

Electromagnetic Compatibility Test Report

Tests Performed on a Westell, Inc.

Versalink Wifi Device, Model A90-750015-07

Radiometrics Document RP-6051

Product I	Product Detail: FCC ID: CH87500XX-07								
Equipn	nent type: Digital Transm	nission System							
<i>Test Star</i> US CF FCC P Industr This re FCC P	Test Standards: US CFR Title 47, Chapter I, FCC Part 15 Subpart C FCC Part 15 CFR Title 47: 2006 Industry Canada RSS-210, Issue 7, June 2007 as required for Category I Equipment This report concerns: Original Grant for Certification FCC Part 15.247								
1001									
Tests Pe	rformed For:		Test Fa	cility:					
750 W	II, INC.		Radiometrics Midwest Corporation						
Aurora	. IL 60504		Romeoville. IL 60446						
Test Dat	e(s): (Month-Day-Year)								
May 4	thru 8, 2007								
Docum	ent RP-6051 Revisions:								
Rev.	Issue Date	Affected Pages		Revised By					
0	December 06, 2007								

Table of Contents

1 ADMINISTRATIVE DATA	3
2 TEST SUMMARY AND RESULTS	3
2.1 RF Exposure Compliance Requirements	3
3 EQUIPMENT UNDER TEST (EUT) DETAILS	4
3.1 EUT Description	4
3.1.1 FCC Section 15.203 & RSS-GEN Antenna Requirements	4
3.2 Related Submittals	4
4 TESTED SYSTEM DETAILS	4
4.1 Tested System Configuration	4
4.2 Special Accessories	5
4.3 Equipment Modifications	5
5 TEST SPECIFICATIONS AND RELATED DOCUMENTS	5
6 RADIOMETRICS' TEST FACILITIES	5
7 DEVIATIONS AND EXCLUSIONS FROM THE TEST SPECIFICATIONS	6
8 CERTIFICATION	6
9 TEST EQUIPMENT TABLE	6
10 TEST SECTIONS	7
10.1 AC Conducted Emissions; Section 15.207	7
10.2 Occupied Bandwidth (6 dB)	9
10.3 Peak Output Power	13
10.4 Power Spectral Density	13
10.5 Band-edge Compliance of RF Conducted Emissions	. 13
10.6 Spurious RF Conducted Emissions	16
10.7 Spurious Radiated Emissions (Restricted Band)	25
10.7.1 Radiated Emissions Field Strength Sample Calculation	26
10.7.2 Spurious Radiated Emissions Test Results (1 to 25 GHz)	. 27
10.7.3 Radiated Emissions Below 1 GHz	. 28

Notice: This report must not be reproduced (except in full) without the written approval of Radiometrics Midwest Corporation.

1 ADMINISTRATIVE DATA

<i>Equipment Under Test:</i> A Westell, Inc., Versalink Model: A90-750015-07 Serial Number: 641 This will be referred to as the EUT in this Report	
Date EUT Received at Radiometrics: (Month-Day-Year)	<i>Test Date(s): (Month-Day-Year)</i>
May 4, 2007	May 4 thru 8, 2007
<i>Test Report Written By:</i>	Test Witnessed By:
Joseph Strzelecki	Bryan Bella
Senior EMC Engineer	Westell, Inc.
Radiometrics' Personnel Responsible for Test:	Test Report Approved By
Juseph Strzelechi	Chris W. Carlson
Joseph Strzelecki	Chris W. Carlson
Senior EMC Engineer	Director of Engineering
NARTE EMC-000877-NE	NARTE EMC-000921-NE

2 TEST SUMMARY AND RESULTS

The EUT (Equipment Under Test) is a Versalink, Model A90-750015-07, manufactured by Westell, Inc.. The detailed test results are presented in a separate section. The following is a summary of the test results.

Emissions Tests Results							
Environmental PhenomenaFrequency RangeBasic StandardTest Result							
RF Radiated Emissions	30 MHz to 25 GHz	FCC Part 15	Pass				
Conducted Emissions, AC Mains	0.15 - 30 MHz	FCC Part 15	Pass				

Environmental Phenomena	Frequency Range	FCC Section	Test Result				
6 dB Bandwidth Test	2400 to 2483 MHz	15.247 a	Pass				
Peak Output Power	2400 to 2483 MHz	15.247 b	Pass				
Band-edge Compliance of RF Conducted Emissions	2400 to 2483 MHz	15.247 c	Pass				
Spurious RF Conducted Emissions	30 MHz to 25 GHz	15.247 c	Pass				
Spurious Radiated Emissions	30 MHz to 25 GHz	15.247 c	Pass				
Power Spectral Density	2400 to 2483 MHz	15.247 d	Pass				

Spread Spectrum Transmitter Requirements

2.1 RF Exposure Compliance Requirements

Since the peak power output is 670 mW, The EUT meets the FCC requirement for RF exposure. The detailed calculations for RF Exposure are presented in a separate document.

3 EQUIPMENT UNDER TEST (EUT) DETAILS

3.1 EUT Description

The EUT is a Versalink, Model A90-750015-07, manufactured by Westell, Inc. The EUT was in good working condition during the tests, with no known defects.

3.1.1 FCC Section 15.203 & RSS-GEN Antenna Requirements

The antenna is permanently attached to the PCB internal to the EUT. The connector is not readily available to public. Therefore, it meets the 15.203 Requirement.

