

Product Name	Digital Camera
Model No	COOLPIX S6500
FCC ID.	CGJ5149EB

Applicant	NIKON CORPORATION
Address	6-3, Nishiohi 1-chome, Shinagawa-ku, Tokyo 140-8601, Japan

Date of Receipt	Nov. 01, 2012
Issue Date	Dec. 10, 2012
Report No.	12B093R-RFUSP42V01
Report Version	V1.0

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Test Report Certification

Issue Date: Dec. 10, 2012 Report No.: 12B093R-RFUSP42V01

Accredited by NIST (NVLAP)

NVLAP Lab Code: 200533-0

Product Name	Digital Camera		
Applicant	NIKON CORPORATION		
Address	6-3, Nishiohi 1-chome, Shinagawa-ku, Tokyo 140-8601, Japan		
Manufacturer	NIKON CORPORATION		
Model No.	COOLPIX S6500		
FCC ID.	CGJ5149EB		
EUT Rated Voltage	DC 3.7V (Power by Battery)		
EUT Test Voltage	AC 120V / 60Hz		
Trade Name	Nikon		
Applicable Standard	FCC CFR Title 47 Part 15 Subpart C: 2010		
	ANSI C63.4: 2003		
Test Result	Complied		

The test results relate only to the samples tested.

:

:

:

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Documented By

Rita Fluang

(Senior Adm. Specialist / Rita Huang)

Tested By

Andy Lin

(Engineer / Andy Lin)

Approved By

(Manager / Vincent Lin)

TABLE OF CONTENTS

De	scription	Page
1.	GENERAL INFORMATION	5
1.1.	EUT Description	5
1.2.	Operational Description	
13	Tested System Details	8
1.5.	Configuration of Tested System	8
1.4.	EUT Exercise Software	0
1.5.	Test Facility	
1.0. 1	Conducted Emission	
2.		
2.1.	Test Equipment	
2.2.	Test Setup	
2.3.	Limits	
2.4.	Test Procedure	
2.5.	Uncertainty	
2.6.	Test Result of Conducted Emission	
3.	Peak Power Output	15
31	Test Equipment	15
3 2	Test Setun	15
3.2.	I imite	
2.J.	Tast Draadura	
5.4. 2.5	I un e entre inter	
<i>3.</i> 3.	Uncertainty	
3.0.	Test Result of Peak Power Output	
4.	Radiated Emission	20
4.1.	Test Equipment	
4.2.	Test Setup	
4.3.	Limits	
4.4.	Test Procedure	
4.5.	Uncertainty	
4.6.	Test Result of Radiated Emission	
5.	RF antenna conducted test	
5.1.	Test Equipment	36
52	Test Setup	36
53	Limits	36
54	Test Procedure	36
5.5	Uncertainty	37
5.6.	Test Result of RF antenna conducted test	
6.	Band Edge	
6 1	Test Equipment	Fr
0.1.	Test Equipment	
0.2.	1est Setup	
6.3.	Limits	
6.4.	Test Procedure	
6.5.	Uncertainty	
6.6.	Test Result of Band Edge	

QuieTer

7.	Occupied Bandwidth	71
7.1.	Test Equipment	
7.2.	Test Setup	71
7.3.	Limits	71
7.4.	Test Procedure	71
7.5.	Uncertainty	71
7.6.	Test Result of Occupied Bandwidth	
8.	Power Density	81
8.1.	Test Equipment	
8.2.	Test Setup	
8.3.	Limits	
8.4.	Test Procedure	
8.5.	Uncertainty	
8.6.	Test Result of Power Density	
9.	EMI Reduction Method During Compliance Testing	91

- Attachment 1: EUT Test Photographs
- Attachment 2: EUT Detailed Photographs

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	Digital Camera		
Trade Name	Nikon		
Model No.	COOLPIX S6500		
FCC ID.	CGJ5149EB		
Frequency Range	2412-2462MHz for 802.11b/g/n-20BW		
Number of Channels	802.11b/g/n-20MHz: 11		
Data Speed	802.11b: 1-11Mbps, 802.11g: 6-54Mbps, 802.11n: up to 72.2Mbps		
Type of Modulation	802.11b:DSSS (DBPSK, DQPSK, CCK)		
	802.11g/n:OFDM (BPSK, QPSK, 16QAM, 64QAM)		
Antenna Type	Internal Antenna		
Antenna Gain	Refer to the table "Antenna List"		
Channel Control	Auto		
USB Cable	Non-Shielded, 1.5m, with one ferrite cord bonded.		
Power Adapter (1)	MFR: Nikon, M/N: EH-70P		
	Input: AC 100-240V, 50/60Hz, 0.07A-0.044A, 7VA-10.56VA		
	Output: DC 5V, 0.55A		
Power Adapter (2)	MFR: Nikon, M/N: EH-70PCH		
	Input: AC 100-240V		
	Output: DC 5V, 0.55A		

Antenna List

No.	Manufacturer	Part No.	Antenna Type	Peak Gain
1	Foxlink	669N-1006-0180	Internal Antenna	-4.5 dBi for 2.4 GHz

Note:

1. The antenna of EUT is conform to FCC 15.203.

802.11b/g/n-20MHz Center Frequency of Each Channel:

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 01:	2412 MHz	Channel 02:	2417 MHz	Channel 03:	2422 MHz	Channel 04:	2427 MHz
Channel 05:	2432 MHz	Channel 06:	2437 MHz	Channel 07:	2442 MHz	Channel 08:	2447 MHz
Channel 09:	2452 MHz	Channel 10:	2457 MHz	Channel 11:	2462 MHz		

- 1. The EUT is Digital Camera with a built-in 2.4GHz WLAN transceiver.
- 2. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test.
- 3. Lowest and highest data rates are tested in each mode. Only worst case is shown in the report. (802.11b is 11Mbps 802.11g is 54Mbps 802.11n(20M-BW) is 72.2Mbps and)
- 4. These tests are conducted on a sample for the purpose of demonstrating compliance of 802.11b/g/n transmitter with Part 15 Subpart C Paragraph 15.247 of spread spectrum devices.
- 5. The radiation measurements are performed in X, Y, Z axis positioning. Only the worst case is shown in the report.

	Mode 1: Transmit (802.11b 1Mbps)
Test Mode:	Mode 2: Transmit (802.11g 6Mbps)
	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)

1.3. Tested System Details

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

	Product	Manufacturer	Model No.	Serial No.	Power Cord
1	Monitor	LG	W2261VT	907YHZK07373	Non-Shielded, 1.8m
2	Notebook PC	DELL	PPT	N/A	Non-Shielded, 0.8m
3	Modem	ACEEX	DM-1414	0102027533	Non-Shielded, 1.8m
4	DVD Rom	DELL	PD015	N/A	N/A
5	Microphone &	PCHOME	N/A	N/A	N/A
5	Earphone				

Signal Cable Type		Signal cable Description	
А	Mini HDMI to HDMI Cable	Non-Shielded, 1.8m	
В	USB Cable	Non-Shielded, 1.5m, with one ferrite core bonded.	
С	Modem Cable	Non-Shielded, 1.5m	
D	DVD Rom Cable	Non-Shielded, 0.8m	
Е	Microphone & Earphone Cable	Non-Shielded, 1.2m	

1.4. Configuration of Tested System

1.5. EUT Exercise Software

- (1) Setup the EUT as shown in Section 1.4
- (2) Execute program "Chiptest v.6.0.0.6" on the Notebook.
- (3) Configure the test mode, the test channel, and the data rate.
- (4) Press "OK" to start the continuous Transmit.
- (5) Verify that the EUT works properly.

1.6. Test Facility

Ambient conditions in the laboratory:

Items	Required (IEC 68-1)	Actual
Temperature (°C)	15-35	20-35
Humidity (%RH)	25-75	50-65
Barometric pressure (mbar)	860-1060	950-1000

The related certificate for our laboratories about the test site and management system can be downloaded from

QuieTek Corporation's Web Site: <u>http://www.quietek.com/tw/ctg/cts/accreditations.htm</u> The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site: <u>http://www.quietek.com/</u>

Site Description:	File on						
	Federal Communications Commission						
	FCC Engineering Laboratory 7435 Oakland Mills Road Columbia, MD 21046						
	Registration Number: 92195						
	Accreditation on NVLAP						
	NVLAP Lab Code: 200533-0						
Site Name:	Quietek Corporation						
Site Address:	No.5-22, Ruishukeng,						
	Linkou Dist. New Taipei City 24451,						
	Taiwan, R.O.C.						
	TEL: 886-2-8601-3788 / FAX : 886-2-8601-3789						
	E-Mail : <u>service@quietek.com</u>						

FCC Accreditation Number: TW1014

2. Conducted Emission

2.1. Test Equipment

	Equipment	Manufacturer	Model No. / Serial No.	Last Cal.	Remark
Х	Test Receiver	R & S	ESCS 30 / 825442/018	Sep., 2012	
Х	Artificial Mains Network	R & S	ENV4200 / 848411/10	Feb., 2012	Peripherals
Х	LISN	R & S	ESH3-Z5 / 825562/002	Feb., 2012	EUT
	DC LISN	Schwarzbeck	8226 / 176	Mar, 2012	EUT
Х	Pulse Limiter	R & S	ESH3-Z2 / 357.8810.52	Feb., 2012	
	No.1 Shielded Room				

Note:

- 1. All equipments are calibrated every one year.
- 2. The test instruments marked by "X" are used to measure the final test results.

