

Product Name	Digital Camera
Model No	COOLPIX S5200
FCC ID.	CGJ6149EB

Applicant	NIKON CORPORATION
Address	6-3, Nishiohi 1-chome, Shinagawa-ku, Tokyo 140-8601, Japan

Date of Receipt	Nov. 27, 2012
Issue Date	Dec. 12, 2012
Report No.	12C031R-RFUSP42V01
Report Version	V1.0

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Test Report Certification

Issue Date: Dec. 12, 2012 Report No.: 12C031R-RFUSP42V01

Accredited by NIST (NVLAP)

NVLAP Lab Code: 200533-0

Product Name	Digital Camera		
Applicant	NIKON CORPORATION		
Address	6-3, Nishiohi 1-chome, Shinagawa-ku, Tokyo 140-8601, Japan		
Manufacturer	NIKON CORPORATION		
Model No.	COOLPIX S5200		
FCC ID.	CGJ6149EB		
EUT Rated Voltage	DC 3.7V (Power by Battery)		
EUT Test Voltage	AC 120V / 60Hz		
Trade Name	Nikon		
Applicable Standard FCC CFR Title 47 Part 15 Subpart C: 2010			
	ANSI C63.4: 2003, ANSI C63.10: 2009		
Test Result	Complied		

The test results relate only to the samples tested.

:

:

:

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Documented By

Rita Fluang

(Senior Adm. Specialist / Rita Huang)

Tested By

Andy Lin

(Engineer / Andy Lin)

Approved By

(Manager / Vincent Lin)

TABLE OF CONTENTS

De	Page	
1.	GENERAL INFORMATION	5
1.1.	EUT Description	5
1.2.	Operational Description	
13	Tested System Details	8
1.3.	Configuration of Tested System	8
1.1.	FUT Exercise Software	9
1.6.	Test Facility	
2.	Conducted Emission	
2.1.	Test Equipment	
2.2.	Test Setup	
2.3.	Limits	
24	Test Procedure	12
2.5	Uncertainty	12
2.5.	Test Result of Conducted Emission	13
2.0.	Deals Result of Conducted Emission	15
3.	Peak Power Output	15
3.1.	Test Equipment	
3.2.	Test Setup	
3.3.	Limits	
3.4.	Test Procedure	
3.5.	Uncertainty	
3.6.	Test Result of Peak Power Output	
4.	Radiated Emission	20
4.1.	Test Equipment	
4.2.	Test Setup	
4.3.	Limits	
4.4.	Test Procedure	
4.5.	Uncertainty	
4.6.	Test Result of Radiated Emission	
5.	RF antenna conducted test	
5.1.	Test Equipment	
5.2.	Test Setup	
5.3.	Limits	
5.4.	Test Procedure	
5.5.	Uncertainty	
5.6.	Test Result of RF antenna conducted test	
6.	Band Edge	
6.1.	Test Equipment	
6.2.	Test Setup	
6.3.	Limits	
6.4.	Test Procedure	
6.5.	Uncertainty	
6.6.	Test Result of Band Edge	
-	-0-	

QuieTer

7.	Occupied Bandwidth	
7.1.	Test Equipment	
7.2.	Test Setup	71
7.3.	Limits	
7.4.	Test Procedure	
7.5.	Uncertainty	71
7.6.	Test Result of Occupied Bandwidth	
8.	Power Density	
8.1.	Test Equipment	
8.2.	Test Setup	
8.3.	Limits	
8.4.	Test Procedure	
8.5.	Uncertainty	
8.6.	Test Result of Power Density	
9.	EMI Reduction Method During Compliance Testing	91

- Attachment 1: EUT Test Photographs
- Attachment 2: EUT Detailed Photographs

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	Digital Camera
Trade Name	Nikon
Model No.	COOLPIX S5200
FCC ID.	CGJ6149EB
Frequency Range	2412-2462MHz for 802.11b/g/n-20BW
Number of Channels	802.11b/g/n-20MHz: 11
Data Speed	802.11b: 1-11Mbps, 802.11g: 6-54Mbps, 802.11n: up to 72.2Mbps
Type of Modulation	802.11b:DSSS (DBPSK, DQPSK, CCK)
	802.11g/n:OFDM (BPSK, QPSK, 16QAM, 64QAM)
Antenna Type	FPC Antenna
Antenna Gain	Refer to the table "Antenna List"
Channel Control	Auto
USB Cable Non-Shielded, 1.5m, with one ferrite cord bonded.	
Power Adapter	MFR: Nikon, M/N: EH-70P
	Input: AC 100-240V, 50/60Hz, 0.07A-0.044A, 7VA-10.56VA
	Output: DC 5V, 0.55A

Antenna List

No.	Manufacturer	Part No.	Antenna Type	Peak Gain
1	Foxlink	789B-F152-1070	FPC Antenna	-0.8 dBi for 2.4 GHz

Note:

1. The antenna of EUT is conform to FCC 15.203.

802.11b/g/n-20MHz Center Frequency of Each Channel:

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 01:	2412 MHz	Channel 02:	2417 MHz	Channel 03:	2422 MHz	Channel 04:	2427 MHz
Channel 05:	2432 MHz	Channel 06:	2437 MHz	Channel 07:	2442 MHz	Channel 08:	2447 MHz
Channel 09:	2452 MHz	Channel 10:	2457 MHz	Channel 11:	2462 MHz		

- 1. The EUT is Digital Camera with a built-in 2.4GHz WLAN transceiver.
- 2. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test.
- 4. These tests are conducted on a sample for the purpose of demonstrating compliance of 802.11b/g/n transmitter with Part 15 Subpart C Paragraph 15.247 of spread spectrum devices.
- 5. The radiation measurements are performed in X, Y, Z axis positioning. Only the worst case is shown in the report.

Mode 1: Transmit (802.11b 1Mbps)	
Test Mode:	Mode 2: Transmit (802.11g 6Mbps)
	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)

1.3. Tested System Details

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

	Product	Manufacturer	Model No.	Serial No.	Power Cord
1	Monitor	DELL	ST2320LF	CN-OM2NN6	Non-Shielded, 1.8m
				12812-221-C9WS	
2	Notebook PC	DELL	PPT	N/A	Non-Shielded, 0.8m
3	DVD Rom	DELL	PD015	N/A	N/A
Л	Microphone &	PCHOME	N/A	N/A	N/A
4	Earphone				
5	Modem	ACEEX	DM-1414	0102027533	Non-Shielded, 1.8m

Signal Cable Type		Signal cable Description		
Α	Mini HDMI to HDMI Cable	Non-Shielded, 1.8m		
В	USB Cable	Non-Shielded, 1.5m, with one ferrite core bonded.		
С	DVD Rom Cable	Non-Shielded, 0.8m		
D	Microphone & Earphone Cable	Non-Shielded, 1.2m		
Е	Modem Cable	Non-Shielded, 1.5m		

1.4. Configuration of Tested System

1.5. EUT Exercise Software

- (1) Setup the EUT as shown in Section 1.4
- (2) Execute program "Chiptest v.6.0.0.6" on the Notebook.
- (3) Configure the test mode, the test channel, and the data rate.
- (4) Press "OK" to start the continuous Transmit.
- (5) Verify that the EUT works properly.

1.6. Test Facility

Ambient conditions in the laboratory:

Items	Required (IEC 68-1)	Actual
Temperature (°C)	15-35	20-35
Humidity (%RH)	25-75	50-65
Barometric pressure (mbar)	860-1060	950-1000

The related certificate for our laboratories about the test site and management system can be downloaded from

QuieTek Corporation's Web Site: <u>http://www.quietek.com/tw/ctg/cts/accreditations.htm</u> The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site: <u>http://www.quietek.com/</u>

Site Description:	File on							
	Federal Communications Commission							
	FCC Engineering Laboratory							
	7435 Oakland Mills Road							
	Columbia, MD 21046							
	Registration Number: 92195							
	Accreditation on NVLAP							
	NVLAP Lab Code: 200533-0							
Site Name:	Quietek Corporation							
Site Address:	No.5-22, Ruishukeng,							
	Linkou Dist. New Taipei City 24451,							
	Taiwan, R.O.C.							
	TEL: 886-2-8601-3788 / FAX : 886-2-8601-3789							
	E-Mail : <u>service@quietek.com</u>							

FCC Accreditation Number: TW1014

2. Conducted Emission

2.1. Test Equipment

	Equipment	Manufacturer	Model No. / Serial No.	Last Cal.	Remark
Х	Test Receiver	R & S	ESCS 30 / 825442/018	Sep., 2012	
Х	Artificial Mains Network	R & S	ENV4200 / 848411/10	Feb., 2012	Peripherals
Х	LISN	R & S	ESH3-Z5 / 825562/002	Feb., 2012	EUT
	DC LISN	Schwarzbeck	8226 / 176	Mar, 2012	EUT
Х	Pulse Limiter	R & S	ESH3-Z2 / 357.8810.52	Feb., 2012	
	No.1 Shielded Room				

Note:

- 1. All equipments are calibrated every one year.
- 2. The test instruments marked by "X" are used to measure the final test results.

2.2. Test Setup

2.3. Limits

FCC Part 15 Subpart C Paragraph 15.207 (dBuV) Limit								
Frequency	Limits							
MHz	QP	AVG						
0.15 - 0.50	66-56	56-46						
0.50-5.0	56	46						
5.0 - 30	60	50						

2.4. Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs.)

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement.

Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

2.5. Uncertainty

± 2.26 dB

2.6. Test Result of Conducted Emission

Product	:	Digital Camera
Test Item	:	Conducted Emission Test
Power Line	:	Line 1
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2437MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV	dB	dBuV
Line 1					
Quasi-Peak					
0.291	9.830	32.310	42.140	-19.831	61.971
0.423	9.830	26.830	36.660	-21.540	58.200
0.951	9.830	26.680	36.510	-19.490	56.000
1.837	9.840	28.700	38.540	-17.460	56.000
4.056	9.860	28.300	38.160	-17.840	56.000
7.463	9.929	30.100	40.029	-19.971	60.000
Average					
0.291	9.830	25.660	35.490	-16.481	51.971
0.423	9.830	23.710	33.540	-14.660	48.200
0.951	9.830	22.690	32.520	-13.480	46.000
1.837	9.840	25.640	35.480	-10.520	46.000
4.056	9.860	23.590	33.450	-12.550	46.000
7.463	9.929	26.300	36.229	-13.771	50.000

Note:

1. All Reading Levels are Quasi-Peak and average value.

2. "means the worst emission level.

