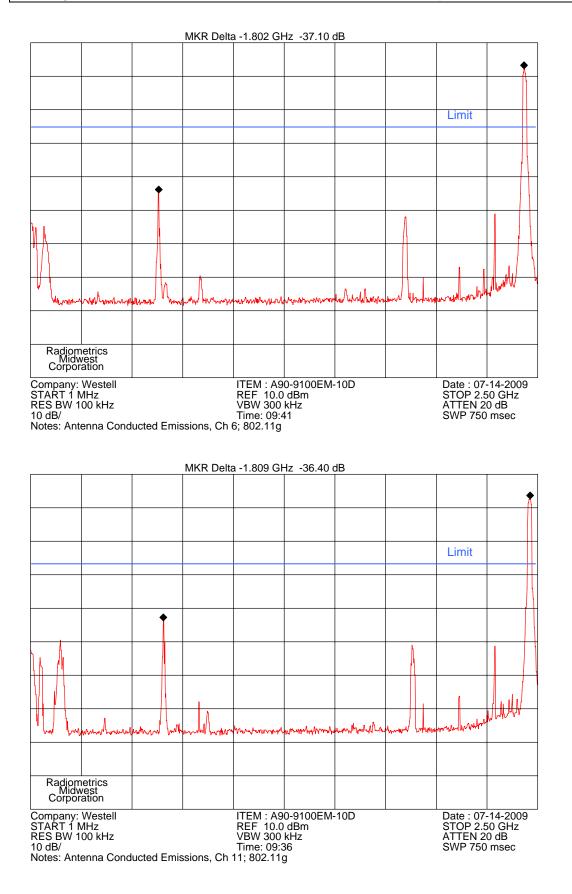

Judgement pass by dB

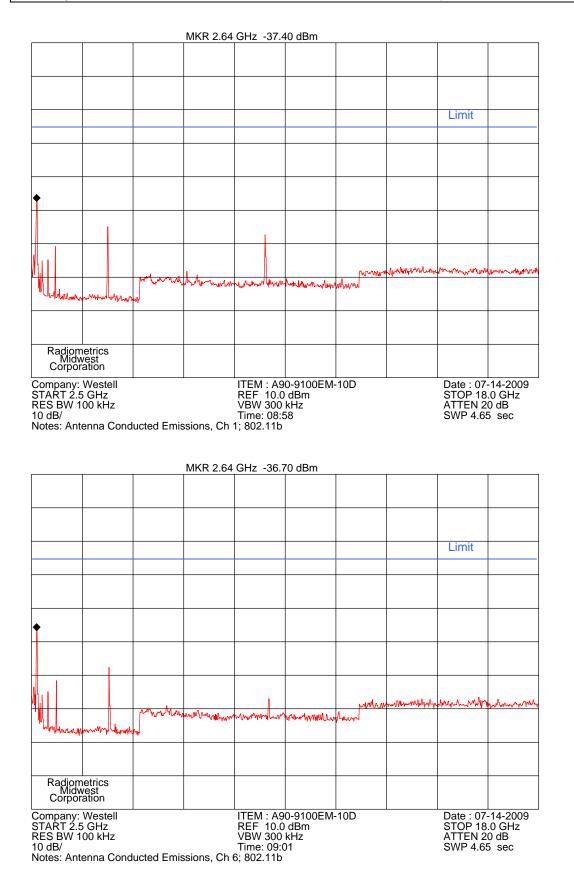

10.5 Band-edge Compliance of RF Conducted Emissions

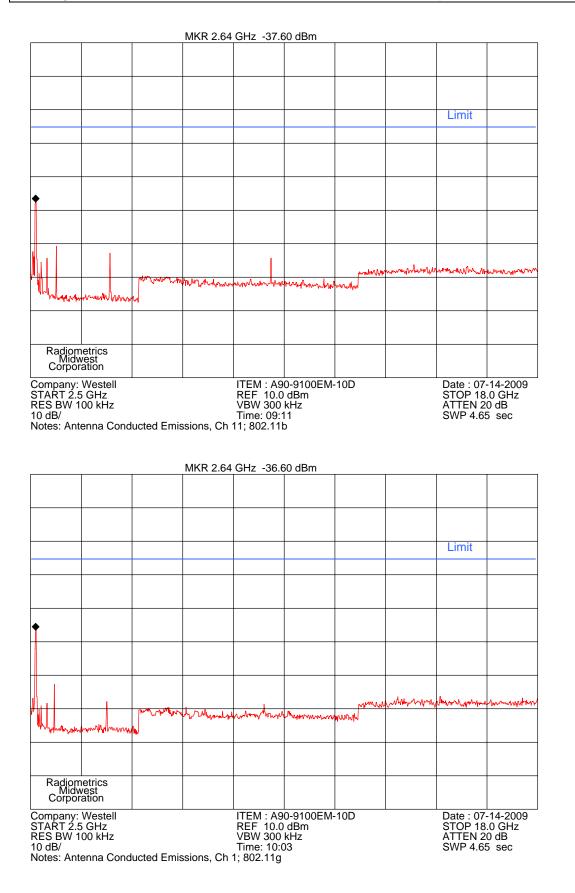
The spectrum analyzer was set to the MAX HOLD mode to record the worst case of the modulation at the band-edge, with the EUT set to the lowest frequency. The trace was allowed to stabilize. The delta is required to be at least 20 dB.

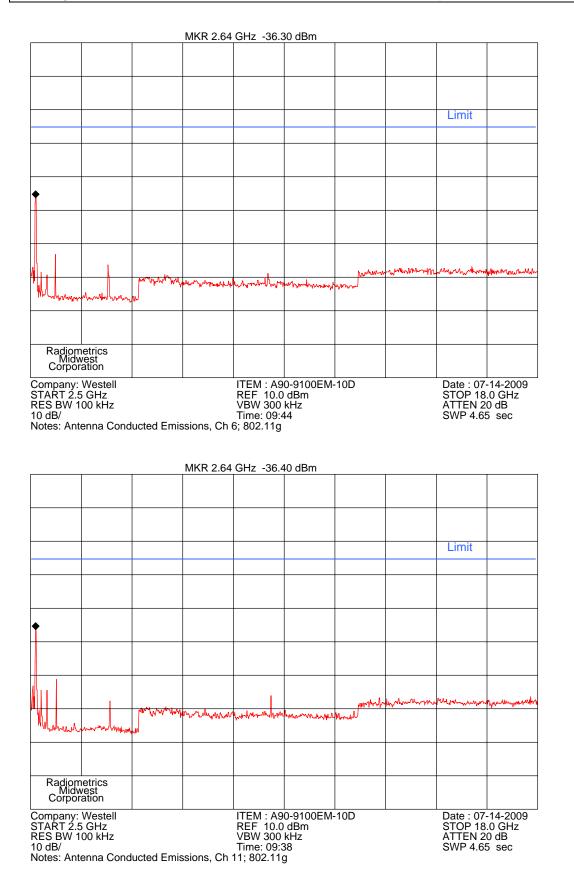



Judgement: pass by 8.7 dB


10.6 Spurious RF Conducted Emissions


The spectrum analyzer was set to the MAX HOLD mode to record all spurious emissions from the lowest frequency generated in the EUT up through the 10th harmonic. The trace was allowed to stabilize. The first two plots were made while stepping through three frequencies (Low middle and high). Each frequency was on for 30 seconds.


The limits are closer to the top of the scale for the 18-25 GHz plots because the reference level is lower for these plots.