3.2 Related Submittals

Westell, Inc. is not submitting any other products simultaneously for equipment authorization related to the EUT.

4 TESTED SYSTEM DETAILS

4.1 Tested System Configuration

The system was configured for testing in a typical fashion. The EUT was placed on an 80-cm high, nonconductive test stand. The testing was performed in conditions as close as possible to installed conditions. Wiring was consistent with manufacturer's recommendations.

The EUT was tested as a remotely located device. Power was supplied at 115 VAC, 60 Hz singlephase to its external power supply. The identifications for all equipment, plus descriptions of all cables used in the tested system, are:

The identification for all equipment, plus descriptions of all cables used in the tested system, are:

Item	Description Ty	pe*	Manufacturer	Model Number	Serial Number			
1	Versalink	Е	Westell, Inc.	A90-750015-07	641			
2	Four Wirespeed dual connect routers	S	Westell, Inc.	B90-610014-06 B90-610010-06 B90-610010-06 B90-610010-06	04B401594590 04BS2052816 04B410939898 00001			
3	Notebook Computer (Ethernet port)	S	Compaq	Presario 1688	1456VQLIN			
4	Notebook Computer (WiFi client)	S	Dell	Inspiron 7000	0009795D			
5	Power Supply	Е	Leader	MT12-41120-AROF	0001			

Tested System Configuration List

* Type: E = EUT, P = Peripheral, S = Support Equipment; H = Host Computer

RADIOMETRICS MIDWEST CORPORATION - EMC Test Report

Testing of the Westell, Inc., Model A90-750015-07, Versalink

	Elst of bystem bubies						
QTY	Image: Call Call Call		Connected to (Item #)	Shielded?			
1	1.8	AC Cord	#1 Power input	No			
1	1.8	AC Cord	#8	No			
4	15.2	Ethernet Cable	#1 to #2	No			
1	1.8	Y Cable (Ethernet or USB)	PC USB or NAT router	No			

List of System Cables

4.2 Special Accessories

No special accessories were used during the tests in order to achieve compliance.

4.3 Equipment Modifications

A 2.2 uF capacitor was added across the hot and return of the low voltage power input at the power connector.

5 TEST SPECIFICATIONS AND RELATED DOCUMENTS

Document	Date	Title
FCC CFR Title 47	2006	Code of Federal Regulations Title 47, Chapter 1, Federal Communications Commission, Part 15 - Radio Frequency Devices
ANSI C63.4-2003	2003	Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
IC RSS-210 Issue 7	2007	Low Power Licence-Exempt Radiocommunication Devices (All Frequency Bands) Category I Equipment
IC RSS-Gen Issue 2	2007	General Requirements and Information for the Certification of Radiocommunication Equipment (RSS-Gen)
FCC 558074	2005	Measurement of Digital Transmission Systems Operating under Section 15.247

The test procedures used are in accordance with the FCC 558074, Industry Canada RSS-210 and ANSI document C63.4-2003, "Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz". The specific procedures are described herein. Radiated testing was performed at an antenna to EUT distance of 3 meters. The antenna was raised and lowered from 1 to 4 meters.

6 RADIOMETRICS' TEST FACILITIES

The results of these tests were obtained at Radiometrics Midwest Corp. in Romeoville, Illinois, USA. Radiometrics is accredited by A2LA (American Association for Laboratory Accreditation) to conform to ISO/IEC 17025: 1999 "General Requirements for the Competence of Calibration and Testing Laboratories". Radiometrics' Lab Code is 121191 and Certification Number is 1495.01. Radiometrics' scope of accreditation includes all of the test methods listed herein. A copy of the accreditation can be accessed on our web site (www.radiomet.com). Radiometrics accreditation status can be verified at A2LA's web site (www.a2la2.org).

The following is a list of shielded enclosures located in Romeoville, Illinois:

- Chamber A: Is an anechoic chamber that measures 24' L X 12' W X 12' H. The walls and ceiling are fully lined with ferrite absorber tiles. The floor has a 10' x 10' section of ferrite absorber tiles located in the center. Panashield of Rowayton, Connecticut manufactured the chamber. The enclosure is NAMAS certified.
- Chamber B: Is a shielded enclosure that measures 24' L X 12' W X 8' H. Erik A. Lindgren & Associates of Chicago, Illinois manufactured the enclosure.
- Chamber C: Is a shielded enclosure that measures 20' L X 10' W X 8' H. Lindgren RF Enclosures Inc. of Addison, Illinois manufactured the enclosure.
- Chamber D: Is a fully anechoic chamber that measures 22' L X 10' W X 10' H. The walls, ceiling and floor are fully lined with ferrite absorber tiles. Braden Shielding Systems of Tulsa, Oklahoma manufactured the chamber.
- Chamber E: Is a custom made anechoic chamber that measures 52' L X 30' W X 18' H. The walls and ceiling are fully lined with RF absorber. Pro-shield of Collinsville, Oklahoma manufactured the chamber.
- Test Station F: Is an area that measures 10' D X 12' W X 10' H. The floor and back wall are metal shielded. This area is used for conducted emissions measurements.

A separate ten-foot long, brass plated, steel ground rod attached via a 6 inch copper braid grounds each of the above chambers. Each enclosure is also equipped with low-pass power line filters.