3. Measurement Level = Reading Level + Correct Factor

Product	: Digital Camera											
Test Item	: Conducted Emission Test											
Power Line	: Line 2											
Test Mode	: Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2437MHz)											
Frequency	Correct	Reading	Measurement	Margin	Limit							
	Factor	Level	Level									
MHz	dB	dBuV	dBuV	dB	dBuV							
Line 2												
Quasi-Peak												
0.193	9.830	28.980	38.810	-25.961	64.771							
0.295	9.835	31.400	41.235	-20.622	61.857							
0.607	9.840	21.900	31.740	-24.260	56.000							
1.966	9.860	23.530	33.390	-22.610	56.000							
3.384	9.870	24.320	34.190	-21.810	56.000							
7.763	9.976	25.190	35.166	-24.834	60.000							
Average												
0.193	9.830	21.270	31.100	-23.671	54.771							
0.295	9.835	24.050	33.885	-17.972	51.857							
0.607	9.840	14.010	23.850	-22.150	46.000							
1.966	9.860	18.470	28.330	-17.670	46.000							
3.384	9.870	14.660	24.530	-21.470	46.000							
7.763	9.976	21.210	31.186	-18.814	50.000							

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

3. Peak Power Output

3.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Х	Power Meter	Anritsu	ML2495A/6K00003357	May, 2012
Х	Power Sensor	Anritsu	MA2411B/0738448	Jun, 2012
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2012
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2012
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2012
Note				

Note:

1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.

3.2. Test Setup

Average Power For different Data Rate (Mbps)

Peak Power Measurement

3.3. Limits

The maximum peak power shall be less 1 Watt.

3.4. Test Procedure

The EUT was tested according to DTS test procedure of ANSI C63.10 : 2009 for compliance to FCC 47CFR 15.247 requirements.

3.5. Uncertainty

 \pm 1.27 dB

3.6. Test Result of Peak Power Output

Product	:	Digital Camera
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

Channel No	Frequency	For d	Average ifferent Da	e Power ata Rate (N	/lbps)	Peak Power	Required	Result
	(MHz)	1	2	5.5	11	11	Limit	
			Measur					
01	2412	16.80				21.23	<30dBm	Pass
06	2437	16.43	16.11	16.04	15.88	19.72	<30dBm	Pass
11	2462	16.39				19.71	<30dBm	Pass

Note: Peak Power Output Value =Reading value on power meter + cable loss

Product	:	Digital Camera
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)

	Fraguency	Average PowerPeakFor different Data Rate (Mbps)Power									Required	
Channel No	(MHz)	6	9	12	18	24	36	48	54	54	Limit	Result
			Measurement Level (dBm)									
01	2412	15.28								23.88	<30dBm	Pass
06	2437	15.32	15.21	15.18	15.05	14.89	14.67	14.55	14.34	23.77	<30dBm	Pass
11	2462	15.41								23.55	<30dBm	Pass

Note: Peak Power Output Value =Reading value on power meter + cable loss

Product	:	Digital Camera
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)

Eraquan	Fraguanov	For diff			Average Power ferent Data Rate (Mbps)				Peak Power	Required		
Channel No	(MHz)	7.2	14.4	21.7	28.9	43.3	57.8	65	72.2	72.2	Limit	Result
	Measurement Level (dBm)											
01	2412	13.24								24.68	<30dBm	Pass
06	2437	13.22	13.18	13.11	13.08	13.02	12.94	12.82	12.77	23.47	<30dBm	Pass
11	2462	13.16								22.63	<30dBm	Pass

Note: Peak Power Output Value =Reading value on power meter + cable loss

4. Radiated Emission

4.1. Test Equipment

The following test equipment are used during the radiated emission test:

Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Site # 3	Х	Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2012
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2012
	Х	Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2012
	Х	Pre-Amplifier	Agilent	8447D/2944A09549	Sep., 2012
	Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2012
	Х	Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2012
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2012
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	Х	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.

4.2. Test Setup

Radiated Emission Below 1GHz

Radiated Emission Above 1GHz

4.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209(a) Limits							
Frequency MHz	uV/m @3m	dBuV/m@3m					
30-88	100	40					
88-216	150	43.5					
216-960	200	46					
Above 960	500	54					

Remarks: E field strength $(dBuV/m) = 20 \log E$ field strength (uV/m)

4.4. Test Procedure

The EUT was setup according to ANSI C63.4: 2003 and tested according to DTS test procedure of ANSI C63.10 : 2009 for compliance to FCC 47CFR 15.247 requirements.

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.4: 2003 on radiated measurement.

The resolution bandwidth below 1GHz setting on the field strength meter is 120 kHz and above 1GHz is 1MHz.

Radiated emission measurements below 1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement. The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna. The worst radiated emission is measured in the Open Area Test Site on the Final Measurement. The frequency range from 30MHz to 10th harminics is checked.

4.5. Uncertainty

- ± 3.9 dB above 1GHz
- ± 3.8 dB below 1GHz

4.6. Test Result of Radiated Emission

Product	:	Digital Camera
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2412MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4824.000	3.261	47.610	50.871	-23.129	74.000
7236.000	10.650	37.660	48.310	-25.690	74.000
9648.000	13.337	36.380	49.716	-24.284	74.000
Average Detector:					
Vertical					
Peak Detector:					
4824.000	6.421	47.100	53.521	-20.479	74.000
7236.000	11.495	37.410	48.905	-25.095	74.000
9648.000	13.807	36.220	50.026	-23.974	74.000

Average Detector:

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Digital Camera					
Test Item	: Harmonic Radiated Emission Data					
Test Site	: No.3 OATS					
Test Mode	: Mode 1:	Transmit (802.11	lb 1Mbps) (2437 MH	z)		
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector:						
4874.000	3.038	46.730	49.767	-24.233	74.000	
7311.000	11.795	37.320	49.114	-24.886	74.000	
9748.000	12.635	36.420	49.055	-24.945	74.000	
Average Detector:						
Vertical						
Peak Detector:						
4874.000	5.812	46.130	51.941	-22.059	74.000	
7311.000	12.630	36.410	49.039	-24.961	74.000	
9748.000	13.126	37.040	50.166	-23.834	74.000	

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Digital (Camera				
Test Item	: Harmonic Radiated Emission Data					
Test Site	: No.3 OATS					
Test Mode	: Mode 1:	Transmit (802.11	b 1Mbps) (2462 MH	z)		
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector:						
4924.000	2.858	47.070	49.927	-24.073	74.000	
7386.000	12.127	37.680	49.808	-24.192	74.000	
9848.000	12.852	36.880	49.733	-24.267	74.000	
Average Detector:						
Vertical						
Peak Detector:						
4924.000	5.521	46.680	52.200	-21.800	74.000	
7386.000	13.254	37.410	50.664	-23.336	74.000	
9848.000	13.367	37.500	50.867	-23.133	74.000	

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Digital Camera					
Test Item	: Harmonic Radiated Emission Data					
Test Site	: No.3 OATS					
Test Mode	: Mode 2:	Transmit (802.11	lg 6Mbps) (2412MHz	z)		
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector:						
4824.000	3.261	45.940	49.201	-24.799	74.000	
7236.000	10.650	36.800	47.450	-26.550	74.000	
9648.000	13.337	36.170	49.506	-24.494	74.000	
Average Detector:						
Vertical						
Peak Detector:						
4824.000	6.421	45.700	52.121	-21.879	74.000	
7236.000	11.495	37.190	48.685	-25.315	74.000	
9648.000	13.807	37.620	51.426	-22.574	74.000	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Digital Camera						
Test Item	: Harmonic Radiated Emission Data						
Test Site	est Site : No.3 OATS						
Test Mode	: Mode 2:	Transmit (802.11	lg 6Mbps) (2437 MH	z)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
4874.000	3.038	45.520	48.557	-25.443	74.000		
7311.000	11.795	36.000	47.794	-26.206	74.000		
9748.000	12.635	36.420	49.055	-24.945	74.000		
Average Detector:							
Peak Detector:							
4874.000	5.812	45.260	51.071	-22.929	74.000		
7311.000	12.630	36.170	48.799	-25.201	74.000		
9748.000	13.126	36.740	49.866	-24.134	74.000		

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Digital (Camera				
Test Item	: Harmonic Radiated Emission Data					
Test Site	e : No.3 OATS					
Test Mode	: Mode 2:	Transmit (802.11	g 6Mbps) (2462 MH	z)		
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector:						
4924.000	2.858	45.110	47.967	-26.033	74.000	
7386.000	12.127	36.280	48.408	-25.592	74.000	
9848.000	12.852	37.230	50.083	-23.917	74.000	
Average Detector:						
Vertical						
Peak Detector:						
4924.000	5.521	45.630	51.150	-22.850	74.000	
7386.000	13.254	36.490	49.744	-24.256	74.000	
9848.000	13.367	36.930	50.297	-23.703	74.000	

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Digital Camera					
Test Item	: Harmonic Radiated Emission Data					
Test Site	: No.3 OA	TS				
Test Mode	: Mode 3:	Transmit (802.11	n MCS0 7.2Mbps 20	M-BW)(2412MH	Iz)	
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector:						
4824.000	3.261	45.820	49.081	-24.919	74.000	
7236.000	10.650	36.310	46.960	-27.040	74.000	
9648.000	13.337	36.450	49.786	-24.214	74.000	
Average Detector:						
Vertical						
Peak Detector:						
4824.000	6.421	45.570	51.991	-22.009	74.000	
7236.000	11.495	37.100	48.595	-25.405	74.000	
9648.000	13.807	37.400	51.206	-22.794	74.000	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Digital Camera
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2437 MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4874.000	3.038	45.160	48.197	-25.803	74.000
7311.000	11.795	35.680	47.474	-26.526	74.000
9748.000	12.635	36.280	48.915	-25.085	74.000
Average Detector:					
Vertical					
Peak Detector:					
4874.000	5.812	45.330	51.141	-22.859	74.000
7311.000	12.630	36.300	48.929	-25.071	74.000
9748.000	13.126	36.580	49.706	-24.294	74.000

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Digital Camera
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2462 MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4924.000	2.858	45.500	48.357	-25.643	74.000
7386.000	12.127	35.200	47.328	-26.672	74.000
9848.000	12.852	36.020	48.873	-25.127	74.000
Average Detector:					
Vertical					
Peak Detector:					
4924.000	5.521	45.710	51.230	-22.770	74.000
7386.000	13.254	36.050	49.304	-24.696	74.000
9848.000	13.367	36.630	49,997	-24.003	74.000

