

Test report No.: 23JE0023-YK-1

Page Issued date : 1 of 65 : June 23, 2003

FCC ID : CGJWT01

EMI TEST REPORT

Test Report No.: 23JE0023-YK-1

Applicant

: NIKON CORPORATION

Type of Equipment

Wireless LAN Transmitter

Model No.

: WT-1A

FCC ID

CGJWT01

Test standard

FCC Part15 Subpart C, Section 15.247

Test Result

Complied

- 1. This test report shall not be reproduced except in full or partial, without the written approval of UL Apex Co., Ltd.
- 2. The results in this report apply only to the sample tested.

Date of test:

June 2, 9, 10, 11 and 14, 2003

Tested by:

Tovokazu Imamura

ichiro Isozaki

Takahiro Suzuki

Approved by:

Osamu Watatani

Site Manager of Yamakita EMC Lab.

907 Kawanishi, Yamakita-machi, Ashigarakami-gun, Kanagawa-ken, 258-0124 JAPAN

Telephone:

+81 465 77 1011

Facsimile:

+81 465 77 2112

Test report No. : 23JE0023-YK-1
Page : 2 of 65
Issued date : June 23, 2003
FCC ID : CGJWT01

Table of Contents	Page
1 GENERAL INFORMATION	3
1.1 Tested Methodology	
1.2 Test Facility	3 3
2 PRODUCT DESCRIPTION	4
3 SYSTEM TEST CONFIGURATION	5
3.1 Justification	5
3.2 Configuration of Tested System	6
4 MEASUREMENT UNCERTAINTY	9
5 SUMMARY OF TEST	10
5.1 §15.207 Conducted Emissions	10
5.2 §15.247(a)(2) 6dB Bandwidth (Antenna Port Conducted)	10
5.3 §15.247(b)(3) Maximum Peak Out Put Power (Antenna port Conducted)	10
5.4 §15.247(c) Out of Band Emissions (Radiated)	11
5.5 §15.247(c) Out of Band Emissions (Antenna Port Conducted)	11
5.6 §15.247(d) Power Density (Antenna Port Conducted)	11
Contents of Appendixes	12
	
APPENDIX 1: Photographs of test setup	13
APPENDIX 2: Test Data	19
APPENDIX 3. Test instruments	65

907 Kawanishi, Yamakita-machi, Ashigarakami-gun, Kanagawa-ken, 258-0124 JAPAN

Test report No. : 23JE0023-YK-1
Page : 3 of 65
Issued date : June 23, 2003
FCC ID : CGJWT01

1 GENERAL INFORMATION

Company Name : NIKON CORPORATION

Brand Name : Nikon

Address : OHI PLANT;

6-3, Nishi-Ohi 1-chome, Shinagawa-ku, TOKYO, 140-8601 JAPAN

Telephone Number : +81-3-3773-8029

Facsimile Number : +81-3-3773-1842

Contact Person : Kenji Ishizuki

Type of Equipment : Wireless LAN Transmitter

Model Number : WT-1A

Serial Number : No.2

Rating : DC3.3V

The power is supplied from the digital camera (model: D2H) that is connected with WT-1A.

The power of digital camera is either battery that is rechargeable nickel-metal hydride power source or

AC100V-240V, 50/60Hz, AC adaptor (single phase-2pin plug)

Condition of EUT : Production prototype

Country of Manufacture : Japan

Receipt Date of Sample : May 29, 2003

Condition of E.U.T. : Production prototype

Regulation(s) : FCC Part15 Subpart C, Section 15.247

Test Site : UL Apex Yamakita EMC Lab. No.1 Open Test Site and No.4 Shielded Room

1.1 Tested Methodology

The measurements were performed according to the procedures in ANSI C63.4 (2001).

These tests were also referred to FCC 97-114 "Guidance on Measurement for Direct Sequence Spread Spectrum Systems".

1.2 Test Facility

This site has been fully described in a report submitted to FCC office, and accepted on September 20, 2002.

(No.1 Open Test Site Registration No.: 95486)

NVLAP Lab. code : 200441-0

UL Apex Co., Ltd. YAMAKITA EMC LAB.

907 Kawanishi, Yamakita-machi, Ashigarakami-gun, Kanagawa-ken, 258-0124 JAPAN

Test report No. : 23JE0023-YK-1
Page : 4 of 65
Issued date : June 23, 2003
FCC ID : CGJWT01

2 PRODUCT DESCRIPTION

NIKON CORPORATION, Model: WT-1A (referred to as the EUT in this report) is a wireless LAN transmitter.

The clock frequencies used in EUT : 8 MHz, 32.768 MHz (MPU)

48 MHz (USB)

Equipment type : Transceiver

Frequency band : Lower limit: 2412 MHz / Upper limit: 2462 MHz

Local clock frequency : 2082 MHz ~ 2153.5 MHz

Bandwidth & channel spacing : Bandwidth: 15.0 MHz ± 4 MHz, Channel spacing: 5 MHz Type of modulation : BPSK (1 Mbps), QPSK (2 Mbps), CCK (5.5/11 Mbps)

Antenna fixing method : External, removal type

Antenna type : Box type: Chip inductive antenna

Rod type: Collinear antenna

Antenna connector type : SMA reverse type

Antenna gain : WA-S1 (Box type): -1.5 dBi

WA-E1 (Rod type): 3 dBi (including cable loss of -1dB.)

Transmit power : equal or less than 5 mW

Mode of operation : Simplex

Other clock frequency : 8 MHz, 32.768 MHz (MPU section), 48 MHz (USB section)

*FccPart15.31(e)

The host device D2H (Digital camera) provides the wireless LAN transmitter with stable power supply (DC3.3V), and the power is not changed when voltage of the digital camera is varied.

Therefore, the wireless LAN transmitter complies power supply regulation.

*FccPart15.203

The antenna of WT-1A doesn't use a standard antenna jack or electrical connector,

Therefore the wireless LAN transmitter complies with FCC Part15.203 Antenna requirement.

UL Apex Co., Ltd. YAMAKITA EMC LAB.

907 Kawanishi, Yamakita-machi, Ashigarakami-gun, Kanagawa-ken, 258-0124 JAPAN

^{*.} The operation clocks on the digital camera (model: D2H) that connected with the wireless LAN transmitter (model: WT-1A) are as follows; 6.25MHz, 12MHz, 12.288MHz, 14.31818MHz, 16MHz, 17.734475MHz, 50MHz

Test report No. : 23JE0023-YK-1
Page : 5 of 65
Issued date : June 23, 2003
FCC ID : CGJWT01

3 SYSTEM TEST CONFIGURATION

3.1 Justification

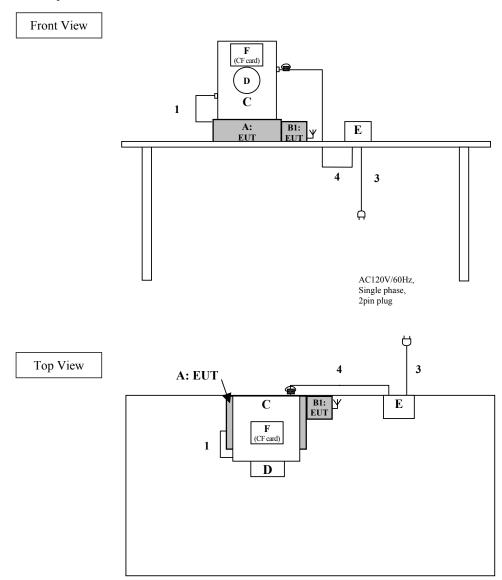
The system was configured in typical fashion (as a customer would normally use it) for testing.

Test mode:

- 1. Transmitting 2412MHz (Low)
- 2. Transmitting 2437MHz (Middle)
- 3. Transmitting 2462MHz (High)

Antenna type:

- 1. WA-S1 (Short type)
- 2. WA-E1 (Long type)


UL Apex Co., Ltd. YAMAKITA EMC LAB.

907 Kawanishi, Yamakita-machi, Ashigarakami-gun, Kanagawa-ken, 258-0124 JAPAN

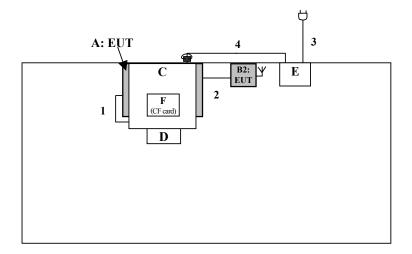
Test report No. : 23JE0023-YK-1
Page : 6 of 65
Issued date : June 23, 2003
FCC ID : CGJWT01

3.2 Configuration of Tested System

Short antenna setup

*Cabling was taken into consideration and test data was taken under worse case conditions.

907 Kawanishi, Yamakita-machi, Ashigarakami-gun, Kanagawa-ken, 258-0124 JAPAN


Test report No. : 23JE0023-YK-1
Page : 7 of 65
Issued date : June 23, 2003
FCC ID : CGJWT01

Long antenna setup

Front View

Top View

*Cabling was taken into consideration and test data was taken under worse case conditions.

907 Kawanishi, Yamakita-machi, Ashigarakami-gun, Kanagawa-ken, 258-0124 JAPAN

Test report No. : 23JE0023-YK-1
Page : 8 of 65
Issued date : June 23, 2003
FCC ID : CGJWT01

Description of EUT and Support equipment

No.	Item	Model number	Serial number	Manufacturer	Remark	FCC ID
A	Wireless LAN transmitter	WT-1A	No.2	Nikon	EUT.	CGJWT01
B1	Antenna (short)	WA-S1	-	Nikon	EUT.	-
B2	Antenna (long)	WA-E1	-	Nikon	EUT.	-
C	Digital camera	D2H	PT00105	Nikon	Not EUT.	-
D	Lens	28-80mm, 3.5-5.6D	-	Nikon	Not EUT.	-
E	AC adaptor	EH-6	No.1	Nikon	Not EUT.	-
F	CF memory card	Ultra 512MB	-	SanDisk	Not EUT.	-

List of cables used

17150	or capics useu				
No.	Name	Length (m)	Shield	Backshell material	Remark
1	USB cable	0.1	Shielded		EUT. This cable is detachable from the wireless LAN transmitter
					(model: WT-1A).
2	Antenna cable	1	Shielded	Polyvinyl chloride	EUT. This cable is detachable from the long antenna (model:
					WA-E1).
3	AC power cable	2	Unshielded	Polyvinyl chloride	Not EUT. This is accessory cable and supplied with the digital
	(AC adaptor)				camera (model: D2H).
4	DC power cable	2	Unshielded	Polyvinyl chloride	Not EUT. This cable has a ferrite core and is not detachable from
	(AC adaptor)				AC adaptor. AC adaptor is accessory part and supplied with the
					digital camera (model: D2H).

907 Kawanishi, Yamakita-machi, Ashigarakami-gun, Kanagawa-ken, 258-0124 JAPAN

Test report No. : 23JE0023-YK-1
Page : 9 of 65
Issued date : June 23, 2003
FCC ID : CGJWT01

4 MEASUREMENT UNCERTAINTY

Conducted emission test

The measurement uncertainty (with a 95% confidence level) for this test was ± 1.3 dB.

The data listed in this test report has enough margin, more than site margin.

Radiated emission test

The measurement uncertainty (with 95% confidence level) for this test using Biconical antenna is $\pm 4.8 dB$. The measurement uncertainty (with 95% confidence level) for this test using Logperiodic antenna is $\pm 5.2 dB$. The measurement uncertainty (with 95% confidence level) for this test using Horn antenna is $\pm 6.6 dB$.

The result is within Yamakita EMC lab's uncertainty.

UL Apex Co., Ltd. YAMAKITA EMC LAB.

907 Kawanishi, Yamakita-machi, Ashigarakami-gun, Kanagawa-ken, 258-0124 JAPAN

Test report No. : 23JE0023-YK-1
Page : 10 of 65
Issued date : June 23, 2003
FCC ID : CGJWT01

5 SUMMARY OF TESTS

5.1 §15.207 Conducted Emissions (Limits by CISPR Pub.22 Class B)

Test Procedure

EUT was placed on a platform of nominal size, 1m by 1.5m, raised 80cm above the conducting ground plane.

The rear of tabletop was located 40cm to the vertical conducting plane. The rear of EUT and its peripherals were aligned and flushed with rear of tabletop.

All other surfaces of tabletop were at least 80cm from any other grounded conducting surface. EUT was located 80cm from LISN and excess AC cable was bundled in center.

Each EUT current-carrying power lead, except the ground (safety) lead, was individually connected through a LISN to the input power source.

The AC Mains Terminal Continuous disturbance Voltage has been measured with the EUT on a shielded room.

The EUT was connected to a Line Impedance Stabilization Network (LISN).

An overview sweep with peak detection has been performed.

The measurements have been performed with a CISPR quasi-peak detector (IF BW 9kHz).

(Measurement range: 150kHz to 30MHz)

Test data : APPENDIX Page 19 to 28

Photographs of test setup: Page 13 to 14

Test result : Pass

Test instruments : KCC-14/15/16/18/KPL-01, KLS-01, KSA-01, KTR-02

5.2 §15.247(a)(2) 6dB Bandwidth (Antenna Port Conducted)

Test Procedure

The minimum 6dB bandwidth was measured with a spectrum analyzer connected to the antenna port.

Test data : APPENDIX Page 29

Test result : Pass

Test instruments : KTR-01, KCC-D7

5.3 § 15.247(b)(3) Maximum Peak Out Put Power (Antenna Port Conducted)

Test Procedure

The Maximum Peak Output power was measured with a power meter connected to the antenna port.

* Antenna Gain dose not exceed 6dBi.

Test data : APPENDIX Page 30

Test result : Pass

Test instruments : KPM-05, KPSS-01

UL Apex Co., Ltd. YAMAKITA EMC LAB.

907 Kawanishi, Yamakita-machi, Ashigarakami-gun, Kanagawa-ken, 258-0124 JAPAN

Test report No. : 23JE0023-YK-1
Page : 11 of 65
Issued date : June 23, 2003
FCC ID : CGJWT01

5.4 § 15.247(c) Out of Band Emissions (Radiated)

Test Procedure

EUT was placed on a platform of nominal size, 1m by 1.5m, raised 80cm above the conducting ground plane.

Test was made with the antenna positioned in both the horizontal and vertical planes of polarization.

The measurement antenna was varied in height above the conducting ground plane to obtain the maximum signal strength.