2.2. Test Setup

2.3. Limits

FCC Part 15 Subpart C Paragraph 15.207 (dBuV) Limit								
Frequency	Limits							
MHz	QP	AVG						
0.15 - 0.50	66-56	56-46						
0.50-5.0	56	46						
5.0 - 30	60	50						

2.4. Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs.)

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement.

Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

2.5. Uncertainty

± 2.26 dB

2.6. Test Result of Conducted Emission

Product	:	Digital Camera
Test Item	:	Conducted Emission Test
Power Line	:	Line 1
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2437MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV	dB	dBuV
Line 1					
Quasi-Peak					
0.166	9.830	27.980	37.810	-27.733	65.543
0.334	9.830	22.740	32.570	-28.173	60.743
0.502	9.830	25.940	35.770	-20.230	56.000
2.502	9.841	24.130	33.971	-22.029	56.000
6.002	9.892	22.250	32.142	-27.858	60.000
22.587	10.110	20.690	30.800	-29.200	60.000
Average					
0.166	9.830	27.520	37.350	-18.193	55.543
0.334	9.830	22.730	32.560	-18.183	50.743
0.502	9.830	25.740	35.570	-10.430	46.000
2.502	9.841	22.290	32.131	-13.869	46.000
6.002	9.892	9.340	19.232	-30.768	50.000
22.587	10.110	13.920	24.030	-25.970	50.000

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. " means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	: Digital Camera											
Test Item	: Conducted Emission Test											
Power Line	: Line 2											
Test Mode	: Mode 3:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2437MHz)										
Frequency	Correct	Reading	Measurement	Margin	Limit							
	Factor	Level	Level									
MHz	dB	dBuV	dBuV	dB	dBuV							
Line 2												
Quasi-Peak												
0.166	9.838	25.830	35.668	-29.875	65.543							
0.252	9.830	17.850	27.680	-35.406	63.086							
0.502	9.840	19.970	29.810	-26.190	56.000							
3.334	9.870	15.920	25.790	-30.210	56.000							
6.005	9.922	18.420	28.342	-31.658	60.000							
15.509	10.230	17.400	27.630	-32.370	60.000							
Average												
0.166	9.838	25.460	35.298	-20.245	55.543							
0.252	9.830	16.090	25.920	-27.166	53.086							
0.502	9.840	19.960	29.800	-16.200	46.000							
3.334	9.870	7.930	17.800	-28.200	46.000							
6.005	9.922	7.780	17.702	-32.298	50.000							
15.509	10.230	11.300	21.530	-28.470	50.000							

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

3. Peak Power Output

3.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Х	Power Meter	Anritsu	ML2495A/6K00003357	May, 2012
Х	Power Sensor	Anritsu	MA2411B/0738448	Jun, 2012
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2012
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2012
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2012
Not				

Note:

1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.

3.2. Test Setup

Average Power For different Data Rate (Mbps)

Peak Power Measurement

3.3. Limits

The maximum peak power shall be less 1 Watt.

3.4. Test Procedure

The EUT was tested according to DTS test procedure of Jan. 2012 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

3.5. Uncertainty

 \pm 1.27 dB

3.6. Test Result of Peak Power Output

Product	:	Digital Camera
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

Channel No	Frequency	For d	Average ifferent Da	e Power ata Rate (N	Peak Power	Required	Result	
	(MHz)	1	2	5.5	11	11	Limit	Result
			Measur					
01	2412	15.14				18.42	<30dBm	Pass
06	2437	14.89	14.82	14.8	14.77	18.21	<30dBm	Pass
11	2462	14.52				17.83	<30dBm	Pass

Note: Peak Power Output Value =Reading value on power meter + cable loss

Product	:	Digital Camera
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)

		Average PowerPeakFor different Data Rate (Mbps)Power								Required		
Channel No	(MHz)	6	9	12	18	24	36	48	54	54	Limit	Result
			Measurement Level (dBm)									
01	2412	13.95								22.64	<30dBm	Pass
06	2437	13.88	13.84	13.54	13.11	12.98	12.55	12.01	11.57	22.11	<30dBm	Pass
11	2462	13.40								21.73	<30dBm	Pass

Note: Peak Power Output Value =Reading value on power meter + cable loss

Product	:	Digital Camera
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)

Eraguanar		Average PowerPeakFor different Data Rate (Mbps)Power						Paguirad				
Channel No	(MHz)	7.2	14.4	21.7	28.9	43.3	57.8	65	72.2	72.2	Limit	Result
			Measurement Level (dBm)									
01	2412	12.31					-	-		22.78	<30dBm	Pass
06	2437	12.04	11.57	11.35	11.08	10.84	10.72	10.6	10.58	21.68	<30dBm	Pass
11	2462	11.74								21.66	<30dBm	Pass

Note: Peak Power Output Value =Reading value on power meter + cable loss

4. Radiated Emission

4.1. Test Equipment

The following test equipment are used during the radiated emission test:

Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
\Box Site # 3	Х	Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2012
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2012
	Х	Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2012
	Х	Pre-Amplifier	Agilent	8447D/2944A09549	Sep., 2012
	Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2012
	Х	Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2012
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2012
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	Х	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.

4.2. Test Setup

Radiated Emission Below 1GHz

Radiated Emission Above 1GHz

4.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209(a) Limits						
Frequency MHz	uV/m @3m	dBuV/m@3m				
30-88	100	40				
88-216	150	43.5				
216-960	200	46				
Above 960	500	54				

Remarks: E field strength $(dBuV/m) = 20 \log E$ field strength (uV/m)

4.4. Test Procedure

The EUT was setup according to ANSI C63.4: 2003 and tested according to DTS test procedure of Jan. 2012 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.4: 2003 on radiated measurement.

The resolution bandwidth below 1GHz setting on the field strength meter is 120 kHz and above 1GHz is 1MHz.

Radiated emission measurements below 1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement. The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna. The worst radiated emission is measured in the Open Area Test Site on the Final Measurement. The frequency range from 30MHz to 10th harminics is checked.

4.5. Uncertainty

- ± 3.9 dB above 1GHz
- ± 3.8 dB below 1GHz

4.6. Test Result of Radiated Emission

Product	:	Digital Camera
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2412MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4824.000	3.261	41.950	45.211	-28.789	74.000
7236.000	10.650	39.490	50.140	-23.860	74.000
9648.000	13.337	35.060	48.396	-25.604	74.000
Average Detector:					
Vertical					
Peak Detector:					
4824.000	6.421	42.570	48.991	-25.009	74.000
7236.000	11.495	37.770	49.265	-24.735	74.000
9648.000	13.807	35.510	49.316	-24.684	74.000

Average Detector:

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Digital Camera					
Test Item	: Harmonic Radiated Emission Data					
Test Site	: No.3 OATS					
Test Mode	: Mode 1:	Transmit (802.11	lb 1Mbps) (2437 MH	z)		
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector:						
4874.000	3.038	42.450	45.487	-28.513	74.000	
7311.000	11.795	36.070	47.864	-26.136	74.000	
9748.000	12.635	36.250	48.885	-25.115	74.000	
Average Detector:						
Vertical						
Peak Detector:						
4874.000	5.812	42.440	48.251	-25.749	74.000	
7311.000	12.630	37.470	50.099	-23.901	74.000	
9748.000	13.126	37.080	50.206	-23.794	74.000	

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Digital Camera					
Test Item	: Harmonic Radiated Emission Data					
Test Site	: No.3 OA	ATS				
Test Mode	: Mode 1:	Transmit (802.11	b 1Mbps) (2462 MH	z)		
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector:						
4924.000	2.858	41.160	44.017	-29.983	74.000	
7386.000	12.127	41.580	53.708	-20.292	74.000	
9848.000	12.852	36.510	49.363	-24.637	74.000	
Average Detector:						
Vertical						
Peak Detector:						
4924.000	5.521	43.420	48.940	-25.060	74.000	
7386.000	13.254	36.740	49.994	-24.006	74.000	
9848.000	13.367	36.840	50.207	-23.793	74.000	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Digital (Camera				
Test Item	: Harmonic Radiated Emission Data					
Test Site	: No.3 OATS					
Test Mode	: Mode 2:	Transmit (802.11	lg 6Mbps) (2412MHz	z)		
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector:						
4824.000	3.261	40.020	43.281	-30.719	74.000	
7236.000	10.650	39.030	49.680	-24.320	74.000	
9648.000	13.337	36.940	50.276	-23.724	74.000	
Average Detector:						
Vertical						
Peak Detector:						
4824.000	6.421	40.570	46.991	-27.009	74.000	
7236.000	11.495	36.710	48.205	-25.795	74.000	
9648.000	13.807	36.370	50.176	-23.824	74.000	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Digital (Camera					
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OA	ATS					
Test Mode	: Mode 2:	Transmit (802.11	g 6Mbps) (2437 MH	z)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
4874.000	3.038	38.210	41.247	-32.753	74.000		
7311.000	11.795	38.080	49.874	-24.126	74.000		
9748.000	12.635	37.500	50.135	-23.865	74.000		
Average Detector:							
Peak Detector:							
4874.000	5.812	39.650	45.461	-28.539	74.000		
7311.000	12.630	36.400	49.029	-24.971	74.000		
9748.000	13.126	37.340	50.466	-23.534	74.000		