	1		MKR 19.4	70 GHz -7	2.10 dBm	1			
								Limit	
		♦							
manhan	montphaton	hiper-Mym yr	applement	mmylomph	Monorally	wy Munny	human	MMMMM	mmunilly
Radion Midv Corpor	netrics								
Company: START 18	Westell			ITEM: A9 REF 0.0 d	0-9100EM- dBm	-10D		Date : 07 STOP 25	-14-2009 00 GHz
RES BW 1 10 dB/	00 kHz			VBW 300	kHz			ATTEN 1	0 dB
	enna Cond	lucted Emis	sions, Ch	Time: 10:3 1; 802.11b	50			SWP 2.10	J sec
				48 GHz -7	2 20 dBm				
			WINN 21.9	40 GHZ -7					
								Limit	
		durana h	برار المتبدين	alaha ta suka	• • •				
Mulmundplate	AUT AUTHOR IN A	nd der mer man hy	the the control of the second of the	MMMMMMM//	VWYWWW	14Murra and	www.m.m.	NUM WWWWW	mann
Radiom Midv Corpor	netrics vest ation								
Company:	Westell	1			0-9100EM	-10D		Date : 07	
START 18 RES BW 1	.00 GHz 00 kHz			REF 0.0 0 VBW 300				STOP 25 ATTEN 1	
10 dB/		lucted Emis	sione Ch	Time: 10:3				SWP 2.10	
-0.03. AIII			5,013,011	0,002.110					