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Digital Camera									
Test Item	: General Radiated Emission Data									
Test Site	: No.3 OATS									
Test Mode	: Mode 1: Transmit (802.11b 1Mbps)(2437 MHz)									
Frequency	Correct	Reading	Measurement	Margin	Limit					
	Factor	Level	Level							
 MHz	dB	dBuV	dBuV/m	dB	dBuV/m					
 Horizontal										
256.980	-5.073	27.176	22.103	-23.897	46.000					
398.600	-2.268	35.591	33.323	-12.677	46.000					
515.000	1.610	25.484	27.094	-18.906	46.000					
662.440	2.084	33.482	35.566	-10.434	46.000					
763.320	4.301	26.166	30.468	-15.532	46.000					
930.160	7.187	27.280	34.467	-11.533	46.000					
Vertical										
198.780	-8.221	33.956	25.735	-17.765	43.500					
398.600	-4.678	35.591	30.913	-15.087	46.000					
499.480	-0.852	25.328	24.476	-21.524	46.000					
662.440	-2.026	33.482	31.456	-14.544	46.000					
796.300	2.831	29.724	32.555	-13.445	46.000					
930.160	6.477	27.280	33.757	-12.243	46.000					

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Digital Camera									
Test Item	: General Radiated Emission Data									
Test Site	: No.3 OATS									
Test Mode	: Mode 2: Transmit (802.11g 6Mbps)(2437 MHz)									
Frequency	Correct	Reading	Measurement	Margin	Limit					
	Factor	Level	Level							
MHz	dB	dBuV	dBuV/m	dB	dBuV/m					
Horizontal										
194.900	-11.012	34.638	23.626	-19.874	43.500					
433.520	-1.972	30.965	28.993	-17.007	46.000					
600.360	3.977	27.630	31.607	-14.393	46.000					
672.140	2.291	30.528	32.819	-13.181	46.000					
796.300	5.161	29.724	34.885	-11.115	46.000					
912.700	6.132	28.429	34.561	-11.439	46.000					
Vertical										
158.040	-6.191	34.909	28.718	-14.782	43.500					
299.660	-6.855	27.260	20.405	-25.595	46.000					
466.500	-4.786	25.982	21.195	-24.805	46.000					
600.360	-2.833	27.630	24.797	-21.203	46.000					
796.300	2.831	29.724	32.555	-13.445	46.000					
930.160	6.477	27.280	33.757	-12.243	46.000					

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Digital Camera									
Test Item	: General Radiated Emission Data									
Test Site	: No.3 OATS									
Test Mode	: Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)(2437 MHz)									
Frequency	Correct	Reading	Measurement	Margin	Limit					
	Factor	Level	Level							
MHz	dB	dBuV	dBuV/m	dB	dBuV/m					
Horizontal										
344.280	-2.591	27.509	24.919	-21.081	46.000					
433.520	-1.972	30.965	28.993	-17.007	46.000					
600.360	3.977	27.630	31.607	-14.393	46.000					
662.440	2.084	33.482	35.566	-10.434	46.000					
796.300	5.161	29.724	34.885	-11.115	46.000					
912.700	6.132	28.429	34.561	-11.439	46.000					
Vertical										
111.480	-0.954	40.227	39.273	-4.227	43.500					
198.780	-8.221	33.956	25.735	-17.765	43.500					
398.600	-4.678	35.591	30.913	-15.087	46.000					
600.360	-2.833	27.630	24.797	-21.203	46.000					
662.440	-2.026	33.482	31.456	-14.544	46.000					
796.300	2.831	29.724	32.555	-13.445	46.000					

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

5. **RF** antenna conducted test

5.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2012
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2012
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2012

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.

5.2. Test Setup

RF antenna Conducted Measurement:

5.3. Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

5.4. Test Procedure

The EUT was tested according to DTS test procedure of ANSI C63.10: 2009 for compliance to FCC 47CFR 15.247 requirements.

Set RBW = 100 kHz, Set VBW> RBW, scan up through 10th harmonic.

5.5. Uncertainty

The measurement uncertainty Conducted is defined as \pm 1.27dB

5.6. Test Result of RF antenna conducted test

Product	:	Digital Camera
Test Item	:	RF antenna conducted test
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

Channel 01 (2412MHz)

Agilent	Spectrum A	nalyzer - Sw	ept SA								
Cent	ter Freq	50 Ω 515.00	AC 0000 MH	z		NSE:INT	Avg Type	ALIGNAUT e: Log-Pw	0 02:48:35 P r TRAC TVD	MNov 29, 2012 E 1 2 3 4 5 6	Frequency
10 dB	8/div Re	ef 20.00 (P IFI JBm	NO: Fast 🕞 Gain:Low	#Atten: 30	dB		М	kr1 896.4 -54.1	04 MHz 05 dBm	Auto Tune
10.0 -											Center Freq 515.000000 MHz
0.00 -										-15.30 dBm	Start Freq 30.000000 MHz
-20.0 - -30.0 -											Stop Freq 1.000000000 GHz
-40.0 - -50.0 -										1	CF Step 97.000000 MHz <u>Auto</u> Man
-60.0	terféleter élykolos élé		line alter den deste Stand alter deste des	anna a se Carlin India an Daoine ann an Carlin India	est, its a part of a military	and and and parts	ni dan serena di ka		denkele mehrere had	ntu langunar Antari	Freq Offset 0 Hz
Start #Res	: 30.0 MH BW 100	iz) kHz	aved	#VBW	/ 1.0 MHz			Sweep	Stop 1.0 90.0 ms (1	0000 GHz 0001 pts)	

Agilent Spectrum An	alyzer - Swept SA								
LXI RL RF	50 Ω AC		SEN	ISE:INT	Α	LIGNAUTO	02:48:04 P	MNov 29, 2012	Frequency
Center Freq	6.500000000	GHz		D	Avg Type:	Log-Pwr	TRAC	E123456	riequency
		PNO: Fast	#Atten: 30	dB			DE	TPNNNNN	
		IFGain:Low	whiten. oo						Auto Tune
						MK	r1 2.41	1 3 GHz	Auto Func
10 dB/div Re	f 20.00 dBm						4.	70 dBm	
									Center Frea
10.0									6 50000000 CH-
	♦.								0.50000000 GHZ
10.00 M									
0.00								-	
									Start Freq
-10.0									1.000000000 GHz
								-15.30 dBm	
-20.0									Stop Fred
									10 00000000 CU-
-30.0								0	12.00000000 GHz
1010									OE Oton
-40.0									1 100000000 CH-
									Auto Man
-50.0	-		. Littleford as						Auto
	And a second to be to	and the second states of the	and the state of the state of	ALC: NO. OF STREET, ST	and under lackers and			Sec. B. Sandarda	
a colory " deal and	A STATE OF A		Chi na Abaha	and the participation	International Addition of the	Malers of a space of	and a state of a lines	And a delaway and a delaway	Fred Offset
-60.0	N								i i eq onser
									0 Hz
-70.0		_		2					
Start 1.000 GI	lz						Stop 12	.000 GHz	
#Res BW 100	kHz	#VBW	1.0 MHz			Sweep	1.02 s (1	(0001 pts)	
MSG Points cha	anged; all traces c	leared				STATUS			

Agilen	Agilent Spectrum Analyzer - Swept SA										
Cen	L Iter Fr	RF 50 9	Ω AC	GHz	SE		Avg Type	Log-Pwr	02:49:06 P TRAC	MNov 29, 2012 E 1 2 3 4 5 6	Frequency
10 di Log	B/div	Ref 20.00	dBm	NO: Fast Gain:Low	#Atten: 30) dB		Mkr	⊔ 1 23.55 -40.	9 6 GHz 32 dBm	Auto Tune
10.0											Center Freq 18.50000000 GHz
0.00 -10.0										-15.30 dBm	Start Freq 12.00000000 GHz
-20.0 -30.0											Stop Freq 25.00000000 GHz
-40.0					(The section of the s	a fililitie and a file.	a description of the set	L. Le Mariana			CF Step 1.30000000 GHz <u>Auto</u> Man
-60.0	PHILIPPI AND A				e. Str. Henrik and Alexandrik and Alexandrik and Alexandrik and Alexandrik and Alexandrik and Alexandrik and A						Freq Offset 0 Hz
-70.0 Star	t 12.00	0 GHz		#\/D\\	10 MH-			Swaan	Stop 25	.000 GHz	
MSG	∍ DW i)File <	Image.png> s	saved	#VBW	1.0 101712			STATUS	1.20 5 (1	000 i pis)	