Open Area Test Site (OATS): Is located on 8625 Helmar Road in Newark, Illinois, USA and measures 56' L X 24' W X 17' H. The entire open field test site has a metal ground screen. The FCC has accepted these sites as test site number US1065. The FCC test site Registration Number is 732175. Details of the site characteristics are on file with the Industry Canada as file number IC3124.

A complete list of the test equipment is provided herein. The calibration due dates are indicated on the equipment list. The equipment is calibrated in accordance to ANSI/NCSL Z540-1 with traceability to the National Institute of Standards and Technology (NIST).

7 DEVIATIONS AND EXCLUSIONS FROM THE TEST SPECIFICATIONS

There were no deviations or exclusions from the test specifications.

8 CERTIFICATION

Radiometrics Midwest Corporation certifies that the data contained herein was taken under conditions that meet or exceed the requirements of the test specification. The results relate only to the EUT listed herein. Any modifications made to the EUT subsequent to the indicated test date will invalidate the data and void this certification.

9 TEST EQUIPMENT TABLE

					Frequency	Cal	Cal
RMC ID	Manufacturer	Description	Model No.	Serial No.	Range	Period	Date
AMP-05	RMC/Celeritek	Pre-amplifier	MW110G	1001	1.0-12GHz	12 Mo.	12/27/06
AMP-12	MITEQ	Pre-amplifier	AM-1431	530935	0.01-1000MHz	12 Mo.	12/27/06
AMP-16	MITEQ	Pre-amplifier	AM-1300	608852	0.01-1000MHz	12 Mo.	12/27/06
AMP-20	Avantek	Pre-amplifier	SF8-0652	15221	8-18GHz	12 Mo	12/27/06

					Frequency	Cal	Cal
RMC ID	Manufacturer	Description	Model No.	Serial No.	Range	Period	Date
AMP-22	Anritsu	Pre-amplifier	MH648A	M23969	0.1-1200MHz	12 Mo.	12/29/06
ANT-13	EMCO	Horn Antenna	3115	2502	1.0-18GHz	24 Mo.	10/24/06
ANT-44	Impossible Machine	Super Log Antenna	SL-20M2G	1002	20-2000MHz	24 Mo.	12/12/05
HPF-03	Mini-Circuits	High Pass Filter	VHP-39	HPF-03	3-10 GHz	12 Mo.	02/08/07
LSN-01	Electrometrics	50 uH LISN	FCC/VDE 50/2	1001	0.01-30MHz	24 Mo.	05/03/07
LSN-03	Farnell	50 uH LISN	1EXLSN30B	000314	0.01-30MHz	24 Mo.	05/03/07
REC-01	Hewlett	Spectrum Analyzer	8566A	2106A02115,	30Hz-22GHz	12 Mo.	06/20/06
	Packard			2209A01349			
REC-03	Anritsu	Spectrum Analyzer	MS2601B	MT94589	0.01-2200MHz	12 Mo.	02/07/07
REC-07	Anritsu	Spectrum Analyzer	MS2601A	MT53067	0.01-2200MHz	12 Mo.	01/17/07
REC-08	Hewlett	Spectrum Analyzer	8566B	2648A13481	30Hz-22GHz	12 Mo.	07/05/06
	Packard			2209A01436			
THM-01	Extech Inst.	Temp/Humid Meter	4465CF	001106557	N/A	24 Mo.	03/31/06

Note: All calibrated equipment is subject to periodic checks.

10 TEST SECTIONS

10.1 AC Conducted Emissions; Section 15.207

A computer-controlled analyzer was used to perform the conducted emissions measurements. The frequency range was divided into 500 subranges equally spaced on a logarithmic scale. The computer recorded the peak of each subrange. This data was then plotted on semi-log graph paper generated by the computer and plotter. Adjusting the positions of the cables and orientation of the test system then maximizes the highest emissions.

Mains Conducted emission measurements were performed using a 50 Ohm/50 uH Line Impedance Stabilization Network (LISN) as the pick-up device. Measurements were repeated on both leads within the power cord. If the EUT power cord exceeded 80 cm in length, the excess length of the power cord was made into a 30 to 40 cm bundle near the center of the cord. The LISN was placed on the floor at the base of the test platform and electrically bonded to the ground plane.

Broadband conducted emissions may exceed the following limits by no more than 13 dB. An emission is defined as broadband if the average detector amplitude is 6 dB or more under the quasipeak detector amplitude.

	FCC LIMITS OF CONDUCTED EMISSIONS AT THE AC MAINS FORS						
Frequency Range	Class B Limits (dBuV)						
(MHz)	Quasi-Peak	Average					
0.150 - 0.50*	66 - 56	56 - 46					
0.5 - 5.0	56	46					
5.0 - 30	60	50					
* The limit decreases linearly with the logarithm of the frequency in this range.							

FCC Limits of Conducted Emissions at the AC Mains Ports

RADIOMETRICS MIDWEST CORPORATION - EMC Test Report

Testing of the Westell, Inc., Model A90-750015-07, Versalink

The initial step in collecting conducted data is a peak detector scan and the plotting of the measurement range. Significant peaks are then marked as shown on the following table, and these signals are then measured with the quasi-peak detector. The following represents the worst case emissions from power cord, after testing all modes of operation and the three tested channels.

Test Date : May 8, 2007

The Amplitude is the final corrected value with cable and LISN Loss.