	1		MKR 19.2	18 GHz -7	2.00 dBm	1			
								Limit	
								Linin	
an a M	mont	Whom Why Ingo	Mmulun	Ungenet man	mannen	manman	Maryan	mething with	
· · · · · · · · · · · · · · · · · · ·							a deriver in the second se	alite startfor stor	CAL TO AL WARMAN
Radiom Midv Corpor	netrics vest								
					0.0400514	100		Data : 07	44.0000
Company: START 18	.00 GHz			REF 0.0 (0-9100EM- dBm	-10D		Date : 07 STOP 25	-14-2009 .00 GHz
RES BW 1 I0 dB/	00 kHz			VBW 300 Time: 10:3				ATTEN 1 SWP 2.10	0 dB
lotes: Ant	enna Cond	lucted Emis	ssions, Ch	11; 802.11	b				
				62 GHz -7	1 00 dBm				
								Limit	
		•							
month	nonnon	Monghowther	Muhampyna.r	manname	munumun	monophin	Munnun	MMM	mmmm
Radiom	etrics								
Radiom Midw Corpor	vest								
Company:				ا ITFM ۰ ۵۹	0-9100EM	-10D		Date : 07	-14-2009
START 18	.00 GHz			REF 0.0 0	dBm		Date : 07-14-2009 STOP 25.00 GHz		
RES BW 1 0 dB/				VBW 300 Time: 10:2				ATTEN 1 SWP 2.10	
	enna Cond	lucted Emis	ssions, Ch						

			MKR 19.6	45 GHz -7	2.80 dBm				
								Limit	
		•							
mound	hunn	month	www.www.	howwwwww	mymmun	mound	hallowar	www.hwww.	month
Radion	netrics								
Radiom Midw Corpor	ation								
Company: START 18	Westell			ITEM : A9 REF 0.0 (0-9100EM		Date : 07 STOP 25	14-2009	
RES BW 1	00 kHz			VBW 300	kHz			ATTEN 1	0 dB
I0 dB/ Notes: Ant	enna Cond	lucted Emis	sions Ch	Time: 10:3 6: 802 11a	50			SWP 2.10	560
			, -	-, J					
			MKR 19.2	39 GHz -7	1.60 dBm				
								Limit	
	•								
m Mynd ym N	white when when	Multipling	wmmmund	han human	multip	monum	Mayman	hamman	monoulonu
Radiom	etrics								
Radiom Midv Corpor	vest								
Company:				ITEM : A9	0-9100EM-	-10D		Date : 07	-14-2009
START 18 RES BW 1	.00 GHz			REF 0.0 0 VBW 300	dBm		STOP 25.00 GHz ATTEN 10 dB		
0 dB/				Time: 10:3	32			SWP 2.10	
	enna Cond	lucted Emis	sions Ch					2.10	,

RADIOMETRICS MIDWEST CORPORATION - EMC Test Report

Testing of the Westell, Model A90-9100VM10-20, XDSL Gateway

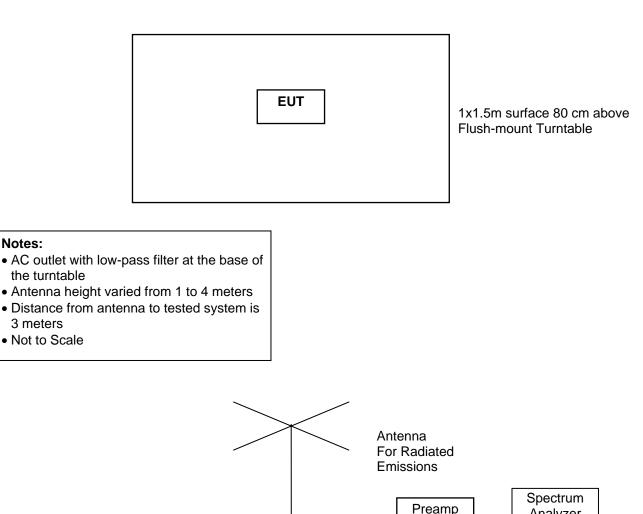
10.7 Spurious Radiated Emissions (Restricted Band)