The Radiated Electric Field Strength intensity has been measured on an open test site with a ground plane and at a distance of 3m.

The measuring antenna height was varied between 1 and 4m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity. The measurements were performed for both vertical and horizontal antenna polarization. EUT emission levels were compared when the EUT antenna position was vertical polarization and horizontal polarization. The equipment was also previously checked at each position of three axes X, Y and Z for short antenna. It was find that X axis was worst under both polarizations in below 1GHz. Y axis was worst under the vertical antenna polarization and that Z axis was worst under the horizontal antenna polarization in above 1GHz. For long antenna, two axes X and Y to find that X axis was worst under both polarization in below 1GHz, and X axis was worst under the vertical antenna polarization and that Y axis was worst under the horizontal antenna polarization. The position in which the maximum noise occurred was chosen to put into measurement. See the photographs in page 17-18.

Radiated spurious emissions

In any 100kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement. The result was also satisfied the general limits specified in Sec.15.209 (a).

Measurement range : 30MHz to 1000MHz CISPR QP Detector, IF BW 120kHz

: 1GHz to 26GHz PK and AV Detector

Test data : APPENDIX 2 Page 31 to 36 (30 - 1000MHz)

: APPENDIX 2 Page 37 to 48 (1 - 26GHz)

: APPENDIX 2 Page 49 to 56

(Band Edges: 2390MHz/ 2483.5MHz, Restricted band Charts)

Photographs of test setup: Page 15 to 16

Test result : Pass

Test instruments: KAF-01, KAF-02, KAT10-S1, KAT6-01, KBA-01, KTR-01, KTR-02, KFL-01 KCC-10/11/12/13/18, KCC-D3/D7, KHA-01, KHA-03, KLA-01, KOTS-01, KSA-01

5.5 § 15.247(c) Out of Band Emissions (Antenna Port Conducted)

Test Procedure

The Out of Band Emissions was measured with a spectrum analyzer connected to the antenna port.

Test data : APPENDIX Page 57 to 62

Test result : Pass

Test instruments : KTR-01, KCC-D7

5.6 § 15.247(d) Power Density (Antenna Port Conducted)

Test Procedure

The Power Density was measured with a spectrum analyzer connected to the antenna port.

Test data : APPENDIX Page 63 to 64

Test result : Pass

Test instruments : KTR-01, KCC-D7

UL Apex Co., Ltd.

YAMAKITA EMC LAB.

907 Kawanishi, Yamakita-machi, Ashigarakami-gun, Kanagawa-ken, 258-0124 JAPAN

Test report No. : 23JE0023-YK-1
Page : 12 of 65
Issued date : June 23, 2003
FCC ID : CGJWT01

APPENDIX 1: Photographs of test setup

 $\begin{array}{ccccc} 1. \text{Page } 13-14 & : & \text{Conducted emission} \\ 2. \text{Page } 15-16 & : & \text{Radiated emission} \end{array}$

3.Page 17 – 18 : Pre-check of worst-case position

APPENDIX 2: Test Data

1.Page 19 – 28 : Conducted emission

2.Page 29:6dB Bandwidth (Antenna Port Conducted)3.Page 30:Maximum Peak Power (Antenna Port Conducted)

4.Page 31 – 56 : Out Band of Emissions (Radiated)

5.Page 57 – 62 : Out Band of Emissions (Antenna Port Conducted)

6.Page 63 – 64 : Power Density (Antenna Port Conducted)

APPENDIX 3: Test instruments

Page 65 : Test instruments

907 Kawanishi, Yamakita-machi, Ashigarakami-gun, Kanagawa-ken, 258-0124 JAPAN

Test report No. : 23JE0023-YK-1
Page : 13 of 65
Issued date : June 23, 2003
FCC ID : CGJWT01

Conducted emission (Short antenna setup)

UL Apex Co., Ltd. YAMAKITA EMC LAB.

907 Kawanishi, Yamakita-machi, Ashigarakami-gun, Kanagawa-ken, 258-0124 JAPAN

Test report No. : 23JE0023-YK-1
Page : 14 of 65
Issued date : June 23, 2003
FCC ID : CGJWT01

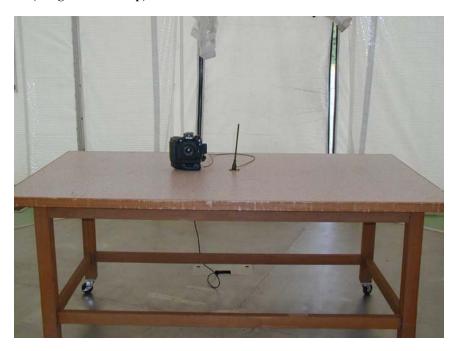
Conducted emission (Long antenna setup)

UL Apex Co., Ltd. YAMAKITA EMC LAB.

907 Kawanishi, Yamakita-machi, Ashigarakami-gun, Kanagawa-ken, 258-0124 JAPAN

Test report No. : 23JE0023-YK-1
Page : 15 of 65
Issued date : June 23, 2003
FCC ID : CGJWT01

Radiated emission (Short antenna setup)



UL Apex Co., Ltd. YAMAKITA EMC LAB.

907 Kawanishi, Yamakita-machi, Ashigarakami-gun, Kanagawa-ken, 258-0124 JAPAN

Test report No. : 23JE0023-YK-1
Page : 16 of 65
Issued date : June 23, 2003
FCC ID : CGJWT01

Radiated emission (Long antenna setup)

UL Apex Co., Ltd. YAMAKITA EMC LAB.

907 Kawanishi, Yamakita-machi, Ashigarakami-gun, Kanagawa-ken, 258-0124 JAPAN

Test report No. : 23JE0023-YK-1
Page : 17 of 65
Issued date : June 23, 2003
FCC ID : CGJWT01

Pre check of worse-case position (Short antenna)

UL Apex Co., Ltd. YAMAKITA EMC LAB.

907 Kawanishi, Yamakita-machi, Ashigarakami-gun, Kanagawa-ken, 258-0124 JAPAN

Test report No. : 23JE0023-YK-1
Page : 18 of 65
Issued date : June 23, 2003
FCC ID : CGJWT01

Pre check of worse-case position (Long antenna)

UL Apex Co., Ltd. YAMAKITA EMC LAB.

907 Kawanishi, Yamakita-machi, Ashigarakami-gun, Kanagawa-ken, 258-0124 JAPAN

DATA OF CONDUCTION TEST

UL Apex Co., Ltd.

Yamakita No.1 Shielded Room Report No.: 23JE0023-YK-1

Applicant

Kind of Equipment

NIKON CORPORATION Wirless LAN Transmitter

Model No. Serial No.

WT-1A No. 2

Power

AC120V/60Hz

Mode

Transmitting (Lowch: 2412MHz)

Remarks Date

Antenna model: WA-S1 6/10/2003

Single Phase

Engineer

Toyokazu Imamura

Phase Temperature Humidity

Regulation

22 °C

65 %

: FCC Part15C § 15. 207. (CISPR Pub. 22)

No.	FREQ.	READI QP [dB	NG (N) AV av]	QP	NG (L1) AV uV]	LISN FACTOR [dB]	CABLE LOSS [dB]	ATTEN.	RES QP [dBu	AV	LIM QP [dBu	IITS AV V]	MAR QP [d	GIN AV B]
1.	0. 1689	38. 3	25. 7	39. 0	27. 8	0. 0	0. 1	0. 0	39. 1	27. 9	65. 0	55. 0	25. 9	27. 1
2.	0. 2271	32. 3	20. 4	33. 0	23. 8	0. 0	0. 1	0. 0	33. 1	23. 9	62. 6	52. 6	29. 5	28. 7
3.	8. 0013	32. 5	31. 8	32. 6	32. 1	0. 3	0. 9	0. 0	33. 8	33. 3	60. 0	50. 0	26. 2	16. 7
4.	16. 0004	35. 2	33. 8	34. 5	34. 1	0. 8	1. 5	0. 0	37. 5	36. 4	60. 0	50. 0	22. 5	13. 6
5.	24. 0016	33. 9	31. 9	35. 3	32. 7	1. 1	1. 8	0. 0	38. 2	35. 6	60. 0	50. 0	21. 8	14. 4
6.	27. 7968	33. 6	28. 5	34. 2	29. 2	1. 2	1. 9	0. 0	37. 3	32. 3	60. 0	50. 0	22. 7	17. 7

CALCULATION: READING [dB μ V] + LISN FACTOR [dB] + CABLE LOSS [dB] + ATTEN [dB].

LISN: KLS-01 COAXIAL CABLE: KCC-14/15/16/18

■PULSE LIMITTER: KPL-01 (PL01) ■EMI RECEIVER: KTR-02 (ESCS30)

DATA OF CONDUCTION TEST

Engineer

UL Apex Co., Ltd.

Yamakita No.1 Shielded Room Report No.: 23JE0023-YK-1

Toyokazu Imamura

Applicant Kind of Equipment Model No. Serial No.

Power

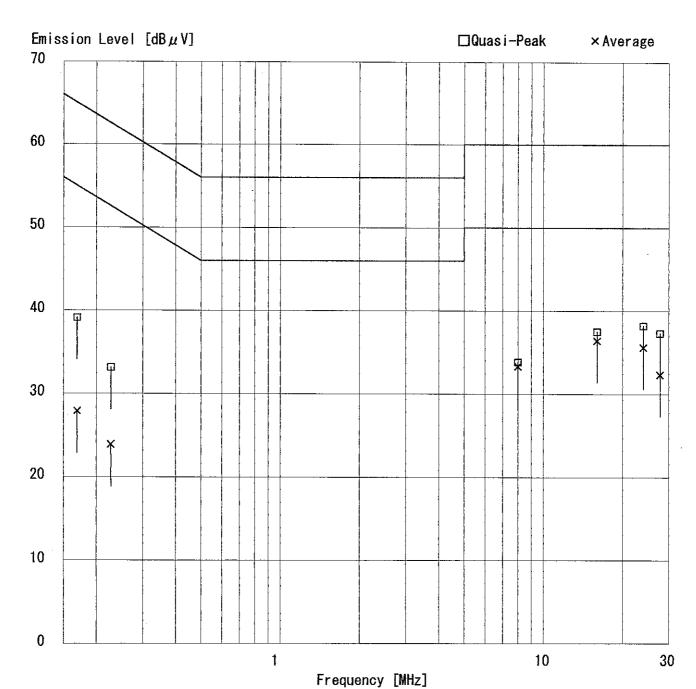
Mode Remarks

Date Phase

Temperature Humidity

Regulation

NIKON CORPORATION


Wirless LAN Transmitter

WT-1 A No. 2 AC120V/60Hz

Transmitting (Lowch: 2412MHz) Antenna model: WA-S1 6/10/2003

Single Phase 22 °C 65 %

: FCC Part15C § 15. 207. (CISPR Pub. 22)

UL Apex Co., Ltd.

Engineer

Yamakita No.1 Shielded Room Report No.: 23JE0023-YK-1

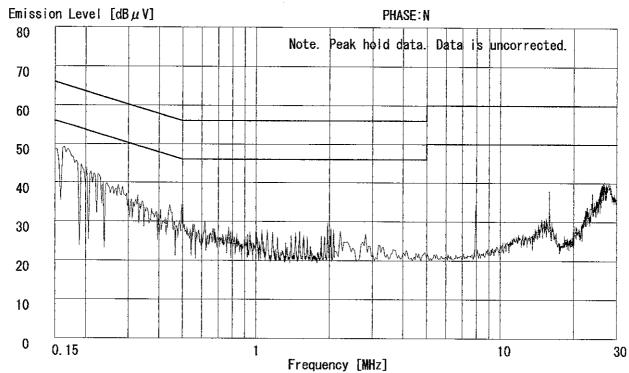
Toyokazu Imamura

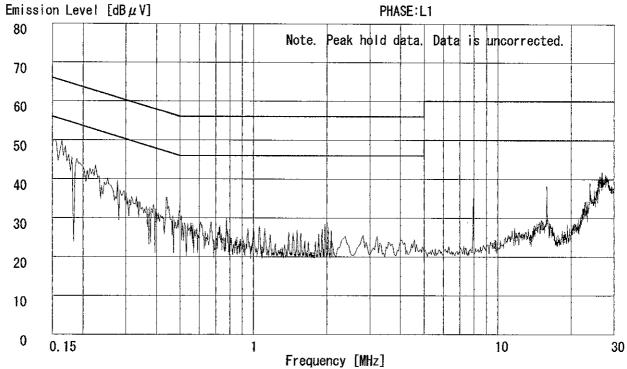
Applicant : NIKON CORPORATION

Kind of Equipment: Wirless LAN Transmitter : WT-1 A

Model No. Serial No. : No. 2

Power : AC120V/60Hz


Mode Transmitting (Lowch: 2412MHz) Remarks : Antenna model : WA-S1


: 6/10/2003 Date Phase

: Single Phase : 22 °C : 65 % Temperature Humidity

Regulation 1 : FCC Part15C § 15. 207. (CISPR Pub. 22)

Regulation 2 None

UL Apex Co., Ltd.

Yamakita No.1 Shielded Room Report No.: 23JE0023-YK-1

Applicant : NIKON CORPORATION
Kind of Equipment : Wirless LAN Transmitter

Model No. Serial No.

Power

WT-1 A No. 2 AC120V/60Hz

Mode

Transmitting (Midch: 2437MHz)

Remarks

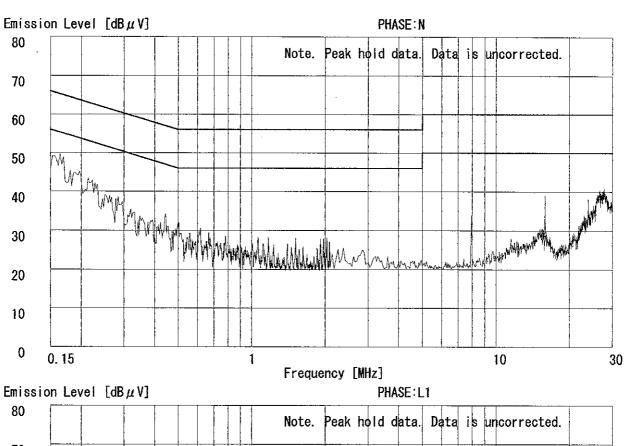
Antenna model: WA-S1

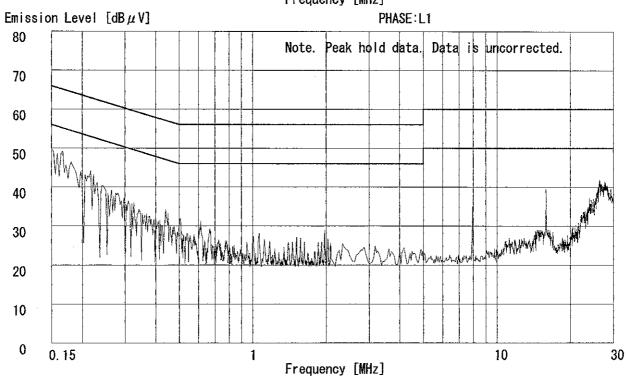
Date Phase 6/10/2003

Temperature

Single Phase 22 °C 65 %

Humidity


Engineer


Page: 22

Regulation 1

: FCC Part15C § 15. 207. (CISPR Pub. 22) : None

Regulation 2

UL Apex Co., Ltd.

