

: 1 of 82 **FCC ID**

Issued date Revised date : CGJ3143EB : July 3, 2008 : July 18, 2008

Test Report No.: 28JE0064-HO-A-R1

SAR TEST REPORT

Applicant

Nikon Corporation

Type of Equipment

Wireless LAN Module

Model No.

GC-131

FCC ID

CGJ3143EB

Test regulation

FCC47CFR 2.1093

FCC OET Bulletin 65, Supplement C

Test Result

Complied

Max. SAR Value(IEEE802.11b/g) : 0.250W/kg (Body/2462MHz)

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above regulation.
- 4. The test results in this test report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.
- 6. Original test report number of this report is 28JE0064-HO-A.

June 30, 2008

Tested by:

Miyo Kishimoto **EMC Services**

Hisayoshi Sato **EMC Services**

Approved by:

Tetsuo Maeno

Maen

Site Manager of EMC Services

NVLAP LAB CODE: 200572-0

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation.

*As for the range of Accreditation in NVLAP, you may refer to the WEB address, http://uljapan.co.jp/emc/nvlap.htm

UL Japan, Inc. Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 2 of 82

 FCC ID
 : CGJ3143EB

 Issued date
 : July 3, 2008

 Revised date
 : July 18, 2008

CONTENTS		PAGE
SECTION 1:	Customer information	
SECTION 2:	Equipment under test (E.U.T.)	
2.1	Identification of E.U.T.	
2.2	Product Description	
SECTION 3:	Test standard information	
3.1	Requirements for compliance testing defined by the FCC	
3.2	Procedure and result	
3.3	Exposure limit	
3.4	Test Location	
3.5	Confirmation before SAR testing	
3.6	Confirmation after SAR testing	
3.7	Measurement procedure (Body SAR measurement)	
3.8	Measurement procedure (Head SAR measurement)	
3.9	Test setup of EUT	
SECTION 4:	Operation of E.U.T. during testing	
4.1	Operating modes for SAR testing	
SECTION 5:	Test surrounding	
5.1	Measurement uncertainty	
	Confirmation before SAR testing	
	-	
6.1	EMC power and SAR power(WLAN IEEE802.11b/g)	
	Measurement results	
7.1	Body SAR 2450MHz	
	Reference Head SAR 2450MHz	
	1: Photographs of test setup	
	Photograph of EUT	
	The detail of Host device	
	Photograph of host device.	
	Position of antenna	
	Photograph of set up	
	2: SAR Measurement data	
	Evaluation procedure	
	Measurement data (Body SAR 2450MHz)	
	3: Test instruments	
	Equipment used	
	Dosimetry assessment setup	
	Configuration and peripherals	
	System components	
	. Test system specifications	
	Simulated Tissues Composition of 2450MHz.	
	. Validation Measurement	
8.	System validation data	
9.	. Validation uncertainty	
	0. Validation Measurement data	
1	1. System Validation Dipole (D2450V2,S/N: 713)	
	2. Dosimetric E-Field Probe Calibration (EX3DV4,S/N: 3540)	
	3 References	

Page : 3 of 82 FCC ID : CGJ3143EB Issued date : July 3, 2008 Revised date : July 18, 2008

SECTION 1: Customer information

Company Name	Nikon Corporation
Brand name	NIKON
Address	6-3, Nishi-ohi 1-chome, Shinagawa-ku, Tokyo 140-8601, Japan
Telephone Number	+81-3-3773-8395
Facsimile Number	+81-3-3773-1842
Contact Person	Yoshiaki Harada

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment	Wireless LAN Module
Model No.	GC-131
Serial No.	B7E095
Rating	DC3.3V / 1.8V
Country of Manufacture	Japan
Condition of EUT	Production prototype
	(Not for Sale: This sample is equivalent to mass-produced items.)
Receipt Date of Sample	June 03, 2008
Modification of EUT	No modification by the test lab.
Category Identified	Portable device

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 4 of 82

 FCC ID
 : CGJ3143EB

 Issued date
 : July 3, 2008

 Revised date
 : July 18, 2008

2.2 Product Description

Model No: GC-131 (referred to as the EUT in this report) is the Wireless LAN Module.