Radiated emission measurements in the restricted bands were performed with linearly polarized broadband antennas. The results obtained with these antennas can be correlated with results obtained with a tuned dipole antenna. Below 1 GHz, when a radiated emission is detected approaching the specification limit, the measurement of the emission is repeated using a tuned dipole antenna with a Roberts Balun. A 10 dB linearity check is performed prior to start of testing in order to determine if an overload condition exists. Measurements were performed using two antenna polarizations, (vertical and horizontal). The worst case emissions were recorded.

From 30 to 1000 MHz, an Anritsu spectrum analyzer and a preamplifier with a 10 dB attenuator connected to the input were used. The out of band emissions and the ambient emissions were below the level of input overload (80 dBuV).

For tests from 1 to 25 GHz, an HP8566 spectrum analyzer was used with a preamplifier. The out of band emissions and the ambient emissions were below the level of input overload (72 dBuV). In addition, a high pass filter was used to reduce the fundamental emission.

Preliminary radiated emission tests were performed inside of an anechoic chamber. The frequency range from 30 to 25000 MHz was scanned and plotted using the peak detector function. The results of the preliminary scans were only used to identify the frequencies being emitted from the EUT and were not used to determine compliance with the test specification. Radiated emission measurements are performed with linearly polarized broadband antennas.


Final radiated emissions measurements were performed in the open area test site at a test distance of 3 meters. The open area test site used to collect the radiated data is located on 8625 Helmar Road in Newark, Illinois. The open field test site has a metal ground screen. All other tests are performed at 12 East Devonwood Ave. Romeoville, Illinois EMI test lab.

10.7.1 Radiated Emissions Field Strength Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and by subtracting the Amplifier Gain from the measured reading. The basic equation is as follows:

FS = RA + AF + CF - AGWhere: FS = Field Strength RA = Receiver Amplitude AF = Antenna Factor CF = Cable Attenuation Factor AG = Amplifier Gain HPF = High pass Filter Loss

Figure 2. Drawing of Radiated Emissions Setup

10.7.2 Spurious Radiated Emissions Test Results (2 to 25 GHz)

The following spectrum analyzer settings were used. Span = wide enough to fully capture the emission being measured RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz VBW = 1 MHz for peak and 100 Hz for Average Sweep = auto; Detector function = peak; Trace = max hold

Notes:

3 meters

Analyzer

RADIOMETRICS MIDWEST CORPORATION - EMC Test Report

Testing of the Westell, Model A90-9100VM10-20, XDSL Gateway

Manufacturer	Westell, Inc.	Specification	FCC Part 15 Subpart C & RSS-210						
Model	A90-9100VM10-20	Test Date	June 8, 2009						
Serial Number	08B403196860	Test Distance	3 Meters						
Abbreviations	Pol = Antenna Polarization; V	′ = Vertical; H = H	orizontal; BC = Biconical (ANT-3);						
	LP = Log-Periodic (ANT-6); HN = Horn (ANT-13) P = peak; Q = QP								
Notes	Corr. Factors = Cable Loss -	Preamp Gain – D	Outy Cycle Factor + HP Filter Loss						