		Frequency	QP		Average	Average
EUT Mode	Lead Tested	MHz	Amplitude	QP Limit	Amplitude	Limit
Ethernet	AC Neutral	0.29	50.2	60.6	40.3	50.6
Ethernet	AC Neutral	1.19	46.5	56.0	36.2	46.0
Ethernet	AC Neutral	2.09	47.9	56.0	37.2	46.0
Ethernet	AC Neutral	27.47	53.5	60.0	45.4	50.0
Ethernet	AC Hot	0.40	46.7	57.8	39.6	47.8
Ethernet	AC Hot	0.49	45.1	56.2	35.8	46.2
Ethernet	AC Hot	1.19	47.1	56.0	39.7	46.0
Ethernet	AC Hot	2.09	48.7	56.0	39.1	46.0
Ethernet	AC Hot	3.21	50.1	56.0	41.4	46.0
Ethernet	AC Hot	27.44	54.8	60.0	45.7	50.0
USB	AC Neutral	0.29	51.0	60.6	40.1	50.6
USB	AC Neutral	0.79	45.3	56.0	34.8	46.0
USB	AC Neutral	3.35	50.2	56.0	40.0	46.0
USB	AC Neutral	3.81	52.1	56.0	41.5	46.0
USB	AC Neutral	4.11	54.5	56.0	44.1	46.0
USB	AC Neutral	5.12	51.6	60.0	43.6	50.0
USB	AC Neutral	27.49	49.6	60.0	45.7	50.0
USB	AC Hot	0.38	48.9	58.2	40.3	48.2
USB	AC Hot	0.48	43.6	56.3	40.9	46.3
USB	AC Hot	1.19	47.9	56.0	38.3	46.0
USB	AC Hot	3.81	54.2	56.0	44.5	46.0
USB	AC Hot	4.38	50.3	56.0	42.5	46.0
USB	AC Hot	5.17	50.8	60.0	44.3	50.0
USB	AC Hot	8.45	51.2	60.0	42.6	50.0
USB	AC Hot	27.51	54.8	60.0	46.2	50.0

The above are the worst case results with three frequencies test for each EUT

* QP readings are quasi-peak with a 9 kHz bandwidth and no video filter.

Judgment: Passed by 1.5 dB

Figure 1. Conducted Emissions Test Setup

10.2 Occupied Bandwidth (6 dB)

The spectrum analyzer was set to the MAX HOLD mode to record the worst case of the modulation. The EUT was transmitting at its maximum data rate. The trace was allowed to stabilize.

The marker-to-peak function was set to the peak of the emission. Then the marker-delta function was used to measure 6 dB down one side of the emission. The marker-delta function was reset and then moved to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 6 dB bandwidth of the emission. The minimum occupied is required to be 0.5 MHz.

	802.11b	802.11g
Channel	6 dB EBW MHz	6 dB EBW MHz
1	10.68	16.62
6	10.94	16.46
11	10.86	16.28

RADIOMETRICS MIDWEST CORPORATION - EMC Test Report

Testing of the Westell, Inc., Model A90-750015-07, Versalink

10.3 Peak Output Power

The EUT antenna port was connected to the spectrum analyzer via a low loss coaxial cable. The power output option 2; Method #3 from FCC rules 558074 was used for this test. The spectrum analyzer was set to the following settings:

Span = 2 MHz; RBW = 1 MHz; VBW = 3 MHz; Sweep = auto Detector function = peak; Trace = max hold

The trace was allowed to stabilize. The marker-to-peak function was used to measure the peak of the emission. The indicated level is the peak output power. The BW correction factor is 10*Log(BW). Note 30 dBm = 1 watt. Since the gain of the antenna is always less than 6 dB, the limit is not reduced.

	Freq.	Reading	BW Corr	Cable Loss	Total Pov	ver (dBm)	Limit
Mode	(MHz)	(dBm)	Factor (dB)	(dB)	dBm	Watts	(dBm)
802.11b	2412	16.2	10.3	0.3	26.8	0.477	30
802.11b	2437	15.9	10.4	0.3	26.6	0.456	30
802.11b	2462	16.2	10.4	0.3	26.9	0.485	30
802.11g	2412	15.1	12.2	0.3	27.6	0.576	30
802.11g	2437	15.8	12.2	0.3	28.3	0.670	30
802.11g	2462	14.9	12.1	0.3	27.3	0.539	30

Judgement pass by 1.7 dB

10.4 Power Spectral Density

PSD option 1 was used for this test. No external attenuator was used. The spectrum analyzer was set to the following settings:

Span = 500 kHz RBW = 3 kHz; VBW = 10 kHz; Sweep = 167 seconds Detector function = Peak

	Frequency	Reading	Cable	3 kHz Spectral	Limit
Mode	(MHz)	dBm	Loss (dB)	Density (dBm)	(dBm)
802.11b	2412	-5.2	0.3	-4.9	8.0
802.11b	2437	-6.1	0.3	-5.8	8.0
802.11b	2462	-6.2	0.3	-5.9	8.0
802.11g	2412	-7.6	0.3	-7.3	8.0
802.11g	2437	-6.4	0.3	-6.1	8.0
802.11g	2462	-6.8	0.3	-6.5	8.0

Judgement pass by 12.9 dB

10.5 Band-edge Compliance of RF Conducted Emissions

The spectrum analyzer was set to the MAX HOLD mode to record the worst case of the modulation at the band-edge, with the EUT set to the lowest frequency. The trace was allowed to stabilize. The delta is required to be at least 20 dB.