Clock frequency in the system	38.4MHz
Equipment Type	Transceiver
Frequency of Operation	2412-2462 MHz
Bandwidth & Channel spacing	20MHz / 5MHz
Type of Modulation	DSSS / OFDM
ITU code	G1D, D1D
Max. power tested (Peak power)	FCC15.247 test: 20.96dBm (124.74mW)
	SAR test: 21.12dBm(129.42mW)
Antenna type	C coupled Inverted F Type
Antenna Gain	-0.4dBi

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 5 of 82 FCC ID : CGJ3143EB Issued date : July 3, 2008 Revised date : July 18, 2008

SECTION 3: Test standard information

3.1 Requirements for compliance testing defined by the FCC

The US Federal Communications Commission has released the report and order "Guidelines for Evaluating the Environmental Effects of RF Radiation", ET Docket No. 93-62 in August 1996. The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g for an uncontrolled environment and 8.0 mW/g for an occupational/controlled environment as recommended by the ANSI/IEEE standard C95.1-1992. According to the Supplement C of OET Bulletin 65 "Evaluating Compliance with FCC Guide-lines for Human Exposure to Radio frequency Electromagnetic Fields", released on Jun 29, 2001 by the FCC, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

1 Specific Absorption Rate (SAR) is a measure of the rate of energy absorption due to exposure to an RF transmitting source (wireless portable device).

2 IEEE/ANSI Std. C95.1-1992 limits are used to determine compliance with FCC ET Docket 93-62.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 6 of 82 FCC ID : CGJ3143EB Issued date : July 3, 2008 Revised date : July 18, 2008

3.2 Procedure and result

<Outline of test>

The EUT was manufactured by Nikon Corporation and will be installed into only digital camera which is manufactured by Nikon Corporation.

The detail of host device was shown in the Appendix 1.

No.	Item	Test Procedure	Limit	Remarks	Exclusion	Result		
1	Human	FCC OET BULLETIN 65,	FCC47CFR	SAR	N/A	Complied		
	Exposure	SUPPLEMENT C	2.1093	Measurement		Max.SAR =		
						0.250W/kg		
Note	Note: UL Japan, Inc. 's SAR Work Procedures QPM46 and QPM47							

Result of Max. SAR value

Max. SAR Value (IEEE 802.11b/g) : 0.250 W/kg (Body/11b/2462MHz)

3.3 Exposure limit

(A) Limits for Occupational/Controlled Exposure (W/kg)

Spatial Average (averaged over the whole body)	Spatial Peak (averaged over any 1g of tissue)	Spatial Peak (hands/wrists/feet/ankles averaged over 10g)
0.4	8.0	20.0

(B) Limits for General population/Uncontrolled Exposure (W/kg)

Spatial Averag (averaged over the wh	Spatial Peak (averaged over any 1g of tissue)	Spatial Peak (hands/wrists/feet/ankles averaged over 10g)
0.08	1.6	4.0

Occupational/Controlled Environments: are defined as locations where there is exposure

that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

General Population/Uncontrolled Environments: are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

NOTE:GENERAL POPULATION/UNCONTROLLED EXPOSURE SPATIAL PEAK(averaged over any 1g of tissue) LIMIT 1.6 W/kg

UL Japan, Inc. Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 7 of 82

 FCC ID
 : CGJ3143EB

 Issued date
 : July 3, 2008

 Revised date
 : July 18, 2008

3.4 Test Location

*Shielded room for SAR testings

UL Japan, Inc. Head Office EMC Lab. *NVLAP Lab. code: 200572-0

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone: +81 596 24 8116 Facsimile: +81 596 24 8124

3.5 Confirmation before SAR testing

Correlation of Output Power between EMC and SAR tests (WLAN IEEE802.11b/g)

It was checked that the antenna port power was correlated within $0\sim+5\%$ (FCC requirements) The result is shown in Section 6.1.