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Digital (Camera				
Test Item	: Harmonic Radiated Emission Data					
Test Site	: No.3 OA	ATS				
Test Mode	: Mode 2:	Transmit (802.11	g 6Mbps) (2462 MH	z)		
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector:						
4924.000	2.858	38.480	41.337	-32.663	74.000	
7386.000	12.127	38.400	50.528	-23.472	74.000	
9848.000	12.852	37.190	50.043	-23.957	74.000	
Average Detector:						
Vertical						
Peak Detector:						
4924.000	5.521	40.110	45.630	-28.370	74.000	
7386.000	13.254	36.780	50.034	-23.966	74.000	
9848.000	13.367	37.630	50.997	-23.003	74.000	

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Digital Camera					
Test Item	: Harmonic Radiated Emission Data					
Test Site	: No.3 OATS					
Test Mode	: Mode 3:	Transmit (802.11	n MCS0 7.2Mbps 20	M-BW)(2412MH	łz)	
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector:						
4824.000	3.261	39.220	42.481	-31.519	74.000	
7236.000	10.650	37.490	48.140	-25.860	74.000	
9648.000	13.337	36.520	49.856	-24.144	74.000	
Average Detector:						
Vortical						
Peak Detector:						
4824.000	6.421	39.580	46.001	-27.999	74.000	
7236.000	11.495	36.990	48.485	-25.515	74.000	
9648.000	13.807	36.540	50.346	-23.654	74.000	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Digital Camera
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2437 MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4874.000	3.038	38.300	41.337	-32.663	74.000
7311.000	11.795	37.900	49.694	-24.306	74.000
9748.000	12.635	37.490	50.125	-23.875	74.000
Average Detector:					
Vertical					
Peak Detector:					
4874.000	5.812	40.370	46.181	-27.819	74.000
7311.000	12.630	36.880	49.509	-24.491	74.000
9748.000	13.126	37.190	50.316	-23.684	74.000

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Digital Camera
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2462 MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector:						
4924.000	2.858	38.310	41.167	-32.833	74.000	
7386.000	12.127	37.420	49.548	-24.452	74.000	
9848.000	12.852	36.910	49.763	-24.237	74.000	
Average Detector:						
Vertical						
Peak Detector:						
4924.000	5.521	37.910	43.430	-30.570	74.000	
7386.000	13.254	36.640	49.894	-24.106	74.000	
9848.000	13.367	36.950	50.317	-23.683	74,000	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Digital Camera								
Test Item	: General Radiated Emission Data								
Test Site	: No.3 OATS								
Test Mode	: Mode 1:	Transmit (802.11	b 1Mbps)(2437 MHz	2)					
Frequency	Correct	Reading	Measurement	Margin	Limit				
	Factor	Level	Level						
 MHz	dB	dBuV	dBuV/m	dB	dBuV/m				
Horizontal									
111.480	-7.914	37.484	29.570	-13.930	43.500				
398.600	-2.268	35.000	32.732	-13.268	46.000				
600.360	3.977	29.099	33.076	-12.924	46.000				
749.740	3.320	27.617	30.937	-15.063	46.000				
854.500	6.626	30.934	37.560	-8.440	46.000				
943.740	6.492	28.624	35.117	-10.883	46.000				
Vertical									
59.100	-4.097	35.018	30.921	-9.079	40.000				
198.780	-8.221	35.093	26.872	-16.628	43.500				
398.600	-4.678	38.360	33.682	-12.318	46.000				
600.360	-2.833	29.809	26.976	-19.024	46.000				
796.300	2.831	34.079	36.910	-9.090	46.000				
941.800	6.585	26.535	33.120	-12.880	46.000				

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Digital Camera									
Test Item	: General Radiated Emission Data									
Test Site	: No.3 OATS									
Test Mode	: Mode 2: Transmit (802.11g 6Mbps)(2437 MHz)									
Frequency	Correct	Reading	Measurement	Margin	Limit					
	Factor	Level	Level							
MHz	dB	dBuV	dBuV/m	dB	dBuV/m					
Horizontal										
103.720	-6.751	30.718	23.966	-19.534	43.500					
225.940	-9.878	41.927	32.048	-13.952	46.000					
429.640	-2.242	37.477	35.235	-10.765	46.000					
573.200	2.537	31.095	33.632	-12.368	46.000					
800.180	5.141	34.052	39.193	-6.807	46.000					
928.220	6.893	24.802	31.695	-14.305	46.000					
Vertical										
198.780	-8.221	35.965	27.744	-15.756	43.500					
396.660	-4.356	39.552	35.196	-10.804	46.000					
532.460	-0.563	31.349	30.786	-15.214	46.000					
679.900	1.000	31.495	32.495	-13.505	46.000					
796.300	2.831	34.188	37.019	-8.981	46.000					
961.200	7.260	27.447	34.707	-19.293	54.000					

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Digital Camera									
Test Item	: General Radiated Emission Data									
Test Site	: No.3 OATS									
Test Mode	: Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)(2437 MHz)									
Frequency	Correct	Reading	Measurement	Margin	Limit					
	Factor	Level	Level							
MHz	dB	dBuV	dBuV/m	dB	dBuV/m					
Horizontal										
105.660	-6.673	33.972	27.299	-16.201	43.500					
224.000	-10.339	39.840	29.501	-16.499	46.000					
398.600	-2.268	36.329	34.061	-11.939	46.000					
495.600	-0.535	38.559	38.024	-7.976	46.000					
629.460	1.560	28.965	30.525	-15.475	46.000					
852.560	6.342	30.471	36.813	-9.187	46.000					
Vertical										
61.040	-4.316	33.882	29.566	-10.434	40.000					
198.780	-8.221	37.873	29.652	-13.848	43.500					
400.540	-5.156	40.716	35.561	-10.439	46.000					
596.480	-3.113	32.013	28.900	-17.100	46.000					
800.180	2.801	33.342	36.143	-9.857	46.000					
947.620	6.609	30.600	37.209	-8.791	46.000					

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

5. **RF** antenna conducted test

5.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2012
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2012
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2012

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.

5.2. Test Setup

RF antenna Conducted Measurement:

5.3. Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

5.4. Test Procedure

The EUT was tested according to DTS test procedure of Jan. 2012 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

Set RBW = 100 kHz, Set VBW> RBW, scan up through 10th harmonic.

5.5. Uncertainty

The measurement uncertainty Conducted is defined as \pm 1.27dB

5.6. Test Result of RF antenna conducted test

Product	:	Digital Camera
Test Item	:	RF antenna conducted test
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

Channel 01 (2412MHz)

Agile	nt Spectr	um Analyzer - Sv	wept SA								
Cer	ter Fi	RF 50 req 515.00	Ω AC 10000 MH	z	SE	NSE:INT	Avg Type	ALIGNAUTO : Log-Pwr	02:30:50 P TRAC	MNov 23, 2012 E 1 2 3 4 5 6	Frequency
10 d Loa	B/div	Ref 20.00	dBm	PNO: Fast 🍙 Gain:Low	≓ Trig:Free #Atten: 30	≥Run)dB		Mkı	r1 803.5 -58.	75 MHz 06 dBm	Auto Tune
10.0											Center Freq 515.000000 MHz
0.00 -10.0										-15.55 dBm	Start Freq 30.000000 MHz
-20.0 -30.0											Stop Freq 1.000000000 GHz
-40.0 -50.0									1		CF Step 97.000000 MHz <u>Auto</u> Man
-60.0	erne af te Marja	Denne Harris			an falan an an an an an an an	landa an Indonesia Tang pangkana ang pa	a territi palene en territor por	engen bis in menerati Generation anteres bise		aliteration of the failed	Freq Offset 0 Hz
-70.0 Stai #Re	rt 30.0	MHz 100 kHz		#VBW	1.0 MHz			Sween 9	Stop 1.0	0000 GHz	
MSG	Ĵ)File <	<image.png> :</image.png>	saved					STATUS	3	,	1