Judgement: pass by 16.1 dB

10.6 Spurious RF Conducted Emissions

The spectrum analyzer was set to the MAX HOLD mode to record all spurious emissions from the lowest frequency generated in the EUT up through the 10th harmonic. The trace was allowed to stabilize. The first two plots were made while stepping through three frequencies (Low middle and high). Each frequency was on for 30 seconds.

			MKR D	elta -810 MI	<u>Iz</u> -48.40 dE	3				
										•
								Limit		
										-
						•				
						•				
							- <u> </u>			╀
hohmon	hallym	Many	un monther	mummun	w www.	www.	monorthetree	therewohnser	w.M.M.	ĥ
Radiom	etrics		_							
Midv Corpor	vest									
COMPAN	∕ : Westell ∕/Hz			ITEM : A REF 20	A90-750015-0)7		DATE : 0 STOP 2.	5-08-20 50 GHz	07
RES BW 1 10 dB/	00 kHz			VBW 30 TIME : 1	0 kHz 3:20			ATTEN 3 SWP 750	30 dB) msec	
			MKR D	elta -820 Mł	Hz -49.50 dE	8				
										╢
								Limit		
								Linim		╢
										╢
										Π
						•	-			+
								In allow	mallim	F
NMMMMMM	mmuhuh	www.WUly	Manger and here was	MMAAnnikappi	ᢉᢦ᠕ᢂᡃᢅᡁᢉᠬᡟ᠋ᡑᢣᠲᡟᢂᡄᡔ᠋᠋᠋ᢞ᠇ᡳᡆ	u hann an hann	will when a production	allow and so a	[-
Radjorr Midv Corpor	netrics vest ation									
	: Westell	1		ITEM : A	490-750015-0)7		DATE : C)5-08-20	07
RES BW 1	00 kHz				0 kHz			ATTEN 3		
NOTES : A	Antenna Co	onducted	Emissions	802.11b C	5.22 Ch 11			SWF / 30	1115eC	

	MKR De	elta -805 MH	z <u>-47.90 d</u> E	3			
						Limit	
				•			
					· ·		
- man man man man man	un manun man	14 Mary month mark	u.mumm	Armolom	multim	mmmm	when
Radiometrics Midwest Corporation							
OMPANY : Westell		ITEM : AS	0-750015-0	07		DATE : (05-08-20
OTES · Antenna Conduc	ted Emissions	802 11a. Ch	:38 h 1			0	
OTES : Antenna Conduc	ted Emissions,	802.11g; Ch	:38 1 1				
OTES : Antenna Conduc	ted Emissions, MKR De	802.11g; Cr	:38 n 1 z -48.10 dE	3			
OTES : Antenna Conduc	ted Emissions, MKR De	802.11g; Ch	:38 1 1 z -48.10 dE	3			
OTES : Antenna Conduc	ted Emissions, MKR De	802.11g; Ch	:38 1 z -48.10 dE	3			
OTES : Antenna Conduc	MKR De	elta -810 MH	:38 1 z -48.10 dE	3			
OTES : Antenna Conduc	MKR De	elta -810 MH:	:38 1 z -48.10 dE	3			
OTES : Antenna Conduc	MKR De	elta -810 MH	:38 1 z -48.10 dE	3		Limit	
OTES : Antenna Conduc	MKR De	elta -810 MH	:38 1 z -48.10 dE	3		Limit	
OTES : Antenna Conduc	MKR De	elta -810 MH:	:38 1 z -48.10 dE	3		Limit	
OTES : Antenna Conduc	MKR De	elta -810 MH	:38 1 z -48.10 dE	3			
OTES : Antenna Conduc	MKR De	elta -810 MH:	:38 1 z -48.10 dE	3			
OTES : Antenna Conduc	MKR De	elta -810 MH	:38 1 z -48.10 dE	3			
OTES : Antenna Conduc	MKR De	elta -810 MH:	:38 1 z -48.10 dE	3			
OTES : Antenna Conduc	MKR De	elta -810 MH	:38 z -48.10 dE	3			
OTES : Antenna Conduc	MKR De MKR De	elta -810 MH:	:38 z -48.10 dE	3			
OTES : Antenna Conduc	MKR De		:38 z -48.10 dE	3			
OTES : Antenna Conduc	MKR De		:38 z -48.10 dE	3			
OTES : Antenna Conduc	MKR De		2 -48.10 dE				05-08-20

NOTES : Antenna Conducted Emissions, 802.11g; Ch 6

			MKR Delta	a -817 MHz	-47.00 dE	3						
												t
												T
										Limit		
lumunuhu	mmmm	n-mannanana	human	mmmmy	helamaltares	Mercefusha	~~	m	howho	Netver-andra	hummer	
Radjom Midw Corpor	netrics vest ation											
COMPANY : Westell ITEM : A90-750015-07 DATE : 05-08-2007 START 1 MHz REF 20.0 dBm STOP 2.50 GHz RES BW 100 kHz VBW 300 kHz ATTEN 30 dB 10 dB/ TIME : 11:29 SWP 750 msec NOTES : Antenna Conducted Emissions, 802 110; Cb 11 SWP 750 msec												

 Radjometrics Corporation
 ITEM: A90-750015-07 REF 20.0 dBm
 DATE: 05-08-2007 START 2.5 GHz