	1	PE 50	0 AC		CEN	SEINT		ALIGNALITO	02·57·21 D	MNov 20, 2012	(
Cer	nter Fr	rea 515.0	00000 MH	17		JEAN	Avg Type	: Log-Pwr	TRAC	E123456	Frequency
			P	NO: Fast 🖵	Trig: Free	Run			TYF		
			JE	Gain:Low	#Atten: 30	aв					Auto Tune
								Mkr	1 861.8	72 MHz	Auto Tune
10 d	B/div	Ref 20.00	dBm						-94.	94 aBM	
Log											
10.0											Center Freq
10.0											515.000000 MHz
0.00											
0.00											Start From
											30 000000 MH-
-10.0										-13.13 dBm	30.000000 MIH2
-20.0											Stop Freq
											1.00000000 GHz
-30.0							1	3			
-40.0			-		-						CF Step
											97.000000 MHZ
-50.0			- 2				-		<u> </u>		Auto
			1		in film	al service a service		المرالية المرابع	والمراد المراد المراد	a la la de de la de la de la	
-60.0	Plannik I.					ang pangangan kanan La balan pangan kanan	en ander en ander en ander en ander Nationalise en ander en ander en ander	and the second second		in south lead that a second	Freq Offset
											0 Hz
-70.0											
L	L										
Star	t 30.0	MHz					3		Stop 1.0	0000 GHz	
#ке	SBW	100 KHZ		#VBW	1.0 MHZ			sweep 9	U.U MS (1	uuu1 pts)	
MSG 🤇	🎝 File <	<lmage.png></lmage.png>	saved					STATUS			
1. Sec. 19											
Agiler	nt Spectr	um Analyzer - S	wept SA								
Agiler (XI R	nt Spectr	um Analyzer - S RF 50	wept SA Ω AC	:U7	SEN	SE:INT		ALIGNAUTO	02:56:49 P	MNov 29, 2012 E 1 2 3 4 5 6	Frequency
Agiler (XI R Cer	nt Spectr L nter Fi	um Analyzer - S RF 50 req 6.500	wept SA Ω AC 000000 G P	iHz NO: Fast 😱	SEN: Trig: Free	SE:INT	Аvg Туре	ALIGN AUTO	02:56:49 P TRAC TRAC	MNov 29, 2012 E 1 2 3 4 5 6 E MWWWWW	Frequency
Agiler (XI R Cer	nt Spectr L Iter Fi	um Analyzer - S RF 50 req 6.500	wept SA Ω AC 000000 G P IF	Hz NO: Fast ♀ Gain:Low	SEN Trig: Free #Atten: 30	SE:INT Run dB	Avg Type	alignauto :: Log-Pwr	02:56:49 Pi TRAC TYF DE	MNov 29, 2012 E 1 2 3 4 5 6 E M WWWWW T P N N N N N	Frequency
Agiler IXI R Cer	nt Spectr L nter Fr	um Analyzer - S RF 50 req 6.500	wept SA Ω AC 000000 G P IF	iHz 'NO: Fast 🍙 Gain:Low	SEN Trig: Free #Atten: 30	se:int Run dB	Avg Type	ALIGN AUTO :: Log-Pwr Mk	02:56:49 P TRAC TYF DE r1 2.43	MNov 29, 2012 E 1 2 3 4 5 6 MWWWWW T P N N N N N 7 7 GHz	Frequency Auto Tune
Agiler WR Cer	nt Spectr L Iter Fi B/div	um Analyzer - S RF 50 req 6.500 Ref 20.00	wept SA Ω AC 0000000 G P IF	iHz PNO: Fast 🌩 Gain:Low	SEN Trig: Free #Atten: 30	se:int Run dB	Аvg Туре	alignauto :: Log-Pwr Mk	D2:56:49 P TRAC TYP DE r1 2.43	MNov 29, 2012 = 1 2 3 4 5 6 = MWWWWW = P N N N N N 7 7 GHz 87 dBm	Frequency Auto Tune
Agiler (X) R Cer 10 dl Log	nt Spectr L nter Fr B/div	um Analyzer - S RF 50 req 6.500 Ref 20.00	wept SA Ω AC 0 000000 G P IF 0 dBm	iHz NO: Fast 🌩 Gain:Low	SEN Trig: Free #Atten: 30	se:INT Run dB	Avg Type	alignauto :: Log-Pwr Mk	12:56:49 P TRAC TYP DE r1 2.43 6.1	MNov 29,2012 # 1 2 3 4 5 6 # MWWWWW TP NNNNN 7 7 GHz 87 dBm	Frequency Auto Tune
Agiler XI R Cer 10 dl Log	nt Spectr L Inter Fr B/div	um Analyzer - S RF 50 req 6.500 Ref 20.00	wept SA	GHZ NO: Fast ♀ Gain:Low	SEN Trig: Free #Atten: 30	SE:INT Run dB	Avg Type	ALIGNAUTO :: Log-Pwr Mk	12:56:49 P TRAC TYF D r1 2.43 6.1	MNov 29, 2012 #1 1 2 3 4 5 6 MWWWW TP NNNNN 7 7 GHz 87 dBm	Frequency Auto Tune Center Freq
Agiler <mark> (X) R</mark> Cer 10 dl Log	nt Spectr L hter Fr B/div	Ref 20.00	wept SA Ω AC 000000 G P IF 0 dBm	iHz NO: Fast G Gain:Low	Trig: Free #Atten: 30	SE:INT Run dB	Avg Type	ALIGNAUTO :: Log-Pwr Mk	02:56:49 P TRAC TYP DE r1 2.43 6.1	MNov 29, 2012 #1 1 2 3 4 5 6 MWWWW TP NNNNN 7 7 GHz 87 dBm	Frequency Auto Tune Center Freq 6.50000000 GHz
Agiler VI R Cer 10 di Log	nt Spectr	RF 50 RF 50 Reg 6.500 Ref 20.00	wept SA Ω AC 0 0000000 G P IF 0 dBm	iHz N0: Fast G Gain:Low	Trig: Free #Atten: 30	se:INT Run dB	Avg Type	ALIGNAUTO :: Log-Pwr Mk	02:56:49 P TRAC TYP P r1 2.43 6.1	MNov 29,2012 # 123456 # MWWWWW TP NNNNN 7 7 GHz 87 dBm	Frequency Auto Tune Center Freq 6.50000000 GHz
Agiler (X) R Cer 10 dl Log 10.0 0.00	nt Spectr	um Analyzer - S RF 50 req 6.500 Ref 20.00	wept SA	Hz NO: Fast G Gain:Low	Trig: Free #Atten: 30	SE:INT Run dB	Avg Type	ALIGN AUTO :: Log-Pwr Mk	D2:56:49 P TRAC TYF DE r1 2.43 6.1	MNov 29,2012 E 123456 MWWWWW TP NNNNN 7 7 GHz 87 dBm	Frequency Auto Tune Center Freq 6.50000000 GHz
Agiler (X) R Cer 10 di Log 10.0	B/div	um Analyzer - S RF S0 req 6.500 Ref 20.00 ↓ 1	wept SA	iHz NO: Fast G Gain:Low	Trig: Free #Atten: 30	SE:INT Run dB	Avg Type	ALIGNAUTO :: Log-Pwr Mk	02:56:49 P TRAC TY D F1 2.433 6.1	MNov 29, 2012 #[123456 #MWWWWW TP NNNN 7 7 GHz 87 dBm	Frequency Auto Tune Center Freq 6.50000000 GHz
Agiler XI R Cer 10 dl Log 10.0 0.00 -10.0	nt Spectr L nter Fi B/div	um Analyzer - S RF 50 req 6.500 Ref 20.00 ↓ 1	wept SA Ω AC 000000 G P IF 0 dBm	iHz N0: Fast Gain:Low	SEN Trig: Free #Atten: 30	SE:INT Run dB	Avg Type	ALIGNAUTO : Log-Pwr Mk	b2:56:49 P TRAC TVF DR r1 2.433 6.1	MNov 29, 2012 # [12 3 4 5 6 # MWWWWW TP NNNN 7 7 GHz 87 dBm -13.13 dBm	Frequency Auto Tune Center Freq 6.50000000 GHz Start Freq 1.00000000 GHz
Agiler (x) R Cer 10 dl Log 10.0 0.00	nt Spectr L nter Fi B/div	um Analyzer - S RF 50 req 6.500 Ref 20.00	wept SA Ω AC 000000 G P IF 0 dBm	iHz N0: Fast Gain:Low	SEN Trig: Free #Atten: 30	SE:INT Run dB	Avg Type	ALIGNAUTO : Log-Pwr Mk	b2:56:49 P TRAC TVF Dr r1 2.43 6.1	MNov 29, 2012 # [1 2 3 4 5 6 # MWWWW TP NNNN 7 7 GHz 87 dBm -13.13 dBm	Frequency Auto Tune Center Freq 6.50000000 GHz Start Freq 1.00000000 GHz
Agiler (x) R Cer 10.0 10.0 -10.0 -20.0	nt Spectr	um Analyzer - S RF S0 req 6.500 Ref 20.00	wept SA Ω AC 000000 G P IF 0 dBm	iHz N0: Fast Gain:Low	SEN Trig: Free #Atten: 30	SE:INT Run dB	Avg Type	ALIGNAUTO : Log-Pwr Mk	02:56:49 P TRAC TVF Dr r1 2.43 6.1	MNov 29, 2012 # [1 2 3 4 5 6 # MWWWW TP N N N N 7 7 GHz 87 dBm -13.13 dBm	Frequency Auto Tune Center Freq 6.50000000 GHz Start Freq 1.00000000 GHz
Agiler X R Cer 10.0 10.0 0.00 -10.0 -20.0	nt Spectry	um Analyzer - S RF S0 req 6.500 Ref 20.00	wept SA Ω AC 0000000 G P IF 0 dBm	iHz N0: Fast G	Trig: Free #Atten: 30	SE:INT Run dB	Avg Type	ALIGNAUTO : Log-Pwr Mk	b2:56:49 P TRAC TVY D r1 2.43: 6.:	MNov 29, 2012 # [1 2 3 4 5 6 # MWWWW TP N N N N 7 7 GHz 87 dBm -13.13 dBm	Frequency Auto Tune Center Freq 6.50000000 GHz Start Freq 1.00000000 GHz
Agiler (X) R Cer 10.0 10.0 -10.0 -20.0 -30.0	B/div	um Analyzer - S RF S0 req 6.500 Ref 20.00 ↓ 1	wept SA Q AC 0000000 G P IF	iHz N0: Fast 🌩 Gain:Low	SEN Trig: Free #Atten: 30	SE:INT Run dB	Avg Type	ALIGNAUTO : Log-Pwr Mk	02:56:49 P TRAC TVY D r1 2.43 6.1	MNov 29, 2012 IE [1 2 3 4 5 6 MMMMMM TP N N N N 7 7 GHz 87 dBm -13.13 dBm	Frequency Auto Tune Center Freq 6.50000000 GHz 1.00000000 GHz Stop Freq 12.00000000 GHz