Emissions above 1 GHz

		802.	11b	802.	11g	802.	11b	802.	.11g		EUT	Peak	Ave	Peak	Ave	Margin
hrm	Тx	Peak	Ave	Peak	Ave	Peak	Ave	Peak	Ave	Corr.	Emission	Tot.	FS	Lim	nit	Under
#	Freq	Ver	tical P	olariza	tion	Horizontal Polarization			Fact.	Freq MHz dBuV/m		V/m	dBuV/m		Limit	
1	2412	104.9	81.7	105.6	93.5	100.1	77.3	98.3	88.1	9.3	2412	114.9	102.8	125	125	10.1
be	2412	47.0	34.6	48.1	40.7	43.9	32.1	44.3	35.1	9.3	2390	57.4	50.0	74	54	4.0
2	2412	44.1	34.2	41.3	33.2	35.2	34.6	35.9	32.0	11.8	4824	55.9	46.4	74	54	7.6
3	2412	37.4	27.0	36.8	27.0	36.0	27.0	36.0	27.0	19.2	7236	56.6	46.2	94	74	27.8
1	2437	105.3	87.8	106.1	94.0	102.1	86.5	99.6	89.3	9.5	2437	115.6	103.5	125	125	9.4
2	2437	43.2	35.9	39.6	34.9	38.8	31.4	39.7	33.6	11.8	4874	55.0	47.7	74	54	6.3
3	2437	36.8	27.0	36.2	27.0	36.5	27.0	36.0	27.0	19.3	7311	56.1	46.3	74	54	7.7
1	2462	106.2	84.1	106.5	95.6	99.2	83.1	101.2	93.1	9.8	2462	116.3	105.4	125	125	8.7
be	2462	54.4	39.4	54.1	42.6	52.3	37.6	52.2	40.3	9.9	2484	58.3	46.5	74	54	7.5
2	2462	45.3	36.5	43.6	34.6	40.6	32.7	38.9	30.2	11.8	4924	57.1	48.3	74	54	5.7
3	2462	37.5	27.0	36.9	27.0	36.0	27.0	36.0	27.0	19.5	7386	57.0	46.5	74	54	7.5
	Column numbers (see below for explanations)															
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

Notes on Columns:

- Column #1. hrm = Harmonic; BE = Band Edge emissions
- Column #2. Frequency of Transmitter.
- Column #3. Columns 3 to 10 are the uncorrected readings from the spectrum analyzer
- Column #11. Corr. Factors = Cable Loss Preamp Gain + Antenna Factor + High pass filter (for harmonics only)
- Column #12. Frequency of Tested Emission
- Column #13. Highest peak field strength at listed frequency.
- Column #14. Highest Average field strength at listed frequency.
- Column #15. Peak Limit. Non restricted bands limits set to 94 dBuV/m. The fundamental was tested with a direct connect so there is no radiated emissions limit.
- Column #16. Average Limit. Non restricted bands limits set to 74 dBuV/m. There is no fundamental average limit.
- Column #17. The margin (last column) is the worst case margin under the peak or average limits for that row.

No other emissions were detected above 2 GHz.

Judgment: Passed by 4.0 dB

10.7.3 Radiated Emissions Below 2 GHz

Company	Westell, Inc.	Specification	FCC Part 15.247					
Model	A90-9100VM10-20	Test Date	06/08/2009					
Serial Number	08B403196860	3 Meters						
Test Personnel	Joseph Strzelecki	Test Location	Chamber E					
Notes	Corr. Factors = cable loss	- preamp gain - d	distance factor.					
Abbreviations	Pol = Antenna Polarization	; V = Vertical; H	= Horizontal					
Notes	This is the worst case emis	This is the worst case emissions from the different transmit frequencies						