- Peak power at EMC test (Date: September 6, 2006)

EMC power was measured for EMC test sample (S/N: 412A1).

- Peak power at SAR test (Date: June 30, 2008)

SAR power was measured for SAR test sample (S/N: B7E095).

3.6 Confirmation after SAR testing

It was checked that the power drift is within $\pm 5\%$ in the evaluation procedure of SAR testing. The result is shown in APPENDIX 2.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 8 of 82

 FCC ID
 : CGJ3143EB

 Issued date
 : July 3, 2008

 Revised date
 : July 18, 2008

3.7 Measurement procedure (Body SAR measurement)

1. **IEEE 802.11b**(Radiated power is always monitored by Spectrum Analyzer.)

The 11b (DSSS) mode test was performed on the CCK[11Mbps] modulation, because it was the highest average power and data rate.

Step1. The searching for the worst position

The tests were performed at the three positions of the distance between cabinet and antenna was less than 10mm. Refer to the Appendix1.

Step2. Change to the Low and High channels

This test was performed at the worst position of Step 1.

2. IEEE 802.11g

IEEE 802.11g(Radiated power is always monitored by Spectrum Analyzer.)

Step3. The seaching for the worst modulation.

The data rate in the higher average power*¹ each modulation was decided, then the worst modulation was searched in the SAR testing.

Step4. The searching for the worst position

This test was performed at the worst modulation of Step 3 and at the three positions in the same 11b mode (Step 1).

Step5. Change to the Low and High channels

This test was performed at the worst position of Step 4.

Change distance between Host device and SAM Twin Phantom

Step6. Change to the separation

The measurement was performed with the distance, 5mm,10mm and 15mm to check if the shortest distance may not have the worst value at the conditions of the highest SAR value.

3.8 Measurement procedure (Head SAR measurement)

Head SAR measurement is only for reference.

IEEE 802.11b/g (Radiated power is always monitored by Spectrum Analyzer.)

The 11b (DSSS) mode test was performed on the CCK[11Mbps] and the 11g (OFDM) mode test was performed on the 64QAM[54Mbps], because it was the worst SAR rate in the Body SAR measurements.

Step7. The searching for the worst position.

Step8. Change to the Low and High channels

This test was performed at the worst position of Step 1.

UL Japan, Inc. Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1} Refer to the antenna port power data in the section 6.2.

 Page
 : 9 of 82

 FCC ID
 : CGJ3143EB

 Issued date
 : July 3, 2008

 Revised date
 : July 18, 2008

3.9 Test setup of EUT

(1) Left side:

The test was performed in touch with Left Side surface of the EUT to the flat section of SAM Twin phantom.

(2) Rear :

The test was performed in touch with Rear surface of the EUT to the flat section of SAM Twin phantom.

(3) Top:

The test was performed in touch with Top surface of the EUT to the flat section of SAM Twin phantom.

(4) Left side (5mm):

The measurement opened 5mm distance between the EUT and flat section of SAM Twin Phantom.

(5) Left side (10mm)

The measurement opened 10mm distance between the EUT and flat section of SAM Twin Phantom.

(6) Left side (15mm):

The measurement opened 15mm distance between the EUT and flat section of SAM Twin Phantom.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 10 of 82

 FCC ID
 : CGJ3143EB

 Issued date
 : July 3, 2008

 Revised date
 : July 18, 2008

SECTION 4: Operation of E.U.T. during testing

4.1 Operating modes for SAR testing

4.1.1 Setting of EUT

This EUT has IEEE.802.11b/g continuous transmitting modes.