Yamakita No.1 Shielded Room Report No.: 23JE0023-YK-1

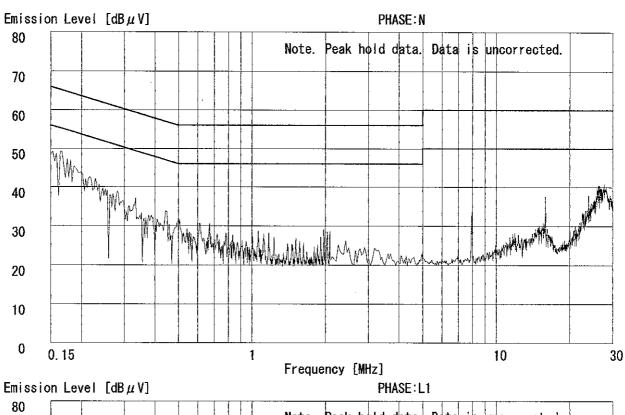
Applicant : NIKON CORPORATION Kind of Equipment: Wirless LAN Transmitter

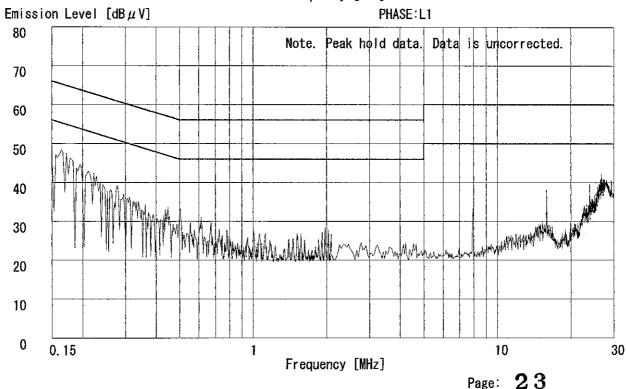
Model No. WT-LA Serial No. : No. 2

Power : AC120V/60Hz

Mode : Transmitting (Highch: 2462MHz)

Remarks : Antenna model : WA-S1


Date : 6/10/2003 : Single Phase : 22 °C : 65 % Phase


Temperature Engineer : Toyokazu Imamura

Humidity

Regulation 1 : FCC Part15C § 15. 207. (CISPR Pub. 22)

Regulation 2 : None

DATA OF CONDUCTION TEST

UL Apex Co., Ltd.

Yamakita No.1 Shielded Room Report No.: 23JE0023-YK-1

Applicant

NIKON CORPORATION

Kind of Equipment

Wirless LAN Transmitter

Model No. Serial No. WT-1 A No. 2

Power

AC120V/60Hz

Mode

Transmitting (Lowch: 2412MHz)

Remarks

Antenna model: WA-E1

Date Phase 6/10/2003

Temperature

Toyokazu Imamura

Humidity

Regulation

Single Phase
22 °C Engineer
65 %
FCC Part15C § 15, 207, (CISPR Pub. 22)

No.	FREQ.	READI QP [dB	NG (N) AV uV]	READI QP [dB	NG (L1) AV uV]	LISN FACTOR [dB]		ATTEN.	. RES QP [dBu	AV	LIM QP [dBu	ITS AV V]	MAR QP [d	GIN AV B]
1. 2. 3. 4. 5.	0. 1702 0. 2286 8. 0015 16. 0079 24. 0042 26. 4741	39. 5 33. 1 35. 2 37. 2 39. 9 33. 6	26. 2 20. 4 34. 5 36. 2 37. 5 29. 2	39. 8 34. 1 35. 5 37. 3 40. 0 34. 8	28. 2 23. 4 34. 7 36. 8 38. 2 30. 2	0. 0 0. 0 0. 3 0. 8 1. 1 1. 1	0. 1 0. 1 0. 9 1. 5 1. 8 1. 9	0. 0 0. 0 0. 0 0. 0 0. 0 0. 0	39. 9 34. 2 36. 7 39. 6 42. 9 37. 8	28. 3 23. 5 35. 9 39. 1 41. 1 33. 2	65. 0 62. 5 60. 0 60. 0 60. 0	55. 0 52. 5 50. 0 50. 0 50. 0 50. 0	25. 1 28. 3 23. 3 20. 4 17. 1 22. 2	26. 7 29. 0 14. 1 10. 9 8. 9 16. 8

CALCULATION: READING [dB μ V] + LISN FACTOR [dB] + CABLE LOSS [dB] + ATTEN [dB].

■LISN:KLS-01 ■COAXIAL CABLE:KCC-14/15/16/18

■PULSE LIMITTER: KPL-01 (PL01) ■EMI RECEIVER: KTR-02 (ESCS30)

DATA OF CONDUCTION TEST

UL Apex Co., Ltd.

Yamakita No.1 Shielded Room Report No.: 23JE0023-YK-1

Applicant

Kind of Equipment

: NIKON CORPORATION : Wirless LAN Transmitter

Model No. Serial No. WT-1 A

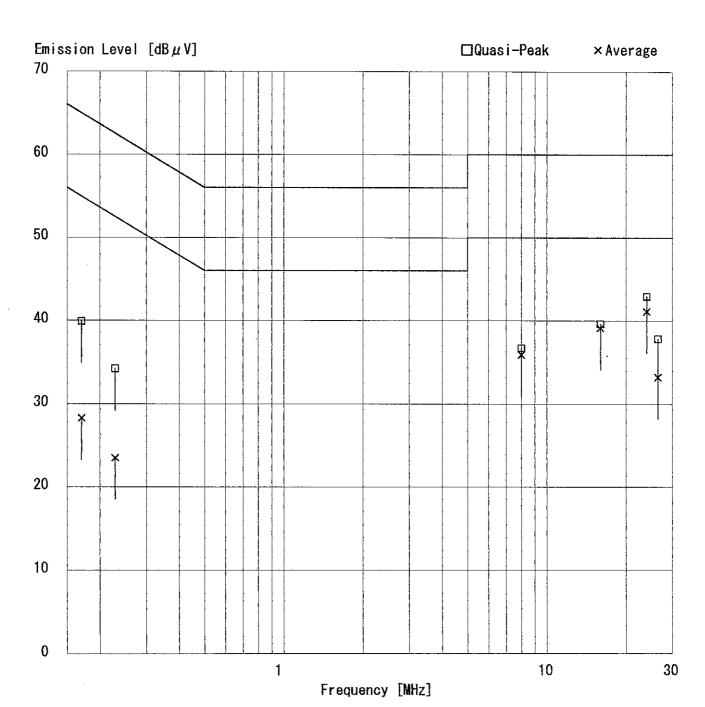
Power

: No. 2 : AC120V/60Hz

Mode Remarks : Transmitting (Lowch:2412MHz) : Antenna model : WA-E1

Date Phase

Temperature


6/10/2003

Humidity

Regulation

: Single Phase : 22 °C Engineer : 65 % : FCC Part15C § 15. 207. (CISPR Pub. 22)

Engineer Toyokazu Imamura

UL Apex Co., Ltd.

Yamakita No.1 Shielded Room Report No.: 23JE0023-YK-1

Toyokazu Imamura

Applicant : NIKON CORPORATION
Kind of Equipment : Wirless LAN Transmitter

Model No. Serial No. WT-1A

Power

: No. 2 : AC120V/60Hz

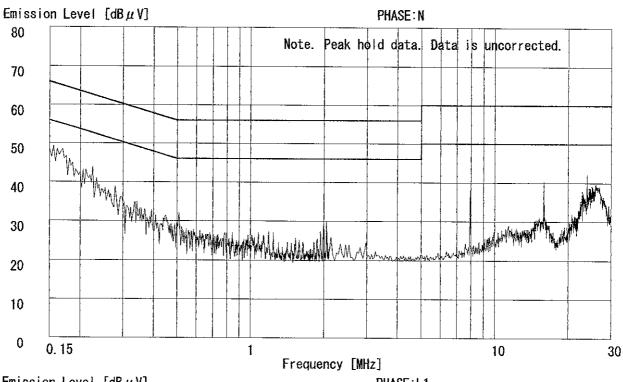
Mode

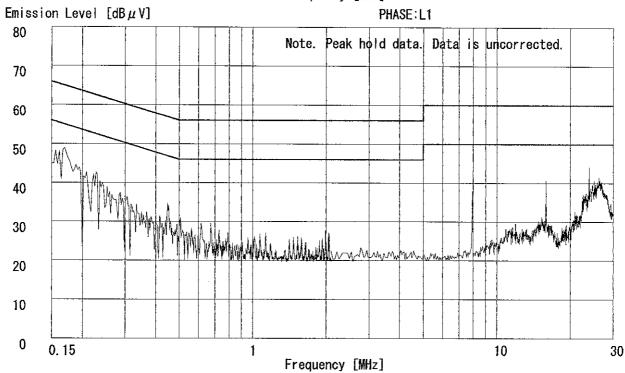
: Transmitting (Lowch: 2412MHz)

Remarks

: Antenna model : WA-E1

Date Phase : 6/10/2003


Temperature


Humidity

: Single Phase : 22 °C : 65 % Engineer : FCC Part15C § 15. 207. (CISPR Pub. 22)

Regulation 1 Regulation 2

None

UL Apex Co., Ltd.

Yamakita No.1 Shielded Room Report No.: 23JE0023-YK-1

Applicant : NIKON CORPORATION

Kind of Equipment: Wirless LAN Transmitter

Model No. Serial No.

WT-1A : No. 2

Power

AC120V/60Hz

Mode

Transmitting (Midch: 2437MHz) Antenna model: WA-E1

Remarks

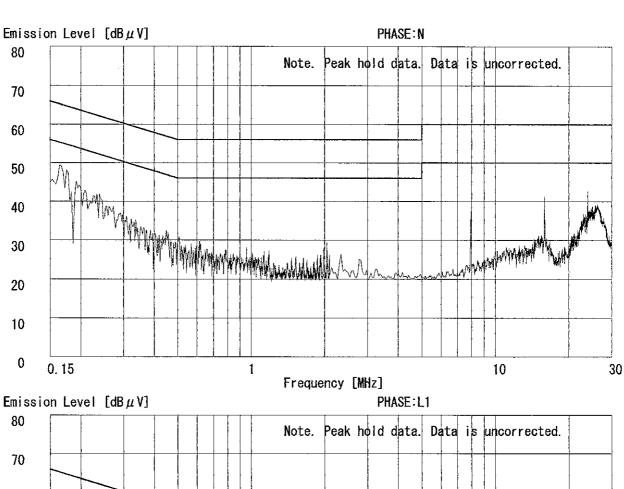
Date Phase 6/10/2003

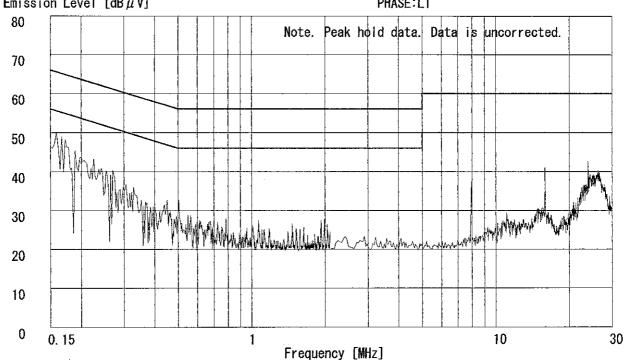
Temperature

: Single Phase : 22 °C : 65 %

Humidity

Engineer


Toyokazu Imamura


Regulation 1

: FCC Part15C § 15. 207. (CISPR Pub. 22)

Regulation 2

: None

UL Apex Co., Ltd.

Yamakita No.1 Shielded Room Report No. 23JE0023-YK-1

Applicant : NIKON CORPORATION

Kind of Equipment: Wirless LAN Transmitter

Model No. Serial No.