Agiler VXI R Cer 10.0 10.0 -10.0 -20.0 -30.0	nt Spectr L nter Fr	um Analyzer - S RF S0 req 6.500 Ref 20.00 ↓ 1	wept SA Q AC 0000000 G P IF	iHz N0: Fast G	SEN Trig: Free #Atten: 30	SE:INT Run dB	Avg Type	ALIGNAUTO : Log-Pwr Mk	b2:56:49 P TRAC TYS DF r1 2.43 6.5	MNov 29, 2012 # [1 2 3 4 5 6 # Mwwwww TP NNNN 7 7 GHz 87 dBm -13.13 dBm	Frequency Auto Tune Center Freq 6.50000000 GHz 1.00000000 GHz Stop Freq 12.00000000 GHz
Agiler VI R Cer 10.0 10.0 -10.0 -20.0 -30.0 -40.0	B/div	um Analyzer - S RF S0 req 6.500 Ref 20.00 ↓ 1 ↓ 1 ↓ 1	wept SA Q AC 0000000 G P IF IF IF	iHz NO: Fast G	SEN Trig: Free #Atten: 30	SE:INT Run dB	Avg Type	ALIGNAUTO : Log-Pwr Mk	b2:56:49 P TRAC TYF DF r1 2.43 6.1	MNov 29, 2012 # [1 2 3 4 5 6 # MWWWWW TP NNNN 7 7 GHz 87 dBm -13.13 dBm	Frequency Auto Tune Center Freq 6.50000000 GHz 1.00000000 GHz Stop Freq 12.00000000 GHz
Agiler VI R Cer 10.0 10.0 -10.0 -20.0 -30.0 -40.0	nt Spectri L Itter Fi	um Analyzer - S RF 50 req 6.500 Ref 20.00	wept SA Q AC 0000000 P IF P IF IF	Hz Sain:Low	SEN Trig: Free #Atten: 30	SE:INT Run dB	Avg Type	ALIGNAUTO : Log-Pwr Mk	b2:56:49.P TRAC TYF DF r1 2.43 3 6.	MNov 29, 2012 # [1 2 3 4 5 6 # MWWWWW TP NNNN 7 7 GHz 87 dBm -13.13 dBm	Frequency Auto Tune Center Freq 6.500000000 GHz Start Freq 1.000000000 GHz 12.00000000 GHz CF Step 1.100000000 GHz
Agiler XI R Cer 10.0 10.0 -10.0 -20.0 -30.0 -40.0 -50.0	nt Spectri L tter Fi	um Analyzer - S RF 50 req 6.500 Ref 20.00	wept SA	Hz NO: Fast Gain:Low	SEN Trig: Free #Atten: 30	SE:INT Run dB	Avg Type	ALIGNAUTO : Log-Pwr Mk	b2:56:49.P TRAC TYF P r1 2.433 6.	MNov 29, 2012 # [1 2 3 4 5 6 # MWWWW TP NNNN 7 7 GHz 87 dBm -13.13 dBm	Frequency Auto Tune Center Freq 6.50000000 GHz Start Freq 1.000000000 GHz 200000000 GHz 12.00000000 GHz 1.100000000 GHz Auto Man
Agiler XI R Cer 10.0 10.0 -10.0 -20.0 -30.0 -40.0 -50.0	nt Spectri	um Analyzer - S RF 50 req 6.500 Ref 20.00	Wept SA Q AC Q OOOOOO G P IF Image: Comparison of the second sec	Hz NO: Fast Gain:Low	SEN Trig: Free #Atten: 30	SE:INT Run dB	Avg Type	ALIGNAUTO : Log-Pwr Mk	b2:56:49.P TRAC TYF DR r1 2.43 6.	MNov 29, 2012 F[123456 MWWWWW TPNNNN 7 7 GHz 87 dBm -13.13 dBm	Frequency Auto Tune Center Freq 6.500000000 GHz Start Freq 1.000000000 GHz 12.000000000 GHz 11.000000000 GHz 1.100000000 GHz Auto Tune CF Step 1.100000000 GHz Auto Man
Agiter Agiter	nt Spectri Iter Fi B/div	um Analyzer - S RF S0 req 6.500 Ref 20.00 ↓ ↓ ↓	wept SA Ω AC 000000 G P IF 0 dBm	Hz NO: Fast Gain:Low	SEN Trig: Free #Atten: 30	SE:INT Run dB	Avg Type	ALIGNAUTO : Log-Pwr Mk	D2:56:49 P TRAC TYS DE r1 2.433 6.	MNov 29, 2012 = [1 2 3 4 5 6 = MWWWWW TP NNNN 7 7 GHz 87 dBm -13.13 dBm	Frequency Auto Tune Center Freq 6.50000000 GHz Start Freq 1.00000000 GHz 200000000 GHz 12.00000000 GHz 1.10000000 GHz 1.10000000 GHz Auto Man
Agiter Agiter	nt Spectri L L Here Fr B/div	um Analyzer - S RF S0 req 6.500 Ref 20.00 ↓ ↓ ↓ ↓ ↓	wept SA Q AC 0000000 G P IF	Hz NO: Fast G	SEN Trig: Free #Atten: 30	SE:INT Run dB	Avg Type	ALIGNAUTO : Log-Pwr Mk	D2:56:49 JP TRAC TVF DR r1 2.43 6.	MNov 29, 2012 # [1 2 3 4 5 6 # MWWWW TP NNNN 7 7 GHz 87 dBm -13.13 dBm	Frequency Auto Tune Center Freq 6.50000000 GHz Start Freq 1.00000000 GHz 12.00000000 GHz 12.0000000 GHz CF Step 1.1000000 GHz Auto Man
Agiler Agiler	nt Spectri L Iter Fi	um Analyzer - S RF S0 req 6.500 Ref 20.00 ↓ 1 ↓ 1 ↓ 1 ↓ 1 ↓ 1 ↓ 1 ↓ 1 ↓ 1	wept SA Q AC 0000000 G P IF	Hz NO: Fast 🌩 Gain:Low	SEN Trig: Free #Atten: 30	SE:INT Run dB	Avg Type	ALIGNAUTO : Log-Pwr Mk	02:56:49 P TRAC TYS DF r1 2.43; 6.5	MNov 29, 2012 E 1 2 3 4 5 6 MWWWWW TP NNNN TP NNNNN 7 7 GHz 87 dBm -13.13 dBm	Frequency Auto Tune Center Freq 6.50000000 GHz 1.00000000 GHz 12.00000000 GHz CF Step 1.10000000 GHz Auto Man Freq Offset 0 Hz
Agiler Cer 10 di 10.0 10.0 -10.0 -20.0 -30.0 -40.0 -60.0 -70.0	nt Spect r	um Analyzer - S RF S0 req 6.500 Ref 20.00 ↓ 1 ↓ 1 ↓ 1 ↓ 1 ↓ 1 ↓ 1 ↓ 1 ↓ 1	wept SA Q AC 0000000 G P IF	iHz N0: Fast 🌩 Gain:Low	SEN Trig: Free #Atten: 30	SE:INT Run dB	Avg Type	ALIGNAUTO : Log-Pwr Mk	b2:56:49 P TRAC TYS DE r1 2.43; 6.5	MNov 29, 2012 # [1 2 3 4 5 6 # Mwwwww TP NNNN 7 7 GHz 87 dBm -13.13 dBm	Frequency Auto Tune Center Freq 6.50000000 GHz 1.00000000 GHz 12.00000000 GHz 12.00000000 GHz 1.100000000 GHz Auto Man Freq Offset 0 Hz
Agiler X R Cer 10.0 10.0 -10.0 -20.0 -20.0 -30.0 -40.0 -50.0 -60.0 -70.0	nt Spect r tter Fi B/div	um Analyzer - S RF 50 req 6.500 Ref 20.00 1 	wept SA Q AC 0000000 G P IF	Hz Sain:Low	SEN Trig: Free #Atten: 30	SE:INT Run dB	Avg Type	ALIGNAUTO	b2:56:49.P TRAC TYS DF r1 2.43; 6.1	MNov 29, 2012 # [1 2 3 4 5 6 # MWWWWW TP NNNN 7 7 GHz 87 dBm -13.13 dBm	Frequency Auto Tune Center Freq 6.50000000 GHz 1.00000000 GHz 12.00000000 GHz 12.00000000 GHz 1.100000000 GHz Auto Man Freq Offset 0 Hz
Agiler X R Cer 10.0 10.0 -10.0 -20.0 -20.0 -30.0 -40.0 -50.0 -50.0 -50.0 Star	nt Spectr L Iter Fi B/div	um Analyzer - S RF 50 req 6.500 0 GHz	wept SA Q AC Q000000 G P IF	Hz NO: Fast Gain:Low	SEN Trig: Free #Atten: 30	SE:INT Run dB	Avg Type	ALIGNAUTO : Log-Pwr Mk	D2:56:49.P TRAC TYP DF r1 2.433 6. 6.	MNov 29, 2012 # [1 2 3 4 5 6 # MWWWWW T P NNNN 7 7 GHz 87 dBm -13.13 dBm -13.13 dBm -13.13 dBm	Frequency Auto Tune Center Freq 6.50000000 GHz Start Freq 1.00000000 GHz 200000000 GHz 1.100000000 GHz Auto Man Freq Offset 0 Hz
Agiter XI R Cer 10.0 10.0 -10.0 -20.0 -30.0 -40.0 -50.0 -50.0 -70.0 Star #Re	nt Spectri tter Fi B/div	um Analyzer - S RF 50 req 6.500 Ref 20.00 1 	wept SA Q AC Q000000 G P Image: P	#VBW	SEN Trig: Free #Atten: 30	SE:INT Run dB	Avg Type	ALIGNAUTO : Log-Pwr Mk	D2:56:49.P TRAC TYP P r1 2.433 6. 6.	MNov 29, 2012 # [1 2 3 4 5 6 # MWWWWW TP NNNNN 7 7 GHz 87 dBm -13.13 dBm -13.13 dBm -13.13 dBm 0000 GHz 0000 GHz	Frequency Auto Tune Center Freq 6.50000000 GHz Start Freq 1.00000000 GHz 12.00000000 GHz 12.00000000 GHz Auto Man Freq Offset 0 Hz
Agiter XI R Cer 10.0 10.0 -10.0 -20.0 -30.0 -40.0 -50.0 -50.0 -50.0 Star #Re MSG	nt Spectri tter Fi B/div	um Analyzer - S RF 50 req 6.500 Ref 20.00 1 - - - - - - - - - - - - -	Wept SA Q AC Q AC P P IF P	Hz NO: Fast Gain:Low	SEN Trig: Free #Atten: 30	SE:INT Run dB	Avg Type	ALIGNAUTO Log-Pwr Mk 	D2:56:49 P TRAC TYP P r1 2.433 6.1	MNov 29, 2012 # [1 2 3 4 5 6 # MWWWW T P NNNNN 7 7 GHz 87 dBm -13.13 dBm -13.13 dBm -13.13 dBm -13.13 dBm -13.13 dBm	Frequency Auto Tune Center Freq 6.500000000 GHz Start Freq 1.000000000 GHz 200000000 GHz 12.00000000 GHz 1.100000000 GHz Auto Man Freq Offset 0 Hz