1. IEEE 802.11b mode

Tx frequency band : 2412-2462MHz

Channel : 1ch(2412MHz),6ch(2437MHz),11ch(2462MHz)

Modulation : DSSS (CCK)

Crest factor : 1

Test data : Pseudo Random Pattern (PN)

2. IEEE 802.11g mode

Tx frequency band : 2412-2462MHz

Channel : 1ch(2412MHz),6ch(2437MHz),11ch(2462MHz) Modulation : OFDM (BPSK, QPSK, 16QAM, 64QAM)

Crest factor : 1

Test data : Pseudo Random Pattern (PN)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 11 of 82 FCC ID : CGJ3143EB Issued date : July 3, 2008 Revised date : July 18, 2008

SECTION 5: Test surrounding

5.1 Measurement uncertainty

The uncertainty budget has been determined for the DASY4 measurement system according to the SPEAG documents[6][7] and is given in the following Table.

Error Description	Uncertainty value ± %	Probability distribution	divisor	(ci) 1g	Standard Uncertainty (1g)	vi or veff
Measurement System						
Probe calibration	±6.8	Normal	1	1	±6.8	∞
Axial isotropy of the probe	±4.7	Rectangular	$\sqrt{3}$	(1-cp) ^{1/2}	±1.9	∞
Spherical isotropy of the probe	±9.6	Rectangular	$\sqrt{3}$	(cp)1/2	±3.9	∞
Boundary effects	±2.0	Rectangular	$\sqrt{3}$	1	±1.2	∞
Probe linearity	±4.7	Rectangular	$\sqrt{3}$	1	±2.7	∞
Detection limit	±1.0	Rectangular	$\sqrt{3}$	1	±0.6	∞
Readout electronics	±0.3	Normal	1	1	±0.3	∞
Response time	±0.8	Rectangular	$\sqrt{3}$	1	±0.5	∞
Integration time	±2.6	Rectangular	$\sqrt{3}$	1	±1.5	∞
RF ambient Noise	±3.0	Rectangular	$\sqrt{3}$	1	±1.7	∞
RF ambient Reflections	±3.0	Rectangular	$\sqrt{3}$	1	±1.7	∞
Probe Positioner	±0.8	Rectangular	$\sqrt{3}$	1	±0.5	∞
Probe positioning	±9.9	Rectangular	$\sqrt{3}$	1	±5.7	∞
Max.SAR Eval.	±4.0	Rectangular	$\sqrt{3}$	1	±2.3	∞
Test Sample Related						
Device positioning	±2.9	Normal	1	1	±2.9	39
Device holder uncertainty	±3.6	Normal	1	1	±3.6	5
Power drift	±5.0	Rectangular	$\sqrt{3}$	1	±5.8	∞
Phantom and Setup						
Phantom uncertainty	±4.0	Rectangular	$\sqrt{3}$	1	±2.3	∞
Liquid conductivity (target)	±5.0	Rectangular	$\sqrt{3}$	0.64	±1.8	∞
Liquid conductivity (meas.)	±5.0	Rectangular	1	0.64	±3.2	∞
Liquid permittivity (target)	±5.0	Rectangular	$\sqrt{3}$	0.6	±1.7	∞
Liquid permittivity (meas.)	±5.0	Rectangular	1	0.6	±3.0	∞
Combined Standard Uncertaint	787				±14.360	
Expanded Uncertainty (k=2)	. y		+	+	±14.360 ±28.7	

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 12 of 82

 FCC ID
 : CGJ3143EB

 Issued date
 : July 3, 2008

 Revised date
 : July 18, 2008

SECTION 6: Confirmation before SAR testing

6.1 EMC power and SAR power(WLAN IEEE802.11b/g)

EMC power

FCC15.247 Maximum Peak Output Power

This data is reference data of EMC test. (Original report No. 27AE0229-HO-A)