Agilent Spectrum Analyzer - Swept SA	and as		N	
CX RL RF 50Ω AC	SENSE:INT	ALIGNAUTO	02:30:15 PM Nov 23, 2012	Frequency
Center Freq 6.50000000 GHz	Trig: Free Run	Avg Type: Log-Pwr	TYPE MWWWWW	
IFGain:Low	#Atten: 30 dB		DET P N N N N N	
		Mk	r1 2 412 4 GHz	Auto Tune
to initia Def 20.00 dDm		1411	4 45 dBm	
			4.40 abiii	
-				Contor From
10.0				Center Freq
10.0				6.500000000 GHz
0.00				
				Start Freq
-10.0				1.00000000 GHz
			-15.55 dBm	
20.0				
-20.0				Stop Freq
				12.000000000 GHz
-30.0				
-40.0				CF Step
				1.10000000 GHz
60.0				<u>Auto</u> Man
-50.0				
	a the all of the state of the s	CONTRACTOR OF THE OWNER	Although the state of the state	F === 0 f ==+
-60.0	and the second secon		and the second particular second second second	FreqOffset
				0 Hz
-70.0				
Start 1.000 GHz			Stop 12.000 GHz	
#Res BW 100 kHz #VBW	1.0 MHz	Sweep	1.02 s (10001 pts)	
MSG (1) Points changed; all traces cleared		STATUS		
MSG DPoints changed: all traces cleared		STATUS	1.02 5 (10001 pts)	

Agiler	Agilent Spectrum Analyzer - Swept SA										
v¤ Cer	L nter Fr	RF 50 s eq 18.500	2 AC	Hz	SE		Avg Type	LIGNAUTO	02:31:26 P TRAC	MNov 23, 2012 E 1 2 3 4 5 6	Frequency
10 di	B/div	Ref 20.00	ہ IFO dBm	NO: Fast (Gain:Low	#Atten: 30) dB		Mkr	ں 1 24.720 -47.04) 5 GHz 86 dBm	Auto Tune
10.0											Center Freq 18.50000000 GHz
0.00 -10.0										-15.55 dBm	Start Freq 12.000000000 GHz
-20.0 -30.0											Stop Freq 25.00000000 GHz
-40.0										1	CF Step 1.300000000 GHz <u>Auto</u> Man
-60.0	datsa aya ^{att}									Andrew Anna an Anna Anna Anna Anna Ann	Freq Offset 0 Hz
-70.0 Stai #Re	rt 12.00 s BW 1	0 GHz 00 kHz		#VBW	1.0 MHz			Sweep	Stop 25 1.20 s (1	.000 GHz 0001 pts)	
MSG	Alignn	nent Complet	ed					STATUS			