Channel 06 (2437MHz)

Agilent Spectrum Analyz	er - Swept SA				
Center Freq 18	50 Ω AC .500000000 GHz PNO: Fast	Trig: Free Run	ALIGNAUTO Avg Type: Log-Pwr	02:57:52 PM Nov 29, 2012 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N	Frequency
10 dB/div Ref 20	IFGain:Lov D.00 dBm	, #Aπten: 30 dB	Mkr	1 23.637 6 GHz -41.00 dBm	Auto Tune
10.0					Center Freq 18.500000000 GHz
-10.0				-13.13 dBm	Start Freq 12.000000000 GHz
-20.0					Stop Freq 25.00000000 GHz
-40.0		ene en la serte la este constala (es	and the later of the later of the		CF Step 1.30000000 GHz <u>Auto</u> Man
-60.0	ne on a second				Freq Offset 0 Hz
-70.0 Start 12.000 GHz #Res BW 100 kH	z #V	BW 1.0 MHz	Sweep	Stop 25.000 GHz 1.20 s (10001 pts)	
мsg 🔱 File <lmage.p< td=""><td>ng> saved</td><td></td><td>STATUS</td><td></td><td></td></lmage.p<>	ng> saved		STATUS		

Agilen	t Spectrum Ar	nalyzer - Swept	SA								
LXI R	L RI	F 50 Ω	AC		SEM	VSE:INT	0	ALIGN AUTO	03:05:47 P	MNov 29, 2012	Frequency
Cen 10 di	<u>ter Freq</u> 3/div R e	515.0000	<u>900 MH</u> PI IFC	Z NO: Fast 😱 Gain:Low	Trig: Free #Atten: 30	⊧Run IdB	Avg Type	MI	۲۷۱ ۲۷۱ ۲۷۱ ۲۷۱ ۲۷۱ ۲۷۱ ۲۷۱ ۲۷۱ ۲۷۱ ۲۷۱	24 MHz 37 dBm	Auto Tune
Log 10.0											Center Freq 515.000000 MHz
0.00 -10.0										-15.24 dBm	Start Freq 30.000000 MHz
-20.0 -30.0											Stop Freq 1.000000000 GHz
-40.0 -50.0										1	CF Step 97.000000 MHz <u>Auto</u> Man
-60.0	i liter och fordlad och generation				Mariana kelar	Hard Carago para	lliten sie en het er		Mala la sela da Billa		Freq Offset 0 Hz
-70.0 Star #Re:	t 30.0 MH s BW 100	z kHz		#VBW	1.0 MHz			Sweep	Stop 1.0 90.0 ms (1	0000 GHz 0001 pts)	
MSG 🤇	File <ima< td=""><td>ge.png> sav</td><td>ed</td><td></td><td></td><td></td><td></td><td>STAT</td><td>us</td><td></td><td></td></ima<>	ge.png> sav	ed					STAT	us		

Channel 11 (2462MHz)

Agilent Spectrun	1 Analyzer - Sw	ept SA								
Center Fre	RF 50 Ω q 18.500	AC 000000 (GHz		JSE:INT	Avg Type	ALIGNAUTO : Log-Pwr	03:06:17 Pl TRAC	MNov 29, 2012 E 1 2 3 4 5 6	Frequency
10 dB/div	Ref 20.00 (Pi IFG dBm	10: Fast ⊊ Jain:Low	#Atten: 30	dB		Mkr	1 23.603 -41.1	3 8 GHz 18 dBm	Auto Tune
10.0										Center Freq 18.500000000 GHz
-10.0									-15.24 dBm	Start Freq 12.000000000 GHz
-20.0	_									Stop Freq 25.000000000 GHz
-40.0	L. tras Liketor				theore to the loss					CF Step 1.300000000 GHz <u>Auto</u> Man
-60.0		atte dent. Mendenskeden								Freq Offset 0 Hz
-70.0 Start 12.000	0 GHz		#VBW	1.0 MHz			Sween	Stop 25	.000 GHz	
MSG 🗼 File < Ir	nage.png> s	aved	#*84	1.0 10112			STATUS	1.20 3 (1	0001 pts)	

Product	:	Digital Camera
Test Item	:	RF Antenna Conducted Spurious
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)

Channel 01 (2412MHz)

Agilent Spectrum Analyzer - Swept SA					
W RL RF 50Ω AC Center Freg 515.000000 N	IHz	SENSE:INT	ALIGNAUT Avg Type: Log-Pw	0 03:14:49 PM Nov 29, 2012 r TRACE 1 2 3 4 5 6	Frequency
10 dB/div Ref 20.00 dBm	PNO: Fast 😱 IFGain:Low	Trig: Free Run #Atten: 30 dB	М	кr1 912.118 MHz -54.32 dBm	Auto Tune
10.0					Center Freq 515.000000 MHz
-10.0					Start Freq 30.000000 MHz
-20.0				-19.31 dBm	Stop Freq 1.000000000 GHz
-40.0				_ 1	CF Step 97.000000 MHz <u>Auto</u> Man
-60.0 Lendres and all and and all hit is the large taken by the l	n fish ya 1 da ka na shi ka na shi Mana ya shi ka na shi ka na shi ka shi k Mana ya shi ka shi k	th is sufficiently to be used	na dan bada da kuta na da kata na Na da kata na	na il national a segundari da cara da al fas	Freq Offset 0 Hz
Start 30.0 MHz #Res BW 100 kHz	#VBW 1	.0 MHz	Sweep	Stop 1.0000 GHz 90.0 ms (10001 pts)	

Agilen	t Spectru	n Analyzer -	Swept SA								
Cen	ter Fre	eq 6.50	Ω AC 0000000		SEI	NSE:INT	Avg Type	ALIGNAUTO : Log-Pwr	03:14:18 P TRAC TYF	MNov 29, 2012 E 1 2 3 4 5 6 E MWWWWW	Frequency
10 dE	3/div	Ref 20.0	0 dBm	FGain:Low	#Atten: 30) dB		Mk	⊓ 1 2.41 r1	1 3 GHz 69 dBm	Auto Tune
10.0		1	2								Center Freq 6.50000000 GHz
0.00 -10.0											Start Freq 1.00000000 GHz
-20.0 -30.0										-19.31 dBm	Stop Freq 12.000000000 GHz
-40.0											CF Step 1.10000000 GHz <u>Auto</u> Man
-60.0	angan (hann Maria	and here			Seguration of the second		a da da seria e da da seria da da seria da seri El tenso e consistencia da seria da ser		ay Day an an An Anna Loga ang pang Sand Kandidang	l de reta pleja de la const gentiernes generalitation	Freq Offset 0 Hz
-70.0 Star	t 1.000	GHz		#\/D\4	4.0 844-			Succes	Stop 12	.000 GHz	
MSG	Points	changed;	all traces cle	#VDVV ared	1.0 101712			STATUS	1.02 5 (1	000 i pisj	

Agiler	Agilent Spectrum Analyzer - Swept SA										
Cen	ter Freq	F 50 Ω 18.500	AC 000000	GHz	SE		Avg Type	ALIGNAUTO	03:15:20 P TRAC TYI	MNov 29, 2012 E 1 2 3 4 5 6	Frequency
10 di	B/div Re	ef 20.00 d	IFC JBm	NU: Fast 🖵 Gain:Low	#Atten: 30) dB		Mkr	⊓ 1 23.610 -40.	6 8 GHz 95 dBm	Auto Tune
10.0											Center Freq 18.50000000 GHz
0.00 -10.0											Start Freq 12.000000000 GHz
-20.0 -30.0										-19.31 dBm	Stop Freq 25.000000000 GHz
-40.0			e d llesse con		ter i stelat fotosta	listensk social Lateria		la statistica de la complexa		1	CF Step 1.300000000 GHz <u>Auto</u> Man
-60.0	arayda dagad araysal a araysa alaman dagaa ara					Lond (Mystel) and a constitute of					Freq Offset 0 Hz
-70.0 Star	t 12.000 (GHz							Stop 25	.000 GHz	
#Re	s BW 100 File <ima< td=""><td>kHz ge.png> sa</td><td>aved</td><td>#VBW</td><td>1.0 MHz</td><td></td><td></td><td>Sweep STATUS</td><td>1.20 s (1</td><td>0001 pts)</td><td></td></ima<>	kHz ge.png> sa	aved	#VBW	1.0 MHz			Sweep STATUS	1.20 s (1	0001 pts)	

Mkr1	:: 30 dB	#Atter	IFGain:Low		
				20.00 dBm	/div Re
	1				
nen star fredddar f		t libra and	tern an antal a Ultrate		a da filip han sa sa da sa Sa da sa d

STATUS

мsg 🔱 File <lmage.png> saved

Channel 06 (2437MHz)

Agilent Spectrum Analyzer - Swept SA											
Cen	L Iter Fr	eq 6.50	ο Ω AC 0000000	Hz	SE	NSE:INT	Avg Type	ALIGNAUTO : Log-Pwr	03:22:02 P TRAC	MNov 29, 2012 E 1 2 3 4 5 6	Frequency
10 di	IFGain:Low #Atten: 30 dB Mkr1 2.437 7 GHz 10 dB/div Ref 20.00 dBm 0.71 dBm										
10.0		▲ ¹									Center Freq 6.50000000 GHz
0.00 -10.0											Start Freq 1.000000000 GHz
-20.0 -30.0										-19.29 dBm	Stop Freq 12.000000000 GHz
-40.0 -50.0						aux this second					CF Step 1.100000000 GHz <u>Auto</u> Man
-60.0	perd _{is} ida di	and here			g and the last of a first of a fi			Telescolled, Johnson	lang di Kanada Mang Kang di Kanada Mang		Freq Offset 0 Hz
-70.0 Star #Re:	t 1.000 s BW /) GHz 100 kHz		#VBW	1.0 MHz			Sweep	Stop 12 1.02 s (1	.000 GHz 0001 pts)	
MSG 🤇	Points	s changed;	all traces clea	ared				STATUS			

Agilent	Spectrum Ar	alyzer - Sw	ept SA									
Cent	er Freq	50 Ω 18.500	AC 000000	GHz	SEI	NSE:INT	Avg	ALIO Type: Lo	g-Pwr	03:23:04 PI TRAC	MNov 29, 2012 E 1 2 3 4 5 6	Frequency
10 dB/	/div Re	f 20.00 (dBm	NO: Fast 🕞 Gain:Low	#Atten: 30	dB			Mkr	1 23.568 -40.0	B 7 GHz 68 dBm	Auto Tune
10.0			0									Center Freq 18.500000000 GHz
0.00 -												Start Freq 12.000000000 GHz
-20.0 =											-19.29 dBm	Stop Freq 25.00000000 GHz
-40.0 -			. II traction	1	and the second second	instampatine (m	at at a taken		State of the	a and the second se		CF Step 1.30000000 GHz <u>Auto</u> Man
-60.0												Freq Offset 0 Hz
-70.0 Start #Res	12.000 G BW 100	SHz kHz		#VBW	1.0 MHz			s	weep	Stop 25 1.20 s (1	.000 GHz 0001 pts)	
MSG 其	File <imag< td=""><td>ge.png> s</td><td>aved</td><td></td><td></td><td></td><td></td><td></td><td>STATUS</td><td></td><td></td><td></td></imag<>	ge.png> s	aved						STATUS			