WT-1A No. 2

Power

: AC120V/60Hz

Mode

Remarks

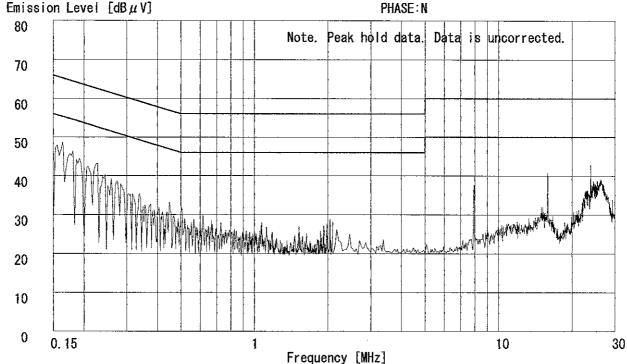
Transmitting (Highch: 2462MHz) Antenna model: WA-E1

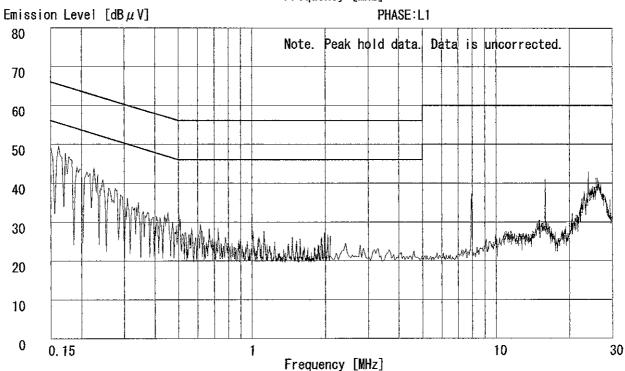
Date

6/10/2003

Phase Temperature Single Phase 22 °C

Humidity

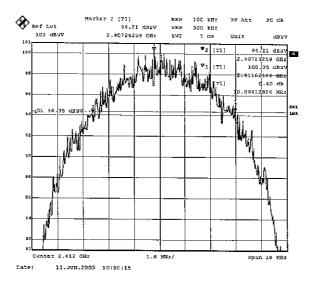

Engineer : Toyokazu Imamura


Regulation 1

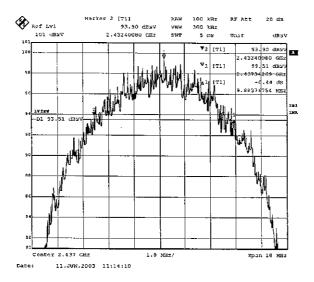
: 65 %

: FCC Part15C § 15. 207. (CISPR Pub. 22)

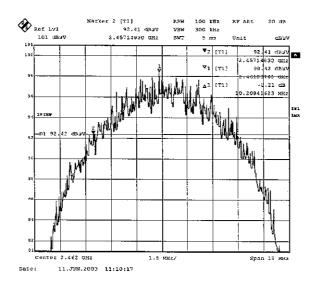
: None Regulation 2



6dB Bandwidth: FCC 15.247(a)


FCC ID: CGJWT01 Job No: 23JE0023-YK-1

I Inozoki


1. Ch Low:2412MHz

2. Ch Mid:2437MHz

3. Ch High:2462MHz

Peak Out Put Power(Conducted)

UL Apex Co., Ltd. YAMAKITA EMC NO.1 OPEN SITE

COMPANY: NIKON CORPORATION

EQUIPMENT : Wireless LAN Transmitter

MODEL: WT-1A FCC ID: CGJWT01

POWER : AC120V/60Hz

Mode : Transmitting

REPORT NO : 23JE0023-YK-1

REGULATION : Fcc Part15SubpartC 247(d)

DATE : 2003/ 06/11 Temp./Humi. : 23℃/56%

ENGINEER : Ichiro Isozaki

СН	FREQ	PM Reading	Cable Loss	Results	Limit	MARGIN
					(1W)	
	[GHz]	[dBm]	[dB]	[dBm]	[dBm]	[dB]
Low	2412.00	5.54	0.20	5.74	30.0	24.26
Mid	2437.00	4.97	0.20	5.17	30.0	24.83
High	2462.00	4.03	0.20	4.23	30.0	25.77

UL Apex Co., Ltd.

Engineer

Yamakita No.1 Open Test Site Report No.: 23JE0023-YK-1

Toyokazu Imamura

Applicant

NIKON CORPORATION

Kind of Equipment Model No.

Wirless LAN Transmitter

Serial No.

Power

WT-1A No. 2 AC120V/60Hz

Mode

Transmitting (Lowch: 2412MHz)

Remarks

Antenna model: WA-S1

Date

6/9/2003

Test Distance Temperature

Humidity

Regulation

: 3 m : 32 °C : 59 % : FCC Part15C § 15. 209

_						_							
No.		NT TYPE	READ HOR [dB)	VER	ANT FACTOR [dB/m]	AMP GAIN [dB]	CABLE LOSS [dB]	ATTEN. [dB]	RES HOR [dB μ	VER	LIMITS BµV/m]	HOR	RGIN VER B]
1. 2. 3. 4. 5. 6.	426. 65 540. 03	BB BB BB BB BB BB	22. 5 30. 5 26. 8 30. 6 32. 5 27. 8	28. 5 25. 2 32. 0 28. 3 31. 6 31. 2	11. 3 16. 5 17. 6 18. 6 19. 4 21. 1	28. 5 28. 4 28. 7 29. 3 29. 6 29. 3	1. 8 5. 2 5. 7 6. 5 7. 0 8. 0	6. 1 6. 1	13. 1 29. 9 27. 5 32. 5 35. 4 33. 7	19. 1 24. 6 32. 7 30. 2 34. 5 37. 1	40. 0 46. 0 46. 0 46. 0 46. 0 46. 0	26. 9 16. 1 18. 5 13. 5 10. 6 12. 3	20. 9 21. 4 13. 3 15. 8 11. 5 8. 9

CALCULATION: READING [dB μ V] + ANT. FACTOR [dB/m] + CABLE LOSS [dB] - AMP. GAIN [dB] + ATTEN [dB].

■ ANTENNA: KBA-03 (BBA9106) 30-299. 99MHz/KLA-01 (USLP9143) 300-1000MHz

CABLE: KCC-10/11/12/13/18 PREAMP: KAF-01 (8447D) EMI RECEIVER: KTR-02 (ESCS30)

UL Apex Co., Ltd.

Yamakita No.1 Open Test Site Report No.: 23JE0023-YK-1

Applicant

NIKON CORPORATION

Kind of Equipment Model No.

Wirless LAN Transmitter

Serial No.

WT-1A No. 2

Power

AC120V/60Hz

Mode

Transmitting (Midch: 2437MHz) Antenna model: WA-S1

Remarks

Date

6/9/2003

Test Distance Temperature

3 m 32 °C

Humidity Regulation 59 %

: FCC Part15C § 15. 209

Engineer

Toyokazu Imamura

No.	FREQ.	ANT TYPE	READ HOR [dB]		ANT FACTOR [dB/m]	AMP GAIN [dB]	CABLE LOSS [dB]	ATTEN. [dB]	RESI HOR [dB μ V	VER	LIMITS ΒμV/m]	HOR	RGIN VER B]
1.	50. 09	BB	21. 5	28. 0	11.3	28. 5	1.8	6.0	12. 1	18.6	40. 0	27. 9	21. 4
2.	367. 96	BB	30. 4	25. 3	16,5	28. 4	5.2	6.1	29. 8	24.7	46. 0	16. 2	21. 3
3.	426. 67	BB	25. 0	31. 1	17. 6	28. 7	5. 7	6. 1	25. 7	31. 8	46. 0	20. 3	14. 2
4.	540. 02	BB	30. 5	28. 7	18. 6	29. 3	6. 5	6. 1	32. 4	30. 6	46. 0	13. 6	15. 4
5.	600, 03	BB	32. 6	32. 1	19. 4	29, 6	7. 0	6. I	35. 5	35, 0	46. 0	10. 5	11. 0
6.	768, 99	BB	27. 5	32. 6	21. 1	29, 3	8. 0	6. 1	33. 4	38. 5	46. 0	12. 6	7. 5

CALCULATION: READING [dB μ V] + ANT. FACTOR [dB/m] + CABLE LOSS [dB] - AMP. GAIN [dB] + ATTEN [dB].

MANTENNA: KBA-03 (BBA9106) 30-299. 99MHz/KLA-01 (USLP9143) 300-1000MHz

CABLE: KCC-10/11/12/13/18 PREAMP: KAF-01 (8447D) EMI RECEIVER: KTR-02 (ESCS30)

UL Apex Co., Ltd.

Yamakita No.1 Open Test Site Report No.: 23JE0023-YK-1

Applicant

NIKON CORPORATION

Kind of Equipment Model No.

Wirless LAN Transmitter

Serial No.

Power

WT-1A No. 2 AC120V/60Hz

Mode Remarks Transmitting (Highch: 2462MHz) Antenna model: WA-S1 6/9/2003

Date

Test Distance Temperature

3 m 32 °C 59 %

Engineer

Toyokazu Imamura

Humidity Regulation

: FCC Part15C § 15, 209

No.		ANT TYPE	READ HOR [dB]	DING VER μV]	ANT FACTOR [dB/m]	AMP GAIN [dB]	CABLE LOSS [dB]	ATTEN. [dB]	RESU HOR [dB μ V	JLT I VER //m] [dl	LIMITS ΒμV/m]	HOR	RGIN VER HB]
1. 2. 3. 4. 5. 6.	50. 09 367. 95 426. 67 540. 03 600. 01 768. 00	BB BB BB BB BB	21. 2 30. 4 24. 2 31. 6 32. 6 27. 5	27. 7 25. 0 30. 6 28. 6 32. 1 31. 6	11. 3 16. 5 17. 6 18. 6 19. 4 21. 1	28. 5 28. 4 28. 7 29. 3 29. 6 29. 3	1. 8 5. 2 5. 7 6. 5 7. 0 8. 0	6. 0 6. 1 6. 1 6. 1 6. 1 6. 1	11. 8 29. 8 24. 9 33. 5 35. 5 33. 4	18. 3 24. 4 31. 3 30. 5 35. 0 37. 5	40. 0 46. 0 46. 0 46. 0 46. 0 46. 0	28. 2 16. 2 21. 1 12. 5 10. 5 12. 6	21. 7 21. 6 14. 7 15. 5 11. 0 8. 5

CALCULATION: READING[dB μ V] + ANT. FACTOR[dB/m] + CABLE LOSS[dB] - AMP. GAIN[dB] + ATTEN[dB].

■ ANTENNA: KBA-03 (BBA9106) 30-299. 99MHz/KLA-01 (USLP9143) 300-1000MHz

CABLE: KCC-10/11/12/13/18 PREAMP: KAF-01 (8447D) EMI RECEIVER: KTR-02 (ESCS30)

UL Apex Co., Ltd.

Yamakita No.1 Open Test Site Report No.: 23JE0023-YK-1

mma

Toyokazu Imamura

Applicant

NIKON CORPORATION

Kind of Equipment

Wirless LAN Transmitter

Model No. Serial No. WT-1A

No. 2

Power Mode

AC120V/60Hz

Remarks

Transmitting (Lowch: 2412MHz)

Antenna model: WA-E1

Date

6/9/2003

Test Distance Temperature

3 m 32 °C 59 %

Humidity Regulation

: FCC Part15C § 15. 209

No. FRI	TYPE			ANT FACTOR [dB/m]	AMP GAIN [dB]	CABLE LOSS [dB]	ATTEN. [dB]	RES HOR [dB μ	VER	LIMITS ΒμV/m]	HOR	RGIN VER dB]
1. 50. 2. 367. 3. 426. 4. 540. 5. 600. 6. 768.	98 BB 68 BB 03 BB 04 BB	21. 9 29. 5 26. 1 33. 1 32. 4 27. 8	26. 4 25. 5 30. 7 29. 3 30. 2 31. 5	11. 3 16. 5 17. 6 18. 6 19. 4 21. 1	28. 5 28. 4 28. 7 29. 3 29. 6 29. 3	1. 8 5. 2 5. 7 6. 5 7. 0 8. 0	6. 1 6. 1	12. 5 28. 9 26. 8 35. 0 35. 3 33. 7	17. 0 24. 9 31. 4 31. 2 33. 1 37. 4	40. 0 46. 0 46. 0 46. 0 46. 0 46. 0	27. 5 17. 1 19. 2 11. 0 10. 7 12. 3	23. 0 21. 1 14. 6 14. 8 12. 9 8. 6

CALCULATION: READING [dB μ V] + ANT. FACTOR [dB/m] + CABLE LOSS [dB] - AMP. GAIN [dB] + ATTEN [dB].

MANTENNA: KBA-03 (BBA9106) 30-299. 99MHz/KLA-01 (USLP9143) 300-1000MHz

CABLE: KCC-10/11/12/13/18 PREAMP: KAF-01 (8447D) EMI RECEIVER: KTR-02 (ESCS30)

UL Apex Co., Ltd.

Engineer

Yamakita No.1 Open Test Site Report No.: 23JE0023-YK-1

Toyokazu lmamura

Applicant

NIKON CORPORATION

Kind of Equipment Model No.

Wirless LAN Transmitter

Serial No.

Power

WT-1A No. 2 AC120V/60Hz

Mode

Transmitting (Midch: 2437MHz) Antenna model: WA-E1 6/9/2003

Remarks

Date

Test Distance Temperature

3 m 32 °C 59 %

Humidity

Regulation

: FCC Part15C § 15, 209

No.	FREQ.	ANT TYPE	REAI HOR [dB	DING VER μV]	ANT FACTOR [dB/m]	AMP GAIN [dB]	CABLE LOSS [dB]	ATTEN. [dB]	RESI HOR [dB μ)	VER	LIMITS ΒμV/m]	HOR	RGIN VER HB]
1. 2. 3. 4. 5. 6.	50. 09 367. 99 426. 67 540. 03 600. 02 767. 99	BB BB BB BB BB BB	21. 6 29. 9 26. 2 32. 0 33. 3 28. 0	27. 6 25. 5 30. 6 29. 4 30. 1 31. 2	11. 3 16. 5 17. 6 18. 6 19. 4 21. 1	28. 5 28. 4 28. 7 29. 3 29. 6 29. 3	5. 2 5. 7 6. 5	6. 1 6. 1 6. 1	12. 2 29. 3 26. 9 33. 9 36. 2 33. 9	18. 2 24. 9 31. 3 31. 3 33. 0 37. 1	40. 0 46. 0 46. 0 46. 0 46. 0 46. 0	27. 8 16. 7 19. 1 12. 1 9. 8 12. 1	21. 8 21. 1 14. 7 14. 7 13. 0 8. 9

CALCULATION: READING [dB μ V] + ANT. FACTOR [dB/m] + CABLE LOSS [dB] - AMP. GAIN [dB] + ATTEN [dB].

MANTENNA: KBA-03 (BBA9106) 30-299. 99MHz/KLA-01 (USLP9143) 300-1000MHz

CABLE: KCC-10/11/12/13/18 ■ PREANP: KAF-01 (8447D) ■ EN! RECEIVER: KTR-02 (ESCS30)

UL Apex Co., Ltd.

Yamakita No.1 Open Test Site Report No.: 23JE0023-YK-1

Toyokazu Imamura

Applicant

NIKON CORPORATION

Kind of Equipment

Wirless LAN Transmitter

Model No. Serial No.