	Meter	Ante	nna	Corr.		Strength	Margin
	Reading	Factor	Pol/	Factors	dBu	ıV/m	Under Limit
Freq. MHz	dBuV	dB	Туре	dB	EUT	Limit	dB
30.0	33.7 P	17.8	H/44	-20.3	31.1	40.0	8.9
43.2	36.6 P	16.2	H/44	-20.0	32.8	40.0	7.2
62.4	37.3 P	10.2	H/44	-19.7	27.8	40.0	12.2
68.4	40.2 P	7.8	H/44	-19.6	28.4	40.0	11.6
92.4	30.5 P	8.3	H/44	-19.3	19.5	43.5	24.0
103.6	30.8 P	10.7	H/44	-19.2	22.3	43.5	21.2
132.4	36.3 P	13.9	H/44	-18.8	31.3	43.5	12.2
171.6	43.4 P	9.4	H/44	-18.6	34.1	43.5	9.4
178.4	42.7 P	9.3	H/44	-18.6	33.4	43.5	10.1
208.4	40.9 P	10.9	H/44	-18.3	33.5	43.5	10.0
228.8	33.7 P	11.7	H/44	-18.2	27.3	46.0	18.7
252.7	41.1 P	12.7	H/44	-17.9	35.9	46.0	10.1
268.4	45.2 P	13.4	H/44	-17.8	40.8	46.0	5.2
283.0	40.1 P	13.1	H/44	-17.7	35.5	46.0	10.5
400.0	35.0 P	15.8	H/44	-16.9	33.9	46.0	12.1
500.0	41.0 P	17.3	H/44	-16.2	42.1	46.0	3.9
550.0	31.4 P	18.4	H/44	-16.1	33.7	46.0	12.3
650.0	32.5 P	19.8	H/44	-15.4	36.9	46.0	9.1
800.0	33.2 P	21.7	H/44	-14.5	40.4	46.0	5.6
850.0	35.7 Q	21.8	H/44	-14.4	43.2	46.0	2.8
899.0	31.5 P	22.6	H/44	-14.1	40.0	46.0	6.0
1050.0	28.1 P	23.3	H/44	-13.4	38.1	54.0	15.9
1150.0	35.0 P	24.1	H/44	-13.1	46.0	54.0	8.0
1249.0	37.7 P	24.5	H/44	-12.7	49.5	54.0	4.5
1299.0	31.7 P	24.8	H/44	-12.5	44.0	54.0	10.0
1348.0	30.9 P	25.3	H/44	-12.3	43.9	54.0	10.1
1398.0	30.8 P	25.3	H/44	-12.2	43.9	54.0	10.1
1739.0	26.0 P	27.5	H/44	-10.0	43.5	54.0	10.5
42.0	37.9 P	14.4	V/44	-20.1	32.2	40.0	7.8
50.0	38.6 P	13.4	V/44	-19.9	32.1	40.0	7.9
62.4	46.5 P	9.2	V/44	-19.7	36.0	40.0	4.0
71.6	44.4 P	6.5	V/44	-19.6	31.3	40.0	8.7
94.4	43.6 P	9.9	V/44	-19.3	34.2	43.5	9.3
102.0	42.7 P	10.8	V/44	-19.2	34.2	43.5	9.3

	Meter Reading	Ante Factor	nna Pol/	Corr. Factors		Strength IV/m	Margin Under Limit
Freq. MHz	dBuV	dB	Туре	dB	EUT	Limit	dB
142.4	32.9 P	11.2	V/44	-18.9	25.1	43.5	18.4
179.2	43.4 P	9.4	V/44	-18.6	34.2	43.5	9.3
199.2	36.7 P	10.1	V/44	-18.5	28.4	43.5	15.1
219.2	29.2 P	11.6	V/44	-18.2	22.6	46.0	23.4
250.4	37.6 P	12.5	V/44	-17.9	32.2	46.0	13.8
260.2	39.2 P	12.8	V/44	-17.8	34.2	46.0	11.8
262.0	37.7 P	13.0	V/44	-17.8	32.9	46.0	13.1
282.9	39.1 P	12.7	V/44	-17.7	34.1	46.0	11.9
288.7	36.2 P	12.8	V/44	-17.6	31.3	46.0	14.7
350.1	40.4 P	14.8	V/44	-17.3	38.0	46.0	8.0
375.1	37.8 P	15.7	V/44	-17.0	36.5	46.0	9.5
400.0	39.5 P	15.5	V/44	-16.9	38.1	46.0	7.9
449.9	37.0 P	16.4	V/44	-16.6	36.8	46.0	9.2
500.0	39.3 P	16.8	V/44	-16.2	39.9	46.0	6.1
550.0	33.3 P	17.6	V/44	-16.1	34.8	46.0	11.2
600.0	29.3 P	18.3	V/44	-15.8	31.8	46.0	14.2
701.0	29.3 P	19.6	V/44	-15.3	33.7	46.0	12.3
800.0	31.5 P	20.7	V/44	-14.5	37.7	46.0	8.3
849.0	29.6 P	20.9	V/44	-14.4	36.1	46.0	9.9
937.0	28.3 P	21.8	V/44	-13.9	36.2	46.0	9.8
1050.0	27.8 P	22.5	V/44	-13.4	37.0	54.0	17.0
1249.0	33.1 P	23.9	V/44	-12.7	44.3	54.0	9.7
1299.0	29.3 P	24.0	V/44	-12.5	40.8	54.0	13.2
1348.0	28.7 P	24.5	V/44	-12.3	40.9	54.0	13.1
1635.0	25.9 P	26.3	V/44	-10.8	41.4	54.0	12.6

Judgment: Passed by 2.8 dB