Agilent Spectrum Analyzer - Swept SA					
Center Freg 515.000000	MHz	ENSE:INT Avg	Type: Log-Pwr	03:42:43 PMNov 29, 2012 TRACE 1 2 3 4 5 6	Frequency
10 dB/div Ref 20.00 dBm	PNO: Fast 🖵 ' Trig: Fre IFGain:Low #Atten: 3	ee Run 30 dB	Mk	r1 960.424 MHz -54.90 dBm	Auto Tune
10.0					Center Freq 515.000000 MHz
-10.0					Start Freq 30.000000 MHz
-20.0				18.65 dBm	Stop Freq 1.000000000 GHz
-40.0				_ 1_	CF Step 97.000000 MHz <u>Auto</u> Man
-60.0 Hereiten an fibran an fib	nen hin missen i nel kan kan kan hin hin hin hin hin missen Yeren an de seren de seren de seren hin hin hin hin hin hin hin hin hin hi	n Brenn Breternen verster Brei Mit		kan protinski _{uto} tiv odrije. L	Freq Offset 0 Hz
Start 30.0 MHz #Res BW 100 kHz	#VBW 1.0 MH;	z	Sweep 9	Stop 1.0000 GHz 00.0 ms (10001 pts)	

Channel 11 (2462MHz)

Agilen	Agilent Spectrum Analyzer - Swept SA										
Cen	∟ iter Fr	eq 6.50	ο Ω AC 0000000	GHz		NSE:INT	Avg Type	ALIGNAUTO : Log-Pwr	03:42:12 P TRAC	MNov 29, 2012 E 1 2 3 4 5 6	Frequency
10 dE	B/div	Ref 20.0	0 dBm	PNO: Fast () Gain:Low	#Atten: 30) dB		Mk	r1 2.46(1.	0 8 GHz 35 dBm	Auto Tune
10.0		1									Center Freq 6.50000000 GHz
0.00 -10.0											Start Freq 1.000000000 GHz
-20.0 -30.0										-18.65 dBm	Stop Freq 12.00000000 GHz
-40.0 -50.0					ad (Mal) ay na saatiinin s	at a final in a second					CF Step 1.10000000 GHz <u>Auto</u> Man
-60.0								aliten fan de fan de General de fan de fa General de fan de fa	a ha she da bara ki ka Mara na she da sa sa sa		Freq Offset 0 Hz
-70.0 Star	t 1.00) GHz		#\/D\M	1.0 844-			Swaan	Stop 12	.000 GHz	
MSG	Point	s changed;	all traces clea	#VBW	1.0 MHZ			Sweep	1.02 S (1	ooon pts)	

Agilent Spectrum Anal	yzer - Swept SA								
Zenter Freq	50 Ω AC 8.500000000	GHz	SENSE	EINT	Avg Type:	LIGNAUTO	03:43:14 PM TRAC	1 2 3 4 5 6	Frequency
10 dB/div Ref	ہ ۱۶ 20.00 dBm	NO: Fast 😱 👎 Gain:Low #	rig: Free K Atten: 30 d	B		Mkr1	23.521 -41.1	9 GHz 10 dBm	Auto Tune
10.0									Center Freq 18.50000000 GHz
-10.0									Start Freq 12.000000000 GHz
-20.0								-18.65 dBm	Stop Freq 25.00000000 GHz
-40.0				la ele ante a put	andreas (de la statut) Angele a statut				CF Step 1.30000000 GHz <u>Auto</u> Man
-60.0	na an a	types performation of the site							Freq Offset 0 Hz
-70.0							Stop 25		
#Res BW 100 k	Hz	#VBW 1.0	0 MHz			Sweep	1.20 s (1	000 GH2 0001 pts)	
мsg 🔱 File <image< td=""><td>e.png> saved</td><td></td><td></td><td></td><td></td><td>STATUS</td><td></td><td></td><td></td></image<>	e.png> saved					STATUS			

Product	:	Digital Camera
Test Item	:	RF Antenna Conducted Spurious
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)

Channel 01 (2412MHz)

Agilent Spectrum An	alyzer - Swept SA								
Center Freq	50 Ω AC 515.000000	MHz	SE	NSE:INT	Avg Type	ALIGNAUTO	D 03:51:38 P TRAC	MNov 29, 2012 E 1 2 3 4 5 6	Frequency
10 dB/div Re	f 20.00 dBm	PNO: Fast 🆵 IFGain:Low	#Atten: 30	dB		М	kr1 872.8 -54.	33 MHz 75 dBm	Auto Tune
10.0									Center Freq 515.000000 MHz
-10.0									Start Freq 30.000000 MHz
-20.0								-19.89 dBm	Stop Freq 1.000000000 GHz
-40.0							1		CF Step 97.000000 MHz <u>Auto</u> Man
	alised statistics while allow	anden) oor oor jaar van Heider (Maar en verste gebeure van de seelen seelen seelen op de seelen seelen seelen seelen seelen seelen seelen seelen	The state of the descent of the state of the	talihihihiadilea la	den stal de terre de la consecte la constata de la consecte de la constata de la cons la constata de la cons			la port la tracher ana trach a guar a tracher a la const	Freq Offset 0 Hz
Start 30.0 MH #Res BW 100	z kHz	#VBW	1.0 MHz			Sweep	Stop 1.0 90.0 ms (1	0000 GHz 0001 pts)	

Agilent Spectrum A	nalyzer - Swept SA							
Center Freq	F 50 Ω AC	0 GHz	3	ENSE:INT	Avg T	ALIGNAUTO ype: Log-Pwr	03:51:07 PM Nov 29, 2012 TRACE 1 2 3 4 5 6	Frequency
10 dB/div Re	f 20.00 dBm	PNO: Fast 🆵 IFGain:Low	⁻ Trig: Fre #Atten: 3	e Run 0 dB		Mk	r1 2.416 8 GHz 0.11 dBm	Auto Tune
10.0	▲ ¹							Center Freq 6.50000000 GHz
-10.0								Start Freq 1.000000000 GHz
-20.0			-				-19.89 dBm	Stop Freq 12.000000000 GHz
-40.0			lar I. Matilia . al					CF Step 1.100000000 GHz <u>Auto</u> Man
-60.0								Freq Offset 0 Hz
Start 1.000 G #Res BW 100	Hz kHz	#VBW	1.0 MHz	:		Sweep	Stop 12.000 GHz 1.02 s (10001 pts)	

Agilen	Agilent Spectrum Analyzer - Swept SA										
LXI RI		RF 50 Ω	AC		SE	VSE:INT	A	ALIGN AUTO	03:52:08 P	MNov 29, 2012	Frequency
Cen	ter Free	q 18.500	000000		Trig: Free	Run	Avg Type	: Log-Pwr	TY	~ 1 2 3 4 5 6 E M WWWW	
			İF	Gain:Low	#Atten: 30	dB			DI	T P N N N N N	
								Mkr	1 23.57	0 0 GHz	Auto Tune
10 dE	3/div F	lef 20.00 d	dBm						-40.	60 dBm	
Log											
40.0											Center Freq
10.0											18.500000000 GHz
0.00											
0.00											Start Freq
10.0											12.000000000 GHz
-10.0											
.20.0										-19.89 dBm	
-20.0											Stop Freq
20.0											25.00000000 GHz
-30.0											
40.0										' I	CE Sten
-40.0			2					and the second	المسلمانية والا	the plate south	1.300000000 GHz
70.0		and a	and and the second	and atting a	and the line of the	and setting a setting	part description of the state		- Itele and particular	And and the foreign of	<u>Auto</u> Man
-50.0	and Date	A DESCRIPTION OF	A CARGE OF STREET, STRE	and side of the second states	and provide the set from	hannelden jacher	a sector of the				
CO O	A Real Property of the second se		A 110								Fred Offset
-60.0		90. 									0.47
70.0											0112
-70.0											
Star	t 12.000	GHz						200	Stop 25	.000 GHz	
#Res	s BW 10	0 kHz		#VBW	1.0 MHz			Sweep	1.20 s (1	0001 pts)	
MSG 🤇	₽File <im< td=""><td>age.png> s</td><td>aved</td><td></td><td></td><td></td><td></td><td>STATUS</td><td></td><td></td><td></td></im<>	age.png> s	aved					STATUS			

Agiler	Agilent Spectrum Analyzer - Swept SA										
Cer	ter Free	RF 50 Ω ຊ 515.00	AC 0000 MH	Iz	 Trig: Free		Avg Type	ALIGNAUTO	04:01:10 P TRAC TYP	MNov 29, 2012 E 1 2 3 4 5 6 E M MANAMA	Frequency
10 di	B/div R	tef 20.00 (IFC	NU: Fast 🖵 Gain:Low	#Atten: 30) dB		Mł	₀ 1947.2< -54.√	32 MHz 41 dBm	Auto Tune
10.0											Center Freq 515.000000 MHz
0.00 -10.0											Start Freq 30.000000 MHz
-20.0 -30.0										-20.70 dBm	Stop Freq 1.000000000 GHz
-40.0										1	CF Step 97.000000 MHz <u>Auto</u> Man
-60.0	ileta Lilitaren		ista alli _{seg} na adqual k	and the state of the second	- La ^E rgenhal entre ave	and damper is	in in a contract of the second	in a start and a start	la ann an llanar		Freq Offset 0 Hz
-70.0 Stai #Re	t 30.0 M s BW 10	Hz 0 kHz		#VBW	1.0 MHz		\$	Sweep	Stop 1.0 90.0 ms (1	0000 GHz 0001 pts)	
MSG 🤇	File < Im	age.png> s	aved					STATU	JS		

Channel 06 (2437MHz)

Agiler	nt Spectrum Ai	nalyzer - Swep	ot SA		1141 1						
LXI R	L RI	= 50 Ω	AC		SEN	ISE:INT		ALIGNAUTO	04:00:39 P	MNov 29, 2012	Frequency
Cer	nter Freq	6.50000	0000 G	Hz	Tria: Free	Run	Avg Type	: Log-Pwr	TYP	EMWWWWW	·····
			IF)	Gain:Low	#Atten: 30	dB			DE	PNNNN	
								Mk	1 2 /3	22647	Auto Tune
	_							IVIN	0	70 dBm	
10 d	B/div Re	r 20.00 a	Bm						-0.		
											0
40.0											Center Freq
10.0											6.50000000 GHz
		▲1									
0.00		Y									
											Start Freq
-10.0											1.00000000 GHz
20.0										-20.70 dBm	
-20.0										Lon o storn	Stop Freq
											12.000000000 GHz
-30.0											
-40.0											CF Step
											1.100000000 GHz
-50.0				1.0							<u>Auto</u> Man
00.0	1110010000	a later date	Maria I.	and the second		halo dulout	-	122444	and the sector of	Lat. And	
	du the set of the	Contract of		A STATE OF A	Net of the second	and the second second	Lines De Distantes	all the state of t	and the pair of the	lavantantu bini	Eron Offect
-60.0	Manual and		Contract of the second s								Frequise
											0 Hz
-70.0											
Star	rt 1.000 GI	Hz						101	Stop 12	.000 GHz	
#Re	s BW 100	kHz		#VBW	1.0 MHz			Sweep	1.02 s (1	0001 pts)	
MSG 🤇	Points character	anged; all tr	aces clea	red				STATUS			