WT-1A No. 2

Power

Mode

AC120V/60Hz

Transmitting (Highch: 2462MHz)

Remarks

Antenna model: WA-E1

Date

6/9/2003

Test Distance Temperature

3 m 32 °C 59 %

Humidity

Regulation

FCC Part15C § 15. 209

No.		ANT TYPE	READ HOR [dB/	VER	ANT FACTOR [dB/m]	AMP GAIN [dB]	CABLE LOSS [dB]	ATTEN. [dB]	RESI HOR [dB μ \	VER	LIMITS ΒμV/m]	HOR	RGIN VER B]
1. 2. 3. 4. 5. 6.	50. 09 368. 01 426. 67 540. 03 600. 03 767. 99	BB BB BB BB BB	23. 7 30. 0 28. 4 30. 4 31. 9 28. 2	26. 6 25. 9 31. 2 31. 5 29. 9 30. 7	11. 3 16. 5 17. 6 18. 6 19. 4 21. 1	28. 5 28. 4 28. 7 29. 3 29. 6 29. 3	1. 8 5. 2 5. 7 6. 5 7. 0 8. 0	6. 1 6. 1 6. 1	14. 3 29. 4 29. 1 32. 3 34. 8 34. 1	17. 2 25. 3 31. 9 33. 4 32. 8 36. 6	40. 0 46. 0 46. 0 46. 0 46. 0 46. 0	25. 7 16. 6 16. 9 13. 7 11. 2 11. 9	22. 8 20. 7 14. 1 12. 6 13. 2 9. 4

CALCULATION: READING [dB μ V] + ANT. FACTOR [dB/m] + CABLE LOSS [dB] - AMP. GAIN [dB] + ATTEN [dB].

■ ANTENNA: KBA-03 (BBA9106) 30-299. 99MHz/KLA-01 (USLP9143) 300-1000MHz

CABLE: KCC-10/11/12/13/18 PREAMP: KAF-01 (8447D) EMI RECEIVER: KTR-02 (ESCS30)

UL Apex Co., Ltd.

Yamakita No.1 Open Test Site Report No.: 23JE0023-YK-1

Applicant

: NIKON CORPORATION

Kind of Equipment Model No.

: Wirless LAN Transmitter

Serial No.

Power

: WT-1A : No. 2 : AC120V/60Hz

Mode

Remarks

Transmitting (Lowch: 2412MHz) Antenna model: WA-S1 6/2/2003

Date

Test Distance Temperature

: 3 m : 28 °C : 37 %

Engineer

Humidity Regulation

: FCC Part15C § 15. 209 (AV Detection)

No.	FREQ.	ANT TYPE	REAL HOR [dB]		ANT FACTOR [dB/m]	AMP GAIN [dB]	CABLE LOSS [dB]	ATTEN. [dB]	RESI HOR [dB μ)	VER	LIMITS BμV/m]	HOR	RGIN VER HB]
10. 11.	2081. 75 2389. 56 2390. 00 4824. 00 7236. 00 9648. 00 12060. 00 14472. 00 16884. 00 19296. 00 21708. 00 24120. 00	BB BB BB BB BB BB BB BB BB BB	40. 8 33. 9 33. 8 31. 3 29. 8 28. 8 28. 9 28. 3 28. 1 26. 5 29. 0 27. 8	41. 8 33. 6 33. 5 31. 5 29. 8 28. 8 28. 6 28. 5 27. 8 26. 6 28. 8 27. 7	30. 6 30. 6 30. 6 34. 7 37. 7 39. 0 42. 1 41. 2 41. 6 39. 1 39. 2 40. 3	36. 9 36. 9 36. 9 35. 2 36. 9 36. 3 35. 2 35. 0 34. 7 34. 3 35. 5	3. 9 4. 1 4. 1 5. 6 6. 5 7. 2 8. 1 7. 3 8. 4 9. 9 10. 9	10. 0 10. 0 10. 0 0. 6 0. 5 0. 5 0. 5 0. 2 0. 5 0. 0 0. 0	48. 4 41. 7 41. 6 37. 0 37. 7 38. 6 43. 3 41. 8 44. 0 40. 3 43. 8 43. 5	49. 4 41. 4 41. 3 37. 2 37. 7 38. 6 43. 0 42. 0 43. 7 40. 4 43. 6 43. 4	54. 0 54. 0 54. 0 54. 0 54. 0 54. 0 54. 0 54. 0 54. 0 54. 0	5. 6 12. 3 12. 4 17. 0 16. 3 15. 4 10. 7 12. 2 10. 0 13. 7 10. 2	4. 6 12. 6 12. 7 16. 8 16. 3 15. 4 11. 0 12. 0 10. 3 13. 6 10. 4 10. 6

CALCULATION: READING [dB μ V] + ANT. FACTOR [dB/m] + CABLE LOSS [dB] - AMP. GAIN [dB] + ATTEN [dB].

■ANTENNA: KHA-01 (SAS-200 571) 1-18GHz/KHA-03 (3160-09) 18-26GHz MAMP: KAF-02 (8447B) RECEIVER: KTR-01 (ES140) CABLE: KCC-D3/D7

UL Apex Co., Ltd.

Yamakita No.1 Open Test Site Report No.: 23JE0023-YK-1

Applicant

NIKON CORPORATION

Kind of Equipment Model No. Serial No.

Wirless LAN Transmitter

WT-1A No. 2

Power

AC120V/60Hz

Mode

Transmitting (Midch: 2437MHz) Antenna model: WA-S1 6/2/2003

Remarks

Date

Test Distance Temperature

3 m 28 °C 37 %

Engineer

Takahiro Suzuki

Humidity Regulation

: FCC Part15C § 15. 209 (AV Detection)

1. 2106.80 BB 43.2 39.6 30.6 36.9 4.0 10.0 50.9 47.3 54.0 3.1 6.7 2. 4874.00 BB 31.5 31.4 35.0 35.2 5.6 0.6 37.5 37.4 54.0 16.5 16.6 3. 7311.00 BB 29.9 29.7 37.8 36.8 6.6 0.5 38.0 37.8 54.0 16.0 16.2 4. 9748.00 BB 28.7 28.7 39.0 37.0 7.2 0.6 38.5 38.5 54.0 15.5 15.5 5. 12185.00 BB 28.9 29.0 42.3 36.1 8.1 0.4 43.6 43.7 54.0 10.4 10.3 6. 14622.00 BB 28.2 28.0 41.7 35.2 7.7 0.3 42.7 42.5 54.0 11.3 11.5 7. 17059.00 BB 27.6 27.7 41.7 34.9 8.7 0.5 43.6 43.7 54.0	No.	FREQ.	ANT TYPE	HOR	DING VER μV]	ANT FACTOR [dB/m]	AMP GAIN [dB]	CABLE LOSS [dB]	ATTEN. [dB]	RESI HOR [dB μ]	VER	LIMITS ΒμV/m]	HOR	RGIN VER fB]
10. 24370.00 BB 27.4 27.5 40.4 36.3 10.8 0.0 42.3 42.4 54.0 11.7 11.6	3. 4. 5. 6. 7.	4874.00 7311.00 9748.00 12185.00 14622.00 17059.00 19496.00 21933.00	BB BB BB BB BB BB BB	31, 5 29, 9 28, 7 28, 9 28, 2 27, 6 26, 8	31. 4 29. 7 28. 7 29. 0 28. 0 27. 7 26. 7	35. 0 37. 8 39. 0 42. 3 41. 7 41. 7 39. 0	35. 2 36. 8 37. 0 36. 1 35. 2 34. 9 34. 7	5. 6 6. 6 7. 2 8. 1 7. 7 8. 7 9. 5	0. 6 0. 5 0. 6 0. 4 0. 3 0. 5	37. 5 38. 0 38. 5 43. 6 42. 7 43. 6	37. 4 37. 8 38. 5 43. 7 42. 5 43. 7	54. 0 54. 0 54. 0 54. 0 54. 0 54. 0	16. 5 16. 0 15. 5 10. 4 11. 3 10. 4	16. 6 16. 2 15. 5 10. 3 11. 5 10. 3

CALCULATION: READING [dB μ V] + ANT. FACTOR [dB/m] + CABLE LOSS [dB] - AMP. GAIN [dB] + ATTEN [dB].

■ ANTENNA: KHA-01 (SAS-200 571) 1-18GHz/KHA-03 (3160-09) 18-26GHz ■ CABLE: KCC-D3/D7 ■ PREAMP: KAF-02 (8449B) ■ EMI RECEIVER: KTR-01 (ES140)

UL Apex Co., Ltd.

Yamakita No.1 Open Test Site Report No.: 23JE0023-YK-1

Applicant

: NIKON CORPORATION

Kind of Equipment Model No. Serial No.

Wirless LAN Transmitter

Power

WT-1A No. 2 AC120V/60Hz

Mode

Transmitting (Highch: 2462MHz) Antenna model: WA-S1 6/2/2003

Remarks

Date

Test Distance Temperature

3 m 28 °C 37 %

Engineer

Takahiro Suzuki

Humidity Regulation

: FCC Part15C § 15. 209 (AV Detection)

No.	FREQ.	ANT TYPE	REAI HOR [dB]	DING VER μV]	ANT FACTOR [dB/m]	AMP GAIN [dB]	CABLE LOSS [dB]	ATTEN. [dB]	REST HOR [dB μ]	VER	LIMITS ΒμV/m]	HOR	RGIN VER HB]
1. 2. 3. 4.	2131.80 2483.50 4924.00 7386.00	BB BB BB BB	43. 3 36. 7 31. 6 29. 3	43. 2 36. 4 31. 4 29. 5	30. 6 30. 6 35. 3 37. 9	36, 9 36, 9 35, 2 36, 9	4. 0 4. 1 5. 6 6. 6	0.5	51. 0 44. 5 37. 8 37. 4	50. 9 44. 2 37. 6 37. 6	54. 0 54. 0 54. 0 54. 0	3. 0 9. 5 16. 2 16. 6	3. 1 9. 8 16. 4 16. 4
5. 6. 7. 8. 9. 10.	9848. 00 12310. 00 14772. 00 17234. 00 19696. 00 22158. 00 24620. 00	BB BB BB BB BB BB	28. 7 28. 9 28. 5 27. 7 26. 3 28. 1 27. 5	28. 7 28. 6 28. 4 27. 7 26. 4 29. 0 27. 6	39. 0 42. 5 42. 2 42. 3 39. 5 39. 2 40. 4	37. 0 35. 9 35. 1 34. 8 35. 0 33. 7 36. 0	7. 2 8. 1 8. 1 8. 5 9. 6 10. 3 10. 9	0. 7 0. 4 0. 4 0. 6 0. 0 0. 0	38. 6 44. 0 44. 1 44. 3 40. 4 43. 9 42. 8	38. 6 43. 7 44. 0 44. 3 40. 5 44. 8 42. 9	54. 0 54. 0 54. 0 54. 0 54. 0 54. 0 54. 0	15. 4 10. 0 9. 9 9. 7 13. 6 10. 1 11. 2	15. 4 10. 3 10. 0 9. 7 13. 5 9. 2 11. 1

CALCULATION: READING [dB μ V] + ANT. FACTOR [dB/m] + CABLE LOSS [dB] - AMP. GAIN [dB] + ATTEN [dB].

■ ANTENNA: KHA-01 (SAS-200 571) 1-18GHz/KHA-03 (3160-09) 18-26GHz

■ CABLE: KCC-D3/D7 ■ PREAMP: KAF-02 (8449B) ■ EMI RECEIVER: KTR-01 (ES140)

UL Apex Co., Ltd.

Yamakita No.1 Open Test Site Report No.: 23JE0023-YK-1

Applicant

: NIKON CORPORATION

Kind of Equipment

Wirless LAN Transmitter

Model No. Serial No. WT-1A

Power

No. 2 AC120V/60Hz

Mode

Transmitting (Lowch: 2412MHz) Antenna model: WA-S1 6/2/2003

Remarks

Date

Test Distance Temperature

3 m 28 °C 37 %

Engineer

Humidity Regulation

: FCC Part15C § 15. 209 (PK Detection)

No.	FREQ.	ANT TYPE	REAL HOR [dB	VER	ANT FACTOR [dB/m]	AMP GAIN [dB]	CABLE LOSS [dB]	ATTEN.	RESI HOR [dB μ '	VER	LIMITS ΒμV/m]	HOR	RGIN VER HB]
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.	2081. 75 2389. 56 2390. 00 4824. 00 7236. 00 9648. 00 12060. 00 14472. 00 16884. 00 19296. 00 21708. 00 24120. 00	BB BB BB BB BB BB BB BB BB BB	49. 1 48. 6 44. 5 44. 0 42. 7 42. 6 42. 4 40. 9 40. 8 40. 0 42. 1 40. 8	49. 6 44. 6 43. 7 44. 4 42. 3 41. 3 41. 6 41. 2 41. 6 39. 7 42. 4 40. 6	30. 6 30. 6 30. 6 34. 7 37. 7 39. 0 42. 1 41. 2 41. 6 39. 1 39. 2 40. 3	36. 9 36. 9 36. 9 35. 2 36. 9 36. 3 36. 3 35. 2 35. 0 34. 7 34. 3 35. 5	3. 9 4. 1 4. 1 5. 6 6. 5 7. 2 8. 1 7. 3 8. 8 9. 9	0.5 0.5 0.2 0.5	56. 7 56. 4 52. 3 49. 7 50. 6 52. 4 56. 8 54. 4 56. 7 53. 8 56. 5	57. 2 52. 4 51. 5 50. 1 50. 2 51. 1 56. 0 54. 7 57. 5 53. 5 57. 2 56. 3	74. 0 74. 0	17. 3 17. 6 21. 7 24. 3 23. 4 21. 6 17. 2 19. 6 17. 3 20. 2 17. 1 17. 5	16. 8 21. 6 22. 5 23. 9 23. 8 22. 9 18. 0 19. 3 16. 5 20. 5 16. 8 17. 7

CALCULATION: READING[dB μ V] + ANT. FACTOR[dB/m] + CABLE LOSS[dB] - AMP. GAIN[dB] + ATTEN[dB].

■ ANTENNA: KHA-01 (SAS-200 571) 1-18GHz/KHA-03 (3160-09) 18-26GHz ■ AMP: KAF-02 (84478) ■ RECEIVER: KTR-01 (ES140) ■ CABLE: KCC-D3/D7

UL Apex Co., Ltd.