Agilent Spect	rum Analyzer - Sv	vept SA								
Center F	reg 515.00	0000 MH	z	SENSE	SINT	Avg Type: Lo	g-Pwr	U2:47:521 TRA	CE 1 2 3 4 5 6	Frequency
		P	NO: Fast 🖵 Gain:Low	Trig: Free R #Atten: 30 di	un B			TY D		
10 JD/Jiv	Bof 20.00	dBm	Guineow		_		Mkr	1 921.7 -58	21 MHz 98 dBm	Auto Tun
	ICT 20.00						1			
										Center Fre
10.0										515.000000 MH
0.00										
0.00										Start Fre
-10.0						4				30.000000 MH
									-15.01 dBm	
20.0						.1				Stop Fre
										1.000000000 GI
30.0										
40.0										CF Ste
										97.000000 MH
50.0		-								Auto Ma
									≬ 1	
50.0	han an and how when	n strent printed	Connar (Male and	and a first could be apply	en la substitue de la substitu	and the state of the state	and the state	THE PRESENCE OF THE	A STATE TO A STATE OF STATE	Freq Offs
and an owned by	a na an in the second second	and a second		The Differ (A) provided in the off of the off	and the second second second	All places and been been been been been been been be				UF
/0.0										
tart 30.0	MHz		41 (D14)	4.0 5414-				Stop 1.	0000 GHz	
Res DW	100 KHZ		#VDVV			SWE	seb ar), em 0.0	iuuur pisj	
sc Vrie	<image.png> s</image.png>	saved					STATUS			
gilent Spect	rum Analyzer - Sv	wept SA		10						
gilent Spect	rum Analyzer - Sv RF 50 s	wept SA Ω AC		SENSE	INT	ALIG	NAUTO g-Pwr	02:47:16 F	PMNov 23, 2012 CE 1 2 3 4 5 6	Frequency
gilent Spect RL Center F	rum Analyzer - Sv RF 50 s req 6.5000	wept SA ⊋ AC 000000 GI	Hz NO: Fast 🖵	SENSE	un	ALIG Avg Type: Lo	NAUTO g-Pwr	02:47:16 F TRA TY	PM Nov 23, 2012 CE 1 2 3 4 5 6 PE MWWWWW ET P N N N N N	Frequency
gilent Spect RL Center F	rum Analyzer - Sv RF 503 Freq 6.5000	wept SA ⊋ AC 00000 GI P IF	HZ NO: Fast 😱 Gain:Low	SENSE	un B	ALIG Avg Type: Lo	NAUTO g-Pwr Mkr	02:47:16 F TRA TY D r1 2 43	PM Nov 23, 2012 CE 1 2 3 4 5 6 PE M WANAAW PT P N N N N N 7 7 CH 7	Frequency Auto Tur
cilent Spect	rum Analyzer - Sv RF 500 Treq 6.5000 Ref 20.00	vept SA Ω AC 000000 GI P IF	HZ NO: Fast ⊂ Gain:Low	SENSE Trig: Free R #Atten: 30 d	un B	ALIG Avg Type: Lo	nauto g-Pwr Mki	02:47:16 F TRA TY D r1 2.43 4.	7M Nov 23, 2012 CE 1 2 3 4 5 6 PE MWWWWW ET P NNNN 7 7 GHz 99 dBm	Frequency Auto Tur
gilent Spect RL enter F	rum Analyzer - Sv RF 50 9 Freq 6.5000 Ref 20.00	wept SA R AC 000000 GI P IF dBm	Hz NO: Fast G Gain:Low	SENSE	un B	ALIG Avg Type: Lo	nauto g-Pwr Mki	02:47:16 F TRA TY D r1 2.43 4.	7 7 GHz 99 dBm	Frequency Auto Tur
ilent Spect RL enter F 0 dB/div	rum Analyzer - Sv RF 50 0 Freq 6.5000 Ref 20.00	vept SA Ω AC 000000 GI P IF dBm	HZ NO: Fast Gain:Low	Trig: Free R #Atten: 30 dl	un B	ALIG	nauto g-Pwr Mki	02:47:16F TRA TY D r1 2.43 4.	MNov 23,2012 CE 1 2 3 4 5 6 FE MANNAN ET P NNNN 7 7 GHz 99 dBm	Frequency Auto Tur Center Fre
center F center F dB/div g	rum Analyzer - Sv RF 503 Freq 6.5000 Ref 20.00	vept SA 2 AC 000000 GI P IF dBm	Hz NO: Fast Gain:Low	SENSE Trig: Free R #Atten: 30 dl	un B	ALIG	nauto g-Pwr Mki	02:47:16 F TRA TY D r1 2.43 4.	MNov 23, 2012 CE 11 2 3 4 5 6 PRE MANNANA T 7 GHz 99 dBm	Frequency Auto Tur Center Frr 6.50000000 G
o dB/div	rum Analyzer - Sv RF 503 Freq 6.5000 Ref 20.00	vept SA Ω AC 000000 Gi P IF dBm	Hz NO: Fast G Gain:Low	SENSE Trig: Free R #Atten: 30 dl	un B	ALIG Avg Type: Lo	nauto g-Pwr Mki	D2:47:16 F TRA TY D r1 2.43 4.	7 7 GHz 99 dBm	Frequency Auto Tur Center Fro 6.50000000 G
od B/div od B/div od B/div od B/div od B/div	rum Analyzer - Sv RF 503 ireq 6.5000 Ref 20.00	dBm	Hz NO: Fast Gain:Low	SENSE	:INT un B	ALIG Avg Type: Lo	nauto g-Pwr Mki	02:47:16 F TRA TV 0 r1 2.43 4.	7 O GHz 99 dBm	Frequency Auto Tur Center Fre 6.50000000 G Start Fre
gilent Spect	rum Analyzer - Sv RF 500 req 6.5000 Ref 20.00	dBm	Hz Gain:Low	SENSE Trig: Free R #Atten: 30 di	SINT	ALIG	nauto g-Pwr Mki	02:47:16 F TRA TY D r1 2.43 4.	7 GHz 99 dBm	Frequency Auto Tur Center Fre 6.50000000 Gi Start Fre 1.00000000 Gi
o dB/div	rum Analyzer - Sv RF 503 req 6.5000 Ref 20.00	dBm	Hz NO: Fast Gain:Low	SENSE Trig: Free R #Atten: 30 di	un B		nauto g-Pwr Mki	02:47:16 f TRA TY D r1 2.43 4.	20100 23,2012 CE 12 3 4 5 6 PE MWWWW ET P NNNN 7 7 GHz 99 dBm -15.01 dBm	Frequency Auto Tur Center Fre 6.500000000 Gi Start Fre 1.000000000 Gi
O dB/div O dB/div	Ref 20.00	wept SA Q AC 000000 GI P IF dBm IF	Hz NO: Fast C Gain:Low	SENSE Trig: Free R #Atten: 30 di	INT un B	ALIG	MAUTO g-Pwr Mki	02:47:16 f TRA TY D r1 2.43 4.	20100v 23, 2012 CE 12 3 4 5 6 PE MWWWW ET P NNNNN 7 7 GHz 99 dBm -15.01 dBm	Frequency Auto Tur Center Fre 6.500000000 Gi Start Fre 1.000000000 Gi
O dB/div 9 10.0	Ref 20.00	Wept SA AC P 000000 GI P IF dBm IF IF	Hz N0: Fast G Gain:Low	SENSE Trig: Free R #Atten: 30 di	un B		MAUTO g-Pwr Mki	02:47:16 f TRA TY 0 r1 2.43 4.	-15.01 dBm	Frequency Auto Tur Center Fre 6.500000000 Gl Start Fre 1.000000000 Gl Stop Fre 12.00000000 Gl
O dB/div O dB/div 0 dB/div 0 dB/div	Ref 20.00	Wept SA P Q. AC P 000000 GI P IF D dBm IF	Hz NO: Fast Gain:Low	SENSE	SINT		MAUTO g-Pwr Mki	02:47:16 f TRA TY 0 r1 2.43 4.	20100 23,2012 CE 12 3 4 5 6 PE MWWWW ET P NNNN 7 7 GHz 99 dBm -15.01 dBm	Frequency Auto Tur Center Fre 6.500000000 Gl Start Fre 1.000000000 Gl Stop Fre 12.000000000 Gl
O dB/div 9	Ref 20.00	wept SA Q AC 000000 GI P IF dBm IF	Hz N0: Fast G Gain:Low	SENSE	SINT		MAUTO g-Pwr Mki	02:47:16 f TRA TY D r1 2.43 4.	2010/23,2012 CE 12 3 4 5 6 PP MANNANY ET P NNNNN 7 7 GHz 99 dBm -15.01 dBm	Frequency Auto Tur Center Frr 6.500000000 Gl Start Frr 1.000000000 Gl Stop Frr 12.000000000 Gl CF Ste
O dB/div 0 dB/div 10.0	rum Analyzer - Sv RF 503 req 6.5000 Ref 20.00	Wept SA P Q. AC P IF P dBm P	HZ NO: Fast G Gain:Low	SENSE	SINT		MAUTO g-Pwr Mki	02:47:167 TRA TV D r1 2.43 4.	MNov 23, 2012 CE 12 3 4 5 6 PP MNNWW ET P NNNNN 7 7 GHz 99 dBm	Frequency Auto Tur Center Fre 6.50000000 Gi Start Fre 1.00000000 Gi 2.00000000 Gi 2.00000000 Gi
CodB/div CodB/div	Ref 20.00	xept SA 2 AC P P IF CBM	HZ NO: Fast G Gain:Low	SENSE			MAUTO g-Pwr Mki	02:47:167 TRA TV D r1 2.43 4.	MNov 23, 2012 CE 12 3 4 5 6 PP MWWW FT P NNNN 7 7 GHz 99 dBm -15.01 dBm	Frequency Auto Tur Center Fre 6.500000000 Gi Start Fre 1.000000000 Gi 212.00000000 Gi 212.00000000 Gi 21.100000000 Gi
O dB/div 0 dB/div 0 0 10.0 0	Ref 20.00	xept SA Q AC P P IF CBM	HZ NO: Fast G Gain:Low	SENSE			MAUTO g-Pwr Mki	12:47:167 TRA TV D r1 2.43 4.	MNov 23, 2012 CE 12 3 4 5 6 PP MWWWW FT P NNNN 7 7 GHz 99 dBm -15.01 dBm	Frequency Auto Tur Center Fre 6.500000000 GF Start Fre 1.000000000 GF Stop Fre 12.00000000 GF CF Step 1.100000000 GF Auto
gilent Spect RL enter F 0 dB/div 0	rum Analyzer - Sv RF 503 req 6.5000 Ref 20.00	wept SA Q AC Q DO0000 GI P IF dBm IF	Hz N0: Fast C Gain:Low	SENSE			MAUTO g-Pwr Mki	12:47:167 TRA TV D r1 2.43 4.	MNov 23, 2012 CE 12 3 4 5 6 PP MWWWW ET P NNNN 7 7 GHz 99 dBm	Frequency Auto Tur Center Fre 6.500000000 Gi Start Fre 1.000000000 Gi Stop Fre 1.100000000 Gi Auto Mit Freq Offs
OldB/div OldB/div 00 000 00 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000	rum Analyzer - Sv RF 50 3 Treq 6.50000 Ref 20.00	wept SA Q AC Q OOOOOO GI P IF dBm IF	Hz NO: Fast C Gain:Low	SENSE			MAUTO g-Pwr Mki	12:47:167 TRA TV D r1 2.43 4.	MNov 23, 2012 CE 12 3 4 5 6 PP MWWWW eT P NNNN 7 7 GHz 99 dBm -15.01 dBm	Frequency Auto Tut Center Fri 6.500000000 Gl Start Fri 1.000000000 Gl Stop Fri 12.00000000 Gl CF Ster 1.100000000 Gl Auto M Freq Offs 0 1
	Ref 20.00	wept SA Q AC Q OOOOOO GI P IF dBm IF	Hz N0: Fast C Gain:Low	SENSE			MAUTO g-Pwr Mki	12:47:16 / TRA TV D r1 2.43 4.	MNov 23, 2012 CE 12 3 4 5 6 PP MWWWW eT P NNNN 7 7 GHz 99 dBm -15.01 dBm	Frequency Auto Tur Center Fre 6.500000000 GF Start Fre 1.000000000 GF Stop Fre 1.100000000 GF Auto Tur CF Ste 1.100000000 GF Freq Offs 0 F
gilent Spect R L Center F O dB/div '''' '''' O dB/div O dB/div '''' O dB/div O dB/div O do	rum Analyzer - Sv RF 503 Freq 6.50000	wept SA Q AC Q AC P IF dBm IF	Hz N0: Fast C Gain:Low	SENSE	SINT		MAUTO g-Pwr Mki	12:47:16 f	2012 CE 12 3 4 5 6 PE MWWWW FT P NNNN 7 7 GHz 99 dBm -15.01 dBm	Frequency Auto Tur Center Fre 6.500000000 GF Start Fre 1.000000000 GF Stop Fre 12.000000000 GF 1.100000000 GF Auto Freq Offs 0 F
gilent Spect RL Center F OddB/div '''' '''' 0.00 '''' 0.00 '''' 0.00	Ref 20.00	wept SA Q AC Q AC P IF dBm IF	Hz Gain:Low	SENSE			MAUTO g-Pwr Mki	b2:47:16 f	2.0000 GHz	Frequency Auto Tur Center Fre 6.500000000 GF Start Fre 1.000000000 GF Stop Fre 1.100000000 GF Auto CF Ste 1.100000000 GF Auto Freq Offs: 0 F
gilent Spect RL Center F 0 dB/div 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ref 20.00	wept SA Q AC 000000 GI P IF dBm IF	Hz Gain:Low	SENSE Trig: Free R #Atten: 30 dl		Avg Type: Lo	MAUTO g-Pwr Mki	D2:47:16 F TRA TY D T1 2.43 4. 	2.000 GHz	Frequency Auto Tun Center Fre 6.500000000 GH Start Fre 1.000000000 GH 12.00000000 GH 1.100000000 GH CF Ste 1.100000000 GH Auto Ma Freq Offse 0 H

Channel 06 (2437MHz)

Agilent	Spectrum Analyz	er - Swept SA								
Cent	er Freq 18.	50 Ω AC	0 GHz	SE Tria: Eros		Avg Type	ALIGNAUTO : Log-Pwr	02:48:27 P TRAC	MNov 23, 2012 E 1 2 3 4 5 6	Frequency
10 dB/	div Ref 20	0.00 dBm	PNO: Fast G IFGain:Low	#Atten: 30) dB		Mkr	1 24.69 -47.1	3 2 GHz 08 dBm	Auto Tune
10.0 -		0								Center Freq 18.500000000 GHz
0.00 -									-15.01 dBm	Start Freq 12.000000000 GHz
-20.0 -										Stop Freq 25.00000000 GHz
-40.0 -									† 1	CF Step 1.300000000 GHz <u>Auto</u> Man
-50.0		No. of the second s								Freq Offset 0 Hz
-70.0 -	12 000 CHz							Stop 25	000 CH2	
#Res	BW 100 kH	z	#VBI	N 1.0 MHz			Sweep	1.20 s (1	0001 pts)	
MSG 🤳	File <image.p< td=""><td>ng> saved</td><td></td><td></td><td></td><td></td><td>STATUS</td><td></td><td></td><td></td></image.p<>	ng> saved					STATUS			

Agilen	t Spectru	m Analyzer	- Swept SA		110	18					
LXI RL	-	RF	50 Ω AC		SE	NSE:INT		ALIGN AUT	0 03:02:12 P	MNov 23, 2012	Frequency
Cen	ter Fr	eq 515.	000000	MHz	Tria: Eroc	Due	Avg Type	: Log-Pwi	r TRAC TV		Trequency
				PNO: Fast ()	#Atten: 30) dB			D	ET P N N N N N	
				II Gam.cow							Auto Tune
								IAI	Kr1 857.0		
10 dE	3/div	Ref 20.	00 dBm						-59.	24 aBm	
Log											
											Center Freq
10.0							-		- 3	-	515.000000 MHz
0.00											
											Start Fred
											20 000000 MU-
-10.0							-		- 0	No. Company	30.000000 WHZ
3							-		- 2	-15.32 dBm	
-20.0							-				01
										I	StopFreq
.30.0											1.000000000 GHz
30.0										I	
											05.04.1
-40.0			8				-				CF Step
										I	97.000000 MH2
-50.0											Auto
CO 0											Freg Offset
-60.0	Lugin Law	the wild good	and the participation	and the state of the state of the state	etrolite patrial		An ana colling a literated of	and a state of the	a 1944 da an an an an an an an an ann an Anna an Anna A Anna Anna	en Maffauft febre ump	0.11-
1	COLUMN THE PARTY	and the super-out from		radia data na ban ikin dinis periokhele dibir i	the state of the s	and the second		den tre s		1	0 112
-70.0		-									
Star	t 30.0	MHz							Stop 1.0	0000 GHz	
#Res	S BW	100 kHz		#VBW	1.0 MHz			Sweep	90.0 ms (1	0001 pts)	
MSG)File <	Image.png	> saved					STAT	us		
	4	-9	,								

Channel 11 (2462MHz)

Agilent Sp	ectrum Analyzer - Sw	/ept SA							
Cente	RF 50 G	2 AC 000000 GHz	Tuint	SENSE:INT	Avg Type	ALIGNAUTO Log-Pwr	03:02:48 PM TRACI	1 2 3 4 5 6	Frequency
10 dB/d	iv Ref 20.00	PNO: F IFGain: dBm	ast 😱 Trig:r Low #Atten	: 30 dB		Mkr	لمن 1 21.274 -47.2	2 GHz 24 dBm	Auto Tune
10.0									Center Freq 18.50000000 GHz
0.00 — -10.0 —								-15.32 dBm	Start Freq 12.000000000 GHz
-20.0									Stop Freq 25.00000000 GHz
-40.0						↓1		line of the line	CF Step 1.30000000 GHz <u>Auto</u> Man
-60.0									Freq Offset 0 Hz
-70.0 Start 1 #Res E	2.000 GHz		#VBW 1.0 MI	Hz		Sweep	Stop 25.	000 GHz	
MSG 🔱 F	ile <lmage.png> s</lmage.png>	aved				STATUS			

Product	:	Digital Camera
Test Item	:	RF Antenna Conducted Spurious
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)

Channel 01 (2412MHz)

Agilent Spec	trum Analyzer - Sv	rept SA								
LXI RL	RF 50 \$	2 AC		SEN	VSE:INT		ALIGN AUTO	03:13:59 P	MNov 23, 2012	Francisco
Center F	rea 515.00	0000 MHz				Avg Type	: Log-Pwr	TRAC	E123456	Frequency
10 dB/div	Ref 20.00	PN IFG d B m	IO: Fast 😱 iain:Low	' Trig: Free #Atten: 30	⊧Run)dB		Mk	tri 1 940.1 -58.3	51 MHz 38 dBm	Auto Tune
10.0										Center Freq 515.000000 MHz
-10.0									10.07 -02-	Start Freq 30.000000 MHz
-20.0									-10.07 dBm	Stop Freq 1.000000000 GHz
-40.0										CF Step 97.000000 MHz <u>Auto</u> Man
-60.0		til fortunder og bester ger Menne preside selet til er te	Haspart Inth Internetia La superior as attende o			n an the second states		eelillelistiga oo boy daarada Aminaa Magaalaa ta Mataa		Freq Offset 0 Hz
Start 30. #Res BW	0 MHz / 100 kHz		#VBW	1.0 MHz		 •	Sweep !	Stop 1.0 90.0 ms (1	0000 GHz 0001 pts)	
MSG VFile	<image.png> s</image.png>	aved					STATU	15		

Agilent Spectrum Analyzer - Swept SA											
Cent	ter Freq	6.50000	AC 0000 GH	lz	SEP		Avg Type	ALIGNAUTO Log-Pwr	03:13:24 P TRAC TYP	MNov 23, 2012 E 1 2 3 4 5 6 E M WWWWW	Frequency
10 dE	3/div Re	ef 20.00 c	IBm	io: Fast 🦕 Gain:Low	#Atten: 30) dB		Mk	^{ته} 1.1 1.1	3 5 GHz 92 dBm	Auto Tune
10.0		▲ 1		¢.							Center Freq 6.500000000 GHz
0.00											Start Freq 1.000000000 GHz
-20.0								S		-18.07 dBm	Stop Freq 12.00000000 GHz
-40.0											CF Step 1.100000000 GHz Auto Man
-50.0		and the second		an ka alan kan kasi An ang manakana kasa							Freq Offset 0 Hz
-70.0											
Stari #Res	t 1.000 G s BW 100	Hz) kHz		#VBW	1.0 MHz			Sweep	Stop 12 1.02 s (1	.000 GHz 0001 pts)	
MSG 🤇	Points ch	anged; all t	races clear	ed				STATUS			

Agilent Spectrum Analyzer - Swept SA											
Cen	ter Fr	RF 50 s eq 18.500	Ω AC 000000 G	Hz	SE		Avg Type	LIGNAUTO	03:14:35 P TRAC	MNov 23, 2012 E 1 2 3 4 5 6	Frequency
10 di Log	B/div	Ref 20.00	dBm	NO: Fast 🖕 Gain:Low	#Atten: 30) dB		Mkr	⊓ 1 23.89 -47.7	7 6 GHz 22 dBm	Auto Tune
10.0											Center Freq 18.50000000 GHz
0.00 -10.0											Start Freq 12.000000000 GHz
-20.0 -30.0										-18.07 dBm	Stop Freq 25.000000000 GHz
-40.0								dia ang ang ang ang ang ang ang ang ang an		♦ ¹	CF Step 1.300000000 GHz <u>Auto</u> Man
-50.0			the standards								Freq Offset 0 Hz
-70.0 Star #Re	t 12.00 s BW '	00 GHz 100 kHz		#VBW	1.0 MHz			Sweep	Stop 25 1.20 s (1	.000 GHz 0001 pts)	
MSG 🤇	₽File <	Image.png> s	saved					STATUS			

Agilent Spectrum Analyzer - Swept SA											
Cen	ter Fr	RF 50	Ω AC	7	SE	NSE:INT	Avg Type	ALIGNAUTO	03:26:21 P TRAC	MNov 23, 2012 E 1 2 3 4 5 6	Frequency
			P IF(NO: Fast 🖵 Gain:Low	Trig: Free #Atten: 30	eRun)dB			TYF DE	TPNNNNN	
10 dE	3/div	Ref 20.00	dBm					Mk	r1 847.4 -58.	19 MHz 73 dBm	Auto I une
Log											Conton From
10.0											515.000000 MHz
0.00											
-10.0											Start Freq 30.000000 MHz
-20.0										-18.95 dBm	Stop Freq
-30.0									4		1.000000000 GHz
-40.0									-		CF Step 97.000000 MHz
-50.0											<u>Auto</u> Man
									●1	3	Fred Offset
-60.0		at a dramatic	narial farelpipeque, illa Alargenda gradenaria	ين المراجع المربق المراجع المربعة من المربعة المربعة المربعة المربعة المربعة المربعة المربعة المربعة المربعة ا مستقدمة المستقدمة المربعة المرب	off all on our all				en proposition interreptionen an proposition interreptionen an proposition interreption	n an	0 Hz
-70.0											
Star #Re	t 30.0 s BW 1	VIHZ 100 kHz		#VBW	1.0 MHz		į	Sweep 🤉	Stop 1.0 0.0 ms (1	0000 GHz 0001 pts)	
MSG 🤇	File <	lmage.png>	saved					STATU	s		

Channel 06 (2437MHz)

Agilent Sp	ectrum Analyzer - Sw	rept SA								
Center	r Frea 6.5000	AC 00000 GH	z	SEI	NSE:INT	Avg Type	ALIGNAUTO	03:25:45 P TRAC	MNov 23, 2012 E 1 2 3 4 5 6	Frequency
10 dB/di	v Ref 20.00	PN IFG dBm	0: Fast 😱 ain:Low	⁻ Trig: Free #Atten: 30	e Run) dB		Mk	r1 2.43	1 1 GHz 05 dBm	Auto Tune
10.0	● ¹									Center Freq 6.50000000 GHz
-10.0										Start Freq 1.00000000 GHz
-20.0 == -30.0 ==									-18.95 dBm	Stop Freq 12.00000000 GHz
-40.0										CF Step 1.10000000 GHz <u>Auto</u> Man
-60.0				a a second a	and the product		44			Freq Offset 0 Hz
-70.0	.000 GHz							Stop 12	.000 GHz	
#Res B	W 100 kHz		#VBW	1.0 MHz			Sweep	1.02 s (1	0001 pts)	
MSG 🗼 P	oints changed; all	traces cleare	ed				STATUS			

Agilent Spectrum Analyzer - Swept	SA							
Center Freq 18.50000	AC 0000 GHz	SENS	BE:INT	Avg Type	ALIGNAUTO Log-Pwr	03:26:57 Pf TRAC	MNov 23, 2012 E 1 2 3 4 5 6	Frequency
10 dB/div Ref 20.00 dB	PNO: Fast 🖵 IFGain:Low	#Atten: 30	dB		Mkr	1 23.710 -47.0) 4 GHz 61 dBm	Auto Tune
10.0								Center Freq 18.50000000 GHz
-10.0								Start Freq 12.000000000 GHz
-20.0							-18.95 dBm	Stop Freq 25.00000000 GHz
-40.0		and the second					1	CF Step 1.300000000 GHz <u>Auto</u> Man
-60.0								Freq Offset 0 Hz
-70.0 Start 12.000 GHz #Res BW 100 kHz	#VBW *	1.0 MHz			Sweep	Stop 25. 1.20 s (1	.000 GHz 0001 pts)	
мsg 🔱 File <lmage.png> save</lmage.png>	ed				STATUS			

Agilen	it Spectru	ım Analyzer - S	wept SA								
Cen	∟ ter Fr	reg 515.00	Ω AC 00000 MH	z	SE	NSE:INT	Avg Type	ALIGNAUTO Log-Pwr	03:41:09 P TRAC	MNov 23, 2012 E 1 2 3 4 5 6	Frequency
10 dE	3/div	Ref 20.00	P IF	NO: Fast 😱 Gain:Low	HAtten: 30	≥Run)dB		Mk	r1 926.9 -59.	59 MHz 12 dBm	Auto Tune
10.0											Center Freq 515.000000 MHz
0.00 -10.0											Start Freq 30.000000 MHz
-20.0 -30.0										-19.07 dBm	Stop Freq 1.000000000 GHz
-40.0 -50.0											CF Step 97.000000 MHz <u>Auto</u> Man
-60.0	ter da ana ana di fina na para di tanà amin'ny tanàna			riber of the state of the state of	nya (jangana) ang ba		an a	lage and the second free	ale an distant series of the series	≬ 1	Freq Offset 0 Hz
Star #Re:	t 30.0 s BW	MHz 100 kHz		#VBW	1.0 MHz			Sweep (Stop 1.0 90.0 ms (1	0000 GHz 0001 pts)	
MSG 🤇	File <	Image.png>	saved					STATU	IS		

Channel 11 (2462MHz)

Agilen	it Spectr	um Analyze	er - Swep	ot SA		110						
LXI R	L	RF	50 Ω	AC	1	SEI	NSE:INT		ALIGNAUTO	03:40:34 P	MNov 23, 2012	Erequency
Cen	nter Fi	req 6.5	00000	0000 GH	lz NO: Fast 😱	Trig: Free	Run	Avg Type: Log-Pwr		TRAC TYF DE	E 1 2 3 4 5 6 E M WWWWW T P N N N N N	Frequency
10 di	10 dB/div Ref 20.00 dBm								Mk	r1 2.45 0.5	75GHz 93dBm	Auto Tune
10.0			1									Center Freq 6.50000000 GHz
0.00 -10.0												Start Freq 1.000000000 GHz
-20.0 -30.0											-19.07 dBm	Stop Freq 12.000000000 GHz
-40.0 -50.0												CF Step 1.100000000 GHz <u>Auto</u> Man
-60.0	lynnet fri Arti		Maran papa Manga papatén						A.A			Freq Offset 0 Hz
-70.0												
Star #Re	t 1.00 s BW	0 GHz 100 kHz	z		#VBW	1.0 MHz			Sweep	Stop 12 1.02 s (1	.000 GHz 0001 pts)	
MSG 🤇	Point	ts change	d; all tr	aces clear	ed				STATUS			

Agilent Spectrum Analyzer - Sw	ept SA							
M RL RF 50 Ω Center Freq 18.5000	AC 000000 GHz		ISE:INT	Avg Type	ALIGNAUTO Log-Pwr	03:41:45 Pl TRAC	MNov 23, 2012 E 1 2 3 4 5 6	Frequency
10 dB/div Ref 20.00 (PNO: Fast 😱 IFGain:Low dBm	#Atten: 30	dB		Mkr	1 23.839 -47.4	9 1 GHz 46 dBm	Auto Tune
10.0								Center Freq 18.50000000 GHz
-10.0								Start Freq 12.000000000 GHz
-20.0							-19.07 dBm	Stop Freq 25.00000000 GHz
-40.0							♦ ¹	CF Step 1.300000000 GHz <u>Auto</u> Man
-60.0								Freq Offset 0 Hz
-70.0 Start 12.000 GHz						Stop 25	.000 GHz	
#Res BW 100 kHz MSG https://www.sci.com File <image.png> si</image.png>	#VBW aved	1.0 MHz			Sweep STATUS	1.20 s (1	0001 pts)	

Product	:	Digital Camera
Test Item	:	RF Antenna Conducted Spurious
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)

Channel 01 (2412MHz)

uPueur obeeu	um Anatyzer - Swept	SA							
	RF 50 Ω reg 515.0000	AC 00 MHz	SEN	SE:INT	Avg Type	ALIGNAUTO : Log-Pwr	03:55:01 P TRAC	MNov 23, 2012 E 1 2 3 4 5 6	Frequency
10 dB/div	Ref 20.00 dB	PNO: Fast 🆵 IFGain:Low	┘ Trig: Free #Atten: 30	Run dB		Mk	tri 1 845.5 -59.5	76 MHz 56 dBm	Auto Tune
10.0									Center Freq 515.000000 MHz
-10.0									Start Freq 30.000000 MHz
-20.0								-18.95 dBm	Stop Freq 1.000000000 GHz
-40.0									CF Step 97.000000 MHz <u>Auto</u> Man
-60.0		n sa ka 12 ya 1999 ya 1 Mana ya 1999 ya	linging and a life formula form		de din gine a da filme Singline di Singline	jarog garog kirini ng gilin malay garog kirini ng gilin		ang menjan geli bagi ang m	Freq Offset 0 Hz
Start 30.0 #Res BW	MHz 100 kHz	#VBW	1.0 MHz		s	Sweep	Stop 1.0 90.0 ms (1	0000 GHz 0001 pts)	

Agilent	Agilent Spectrum Analyzer - Swept SA										
Cent	er Fred	RF 50 Ω	AC 00000 GH	lz	SE	NSE:INT	Avg Type	ALIGNAUTO : Log-Pwr	03:54:25 PI TRAC	MNov 23, 2012 E 1 2 3 4 5 6	Frequency
10 dB/	/div R	ef 20.00	PI IFC	NO: Fast 😱 Gain:Low	#Atten: 30	dB		Mk	r1 2.413	3 5 GHz 05 dBm	Auto Tune
10.0 -		♦ ¹									Center Freq 6.50000000 GHz
-10.0 -											Start Freq 1.000000000 GHz
-20.0 = -30.0 =										-18.95 dem	Stop Freq 12.000000000 GHz
-40.0 -											CF Step 1.10000000 GHz <u>Auto</u> Man
-60.0	Al the plan bloc				in the fille	e partitular partitura periodi terretaria	a de la case				Freq Offset 0 Hz
-70.0 - Start #Res	1.000 C	SHz 0 kHz		#VBW	1.0 MHz			Sweep	Stop 12 1.02 s (1	.000 GHz 0001 pts)	
MSG 🤳	Points c	hanged; all	traces clear	ed				STATUS			

Agilent Spectr	um Analyzer - Sv	vept SA		110						
LXI RL	RF 50 \$	AC AC		SEI	NSE:INT		ALIGNAUTO	03:55:38 P	MNov 23, 2012	Frequency
Center Fi	req 18.500	000000 G	Hz	Tria Free	Dun	Avg Type	: Log-Pwr	TRAC TYP	E123456	Trequency
		PI	NO:Fast 🖵	#Atten: 30) dB			DE	PNNNNN	
			Junicow				8.41			Auto Tune
							WIKE	1 24.00	J 3 GHZ	
10 dB/div	Ref 20.00	dBm						-48.	J4 aBm	
										Center Freq
10.0		~								18.500000000 GHz
0.00										
										Start Fred
10.0										12 00000000 GHz
-10.0										12.00000000000000
									18.95 dBm	
-20.0									-10.55 dbm	01
										StopFred
-30.0										25.00000000 GHz
00.0										
97.00 m										OF Otom
-40.0									. 1	
									• ♦'	Auto Man
-50.0		-	114				A second state of the	the latest in the	and the second second	
10	and the state	halfer and she had a select	المحيالة المالية المسهدة	and the state	Appadell's stored		Particular States	ala ang ang ang ang ang ang ang ang ang an	and the second se	
CO O	the state of the s		Star and Star and	h.d	and the second second					Freg Offset
-00.0										0 117
										0112
-70.0										
Start 12.0	00 GHz						_	Stop 25	.000 GHz	
#Res BW	100 kHz		#VBW	1.0 MHz			Sweep	1.20 s (1	0001 pts)	
мsg 🕕 File <	<lmage.png> s</lmage.png>	saved					STATUS			
		A-24.29-244212-1								

Agilent Sp	pectrum A	nalyzer - Swo	≥pt SA								
	r Fred	F 50 Ω		7	SE	NSE:INT	Avg Type	ALIGNAUTO	04:05:21 P TRAC	MNov 23, 2012	Frequency
	iu De	of 20.000	P IF	Z NO: Fast 😱 Gain:Low	Trig: Free #Atten: 30	eRun IdB	түрејмичини ретј ^р NNNN Mkr1 973.228 MHz -59.48 dBm			28 MHz 48 dBm	Auto Tune
		.1 20.00 (Center Freq 515.000000 MHz
-10.0										19 60 dBm	Start Freq 30.000000 MHz
-20.0 == -30.0 ==										-10.69 00m	Stop Freq 1.000000000 GHz
-40.0											CF Step 97.000000 MHz <u>Auto</u> Man
-60.0		Den tra part d'anna d'al de la Companya de la companya de la company	n an an an tao an an an an an Anna an Anna an Anna an Anna An	a la superior de la calaba que	Transfel og Traffander (* 1999 - Margana Maria	ova li barrend di barrenda 1991 : Sono estas	for the local and the second		en la suite de		Freq Offset 0 Hz
Start 3 #Res E	10.0 MH 3W 100 File <ima< td=""><td>z kHz</td><td>aved</td><td>#VBW</td><td>1.0 MHz</td><td></td><td></td><td>Sweep</td><td>Stop 1.0 90.0 ms (1</td><td>0000 GHz 0001 pts)</td><td></td></ima<>	z kHz	aved	#VBW	1.0 MHz			Sweep	Stop 1.0 90.0 ms (1	0000 GHz 0001 pts)	

Channel 06 (2437MHz)

Mit RF SOR AC SERVE:INT ALIGNANTO Derivative Mittige 2012 Frequency Center Freq 6.500000000 GHz Trig: Free Run IFGain:Low Trig: Free Run Matten: 30 dB Mkr1 2.4338 8 GHz Auto Tune 100 1.31 dBm 1.31 dBm 6.50000000 GHz Trig: Freq 0.50000000 GHz Trig: Freq 0.500 dBm Center Freq 0.50000000 GHz 100 1 <th>Agilent Spec</th> <th>trum Analyzer - Swe</th> <th>pt SA</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Agilent Spec	trum Analyzer - Swe	pt SA							
PHO: Fast Trig: Free Run IFGain.Low Mkr1 2.438 8 GHz 1.31 dBm Auto Tune 10 dB/div Ref 20.00 dBm 1.31 dBm Center Freq 6.5000000 GHz Center Freq 6.5000000 GHz 100 1	Center I	RF 50 Ω	AC 0000 GHz	SE	NSE:INT	Avg Type	LIGNAUTO	04:04:45 P TRAC	MNov 23, 2012 E 1 2 3 4 5 6	Frequency
10.0 1	10 dB/div	Ref 20.00 d	PNO: F IFGain:I Bm	ast 🖵 Trig: Fre Low #Atten: 3	e Run 0 dB		Mk	r1 2.438	B 8 GHz 31 dBm	Auto Tune
0.00	10.0	↓ ¹								Center Freq 6.50000000 GHz
-200 -200 -16.09 dBm -30.0 -200 -200 -30.0 -200 -200 -40.0 -200 -200 -40.0 -200 -200 -60.0 -200 -200 -70.0 -200 -200	-10.0									Start Freq 1.000000000 GHz
-40.0	-20.0								-18.69 dBm	Stop Freq 12.00000000 GHz
-60.0	-40.0									CF Step 1.10000000 GHz <u>Auto</u> Man
-70.0	-60.0	and the second		مر من المراجع في مراجع في من المراجع في المراجع في الم مستخدم من	a ya ta fa ta ta ta ta		~^			Freq Offset 0 Hz
Start 1.000 GHz Stop 12.000 GHz	-70.0 Start 1.0	00 GHz						Stop 12	.000 GHz	
#Res BW 100 kHz #VBW 1.0 MHz Sweep 1.02 s (10001 pts)	#Res BM	/ 100 kHz	tacas claarad	#VBW 1.0 MHz			Sweep	1.02 s (1	0001 pts)	

Agilent Spectrum Analyzer - Swept SA										
Center Fre	RF 50 Ω q 18.5000	AC 00000 GHz	Tria: E	SENSE:INT	Avg Type	LIGNAUTO	04:05:56 PM Nov 23, 2012 TRACE 1 2 3 4 5 6	Frequency		
10 dB/div F	Ref 20.00 d	PNO: I IFGain: I Bm	-ast (119.1 Low #Atten	n: 30 dB		Mkr	1 23.723 4 GHz -47.86 dBm	Auto Tune		
10.0								Center Freq 18.500000000 GHz		
-10.0								Start Freq 12.000000000 GHz		
-20.0							-18.69 dBm	Stop Freq 25.00000000 GHz		
-40.0				1	L du Mary J	er an and a second s	1	CF Step 1.30000000 GHz <u>Auto</u> Man		
-60.0								Freq Offset 0 Hz		
-70.0 Start 12.000 #Res BW 10) GHz)0 kHz		#VBW 1.0 M	Hz		Sweep	Stop 25.000 GHz 1.20 s (10001 pts)			
MSG Pile <in< td=""><td>lage.png> sa</td><td>ved</td><td></td><td></td><td></td><td>STATUS</td><td></td><td></td></in<>	lage.png> sa	ved				STATUS				

Agilen	it Spectru	ım Analyzer	- Swept SA		110	18						
LXI RL	L	RF	50 Ω AC		SE	NSE:INT		ALIGN AUT	O 04:21:53 F	MNov 23, 2012	Frequency	
Cen	ter Fr	eq 515.	000000	MHz	Tuin Eng	Dun	Avg Type	: Log-Pw	r TRAI	TRACE 1 2 3 4 5 6		
				PNO: Fast	#Atten: 30	dB			D	ETPNNNNN		
				IFGam.Low	Witten. et							
								M	kr1 925.6	01 MHz	Autorune	
10 dE	3/div	Ref 20.	00 dBm						-58.	26 dBm		
Log			anna an									
											Center Freg	
10.0							-				515 000000 MU-	
1000											515.000000 MHZ	
-												
0.00												
											Start Freq	
-10.0							-				30.000000 MHz	
										-20.10 dBm		
-20.0											Stop Freg	
											1 00000000 GHz	
-30.0											1.00000000 GHz	
40.0											CE Sten	
-40.0			8								97 000000 MHz	
											Auto Man	
-50.0							-					
										▲ 1		
0.03-									348		Freg Offset	
-00.0	and the debut of	- Understate	a data da angla farat	the part of the second s	and the party party	THE PROPERTY IN	and the state of the state	ALC: NO DECISION	and the state second state of the second state of the second state of the second state of the second state of t		0 47	
	1.8 of these	Transfer and the second	als I to a desired		and an in the		and the second se	1. dit en 16	a		0112	
-70.0												
Start 30.0 MHz Stop 1.0000 GHz												
#Res	s BW '	100 kHz		#VBW	1.0 MHz		1	Sweep	90.0 ms (1	0001 pts)		
MSG	Eile -	Image pa	haves <r< td=""><td></td><td></td><td></td><td></td><td>STAT</td><td>rus</td><td>-</td><td></td></r<>					STAT	rus	-		
	Prine -	inage.phi	g- saveu					SIA				

Channel 11 (2462MHz)

Agilent Sp	ectrum Analyzer - Sw	ept SA							
X RL Center	RF 50 Ω Freq 18.5000	AC 00000 GHz	SE	NSE:INT	Avg Type	ALIGNAUTO Log-Pwr	04:22:29 PI TRAC	MNov 23, 2012 E 1 2 3 4 5 6	Frequency
10 dB/di	v Ref 20.00 (PN0: Fast G IFGain:Low	#Atten: 30) dB		Mkr	1 21.227 -47.0	7 4 GHz 69 dBm	Auto Tune
10.0									Center Freq 18.50000000 GHz
-10.0									Start Freq 12.000000000 GHz
-20.0								-20.10 dBm	Stop Freq 25.00000000 GHz
-40.0						↓ ¹	10/101	(-)) (CF Step 1.300000000 GHz <u>Auto</u> Man
-60.0	and the second second				Mar Mar				Freq Offset 0 Hz
Start 1: #Res B	2.000 GHz W 100 kHz	#VBV	V 1.0 MHz			Sweep	Stop 25 1.20 s (1	.000 GHz 0001 pts)	
мsg 🗼 F	ile <lmage.png> s</lmage.png>	aved				STATUS			