Agilent Spectrum Ar	nalyzer - Swept	SA					
RL RF Center Freq	F 50 Ω / 18.50000	AC 00000 GHz	SEP	NSE:INT	ALIGNAUTO g Type: Log-Pwr	04:01:40 PM Nov 29, 2012 TRACE 1 2 3 4 5 6	Frequency
10 dB/div Re	f 20.00 dB	PNO: Fast IFGain:Low	/ #Atten: 30	e Run) dB	Mkr	1 23.654 5 GHz -40.46 dBm	Auto Tune
10.0							Center Freq 18.500000000 GHz
-10.0							Start Freq 12.000000000 GHz
-20.0						-20.70 dBm	Stop Freq 25.00000000 GHz
-40.0		ale fully and a second state					CF Step 1.300000000 GHz <u>Auto</u> Man
-60.0		an da binda aya bidan ya da aya ya da aya ya da aya		and D. Shada			Freq Offset 0 Hz
-70.0	SH7					Stop 25.000 GHz	
#Res BW 100	kHz	#V	BW 1.0 MHz		Sweep	1.20 s (10001 pts)	
мsg 🤳 File <lmag< td=""><td>ge.png> save</td><td>ed (</td><td></td><td></td><td>STATUS</td><td></td><td></td></lmag<>	ge.png> save	ed (STATUS		

Agilent Spectrum Analyzer - Swept SA					
XX RL RF 50Ω AC	SE	INSE:INT	ALIGNAUTO 04:1	2:02 PM Nov 29, 2012	Frequency
Center Freq 515.000000 MHz PNO: IFGai	Fast Fast Free n:Low #Atten: 3	e Run 0 dB	e: Log-Pwr	TYPE MWWWWW DET P N N N N N	
10 dB/div Ref 20.00 dBm			Mkr1 74	1.786 MHz 54.63 dBm	Auto Tune
					Center Freq
10.0					515.000000 MHz
0.00					Start Fred
-10.0					30.000000 MHz
-20.0				-22:00 dBm	Stop Freq
-30.0					1.00000000 GHz
-40.0				[CF Step
-50.0			1		Auto Man
CO. O. W. Carallentife and a fit is a structure during a state	and the state of the	and a star to prove the provide the second	and the decade balling	Malan Balandar	Freg Offset
-00.0 wearing his glospy and divisition in the descent of the second second	na, tanàn matalania kati di kati ang katika na sila bagitana i				0 Hz
-70.0					
Start 30.0 MHz	41/DW 4 0 MU	<u> </u>	Sto	p 1.0000 GHz	
MSG File <image.png> saved</image.png>			STATUS		

Channel 11 (2462MHz)

Agilent Spectrum Ar	nalyzer - Swept SA						
Center Freq	F 50 Ω AC 18.500000000	GHz	SENSE:II	Avg	ALIGNAUTO Type: Log-Pwr	04:12:33 PMNov 29, 2012 TRACE 1 2 3 4 5 6	Frequency
10 dB/div Re	f 20.00 dBm	PNO: Fast 😱 FGain:Low	#Atten: 30 dB	1	Mkr	^{рет Р NNNNN} 1 23.664 9 GHz -40.88 dBm	Auto Tune
10.0							Center Freq 18.50000000 GHz
-10.0							Start Freq 12.000000000 GHz
-20.0						-22:00 dBm	Stop Freq 25.000000000 GHz
-40.0			water for a state		an and a second state of the	1	CF Step 1.30000000 GHz <u>Auto</u> Man
-60.0							Freq Offset 0 Hz
-70.0 Start 12.000 C #Res BW 100	GHz kHz	#VBW 1	.0 MHz		Sweep	Stop 25.000 GHz 1.20 s (10001 pts)	
мsg 🔱 File <lmag< td=""><td>ge.png> saved</td><td></td><td></td><td></td><td>STATUS</td><td></td><td></td></lmag<>	ge.png> saved				STATUS		

6. Band Edge

6.1. Test Equipment

RF Conducted Measurement

The following test equipments are used during the band edge tests:

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2012
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2012
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2012

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

RF Radiated Measurement:

The following test equipments are used during the band edge tests:

Test Site	Equipment		Manufacturer	Model No./Serial No.	Last Cal.
Site # 3		Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2012
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2012
		Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2012
	Х	Pre-Amplifier	Agilent	8447D/2944A09549	Sep., 2012
	Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2012
		Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2012
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2012
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	X	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

Note:

1. All instruments are calibrated every one year.

2. The test instruments marked by "X" are used to measure the final test results.

6.2. Test Setup

RF Conducted Measurement

RF Radiated Measurement:

6.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

6.4. Test Procedure

The EUT was setup according to ANSI C63.4: 2003 and tested according to DTS test procedure of ANSI C63.10 : 2009 for compliance to FCC 47CFR 15.247 requirements.

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.4: 2003 on radiated measurement.

6.5. Uncertainty

- ± 3.9 dB above 1GHz
- ± 3.8 dB below 1GHz

6.6. Test Result of Band Edge

Product	:	Digital Camera
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Dogult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
01 (Peak)	2390.000	31.509	23.974	55.483	74.000	54.000	Pass
01 (Peak)	2413.000	31.646	63.213	94.859			
01 (Average)	2390.000	31.509	12.036	43.545	74.000	54.000	Pass
01 (Average)	2411.400	31.634	58.868	90.502			

Horizontal (Peak)

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Digital Camera
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Dogult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
01 (Peak)	2390.000	30.915	24.196	55.111	74.000	54.000	Pass
01 (Peak)	2413.000	30.956	66.738	97.694			
01 (Average)	2390.000	30.915	12.406	43.321	74.000	54.000	Pass
01 (Average)	2411.400	30.945	62.885	93.830			

Figure Channel 01:

Vertical (Peak)

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Digital Camera
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	D ocult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
11 (Peak)	2460.900	32.011	64.893	96.904			
11 (Peak)	2483.500	32.182	23.171	55.353	74.000	54.000	Pass
11 (Peak)	2483.700	32.183	25.424	57.608	74.000	54.000	Pass
11 (Average)	2461.100	32.013	60.993	93.006			
11 (Average)	2483.500	32.182	12.016	44.198	74.000	54.000	Pass

Figure Channel 11:

Horizontal (Peak)

Figure Channel 11:

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Digital Camera
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Dogult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
11 (Peak)	2460.900	31.283	68.863	100.146			
11 (Peak)	2483.500	31.435	24.734	56.169	74.000	54.000	Pass
11 (Average)	2461.300	31.286	64.839	96.125			
11 (Average)	2483.500	31.435	12.280	43.715	74.000	54.000	Pass

Figure Channel 11:

Vertical (Peak)

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Digital Camera
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Dogult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
01 (Peak)	2390.000	31.509	33.896	65.405	74.000	54.000	Pass
01 (Peak)	2412.000	31.639	64.680	96.318			
01 (Average)	2390.000	31.509	13.778	45.287	74.000	54.000	Pass
01 (Average)	2411.200	31.632	51.019	82.651			

Figure Channel 01:

Horizontal (Peak)

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average etection.

Product	:	Digital Camera
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)

RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Dogult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
01 (Peak)	2390.000	30.915	36.840	67.755	74.000	54.000	Pass
01 (Peak)	2412.000	30.950	69.897	100.846			
01 (Average)	2390.000	30.915	15.270	46.185	74.000	54.000	Pass
01 (Average)	2411.200	30.944	55.047	85.991			

Figure Channel 01:

Vertical (Peak)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Digital Camera
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)

. . .

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Dogult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
11 (Peak)	2462.100	32.020	66.583	98.603			
11 (Peak)	2483.500	32.182	28.385	60.567	74.000	54.000	Pass
11 (Average)	2461.100	32.013	53.401	85.414			
11 (Average)	2483.500	32.182	13.674	45.856	74.000	54.000	Pass

Figure Channel 11:

Horizontal (Peak)

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average etection.

Product	:	Digital Camera
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)

RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Dogult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
11 (Peak)	2461.900	31.289	70.370	101.660			
11 (Peak)	2483.500	31.435	32.233	63.668	74.000	54.000	Pass
11 (Average)	2461.100	31.285	56.233	87.517			
11 (Average)	2483.500	31.435	14.692	46.127	74.000	54.000	Pass

Figure Channel 11:

Vertical (Peak)

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Digital Camera
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Pogult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Kesult
01 (Peak)	2390.000	31.509	28.647	60.156	74.000	54.000	Pass
01 (Peak)	2411.800	31.636	63.654	95.291			
01 (Average)	2390.000	31.509	13.448	44.957	74.000	54.000	Pass
01 (Average)	2411.200	31.632	49.948	81.580			

Figure Channel 01:

Horizontal (Peak)

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average etection.

Product	:	Digital Camera
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)

RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Dogult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
01 (Peak)	2390.000	30.915	31.387	62.302	74.000	54.000	Pass
01 (Peak)	2412.400	30.952	67.672	98.624			
01 (Average)	2390.000	30.915	14.814	45.729	74.000	54.000	Pass
01 (Average)	2411.200	30.944	53.545	84.489			

Figure Channel 01:

Vertical (Peak)

Figure Channel 01:

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Digital Camera
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Dogult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
11 (Peak)	2462.300	32.022	64.402	96.424			
11 (Peak)	2483.500	32.182	27.315	59.497	74.000	54.000	Pass
11 (Average)	2461.100	32.013	50.830	82.843			
11 (Average)	2483.500	32.182	13.100	45.282	74.000	54.000	Pass

Figure Channel 11:

Horizontal (Peak)

Figure Channel 11:

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average etection.

Product	:	Digital Camera
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)

RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
11 (Peak)	2461.900	31.289	68.938	100.228			
11 (Peak)	2483.500	31.435	29.132	60.567	74.000	54.000	Pass
11 (Peak)	2483.900	31.438	30.176	61.614	74.000	54.000	Pass
11 (Average)	2460.900	31.283	54.927	86.210			
11 (Average)	2483.500	31.435	14.340	45.775	74.000	54.000	Pass

Figure Channel 11:

Vertical (Peak)

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.