Yamakita No.1 Open Test Site Report No.: 23JE0023-YK-1

Applicant

: NIKON CORPORATION

Kind of Equipment

: Wirless LAN Transmitter

Model No. Serial No. WT-1A No. 2

Power

AC120V/60Hz

Mode

Transmitting (Midch: 2437MHz)

Remarks

Antenna model : WA-S1 6/2/2003

Date

Test Distance

: 3 m : 28 ℃ : 37 %

Engineer

Takahiro Suzuki

Temperature Humidity Regulation

: FCC Part15C § 15. 209 (PK Detection)

No.	FREQ.	ANT TYPE	HOR	DING VER μV]	ANT FACTOR [dB/m]	AMP GAIN [dB]	CABLE LOSS [dB]	ATTEN. [dB]	RESI HOR [dB μ I	VER	LIMITS ΒμV/m]	HOR	RGIN VER B]
1. 2. 3. 4. 5. 6. 7. 8.	2106. 80 4874. 00 7311. 00 9748. 00 12185. 00 14622. 00 17059. 00 19496. 00 21933. 00	BB BB BB BB BB BB BB	49. 6 44. 4 42. 8 42. 5 42. 3 40. 9 40. 7 39. 4 42. 3	48. 9 44. 2 42. 4 41. 8 41. 9 41. 0 41. 7 39. 5 42. 1	30. 6 35. 0 37. 8 39. 0 42. 3 41. 7 41. 7 39. 0 39. 3	36. 9 35. 2 36. 8 37. 0 36. 1 35. 2 34. 9 34. 7 33. 6	4. 0 5. 6 6. 6 7. 2 8. 1 7. 7 8. 7 9. 5	0. 4 0. 3 0. 5 0. 0	57. 3 50. 4 50. 9 52. 3 57. 0 55. 4 56. 7 53. 2 58. 2	56. 6 50. 2 50. 5 51. 6 56. 6 55. 5 57. 7 53. 3 58. 0	74. 0 74. 0 74. 0 74. 0 74. 0 74. 0 74. 0 74. 0	16. 7 23. 6 23. 1 21. 7 17. 0 18. 6 17. 3 20. 8 15. 8	17. 4 23. 8 23. 5 22. 4 17. 4 18. 5 16. 3 20. 7 16. 0
9. 10.	24370. 00	BB	40.5	40. 7	40.4	36. 3	10. 2	0. 0	55. 4	55. 6	74.0	18. 6	18. 4

CALCULATION: READING[dB μ V] + ANT. FACTOR[dB/m] + CABLE LOSS[dB] - AMP. GAIN[dB] + ATTEN[dB].

MANTENNA: KHA-01 (SAS-200 571) 1-18GHz/KHA-03 (3160-09) 18-26GHz

■ CABLE: KCC-D3/D7 ■ PREAMP: KAF-02 (8449B) ■ EMI RECEIVER: KTR-01 (ES140)

UL Apex Co., Ltd.

Yamakita No.1 Open Test Site Report No.: 23JE0023-YK-1

Applicant

: NIKON CORPORATION

Kind of Equipment

Wirless LAN Transmitter

Model No. Serial No.

WT-1A : No. 2

Power

AC120V/60Hz

Mode

Transmitting (Highch: 2462MHz) Antenna model: WA-S1 6/2/2003

Remarks

Date

3 m 28 °C 37 % Test Distance Temperature

Engineer

Takahiro Suzuki

Humidity Regulation

: FCC Part15C § 15. 209 (PK Detection)

No.		ANT TYPE	REAI HOR [dB		ANT FACTOR [dB/m]	AMP GAIN [dB]	CABLE LOSS [dB]	ATTEN. [dB]	RESI HOR [dB μ]	VER	LIMITS ΒμV/m]	HOR	RGIN VER £B]
1.	2131.80	BB	50.8	49.7	30.6	36. 9	4.0	10.0	58. 5	57.4	74. 0	15. 5	16.6
2.	2483.50	BB	49.0	48.0	30. 6	36. 9	4. 1	10.0	56.8	55, 8	74.0	17. 2	18. 2
3.	4924.00	BB	44. 3	44. 1	35. 3	35. 2	5. 6	0.5	50. 5	50. 3	74.0	23.5	23.7
4.	7386, 00	BB	42.8	42. 2	37. 9	36.9	6.6	0.5	50.9	50.3	74.0	23. 1	23.7
5.	9848, 00	BB	42.4	41.8	39.0	37.0	7.2	0.7	52.3	51.7	74.0	21.7	22.3
6.	12310.00	BB	42.5	42. 1	42.5	35.9	8.1	0.4	57.6	57.2	74.0	16.4	16.8
7.	14772.00	BB	41.3	41.0	42.2	35. 1	8. 1	0.4	56.9	56.6	74.0	17. 1	17.4
8.	17234.00	BB	40.3	41.5	42.3	34.8	8.5	0.6	56. 9	58. 1	74.0	17. 1	15.9
9.	19696, 00	BB	39.5	39.8	39. 5	35.0	9.6	0.0	53.6	53.9	74.0	20.4	20.1
10.	22158.00	BB	42. 1	42.5	39. 2	33. 7	10.3	0.0	57. 9	58. 3	74.0	16. 1	15. 7
11.	24620.00	BB	40. 7	40.8	40. 4	36.0	10.9	0.0	56. 0	56. 1	74. 0	18. 0	17.9

CALCULATION: READING [dB μ V] + ANT. FACTOR [dB/m] + CABLE LOSS [dB] - AMP. GAIN [dB] + ATTEN [dB].

■ ANTENNA: KHA-01 (SAS-200 571) 1-18GHz/KHA-03 (3160-09) 18-26GHz

■ CABLE: KCC-D3/D7 ■ PREAMP: KAF-02 (8449B) ■ EMI RECEIVER: KTR-01 (ES140)

UL Apex Co., Ltd.

Yamakita No.1 Open Test Site Report No.: 23JE0023-YK-1

Applicant

: NIKON CORPORATION

Kind of Equipment Model No.

Wirless LAN Transmitter

Serial No.

Power

WT-1 A No. 2 AC120V/60Hz

Mode

Transmitting (Lowch: 2412MHz)
Antenna model: WA-E1
6/2/2003

Remarks

Date

Test Distance Temperature

3 m 28 °C 37 %

Engineer

Takahiro Suzuki

Humidity Regulation

: 37 % : FCC Part15C § 15. 209 (AV Detection)

No.	FREQ.	ANT TYPE	REAI HOR [dB		ANT FACTOR [dB/m]	AMP GAIN [dB]	CABLE LOSS [dB]	ATTEN. [dB]	RESI HOR [dB μ V	VER	LIMITS BμV/m]	HOR	RGIN VER HB]
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.	2082. 00 2389. 10 2390. 00 4824. 00 7236. 00 9648. 00 12060. 00 14472. 00 16884. 00 19296. 00 21708. 00 24120. 00	BB BB BB BB BB BB BB BB BB BB	39. 2 33. 9 34. 0 31. 4 29. 7 28. 7 28. 8 28. 2 28. 0 26. 4 29. 0 27. 7	42. 0 34. 1 33. 9 31. 6 29. 9 28. 8 28. 4 27. 6 26. 5 28. 6 27. 6	30. 6 30. 6 30. 6 34. 7 37. 7 39. 0 42. 1 41. 2 41. 6 39. 1 39. 2 40. 3	36. 9 36. 9 36. 9 35. 2 36. 8 36. 3 35. 2 35. 0 34. 7 34. 3 35. 5	3. 9 4. 1 4. 1 5. 6 6. 5 7. 2 8. 1 7. 3 8. 8 9. 4 9. 9	10. 0 10. 0 10. 0 0. 6 0. 5 0. 5 0. 5 0. 2 0. 5 0. 0 0. 0	46. 8 41. 7 41. 8 37. 1 37. 6 38. 5 43. 2 41. 7 43. 9 40. 2 43. 8 43. 4	49. 6 41. 9 41. 7 37. 3 37. 8 38. 6 42. 8 41. 9 43. 5 40. 3 43. 4 43. 3	54. 0 54. 0	7. 2 12. 3 12. 2 16. 9 16. 4 15. 5 10. 8 12. 3 10. 1 13. 8 10. 2 10. 6	4. 4 12. 1 12. 3 16. 7 16. 2 15. 4 11. 2 12. 1 10. 5 13. 7 10. 6 10. 7

CALCULATION: READING [dB μ V] + ANT. FACTOR [dB/m] + CABLE LOSS [dB] - AMP. GAIN [dB] + ATTEN [dB].

■ ANTENNA: KHA-01 (SAS-200 571) 1-18GHz/KHA-03 (3160-09) 18-26GHz ■ AMP: KAF-02 (8447B) ■ RECEIVER: KTR-01 (ES140) ■ CABLE: KCC-D3/D7

UL Apex Co., Ltd.

Yamakita No.1 Open Test Site Report No.: 23JE0023-YK-1

Applicant

NIKON CORPORATION

Kind of Equipment Model No.

Wirless LAN Transmitter

Serial No.

WT-1A No. 2

Power

AC120V/60Hz

Mode

Transmitting (Midch: 2437MHz) Antenna model : WA-E1

Remarks

Date

Humidity

Regulation

6/2/2003

Engineer

Takahiro Suzuki

Test Distance Temperature

3 m 28 °C 37 %

: FCC Part15C § 15. 209 (AV Detection)

No.	FREQ.	ANT TYPE	HOR	DING VER μV]	ANT FACTOR [dB/m]	AMP GAIN [dB]	CABLE LOSS [dB]	ATTEN. [dB]	RESI HOR [dB μ \	VER	LIMITS ΒμV/m]	HOR	RGIN VER IB]
1. 2. 3. 4. 5. 6. 7.	2106. 80 4874. 00 7311. 00 6748. 00 12185. 00 14622. 00 17059. 00 19496. 00	BB BB BB BB BB BB BB	41. 1 31. 4 29. 8 28. 8 28. 8 28. 1 27. 9 26. 9	41. 7 31. 4 29. 8 28. 8 28. 9 28. 2 27. 9 26. 8	30. 6 35. 0 37. 8 37. 4 42. 3 41. 7 41. 7 39. 0	36. 9 35. 2 36. 8 36. 6 36. 1 35. 2 34. 9 34. 7	4. 0 5. 6 6. 6 6. 3 8. 1 7. 7 8. 7 9. 5	10. 0 0. 6 0. 5 0. 3 0. 4 0. 3 0. 5 0. 0	48. 8 37. 4 37. 9 36. 2 43. 5 42. 6 43. 9 40. 7	49. 4 37. 4 37. 9 36. 2 43. 6 42. 7 43. 9 40. 6	54. 0 54. 0 54. 0 54. 0 54. 0 54. 0 54. 0	5. 2 16. 6 16. 1 17. 8 10. 5 11. 4 10. 1 13. 3	4. 6 16. 6 16. 1 17. 8 10. 4 11. 3 10. 1 13. 4
9. 10.	21933, 00 24370, 00	BB BB	29. 1 27. 5	29. 1 27. 5	39. 3 40. 4	33. 6 36. 3	10. 2 10. 8	0. 0 0. 0	45. 0 42. 4	45. 0 42. 4	54. 0 54. 0	9. 0 11. 6	9. 0 11. 6

CALCULATION: READING[dB μ V] + ANT. FACTOR[dB/m] + CABLE LOSS[dB] - AMP. GAIN[dB] + ATTEN[dB].

■ANTENNA: KHA-01 (SAS-200 571) 1-18GHz/KHA-03 (3160-09) 18-26GHz

■CABLE: KCC-D3/D7 ■ PREAMP: KAF-02 (8449B) ■EMI RECEIVER: KTR-01 (ES140)

UL Apex Co., Ltd.

Yamakita No.1 Open Test Site Report No.: 23JE0023-YK-1

Applicant

NIKON CORPORATION

Kind of Equipment Model No.

Wirless LAN Transmitter

Serial No.

Power

WT-1A No. 2 AC120V/60Hz

Mode

Transmitting (Highch: 2462MHz) Antenna model: WA-E1 6/2/2003

Remarks

Date

Test Distance Temperature

3 m 28 °C 37 %

Engineer

Takahiro Suzuki

Humidity Regulation

: FCC Part15C § 15. 209 (AV Detection)

No.	FREQ.	ANT TYPE	REAI HOR [dB]	DING VER μV]	ANT FACTOR [dB/m]	AMP GAIN [dB]	CABLE LOSS [dB]	ATTEN. [dB]	RESI HOR [dB μ)	VER	LIMITS BμV/m]	HOR	RGIN VER HB]
1. 2.	2131.64 2483,50	BB BB	38. 2 36. 2	43. 2 36. 5	30. 6 30. 6	36. 9 36. 9	4. 0 4. 1	10. 0 10. 0	45. 9 44. 0	50. 9 44. 3	54. 0 54. 0	8. 1 10. 0	3. 1 9. 7
3.	4924.00	BB	31.8	31.5	35. 3	35, 2		0.5	38.0	37. 7	54.0	16.0	16.3
4. 5.	7386, 00 9848, 00	BB BB	29.4 28.6	29. 6 28. 9	37. 9 39. 0	36. 9 37. 0	$6.6 \\ 7.2$	0. 5 0. 7	37. 5 38. 5	37. 7 38. 8	54.0 54.0	16. 5 15. 5	16. 3 15. 2
6.	12310.00 14772.00	BB BB	28.7	28. 4	42.5	35.9	8.1	0.4	43.8	43.5	54.0	10.2	10.5
8.	17234.00	BB	28.4 27.6	28. 2 27. 8	42. 2 42. 3	35. 1 34. 8	8. 1 8. 5	0. 4 0. 6	44. 0 44. 2	43.8 44.4	54.0 54.0	10. 0 9. 8	10, 2 9, 6
9.	19696.00	BB	26.5	26.8	39.5	35.0	9.6	0.0	40.6	40. 9	54.0	13. 4	13. 1
10. 11.	22158. 00 24620. 00	BB BB	29. 0 27. 6	29. 2 27. 7	39. 2 40. 4	33. 7 36. 0	10. 3 10. 9	0. 0 0. 0	44. 8 42. 9	45. 0 43. 0	54. 0 54. 0	9. 2 11. 1	9.0 11.0

CALCULATION: READING[dB μ V] + ANT. FACTOR[dB/m] + CABLE LOSS[dB] - AMP. GAIN[dB] + ATTEN[dB].

MANTENNA: KHA-01 (SAS-200 571) 1-18GHz/KHA-03 (3160-09) 18-26GHz

■CABLE: KCC-D3/D7 ■ PREAMP: KAF-02 (8449B) ■ ENI RECEIVER: KTR-01 (ESI40)

UL Apex Co., Ltd.

Yamakita No.1 Open Test Site Report No.: 23JE0023-YK-1

Applicant

: NIKON CORPORATION

Kind of Equipment Model No.

Wirless LAN Transmitter

Serial No.