 COMPANY: Westell COMPANY: Westell Corporation
 ITEM: A90-750015-07 REF 20.0 dBm
 DATE: 05-08-2007 START 3.5 GHz

 COMPANY: Westell COMPANY: Westell COMPANY: Westell START 2.5 GHz
 ITEM: A90-750015-07 REF 20.0 dBm
 DATE: 05-08-2007 STOP 18.0 GHz

 COMPANY: Westell COMPANY: Westell START 2.5 GHz
 ITEM: A90-750015-07 REF 20.0 dBm
 DATE: 05-08-2007 STOP 18.0 GHz

 COMPANY: Westell START 2.5 GHz
 ITEM: A90-750015-07 REF 20.0 dBm
 DATE: 05-08-2007 STOP 18.0 GHz

 NOTES : Antenna Conducted Emissions, 802.11b; Ch 1
 SWP 4.65 sec

						1			
								Limit	
April March Mar	home	man Mulman	withornorm	Marthannen	whichtoppen	nothing for the second	Muhaman	mandanthum	mMuhum
Radjom Midw Corpora	etrics est ation								
COMPANY START 18.0 RES BW 10 10 dB/ NOTES : A	MPANY : Westell ITEM : A90-750015-07 DATE : 05-08-200 ART 18.00 GHz REF 0.0 dBm STOP 25.00 GHz S BW 100 kHz VBW 300 kHz ATTEN 10 dB dB/ TIME : 13:34 SWP 2.10 sec TES : Antenna Conducted Emissions, 802.11b; Ch 1 1							5-08-2007 .00 GHz 0 dB) sec	

								Limit	
M. honorth	han an a	n Min Minun	Normbrand	hannann	whether	hnhhunh	MMMmmmmm	www.wythawah	MmmmMmml
Radjon Midv Corpor	vest ation								
COMPANY START 18 RES BW 1 10 dB/ NOTES : A	COMPANY : Westell ITEM : A90-750015-07 DATE : 05-08 START 18.00 GHz REF 0.0 dBm STOP 25.00 START 18.00 GHz VBW 300 kHz ATTEN 10 dB GBS BW 100 kHz VBW 300 kHz ATTEN 10 dB I dB/ TIME : 13:35 SWP 2.10 sd VOTES : Antenna Conducted Emissions, 802.11b; Ch 6 G						5-08-2007 .00 GHz 0 dB 0 sec		

								Limit	
Anthony	hypernetical	MMM	MMWWWW	on month with	www.www.	himilitan	m. M. Marin	mmenophym	New July Wyker
Radiom Midv Corpor	hetrics vest ation								
COMPANY : Westell ITEM : A90-750015-07 DATE : 05-08- START 18.00 GHz START 18.00 GHz REF 0.0 dBm STOP 25.00 G RES BW 100 kHz VBW 300 kHz ATTEN 10 dB 10 dB/ TIME : 13:36 SWP 2.10 set NOTES : Antenna Conducted Emissions, 802.11b: Ch 11 SWP 2.10 set							5-08-2007 .00 GHz 0 dB) sec		

								Limit	
. M	marman	man	mandly and an	AN AMALANA ANA ANA ANA ANA ANA ANA ANA ANA AN	hos (le constant		A		
whenhow				and a subscription	an a she share was a she	why why way way	w way	Mar mar hand	n Mundman
Dedien									
Midw	vest								
Corpor	ation								
COMPANY	(: Westell			ITEM : A9	0-750015-0)7		DATE	5-08-2007
START 18	START 18.00 GHz REF 0.0 dBm STOP 25.00 GHz						.00 GHz		
RES BW 1	00 kHz			VBW 300	kHz			ATTEN 1	0 dB
10 dB/	10 dB/ TIME : 13:40 SWP 2.10 sec) sec		
NOTES : Antenna Conducted Emissions, 802.11g; Ch 1									

								Limit	
northrologen	hughtenton	Mundantarian	mmunun	www.m	white when	malue	Munny	mununu	www.www.www
Radjom Midw Corpor	netrics vest ation								
COMPANY : Westell ITEM : A90-750015-07 DATE : 05-08-2007 START 18.00 GHz REF 0.0 dBm STOP 25.00 GHz RES BW 100 kHz VBW 300 kHz ATTEN 10 dB 10 dB/ TIME : 13:38 SWP 2.10 sec NOTES : Antenna Conducted Emissions, 802.11g; Ch 6 SWP 2.10 sec							5-08-2007 .00 GHz 0 dB) sec		

10.7 Spurious Radiated Emissions (Restricted Band)

Radiated emission measurements in the restricted bands were performed with linearly polarized broadband antennas. The results obtained with these antennas can be correlated with results obtained with a tuned dipole antenna. Below 1 GHz, when a radiated emission is detected approaching the specification limit, the measurement of the emission is repeated using a tuned dipole antenna with a Roberts Balun. A 10 dB linearity check is performed prior to start of testing in order to determine if an overload condition exists. Measurements were performed using two antenna polarizations, (vertical and horizontal). The worst case emissions were recorded.

From 30 to 1000 MHz, an Anritsu spectrum analyzer and a preamplifier with a 10 dB attenuator connected to the input were used. The out of band emissions and the ambient emissions were below the level of input overload (80 dBuV).

For tests from 1 to 25 GHz, an HP8566 spectrum analyzer was used with a preamplifier. The out of band emissions and the ambient emissions were below the level of input overload (72 dBuV). In addition, a high pass filter was used to reduce the fundamental emission.