Date of test: September 6, 2006

[IEEE802.1	1b]					
Ch	Freq.	P/M	Cable	Atten.	Res	sult
		PK Reading	Loss			
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]
Low	2412.0	3.04	0.30	10.22	13.56	22.70
Mid	2437.0	3.09	0.30	10.22	13.61	22.96
High	2462.0	2.98	0.30	10.22	13.50	22.39
[IEEE802.1	1g]					
Ch	Freq.	P/M	Cable	Atten.	Res	sult
		PK Reading	Loss			
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]
Low	2412.0	10.02	0.30	10.22	20.54	113.24
Mid	2437.0	10.44	0.30	10.22	20.96	124.74
High	2462.0	10.09	0.30	10.22	20.61	115.08
Sample Cal	culation:					

Result = Reading + Cable Loss (supplied by customer) + Attenuator

SAR power

Date of test: June 30, 2008

[IEEE802.11b]

Ch	Freq.	P/M	Cable	Atten.	Result	
		PK Reading	Loss			
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]
Low	2412.0	2.85	0.70	10.20	13.75	23.71
Mid	2437.0	2.91	0.70	10.20	13.81	24.04
High	2462.0	2.78	0.70	10.20	13.68	23.33

[IEEE802.11g]

Ch	Freq.	P/M	Cable	Atten.	Result	
		PK Reading	Loss			
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]
Low	2412.0	9.81	0.70	10.20	20.71	117.76
Mid	2437.0	10.22	0.70	10.20	21.12	129.42
High	2462.0	9.89	0.70	10.20	20.79	119.95

Sample Calculation:

Result = Reading + Cable Loss (supplied by customer) + Attenuator

UL Japan, Inc. Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 13 of 82

 FCC ID
 : CGJ3143EB

 Issued date
 : July 3, 2008

 Revised date
 : July 18, 2008

6.2 Reference data of SAR test (Data rate determination)

Date of test: June 30, 2008

Rate	Freq.	PM	Cable	Atten.	Result	
		PK Reading	Loss			
[Mbps]	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]
1.0	2437.0	2.90	0.70	10.20	13.80	23.99
2.0	2437.0	2.71	0.70	10.20	13.61	22.96
5.5	2437.0	2.87	0.70	10.20	13.77	23.82
11.0	2437.0	2.91	0.70	10.20	13.81	24.04

[IEEE802.11g] Rate Check

Rate	Freq.	PM	Cable	Atten.	Result	
		PK Reading	Loss			
[Mbps]	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]
6.0	2437.0	10.15	0.70	10.20	21.05	127.35
9.0	2437.0	10.16	0.70	10.20	21.06	127.64
12.0	2437.0	10.04	0.70	10.20	20.94	124.17
18.0	2437.0	10.05	0.70	10.20	20.95	124.45
24.0	2437.0	10.21	0.70	10.20	21.11	129.12
36.0	2437.0	10.21	0.70	10.20	21.11	129.12
48.0	2437.0	10.04	0.70	10.20	20.94	124.17
54.0	2437.0	10.22	0.70	10.20	21.12	129.42

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 14 of 82

 FCC ID
 : CGJ3143EB

 Issued date
 : July 3, 2008

 Revised date
 : July 18, 2008

SECTION 7: Measurement results

7.1 **Body SAR 2450MHz**

Date : June 30, 2008 Measured By : Miyo Kishimoto

Liquid Depth (cm) : 15.0 Model : GC-131 Parameters : $\epsilon_r = 50.1, \sigma = 2.02$ Serial No. : B7E095

Ambient temperature (deg.c.) : 24.5 Modulation : DSSS(11b), OFDM(11g)