Power

WT-1 A No. 2 AC120V/60Hz

Mode

Transmitting (Lowch: 2412MHz) Antenna model: WA-E1

Remarks

Date

6/2/2003

Test Distance Temperature

3 m 28 °C 37 %

Engineer

Humidity Regulation

FCC Part15C § 15. 209 (PK Detection)

[MHz] [dB μ V] [dB/m] [dB] [dB] [dB] [dB μ V/m] [d]		
1. 2082.00 BB 49.0 50.0 30.6 36.9 3.9 10.0 56.6 57.6 2. 2389.10 BB 53.2 52.9 30.6 36.9 4.1 10.0 61.0 60.7 3. 2390.00 BB 44.7 44.5 30.6 36.9 4.1 10.0 52.5 52.3 4. 4824.00 BB 44.2 44.2 34.7 35.2 5.6 0.6 49.9 49.9 5. 7236.00 BB 42.8 42.5 37.7 36.8 6.5 0.5 50.7 50.4 6. 9648.00 BB 42.4 41.6 39.0 36.9 7.2 0.5 52.2 51.4 7. 12060.00 BB 42.7 41.5 42.1 36.3 8.1 0.5 57.1 55.9 8. 14472.00 BB 41.0 40.8 41.2 35.2 7.3 0.2 54.5 54.3 9. 16884.00 BB 40.6 41.4 41.6 35	74.0 13.0 74.0 21.5 74.0 24.1 74.0 23.3 74.0 21.8 74.0 16.9 74.0 17.5 74.0 20.5	16. 4 13. 3 21. 7 24. 1 23. 6 22. 6 18. 1 19. 7 16. 7 20. 9 16. 9

CALCULATION: READING [dB μ V] + ANT. FACTOR [dB/m] + CABLE LOSS [dB] - AMP. GAIN [dB] + ATTEN [dB].

■ ANTENNA: KHA-01 (SAS-200 571) 1-18GHz/KHA-03 (3160-09) 18-26GHz ■ AMP: KAF-02 (8447B) ■ RECEIVER: KTR-01 (ES140) ■ CABLE: KCC-D3/D7

UL Apex Co., Ltd.

Yamakita No.1 Open Test Site Report No.: 23JE0023-YK-1

Applicant

NIKON CORPORATION

Kind of Equipment

Wirless LAN Transmitter

Model No. Serial No.

WT-1A : No. 2

Power

AC120V/60Hz

Mode

Remarks

Transmitting (Midch: 2437MHz)

Date

Test Distance Temperature

Engineer

Humidity Regulation : Antenna model : WA-E1 : 6/2/2003 : 3 m : 28 °C Engine : 37 % : FCC Part15C § 15, 209 (PK Detection)

No.	FREQ.	ANT TYPE	REAL HOR [dB	DING VER μV]	ANT FACTOR [dB/m]	AMP GAIN [dB]	CABLE LOSS [dB]	ATTEN. [dB]	RESI HOR [dB μ]	ULT VER V/m] [d	LIMITS BμV/m]	HOR	RGIN VER dB]
1.	2106.80	BB	49.3	49.6	30.6	36. 9	4.0	10.0	57.0	57.3	74.0	17.0	16. 7
2.	4874.00	BB	44.3	44. 1	35.0	35. 2	5.6	0.6	50.3	50. 1	74.0	23.7	23.9
3.	7311.00	BB	42.6	42.3	37.8	36.8	6.6	0.5	50.7	50.4	74.0	23. 3	23.6
4.	9748.00	BB	42.4	41.7	39.0	37.0	7.2	0.6	52. 2	51, 5	74.0	21.8	22, 5
5.	12185.00	BB	42.2	41.8	42.3	36. 1	8.1	0.4	56. 9	56. 5	74.0	17. 1	17.5
6.	14622.00	BB	40.8	40.8	41.7	35. 2	7.7	0.3	55.3	55.3	74.0	18.7	18.7
7.	17059.00	BB	40.5	41.8	41.7	34.9	8.7	0.5	56. 5	57.8	74.0	17.5	16. 2
8.	19496.00	BB	39.3	39.3	39.0	34.7	9.5	0.0	53. 1	53. 1	74.0	20.9	20. 9
9.	21933.00	BB	42.2	42.2	39. 3	33.6	10.2	0.0	58. 1	58. 1	74.0	15. 9	15.9
10.	24370.00	BB	40.4	40.8	40. 4	36.3	10.8	0.0	55. 3	55. 7	74.0	18. 7	18. 3

CALCULATION: READING [dB μ V] + ANT. FACTOR [dB/m] + CABLE LOSS [dB] - AMP. GAIN [dB] + ATTEN [dB].

MANTENNA: KHA-01 (SAS-200 571) 1-18GHz/KHA-03 (3160-09) 18-26GHz

■ CABLE: KCC-D3/D7 ■ PREAMP: KAF-02 (8449B) ■ ENI RECEIVER: KTR-01 (ES140)

UL Apex Co., Ltd.

Yamakita No.1 Open Test Site Report No.: 23JE0023-YK-1

Applicant

NIKON CORPORATION

Kind of Equipment

Wirless LAN Transmitter

Model No. Serial No. WT-1A No. 2

Power

AC120V/60Hz

Mode

Transmitting (Highch: 2462MHz)

Remarks

Antenna model : WA-E1

Date

6/2/2003

Test Distance Temperature

3 m 28 °C 37 %

Engineer

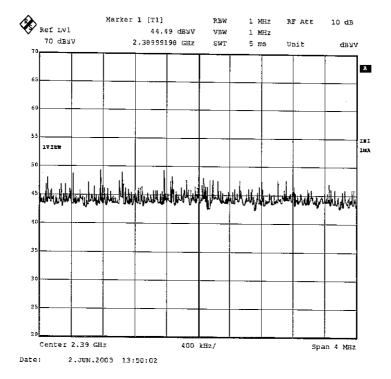
Humidity

Regulation

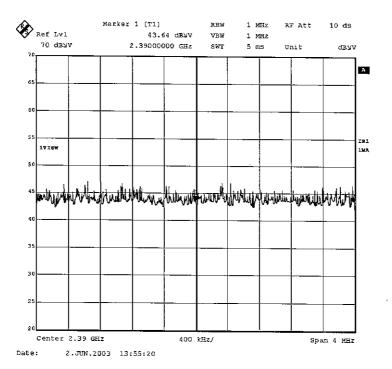
: FCC Part15C § 15. 209 (PK Detection)

No.	FREQ.	ANT TYPE	HOR	DING VER μV]	ANT FACTOR [dB/m]	AMP GAIN [dB]	CABLE LOSS [dB]	ATTEN. [dB]	RESI HOR [dB μ]	VER	LIMITS ΒμV/m]	HOR	RGIN VER HB]
1.	2131.64	BB	48. 2	51.2	30.6	36. 9	4.0	10.0	55. 9	58.9	74. 0	18. 1	15. 1
2.	2483.50	BB	48. 1	50.4	30.6	36.9	4. 1	10.0	55.9	58. 2	74.0	18. 1	15.8
3.	4924.00	BB	44. 5	44.0	35.3	35. 2	5. 6	0.5	50.7	50.2	74.0	23. 3	23, 8
4.	7386.00	BB	42.7	42. 1	37.9	36.9	6.6	0.5	50.8	50.2	74.0	23, 2	23.8
5.	9848.00	BB	42.3	41.6	39.0	37.0	7.2	0.7	52. 2	51.5	74.0	21.8	22.5
6.	12310.00	BB	42.4	42.0	42.5	35.9	8.1	0.4	57.5	57. 1	74.0	16.5	16.9
7.	14772,00	BB	41.1	41.0	42, 2	35. 1	8.1	0.4	56.7	56.6	74.0	17.3	17.4
8.	17234, 00	BB	40.2	41.4	42, 3	34.8	8.5	0.6	56.8	58.0	74.0	17.2	16.0
9.	19696.00	BB	39.4	39. 6	39. 5	35.0	9.6	0.0	53.5	53.7	74.0	20.5	20.3
10.	22158.00	BB	42.0	42.4	39. 2	33, 7	10.3	0.0	57.8	58.2	74.0	16.2	15.8
11.	24620.00	BB	40.6	40.7	40. 4	36.0	10.9	0.0	55. 9	56.0	74. 0	18. 1	18.0

CALCULATION: READING [dB μ V] + ANT. FACTOR [dB/m] + CABLE LOSS [dB] - AMP. GAIN [dB] + ATTEN [dB].


[■]ANTENNA: KHA-01 (SAS-200 571) 1-18GHz/KHA-03 (3160-09) 18-26GHz

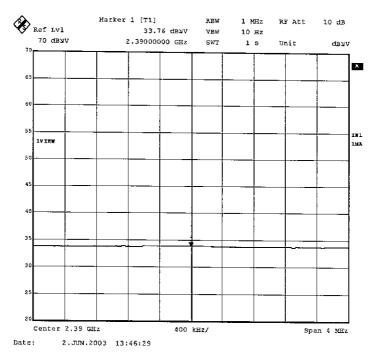
[■] CABLE: KCC-D3/D7 ■ PREAMP: KAF-O2 (8449B) ■ EM | RECEIVER: KTR-O1 (ES140)


Restricted band edges: FCC 15.247(c)

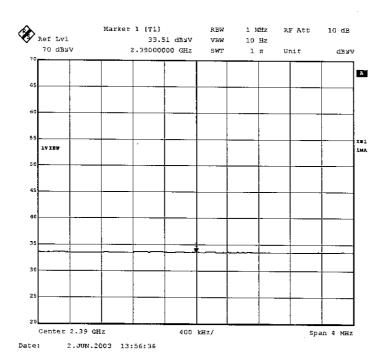
Antenna type: WA-S1 2.39GHz (Ch 1:2412MHz) 1. Horizontal/ PK FCC ID: CGJWT01 Job No: 23JE0023-YK-1

7 Sal

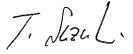
2. Vertical/PK

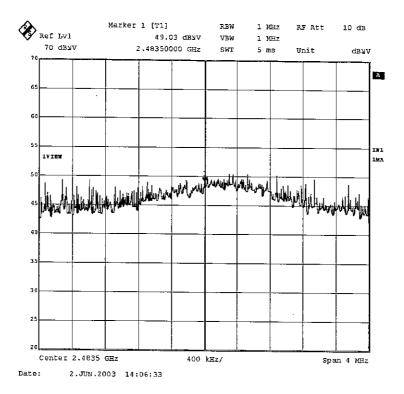

Restricted band edges: FCC 15.247(c)

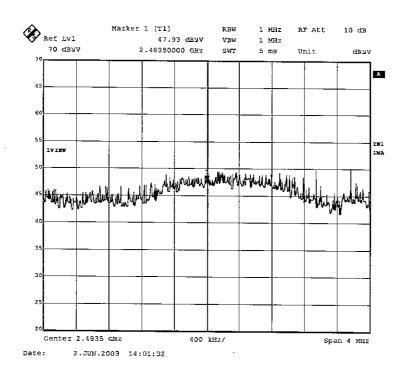
Antenna type: WA-S1


3. Horizontal/AV

FCC ID: CGJWT01 Job No: 23JE0023-YK-1

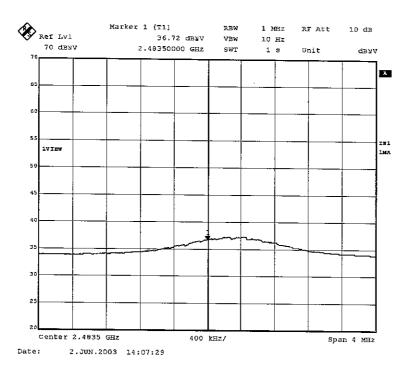



4. Vertical/AV

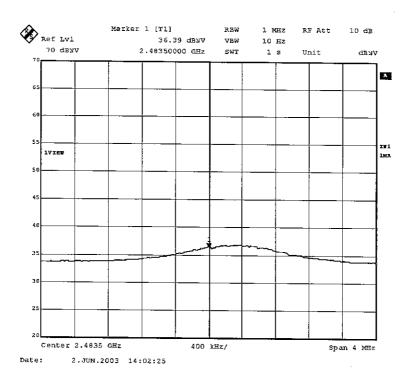

1. Horizontal/PK

FCC ID: CGJWT01 Job No: 23JE0023-YK-1

2. Vertical/PK



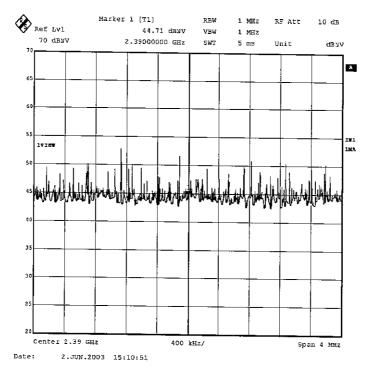
Antenna type: WA-S1


FCC ID: CGJWT01 Job No: 23JE0023-YK-1

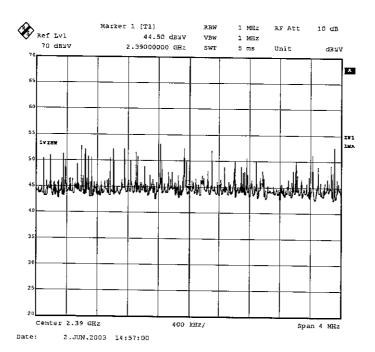
Tikal.

3. Horizontal/AV

4. Vertical/AV

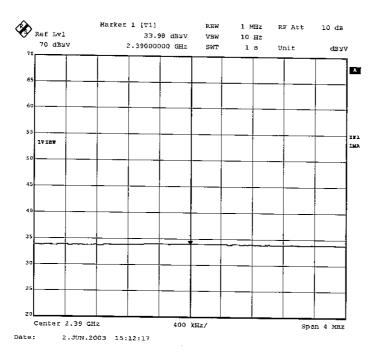

Restricted band edges: FCC 15.247(c)

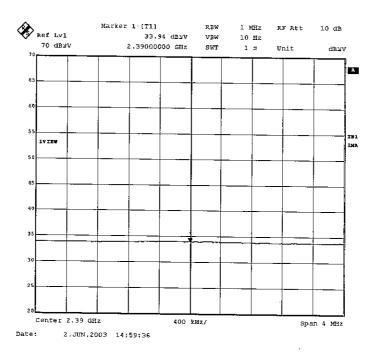
Antenna type: WA-E1 2.39GHz (Ch 1:2412MHz)


1. Horizontal/PK

FCC ID: CGJWT01 Job No: 23JE0023-YK-1

T. Sizel.

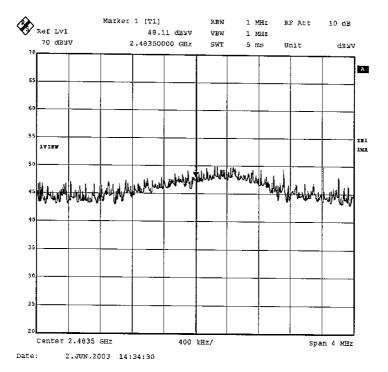

2. Vertical/PK


FCC ID: CGJWT01 Job No: 23JE0023-YK-1

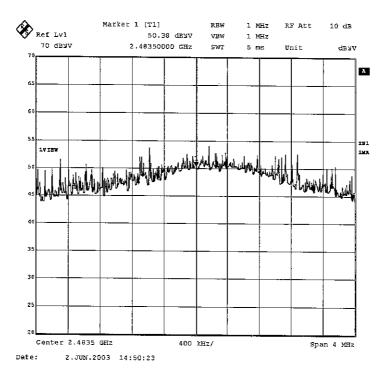
To Size C

3. Horizontal/AV

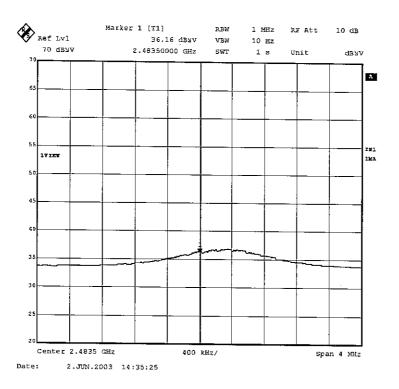
4. Vertical/AV

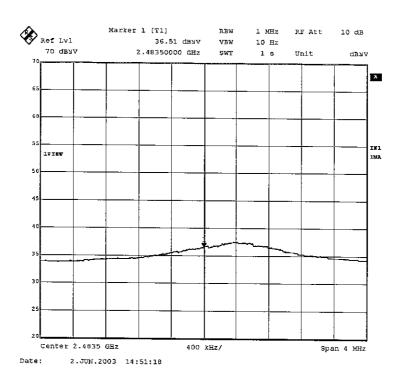

Restricted band edges: FCC 15.247(c)

Antenna type: WA-E1 2.4835GHz (Ch 11:2462MHz)


1. Horizontal/PK

FCC ID: CGJWT01 Job No: 23JE0023-YK-1

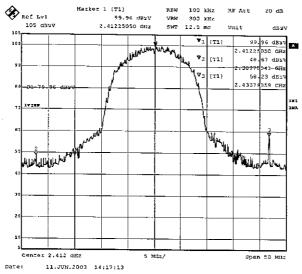

2. Vertical/PK


FCC ID: CGJWT01 Job No: 23JE0023-YK-1

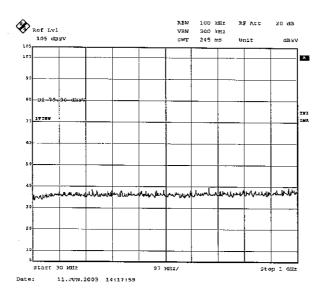
T. Sezul.

3. Horizontal/AV

4. Vertical/AV



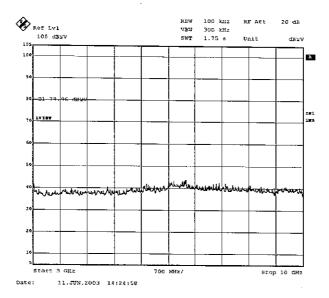
Ch 1: 2412MHz

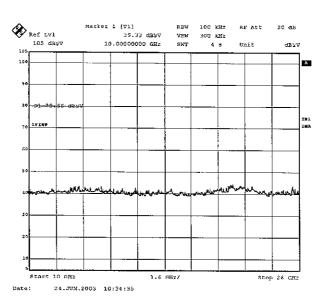

1.

U. Ingaki

FCC ID: CGJWT01 Job No: 23JE0023-YK-1

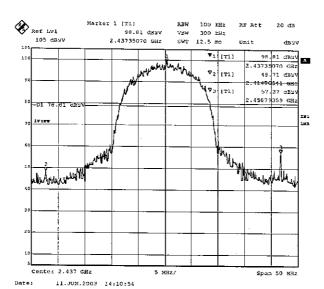
2.



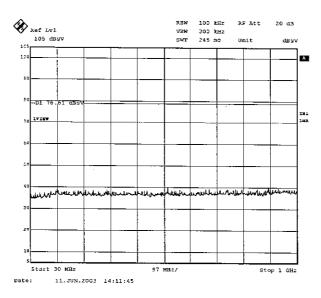

②	Ruf Lvl	Marker 1 [T1]	RBW VEW			F Att	25 dB	
105	105 dByV	2.41082164				nit	двуу	
100				V 1	1(T1)		00 GB75	٨
90				v ₂	[T1]	1	29 dBy/	
				₽3	[T1]	2.37074 59. 2.46693	27 dByV	
89	D1-79-06-4220			V4	[T1]	49.	32 dBzV	w1
71	IVIEW							MХ
63	1				- - -			
53				, Ž	lui.	<u> </u>		
49	MATERIAL PROPERTY.	Market	washing	and the state of	N	Muzika	ATPAPE !	
39			_					
29								
19								
5	Start 1 GHz		200 112/		!	Sto	р 3 СНг	
Date	: 11.JUN.	2003 14:24:12						

FCC ID: CGJWT01 Job No: 23JE0023-YK-1

I. Inzaki

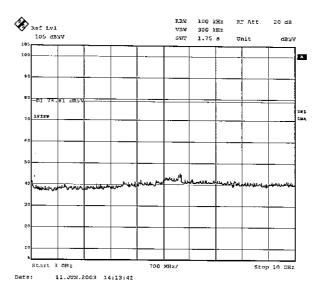

4.

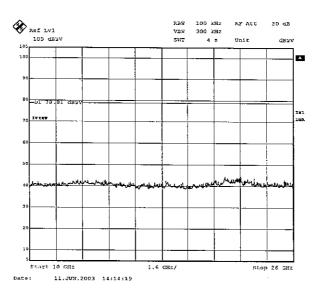
Ch 6: 2437MHz


1.

FCC ID: CGJWT01 Job No: 23JE0023-YK-1

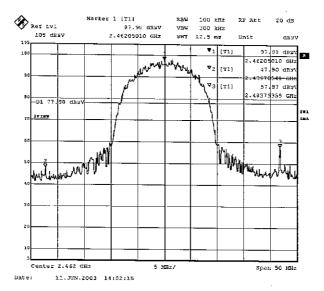
I. Juzaki


2.


Ref Lvl	Marker 1 [T1]					F Att	20 dB
105 dBuv	98. 2.43687	90 dayv 776 catz	SWT	300 ki		nit	Œ7∧
20				▼ 1	(IT1)	98	90 dByV
				v ₂	T1)	1	776 GH2
0					┪	1	140 GHz
				Δ3	Pl]	1	.07 dB⊻V 196 G∃z
D1 78.81 draw			_		FIT	45.	93 SENO
1VIEW					l	2.64326	657 GHz
50	 				3		
50				2			
						Ŷ	
المناوية المعمول المساور الماليان	Linkley and grant	www.		roud iller	A D AND	بالمرا	www
10							
		l i				Ì	
0	 	┿					
10							
5	<u> </u>						
Start 1 GHz	<u> </u>	200 ;	48z/			Sto	pp 3 GHz

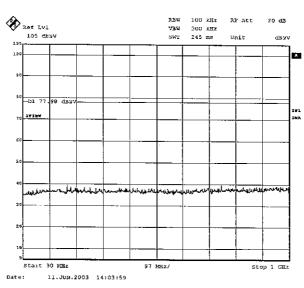
FCC ID: CGJWT01 Job No: 23JE0023-YK-1

4.



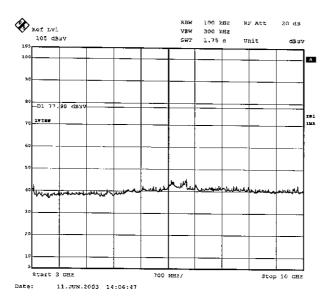
I. Inzaki

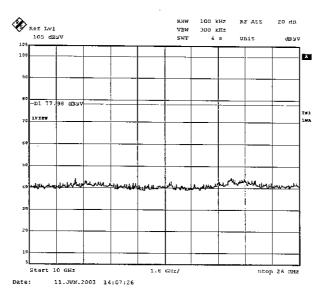
Ch 11: 2462MHz


<u>1.</u>

FCC ID: CGJWT01 Job No: 23JE0023-YK-1

U. Inzaki


2.


Ref Lvl	Marker 1 (T1) 97.0	5 dByv		300 k	HZ R HZ	F Att	20 d3
105 dayv	2.462925	65 GHz	SWT	500 m	າສ ປ	nit	qsy
,				∀1	[T1]		05 dBy
			1	٧.	(1) (1)		565 GH2
					111		. 65 СВИ 1052 СВ2
				∇3	(11)	59	47 deur
-D1 77.90 dBMV	 			······································		_	006 GH2
					1 1	1	657 GH2
141EM					 -		
			- 1		,		
					 		
,							
			2	. i.		4	
· ·		PALL LAND	ΥI	الخلوب وا	µw ~uq	U	4
The state of the s	ACTOO	AU JAM	الامتاناليسال	(IMPO			7,00
, <u> </u>							
·							
Start 1 GHz	<u> </u>	200					р 3 СН:

FCC ID: CGJWT01 Job No: 23JE0023-YK-1

4.

I. Inzaki

Power Density(Conducted)

UL Apex Co., Ltd.

YAMAKITA EMC NO.1 OPEN SITE

COMPANY: NIKON CORPORATION

EQUIPMENT: Wireless LAN Transmitter

 $MODEL \quad : WT-1A$

FCC ID : CGJWT01

POWER : AC120V/60Hz

Mode : Transmitting

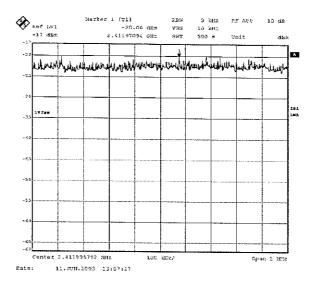
REPORT NO : 23JE0023-YK-1

REGULATION : Fcc Part15SubpartC 247(d)

DATE : 2003/ 06/11 Temp./Humi. : 23℃/56%

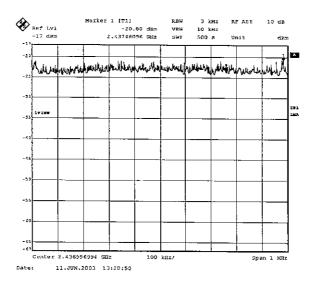
\ \ . \

ENGINEER

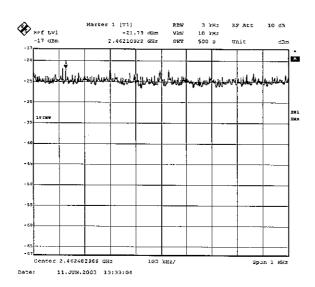

: Ichiro Isozaki

l	СН	FREQ	S/A Reading	Cable Loss	Results	Limit	MARGIN
		[GHz]	[dBm]	[dB]	[dBm]	[dBm]	[dB]
	Low	2.411971	-20.60	0.7	-19.9	8.0	27.9
	Mid	2.437481	-20.80	0.7	-20.1	8.0	28.1
	High	2.462109	-21.79	0.7	-21.09	8.0	29.1

Power Density: FCC 15.247(d)


FCC ID: CGJWT01 Job No: 23JE0023-YK-1

1. ch 1: 2412MHz



V. Inzaki

2. ch 6: 2437MHz

3. ch 11: 2462MHz

Test Report No : 23JE0023-YK-1

APPENDIX 3 Test Instruments ADEPTICATION OF THE PROPERTY OF T

EMI test equipment

Control No.	Instrument	Manufacturer	Model No	Test Item	Calibration Date *
KAF-01	Pre Amplifier	Hewlett Packard	8447D	RE	Interval(month) 2002/08/03 * 12
KAF-02	Pre Amplifier	Hewlett Packard	8449B	RE	2003/05/08 * 12
KAT10-S1	Attenuator	Agilent	8449D 010	RE	2003/04/18 * 12
KAT6-01	Attenuator	INMET	18N-6dB	RE	2003/05/12 * 12
KBA-03	Biconical Antenna	Schwarzbeck	BBA9106	RE	2003/02/06 * 12
KCC-10/11/12/1 3/18	Coaxial Cable	Fujikura/Suhner		RE	2002/08/17 * 12
KCC-14/15/16/1 8/KPL-01	Coaxial Cable/Pulse Limitter	Fujikura/Suhner/PMM	5D-2W/8D-2W/ S04272B/S0427 2B/PL01	CE	2002/08/17 * 12
KCC-D3/D7	Coaxial Cable	Rosenberger/Advantest	2201/JUN-08-0 1-061	RE	2003/04/18 * 12
KFL-01	Highpass Filter	Hewlett Packard	84300 80038	RE	2003/04/18 * 12
KHA-01	Horn Antenna	A.H.Systems	SAS-200/571	RE	2002/07/14 * 12
KHA-03	Horn Antenna	EMCO	3160-09	RE	2003/04/23 * 12
KLA-01	Logperiodic Antenna	Schwarzbeck	USLP9143	RE	2003/02/19 * 12
KLS-01	LISN(AMN)	Schwarzbeck	NSLK8126	CE	2002/08/16 * 12
KOTS-01	Open Test Site	JSE	30m	RE	2002/08/18 * 12
KPM-05	Power meter	Agilent	E4417A	AT	2003/02/17 * 12
KPSS-01	Power sensor	Agilent	E9327A	AT	2003/02/21 * 12
KSA-01	Spectrum Analyzer	Advantest	R3365	CE/RE	2003/06/09 * 12
KTR-01	Test Receiver	Rohde & Schwarz	ESI40	RE/AT	2002/07/22 * 12
KTR-02	Test Receiver	Rohde & Schwarz	ESCS30	CE/RE	2002/11/25 * 12
					

All equipment is calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

Test Item:

CE: Conducted emission test RE: Radiated emission test

AT: Antenna terminal conducted test