Preliminary radiated emission tests were performed inside of an anechoic chamber. The frequency range from 30 to 25000 MHz was scanned and plotted using the peak detector function. The results of the preliminary scans were only used to identify the frequencies being emitted from the EUT and were not used to determine compliance with the test specification. Radiated emission measurements are performed with linearly polarized broadband antennas.

RADIOMETRICS MIDWEST CORPORATION - EMC Test Report

Testing of the Westell, Inc., Model A90-750015-07, Versalink

Final radiated emissions measurements were performed in the open area test site at a test distance of 3 meters. The open area test site used to collect the radiated data is located on 8625 Helmar Road in Newark, Illinois. The open field test site has a metal ground screen. All other tests are performed at 12 East Devonwood Ave. Romeoville, Illinois EMI test lab.

10.7.1 Radiated Emissions Field Strength Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and by subtracting the Amplifier Gain from the measured reading. The basic equation is as follows:

FS = RA + AF + CF - AGWhere: FS = Field Strength RA = Receiver Amplitude AF = Antenna Factor CF = Cable Attenuation Factor AG = Amplifier Gain HPF = High pass Filter Loss

Figure 2. Drawing of Radiated Emissions Setup

1x1.5m surface 80 cm above Flush-mount Turntable

Notes:

- AC outlet with low-pass filter at the base of the turntable
- Antenna height varied from 1 to 4 meters
- Distance from antenna to tested system is 3 meters
- Not to Scale

10.7.2 Spurious Radiated Emissions Test Results (1 to 25 GHz)

The following spectrum analyzer settings were used.

Span = wide enough to fully capture the emission being measured RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz VBW \ge RBW Sweep = auto Detector function = peak Trace = max hold

A Video Bandwidth of 10 Hz was used for Average measurements above 1 GHz.

Manufacturer	Westell, Inc.	Specification	FCC Part 15 Subpart C & RSS-210				
Model	A90-750015-07	Test Date	5/8/2007				
Serial Number	641	Test Distance	3 Meters				
Abbreviations	Pol = Antenna Polarization; V	' = Vertical; H = H	orizontal; BC = Biconical (ANT-3);				
	LP = Log-Periodic (ANT-6); HN = Horn (ANT-13) P = peak; Q = QP						
Notes	Corr. Factors = Cable Loss -	Preamp Gain - D	Outy Cycle Factor + HP Filter Loss				

Emissions above 1 GHz (ANT-2)

							Corr		Field Strength		Field Strength		Margin
			802.	11b	802.	11g		EUT	from EUT		Limit		Under
hrm	Тx	Ant	Peak	Ave	Peak	Ave	Fact.	Emission	Peak	Ave	Peak	Ave	Limit
#	Freq	Pol.	Ana	lyzer F	RDG dE	BuV	dB	Freq MHz	dBu	V/m	dBuV/m		dB
be	2412	V	27.7	17.5	36.1	21.9	30.6	2388	67.2	52.5	74	54	2.0
be	2412	Н	21.7	12.5	35.7	18.9	30.6	2388	66.3	49.5	74	54	4.5
2	2412	V	51.2	35.7	52.0	33.5	10.8	4824	62.8	46.5	74	54	7.5
2	2412	Н	45.7	33.4	43.2	29.5	10.8	4824	56.5	44.2	74	54	9.8
3	2412	V	37.0	28.0	37.0	26.0	16.8	7236	53.8	44.8	74	54	9.2
3	2412	Н	36.0	26.0	36.0	26.0	16.8	7236	52.8	42.8	74	54	11.2
2	2437	V	50.6	40.0	51.2	32.2	10.9	4874	62.1	50.9	74	54	3.1
2	2437	Н	45.9	35.6	45.2	29.9	10.9	4874	56.8	46.5	74	54	7.5
3	2437	V	36.0	26.0	37.0	26.0	17.0	7311	54	43.0	74	54	11.0
3	2437	Н	36.0	26.0	36.0	26.0	17.0	7311	53	43.0	74	54	11.0
be	2462	V	26.6	18.0	33.1	18.4	31.0	2485.5	64.1	49.4	74	54	4.6
be	2462	Н	21.9	14.5	31.7	16.4	31.0	2485.5	62.7	47.4	74	54	6.6
2	2462	V	52.4	38.2	52.6	33.7	11.0	4924	63.6	49.2	74	54	4.8
2	2462	Н	46.5	34.2	45.1	29.5	11.0	4924	57.5	45.2	74	54	8.8
3	2462	V	37.0	27.3	37.0	26.0	17.5	7386	54.5	44.8	74	54	9.2
3	2462	Н	36.5	26.0	36.0	26.0	17.5	7386	54	43.5	74	54	10.5

Emissions above 1 GHz (ANT-1)

							Corr		Field Strength		Field Strength		Margin
			802.11b		802.11g			EUT	from	EUT	Lim	nit	Under
hrm	Тx	Ant	Peak	Ave	Peak	Ave	Fact.	Emission	Peak	Ave	Peak	Ave	Limit
#	Freq	Pol.	Analyzer RDG dBuV			dB	Freq MHz	dBuV/m		dBuV/m		dB	
be	2412	V	26.3	17.3	41.2	16.3	30.6	2388	71.8	47.9	74	54	2.2
be	2412	Н	22.7	12.4	38.4	11.7	30.6	2388	69	43	74	54	5.0
2	2412	V	50.9	34.9	52.3	34.2	10.8	4824	63.1	45.7	74	54	8.3

2	2412	Н	45.8	33.4	44.6	30.4	10.8	4824	56.6	44.2	74	54	9.8
3	2412	V	37	28	37.3	26	16.8	7236	54.1	44.8	74	54	9.2
3	2412	Н	36	26	36	26	16.8	7236	52.8	42.8	74	54	11.2
2	2437	V	50.2	38.4	51.5	33.4	10.9	4874	62.4	49.3	74	54	4.7
2	2437	Н	45.6	33.9	46.3	31.5	10.9	4874	57.2	44.8	74	54	9.2
3	2437	V	36	26	37.4	26	17.0	7311	54.4	43	74	54	11
3	2437	Н	36	26	36	26	17.0	7311	53	43	74	54	11
be	2462	V	28.3	19.7	39.9	16	31.0	2485.5	70.9	50.7	74	54	3.1
be	2462	Н	25.6	15.9	36.5	16.2	31.0	2485.5	67.5	47.2	74	54	6.5
2	2462	V	48.5	37.9	52.1	32.7	11.0	4924	63.1	48.9	74	54	5.1
2	2462	Н	43.7	31.4	44.8	30.4	11.0	4924	55.8	42.4	74	54	11.6
3	2462	V	37	27.3	37.2	26	17.5	7386	54.7	44.8	74	54	9.2
3	2462	Н	36.5	26	36	26	17.5	7386	54	43.5	74	54	10.5

No other emissions were detected in the restricted bands above 1 GHz.

Notes: 1. hrm = Harmonic; BE = Band Edge emissions; V = Vertical; H = Horizontal

2. The margin (last column) is the worst case margin under the peak or average limits for that row. It is also the worst case margin for the 802.11b and 802.11g modes.

3. Corr. Factors = Cable Loss – Preamp Gain + Antenna Factor

No other emissions were detected in the restricted bands from 2 to 25 GHz.

Note there is no radiated limit for the fundamental emission, just conducted emissions limit.

Judgment: Passed by 2.0 dB

10.7.3 Radiated Emissions Below 1 GHz

Company	Westell, Inc.	Specification	FCC Part 15; Subpart B; Class B					
Model	lodel							
Serial Number		Test Distance	3 Meters					
Test Personnel	st Personnel Joseph Strzelecki		Open Area Test Site 8625 Helmar					
			Road					
Notes	Corr. Factors = cable loss - preamp gain - distance factor.							
Abbreviations	Pol = Antenna Polarization	Pol = Antenna Polarization; V = Vertical; H = Horizontal; BC = Biconical; LP =						
	Log-Periodic; BL = Bilog; P = peak; Q = QP							
Notes	This is the worst case emis	This is the worst case emissions from the USB and Ethernet modes						

All restricted bands emissions Below 1 GHz. Emissions within 1 MHz of the restricted bands were also included.

	Meter	Ante	nna	Corr.	Field S	Margin	
	Reading			Factors	UDU	Under Limit	
Freq. MHz	dBuV	dB	Pol/ID#	dB	EUT	Limit	dB
38.5	41.8 P	11.4	H/BC	-24.7	28.4	40.0	11.6
109.0	39.7 P	11.8	H/BC	-22.9	28.6	43.5	14.9
113.1	36.7 P	12.1	H/BC	-23.0	25.8	43.5	17.7
149.1	39.9 P	11.8	H/BC	-22.6	29.1	43.5	14.4

	Meter Reading	Antenna Factor		Corr. Factors	Field S dBu	Margin Under Limit	
Freq. MHz	dBuV	dB	Pol/ID#	dB	EUT	Limit	dB
149.6	36.1 P	11.8	H/BC	-22.6	25.3	43.5	18.2
233.4	34.1 P	15.1	H/BC	-21.2	28.0	46.0	18.0
250.0	44.2 P	12.5	H/LP	-20.8	35.9	46.0	10.1
400.0	36.0 P	16.5	H/LP	-18.6	33.9	46.0	12.1
72.5	53.0 P	6.8	V/BC	-23.9	35.9	40.0	4.1
73.8	46.9 P	6.8	V/BC	-23.9	29.8	40.0	10.2
74.1	49.5 P	6.8	V/BC	-23.9	32.4	40.0	7.6
109.2	44.4 P	12.8	V/BC	-22.9	34.3	43.5	9.2
110.8	49.2 P	12.8	V/BC	-22.9	39.1	43.5	4.4
111.6	49.6 P	12.9	V/BC	-22.9	39.5	43.5	4.0
112.8	45.3 P	12.9	V/BC	-23.0	35.2	43.5	8.3
120.0	38.5 P	12.9	V/BC	-23.1	28.3	43.5	15.2
240.1	42.9 P	16.0	V/BC	-20.9	38.0	46.0	8.0
250.2	43.6 P	12.6	V/LP	-20.8	35.4	46.0	10.6
323.2	41.6 P	14.7	V/LP	-19.1	37.2	46.0	8.8
337.7	39.5 P	14.7	V/LP	-19.1	35.1	46.0	10.9
399.8	37.6 P	16.0	V/LP	-18.6	35.0	46.0	11.0

Judgment: Passed by 4.0 dB No other emissions were detected in the restricted bands.