Relative Humidity (%) : 54 Crest factor : 1

BODY SAR MEASUREMENT RESULTS										
Frequency		Modulation Phantom Section		EUT Set-up Conditions			Liquid Temp.[deg.c]		. 01	
Band	Channel	[MHz]			Antenna	Position	Separation [mm]	Before	After	Maximum of multi-peak
11b	Step 1. Search for the worst position									
	6	2437	CCK(11Mbps)	Flat	Fixed	Left side	0	23.5		0.129
	6	2437	CCK(11Mbps)	Flat	Fixed	Rear	0	23.5		0.015
	6	2437	CCK(11Mbps)	Flat	Fixed	Тор	0	23.5	23.5	0.020
	Step 2. Change to the channels									
	1	2412	CCK(11Mbps)	Flat	Fixed	Left side	0	23.5		0.163
	11	2462	CCK(11Mbps)	Flat	Fixed	Left side	0	23.5	23.5	0.250
	Step 3. Search for the worst modulation									
	6	2437	BPSK(9Mbps)	Flat	Fixed	Left side	0	23.5		0.207
	6	2437	QPSK(18Mbps)	Flat	Fixed	Left side	0	23.5		0.136
	6	2437	16QAM(24Mbps)		Fixed	Left side	0	23.5		0.151
	6	2437	64QAM(54Mbps)		Fixed	Left side	0	23.5	23.5	0.235
11g	Step 4. Search for the worst position									
	6	2437	64QAM(54Mbps)	Flat	Fixed	Rear	0	23.5	23.7	0.028
	6	2437	64QAM(54Mbps)	Flat	Fixed	Тор	0	23.7	23.7	0.033
	Step 5. Change to the channels									
	1	2412	64QAM(54Mbps)	Flat	Fixed	Left side	0	23.7	23.7	0.136
	11	2462	64QAM(54Mbps)	Flat	Fixed	Left side	0	23.7	23.7	0.181
	Step 6. Change to the Separation									
11b	11	2462	CCK(11Mbps)	Flat	Fixed	Left side	5	23.7		0.079
	11	2462	CCK(11Mbps)	Flat	Fixed	Left side	10	23.8		0.026
	11	2462	CCK(11Mbps)	Flat	Fixed	Left side	15	23.8	23.8	0.00976

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 15 of 82 FCC ID : CGJ3143EB Issued date : July 3, 2008 Revised date : July 18, 2008

7.2 Reference Head SAR 2450MHz

Date : June 30, 2008 Measured By : Hisayoshi Sato

Liquid Depth (cm) : 15.0 Model : GC-131 Parameters : $\epsilon_r = 37.8, \sigma = 1.85$ Serial No. : B7E095

Ambient temperature (deg.c.) : 24.5 Modulation : DSSS(11b), OFDM(11g)

Relative Humidity (%) : 54 Crest factor : 1

HEADSAR MEASUREMENT RESULTS											
			Phantom	EUT Set-up Conditions					SAR(1g)		
Frequency		Modulation	Section				Liquid Temp.[deg.c]		[W/kg]		
							Separation			Maximum	
Band	Channel				Antenna	Position	[mm]	Before	After	of multi-peak	
	Step 7. Search for the worst position										
11b	6	2437	CCK(11Mbps)	Flat	Fixed	Left side	0	23.5	23.5	0.229	
	6	2437	CCK(11Mbps)	Flat	Fixed	Rear	0	23.5	23.5	0.044	
	Step 8. C	Step 8. Change to the channels									
	1	2412	CCK(11Mbps)	Flat	Fixed	Left side	0	23.6	23.6	0.150	
	11	2462	CCK(11Mbps)	Flat	Fixed	Left side	0	23.6	23.6	0.306	
11g	Step 7. Search for the worst position										
	6	2437	64QAM(54Mbps)	Flat	Fixed	Left side	0	23.6	23.6	0.132	
	6	2437	64QAM(54Mbps)	Flat	Fixed	Rear	0	23.7	23.7	0.044	
	Step 8. C	Step 8. Change to the channels									
	1	2412	64QAM(54Mbps)		Fixed	Left side	0	23.7	23.7	0.103	
	11	2462	64QAM(54Mbps)	Flat	Fixed	Left side	0	23.7	23.7	0.175	

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN