

Page 1 of 41 JQA File No. : KL80170117 Issue Date : July 7, 2017

TEST REPORT

Applicant Address	:	NIKON CORPORATION Shinagawa Intercity Tower C, 2-15-3, Konan, Minato-ku, Tokyo 108-6290 Japan
Products	:	Remote Control
Model No.	:	N16F1
Serial No.	:	16, 5
FCC ID	:	CGJ1153EB
Test Standard	:	CFR 47 FCC Rules and Regulations Part 15
Test Results	:	Passed
Date of Test	:	May 23 ~ 30, 2017

Kousei Shibata Manager Japan Quality Assurance Organization KITA-KANSAI Testing Center SAITO EMC Branch 7-3-10, Saito-asagi, Ibaraki-shi, Osaka 567-0085, Japan

- The test results in this test report was made by using the measuring instruments which are traceable to national standards of measurement in accordance with ISO/IEC 17025.
- The applicable standard, testing condition and testing method which were used for the tests are based on the request of the applicant.
- The test results presented in this report relate only to the offered test sample.
- The contents of this test report cannot be used for the purposes, such as advertisement for consumers.
- This test report shall not be reproduced except in full without the written approval of JQA.
- VLAC does not approve, certify or warrant the product by this test report.

Page 2 of 41

TABLE OF CONTENTS

		Page
1	Description of the Equipment Under Test	3
2	Summary of Test Results	4
3	Test Procedure	5
4	Test Location	5
5	Recognition of Test Laboratory	5
6	Description of Test Setup	6
7	Test Requirements	

DEFINITIONS FOR ABBREVIATION AND SYMBOLS USED IN THIS TEST REPORT

- EUT : Equipment Under Test
- AE : Associated Equipment
- N/A : Not Applicable
- N/T : Not Tested

- EMC : Electromagnetic Compatibility
- EMI : Electromagnetic Interference
- EMS : Electromagnetic Susceptibility
- **R** indicates that the listed condition, standard or equipment is applicable for this report.
- ${f \pounds}$ indicates that the listed condition, standard or equipment is not applicable for this report.

Page 3 of 41

1 Description of the Equipment Under Test

1.	Manufacturer	:	NIKON CORPORATION Shinagawa Intercity Tower C, 2-15-3, Konan, Minato-ku, Tokyo 108-6290 Japan
2.	Products	:	Remote Control
3.	Model No.	:	N16F1
4.	Serial No.	:	16, 5
5.	Product Type	:	Pre-production
6.	Date of Manufacture	:	
7.	Power Rating	:	3.0VDC (Lithium Coin Cell Battery CR2032)
8.	Grounding	:	None
о.	arounding	•	
о. 9.	Operating Frequency	:	2402 MHz (00CH) – 2480 MHz (39CH)
9.	0		
9. 10.	Operating Frequency	:	2402 MHz (00CH) – 2480 MHz (39CH)
9. 10. 11.	Operating Frequency Max. RF Output Power	:	2402 MHz (00CH) – 2480 MHz (39CH) 0.26 dBm (Measured Value)
9. 10. 11. 12.	Operating Frequency Max. RF Output Power Antenna Type	:	2402 MHz (00CH) – 2480 MHz (39CH) 0.26 dBm (Measured Value) 1/4λ Inverted-F Antenna (Integral)
 9. 10. 11. 12. 13. 	Operating Frequency Max. RF Output Power Antenna Type Antenna Gain	:	2402 MHz (00CH) – 2480 MHz (39CH) 0.26 dBm (Measured Value) 1/4λ Inverted-F Antenna (Integral) 0.28 dBi

16. Channel Plan

The carrier spacing is 2 MHz.

The carrier frequency is designated by the absolute frequency channel number (ARFCN). The carrier frequency is expressed in the equation shown as follows:

 $\begin{array}{ll} Transmitting \ Frequency \ (in \ MHz) &= 2402.0 + 2 \times n \\ Receiving \ Frequency \ (in \ MHz) &= 2402.0 + 2 \times n \\ where, \ n : channel \ number \ (0 \leq n \leq 39) \end{array}$

Page 4 of 41

2 Summary of Test Results

Applied Standard : CFR 47 FCC Rules and Regulations Part 15 Subpart C - Intentional Radiators

The EUT described in clause 1 was tested according to the applied standard shown above. Details of the test configuration is shown in clause 6.

The conclusion for the test items of which are required by the applied standard is indicated under the test result.

- **R** The test result was passed for the test requirements of the applied standard.
- $\boldsymbol{\pounds}$ The test result was failed for the test requirements of the applied standard.
- ${f \pounds}$ The test result was not judged the test requirements of the applied standard.

In the approval of test results,

- Determining compliance with the limits in this report was based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.
- No deviations were employed from the applied standard.
- No modifications were conducted by JQA to achieve compliance to the limitations.

Reviewed by:

higen Osawa

Shigeru Osawa Deputy Manager JQA KITA-KANSAI Testing Center SAITO EMC Branch

Tested by:

Yasuhisa Sakai Manager JQA KITA-KANSAI Testing Center SAITO EMC Branch

Page 5 of 41

3 Test Procedure

Test Requirements	:	§15.247, §15.207 and §15.209
Test Procedure	:	ANSI C63.10–2013 Testing unlicensed wireless devices.
		KDB 558074 D01 DTS Meas Guidance v04: April 5, 2017
		KDB 414788 D01 Radiated Test Site v01: April 18, 2017

4 Test Location

Japan Quality Assurance Organization (JQA) KITA-KANSAI Testing Center 7-7, Ishimaru, 1-chome, Minoh-shi, Osaka, 562-0027, Japan SAITO EMC Branch 7-3-10, Saito-asagi, Ibaraki-shi, Osaka 567-0085, Japan

5 Recognition of Test Laboratory

JQA KITA-KANSAI Testing Center SAITO EMC Branch is accredited under ISO/IEC 17025 by following accreditation bodies and the test facility is registered by the following bodies.

VLAC Accreditation No.	:	VLAC-001-2 (Expiry date : March 30, 2018)
VCCI Registration No.	:	A-0002 (Expiry date : March 30, 2018)
BSMI Registration No.	:	SL2-IS-E-6006, SL2-IN-E-6006, SL2-R1/R2-E-6006, SL2-A1-E-6006
		(Expiry date : September 14, 2019)
IC Registration No.	:	2079E-3, 2079E-4 (Expiry date : July 16, 2017)

Accredited as conformity assessment body for Japan electrical appliances and material law by METI. (Expiry date : February 22, 2019)

Page 6 of 41

6 Description of Test Setup

6.1 Test Configuration

The equipment under test (EUT) consists of :

	Item	Manufacturer	Model No.	Serial No.	FCC ID
Α	Remote Control	NIKON	N16F1	16 *1, 5 *2	CGJ1153EB

*1) Used for AC Powerline Conducted Emission and Field Strength of Spurious Emission*2) Used for Antenna Conducted Emission

The auxiliary equipment used for testing : None

Type of Cable: None

6.2 Test Arrangement (Drawings)

A

3.0VDC (Lithium Coin Cell Battery CR2032 $\times 1)$

Page 7 of 41

6.3 Operating Condition

Power Supply Voltage : 3.0VDC (Lithium Coin Cell Battery CR2032)

Operation Mode

The EUT is set with the test mode, the specification of the test mode is as followings.

Bluetooth Low Energy Mode (Bluetooth 4.1 +LE):Transmitting frequency: 2402 MHz (00CH) - 2480 MHz (39CH)Receiver frequency: 2402 MHz (00CH) - 2480 MHz (39CH)

Modulation Type LE Packet (GFSK)

Other Clock Frequency 32.768 kHz, 16 MHz

The EUT was rotated through three orthogonal axis (X, Y and Z axis) in radiated measurement. The EUT with temporary antenna port was used in conducted measurement.

The tests were performed using the following test program supplied by applicant;

- Software Name : nRFgo Studio
- Software Version : Version 1.21.2.10
- Storage Location : Controller PC

Page 8 of 41

7 Test Requirements

7.0 Summary of the Test Results

Test Item	FCC Specification	Reference of the Test Report	Results	Remarks
Antenna Requirement	Section 15.203	Section 1.12	Passed	-
Channel Separation	Section 15.247(a)(1)	-		-
Minimum Hopping Channel	Section 15.247(a)(1)(iii)	-	-	-
Occupied Bandwidth	Section 15.247(a)(2)	Section 7.3	Passed	-
Dwell Time	Section 15.247(a)(1)(iii)	-	-	-
Peak Output Power	Section 15.247(b)(3)	Section 7.5	Passed	-
(Conduction)				
Peak Power Density	Section 15.247(e)	Section 7.6	Passed	-
(Conduction)				
Spurious Emissions	Section 15.247(d)	Section 7.7	Passed	-
(Conduction)				
AC Powerline Conducted	Section 15.207	Section 7.8	N/A	-
Emission				
Radiated Emission	Section 15.205	Section 7.9	Passed	-
	Section 15.209			
RF Exposure	Section 15.247(i)	Section 7.10	Passed	

Page 9 of 41

7.1 Channel Separation

For the requirements, \pounds - Applicable [\pounds - Tested. \pounds - Not tested by applicant request.] R - Not Applicable

7.2 Minimum Hopping Channel

For the requirements, \pounds - Applicable [\pounds - Tested. \pounds - Not tested by applicant request.] R - Not Applicable

7.3 Occupied Bandwidth

For the requirements, ${\bf R}$ - Applicable [${\bf R}$ - Tested. ${\bf \pounds}$ - Not tested by applicant request.] ${\bf \pounds}$ - Not Applicable

7.3.1 Test Results

For the standard,	R - Passed	${f \pounds}$ - Failed	£ - Not j	judged			
99% Bandwidth			1047.9	kHz	at	2440.0	MHz
6dB Bandwidth			669.7	_ kHz	at	2440.0	MHz
Uncertainty of Measur	rement Results					± 0.9	_ %(2 0)

Remarks : _____

Page 10 of 41

7.3.2 Test Instruments

Shielded Room S4							
Туре	Model	Serial No. (ID)	Manufacturer	Cal. Due			
Spectrum Analyzer	E4446A	US44300388 (A-39)	Agilent	2018/03/30			
Attenuator	54A-10	W5675 (D-28)	Weinschel	2017/08/02			
RF Cable	SUCOFLEX102	14253/2 (C-52)	HUBER+SUHNER	2017/08/02			

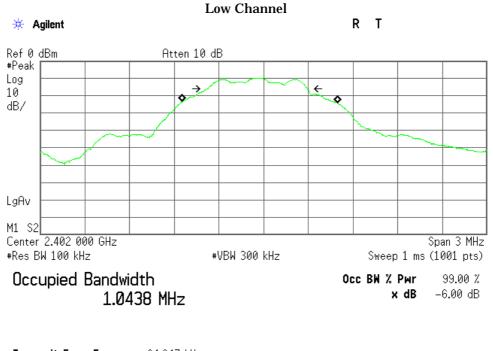
NOTE : The calibration interval of the above test instruments is 12 months.

7.3.3 Test Method and Test Setup (Diagrammatic illustration)

The test system is shown as follows:

The setting of the spectrum analyzer are shown as follows:

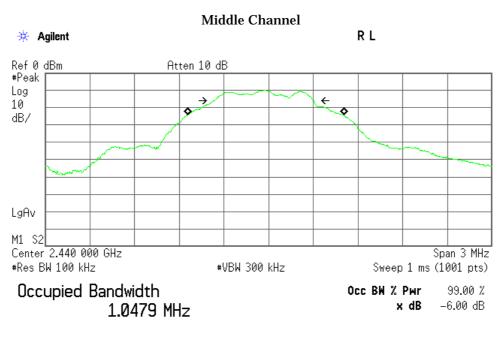
	WLAN	Bluetooth LE
Res. Bandwidth	100 kHz	100 kHz
Video Bandwidth	300 kHz	300 kHz
Span	30 MHz (for 20 MHz BW) 60 MHz (for 40 MHz BW)	3 MHz
Sweep Time	AUTO	AUTO
Trace	Maxhold	Maxhold

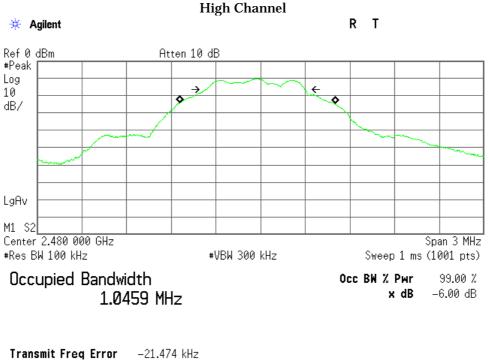

Page 11 of 41

7.3.4 Test Data

The resolution bandwidth was set to 100 kHz, -6dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

<u>Test Date: May 23, 2017</u> <u>Temp.: 26 °C, Humi: 43 %</u>


Channel	Frequency (MHz)	99% Bandwidth (kHz)	-6dBc Bandwidth (kHz)	Minimum -6dBc Bandwidth Limit (kHz)
00	2402.0	1043.8	666.8	500
19	2440.0	1047.9	669.7	500
39	2480.0	1045.9	659.0	500


Transmit Freq Error	–24.947 kHz	
Occupied Bandwidth	666.805 kHz	

Page 12 of 41

Transmit Freq Error	–17.949 kHz
Occupied Bandwidth	669.655 kHz

Page 13 of 41

7.4 Dwell Time

For the requirements, \pounds - Applicable [\pounds - Tested. \pounds - Not tested by applicant request.] R - Not Applicable

7.5 Peak Output Power (Conduction)

For the requirements, ${\bf R}$ - Applicable [${\bf R}$ - Tested. ${\bf \pounds}$ - Not tested by applicant request.] ${\bf \pounds}$ - Not Applicable

7.5.1 Test Results

For the standard,	R - Passed	${f \pounds}$ - Failed	£ - Not	judged			
Peak Output Power			0.26	_ dBm	at	2402.0	MHz
Uncertainty of Measur	rement Results					± 0.9	_ dB(2 σ)

Remarks : _____

7.5.2 Test Instruments

	Shie	elded Room S4		
Туре	Model	Serial No. (ID)	Manufacturer	Cal. Due
Power Meter	ML2495A	1423001 (B-16)	Anritsu	2017/07/10
Power Sensor	MA2411B	1339136 (B-18)	Anritsu	2017/07/10
Attenuator	54A-10	W5675 (D-28)	Weinschel	2017/08/02
RF Cable	SUCOFLEX102	14253/2 (C-52)	HUBER+SUHNER	2017/08/02

NOTE : The calibration interval of the above test instruments is 12 months.

7.5.3 Test Method and Test Setup (Diagrammatic illustration)

The Conducted RF Power Output was measured with a power meter, one attenuator and a short, low loss cable.

Page 14 of 41

٦

7.5.4 Test Data

<u>Test Date: May 30, 2017</u> <u>Temp.: 26 °C, Humi: 56 %</u>

Transmi	tting Frequency	Correction Factor	Meter Reading	Cond Peak Out		Limits	Margin
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]	[dBm]	[dB]
00	2402	10.19	- 9.93	0.26	1.06	30.00	+29.74
19	2440	10.19	-10.14	0.05	1.01	30.00	+29.95
39	2480	10.20	-10.43	-0.23	0.95	30.00	+30.23

Correction Factor	=	10.19 dB
+) Meter Reading	=	-9.93 dBm
Result	=	0.26 dBm = 1.06 mW

NOTES

1. The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.

2. Setting of measuring instrument(s) :

Detector Function	Video B.W.
Peak	Off

Page 15 of 41

7.6 Peak Power Density (Conduction)

For the requirements, ${\bf R}$ - Applicable [${\bf R}$ - Tested. ${\bf \pounds}$ - Not tested by applicant request.] ${\bf \pounds}$ - Not Applicable

7.6.1 Test Results

For the standard,	R - Passed	${f \pounds}$ - Failed	£ - Not j	judged			
Peak Power Density			-0.50	_ dBm	at	2440.0	_ MHz
Uncertainty of Measure	ement Results					± 1.7	_ dB(2 σ)

Remarks :

7.6.2 Test Instruments

	Shiel	ded Room S4		
Туре	Model	Serial No. (ID)	Manufacturer	Cal. Due
Spectrum Analyzer	E4446A	US44300388 (A-39)	Agilent	2018/03/30
Attenuator	54A-10	W5675 (D-28)	Weinschel	2017/08/02
RF Cable	SUCOFLEX102	14253/2 (C-52)	HUBER+SUHNER	2017/08/02

NOTE : The calibration interval of the above test instruments is 12 months.

7.6.3 Test Method and Test Setup (Diagrammatic illustration)

The test system is shown as follows:

Page 16 of 41

7.6.4 Test Data

Test Date: I	May 23, 2017
<u>Temp.: 26 °C,</u>	Humi: 43 %

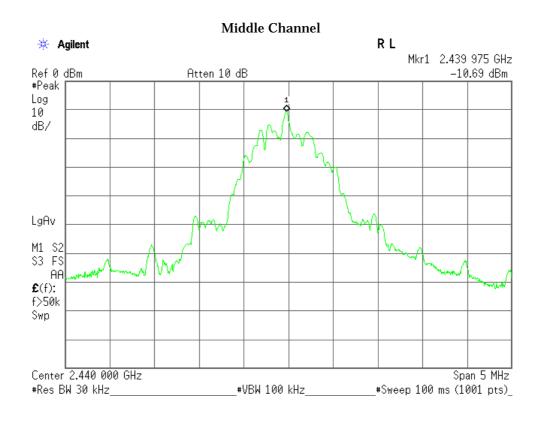
Transmi	tting Frequency	Correction Factor	Meter Reading	Cond Peak Pow		Limits	Margin
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]	[dBm]	[dB]
00	2402	10.19	-11.07	-0.88	0.82	8.00	+ 8.88
19	2440	10.19	-10.69	-0.50	0.89	8.00	+ 8.50
39	2480	10.20	-10.80	-0.60	0.87	8.00	+ 8.60

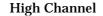
	00 MHz, as the wo	rst point shown on underline:
Correction Factor	=	10.19 dB
+) Meter Reading	=	-10.69 dBm
Result	=	-0.50 dBm = 0.89 mW
Minimum Margin: 8.00 - (-0	0.50) = 8.50 (dB)	

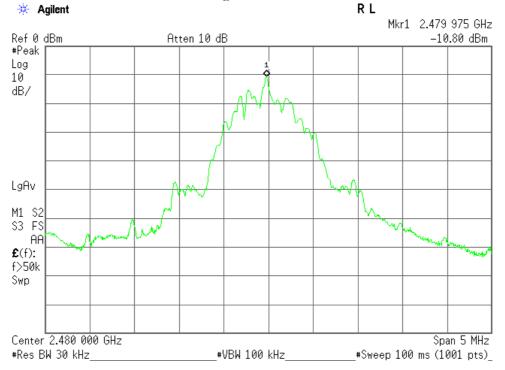

NOTES

1. The peak power density complied with the limit using 30 kHz resolution bandwidth of Spectrum Analyzer.

2. The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.


3. Setting of measuring instrument(s) :


Detector Function	RES B.W.	Video B.W.
Peak	30kHz	100kHz



Page 17 of 41

Page 18 of 41

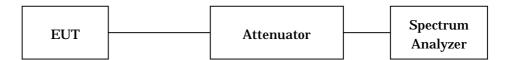
7.7 Spurious Emissions (Conduction)

For the requirements, ${\bf R}$ - Applicable [${\bf R}$ - Tested. ${\bf \pounds}$ - Not tested by applicant request.] ${\bf \pounds}$ - Not Applicable

7.7.1 Test Results

For the standard,	R - Passed	${f \pounds}$ - Failed	${f \pounds}$ - Not judged	
Uncertainty of Measur	ement Results		9 kHz – 1 GHz 1 GHz – 18 GHz 18 GHz – 40 GHz	$\begin{array}{c} \pm 1.4 & dB(2\sigma) \\ \hline \pm 1.7 & dB(2\sigma) \\ \hline \pm 2.3 & dB(2\sigma) \end{array}$

Remarks :


7.7.2 Test Instruments

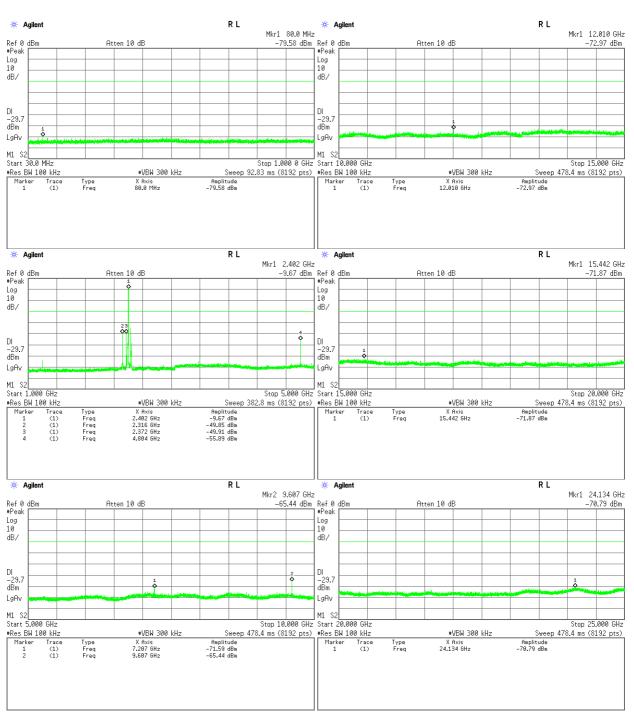
Shielded Room S4							
TypeModelSerial No. (ID)ManufacturerCal. Du							
Spectrum Analyzer	E4446A	US44300388 (A-39)	Agilent	2018/03/30			
Attenuator	54A-10	W5675 (D-28)	Weinschel	2017/08/02			
RF Cable	SUCOFLEX102	14253/2 (C-52)	HUBER+SUHNER	2017/08/02			

NOTE : The calibration interval of the above test instruments is 12 months.

7.7.3 Test Method and Test Setup (Diagrammatic illustration)

The test system is shown as follows:

The setting of the spectrum analyzer are shown as follows:


Frequency Range	30 MHz - 25 GHz	Band-Edge
Res. Bandwidth	100 kHz	100 kHz
Video Bandwidth	300 kHz	300 kHz
Sweep Time	AUTO	AUTO
Trace	Maxhold	Maxhold

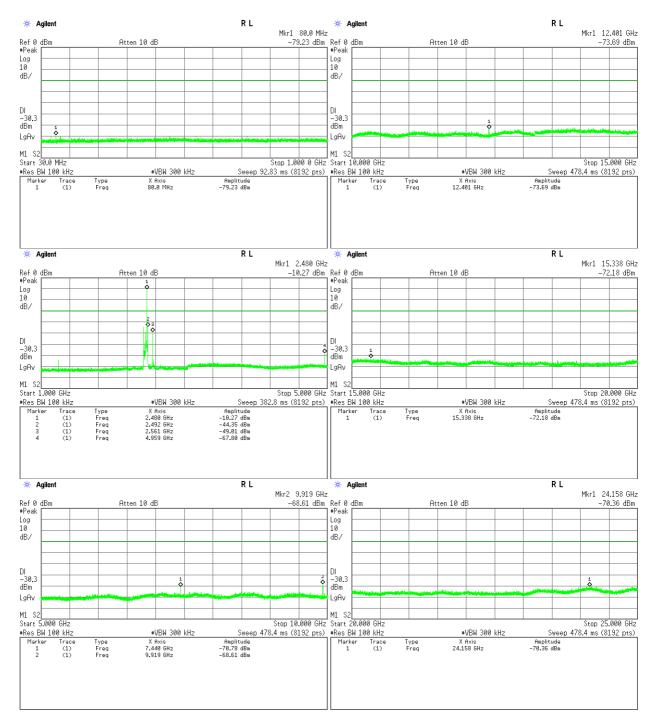
Page 19 of 41

7.7.4 Test Data

<u>Test Date: May 23, 2017</u> <u>Temp.: 26 °C, Humi: 43 %</u>

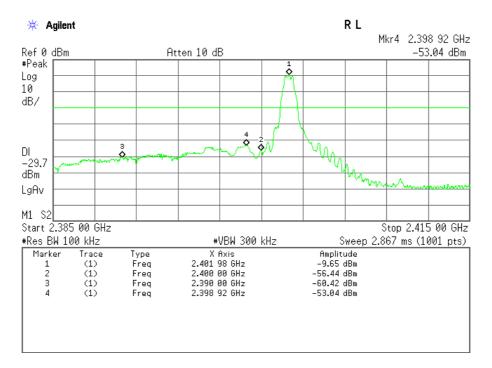
Low Channel

Page 20 of 41

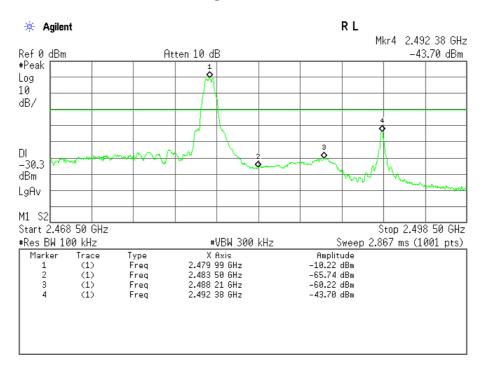


Page 21 of 41

High Channel



Page 22 of 41


Band-Edge Emission

<u>Test Date: May 23, 2017</u> <u>Temp.: 26 °C, Humi: 43 %</u>

Low Channel

High Channel

Page 23 of 41

7.8 AC Powerline Conducted Emission

For the requirements, \mathfrak{L} - Applicable [\mathfrak{L} - Tested. \mathfrak{L} - Not tested by applicant request.] R - Not Applicable

7.9 Radiated Emission

For the requirements, ${\bf R}$ - Applicable [${\bf R}$ - Tested. ${\bf \pounds}$ - Not tested by applicant request.] ${\bf \pounds}$ - Not Applicable

7.9.1 Test Results

For the standard,	R - Passed	${f \pounds}$ - Failed	£ - Not jud	lged		
Min. Limit Margin (Av	verage)		<u> </u>	dB at	2502.72	MHz
Uncertainty of Measu	rement Results		30 MHz – 3 300 MHz – 10 1 GHz	000 MHz - 6 GHz - 18 GHz	$ \begin{array}{r} \pm 3.0 \\ \pm 3.8 \\ \pm 4.8 \\ \pm 4.7 \\ \pm 4.6 \\ \pm 5.5 \\ \end{array} $	 dB(2o) dB(2o) dB(2o) dB(2o) dB(2o) dB(2o) dB(2o) dB(2o)

 Remarks :
 Worst case : 39ch (X-axis position)

 The measurement result is within the range of measurement uncertainty.

Page 24 of 41

7.9.2 Test Instruments

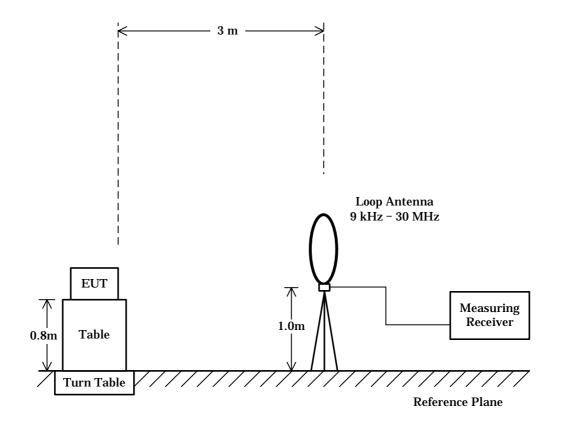
	Anechoic Chamber A2							
Туре	Model	Serial No. (ID)	Manufacturer	Cal. Due				
Test Receiver	ESU 26	100170 (A-6)	Rohde & Schwarz	2018/02/28				
Loop Antenna	HFH2-Z2	860605/030 (C-3)	Rohde & Schwarz	2017/08/01				
Biconical Antenna	VHA9103/BBA9106	2355 (C-30)	Schwarzbeck	2018/05/23				
Log-periodic Antenna	UHALP9108-A1	0694 (C-31)	Schwarzbeck	2018/05/23				
Horn Antenna	91888-2	560 (C-40-1)	EATON	2017/06/12				
Horn Antenna	91889-2	560 (C-40-2)	EATON	2017/06/12				
Horn Antenna	3160-04	9903-1053 (C-55)	EMCO	2017/06/13				
Horn Antenna	3160-05	9902-1061 (C-56)	ЕМСО	2017/06/13				
Horn Antenna	3160-06	9712-1045 (C-57)	ЕМСО	2017/06/13				
Horn Antenna	3160-07	9902-1113 (C-58)	ЕМСО	2017/06/13				
Horn Antenna	3160-08	9904-1099 (C-59)	ЕМСО	2017/06/13				
Horn Antenna	3160-09	9808-1117 (C-48)	ЕМСО	2017/06/15				
Pre-Amplifier	310N	304573 (A-17)	SONOMA	2018/04/02				
Pre-Amplifier	TPA0118-36	1010 (A-37)	ΤΟΥΟ	2018/05/14				
Pre-Amplifier	RP1826G-45H	RP140121-11 (A-53)	EMCS	2017/06/15				
Attenuator	54A-10	W5713 (D-29)	Weinschel	2017/08/02				
Attenuator	2-10	BA6214 (D-79)	Weinschel	2017/11/21				
Band Rejection Filter	BRM50701	029 (D-93)	MICRO-TRONICS	2018/02/14				
RF Cable	RG213/U	(H-29)	HUBER+SUHNER	2017/08/01				
RF Cable	S 10162 B-11 etc.	(H-4)	HUBER+SUHNER	2018/04/02				
RF Cable	SUCOFLEX104	267479/4 (C-66)	HUBER+SUHNER	2018/01/10				
RF Cable	SUCOFLEX104	267414/4 (C-67)	HUBER+SUHNER	2018/01/10				
RF Cable	SUCOFLEX102EA	3041/2EA (C-69)	HUBER+SUHNER	2018/01/10				

NOTE : The calibration interval of the above test instruments is 12 months.

Page 25 of 41

7.9.3 Test Method and Test Setup (Diagrammatic illustration)

7.9.3.1 Radiated Emission 9 kHz - 30 MHz

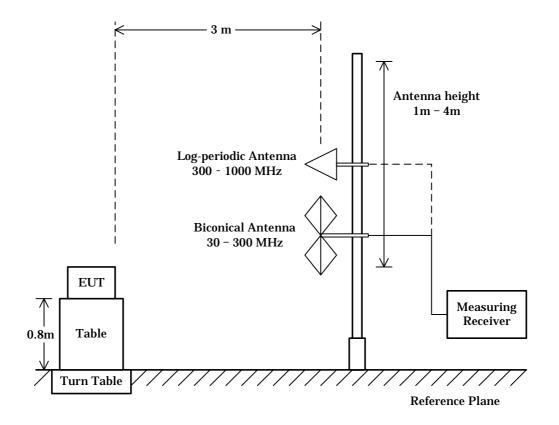

The preliminary tests were performed at the measurement distance that specified for compliance to determine the emission characteristics of the EUT.

The EUT configuration (in X, Y and Z axis), cable configuration and mode of operation were determined for producing the maximum level of emissions.

The measurement were performed about three antenna orientations (parallel, perpendicular, and ground-parallel).

According to KDB 414788, a used anechoic chamber were equivalent to those on an open fields site based on comparison measurements.

This configurations was used for the final tests.


Page 26 of 41

7.9.3.2 Radiated Emission 30 MHz – 1000 MHz

The preliminary tests were performed at the measurement distance that specified for compliance to determine the emission characteristics of the EUT.

The EUT configuration (in X, Y and Z axis), cable configuration and mode of operation were determined for producing the maximum level of emissions.

This configurations was used for the final tests.

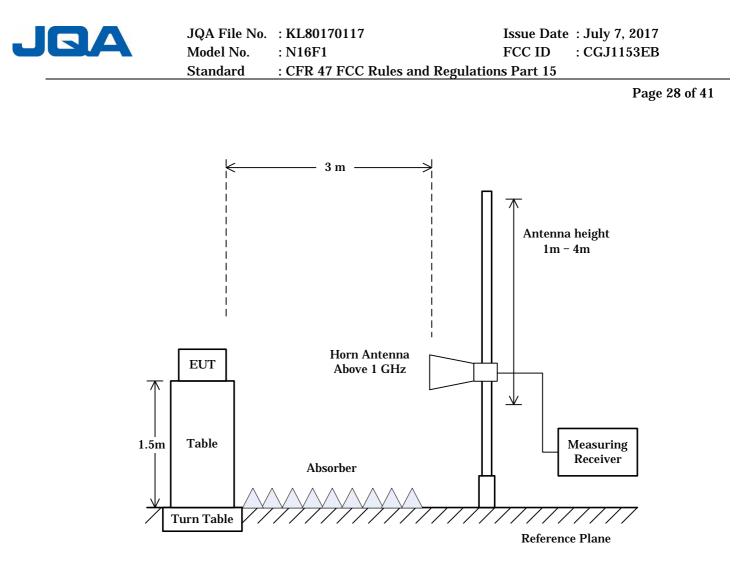
Technical document No. 23199-1601

Page 27 of 41

7.9.3.3 Radiated Emission above 1 GHz

The preliminary tests were performed at the measurement distance that specified for compliance to determine the emission characteristics of the EUT.

The EUT configuration (in X, Y and Z axis), cable configuration and mode of operation were determined for producing the maximum level of emissions. This configurations was used for the final tests.


The setting of the measuring instruments are shown as follows:

Туре	Peak	Average
Detector Function	Peak	Peak
Res. Bandwidth	1 MHz	1 MHz
Video Bandwidth	3 MHz	≥ 1/T *)
Video Filtering	Linear Voltage	Linear Voltage
Sweep Time	AUTO	AUTO
Trace	Max Hold	Max Hold

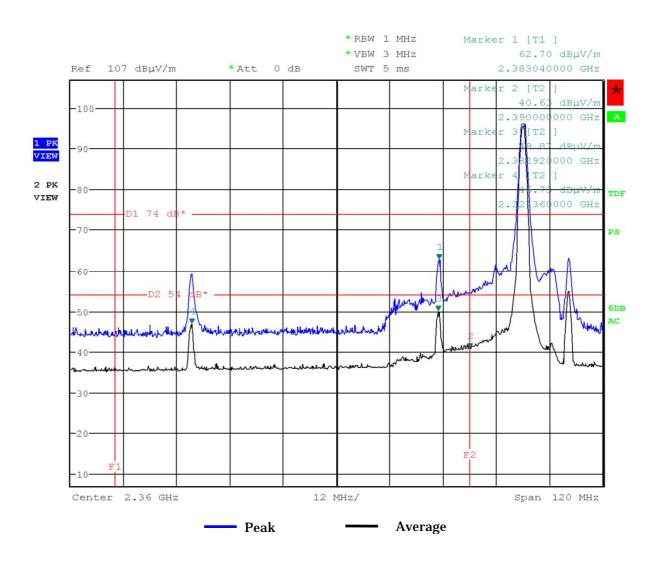
*) T: Minimum transmission duration

Average (VBW) Setting:

Mode	Interval	Cycle	Duty cycle	Burst on period(T)	Min. VBW(1/T)	VBW Setting
wode	(msec)	(msec)	(%)	(msec)	(kHz)	(kHz)
LE	0.48	0.63	22.9%	0.14	6.99	10.00

NOTE

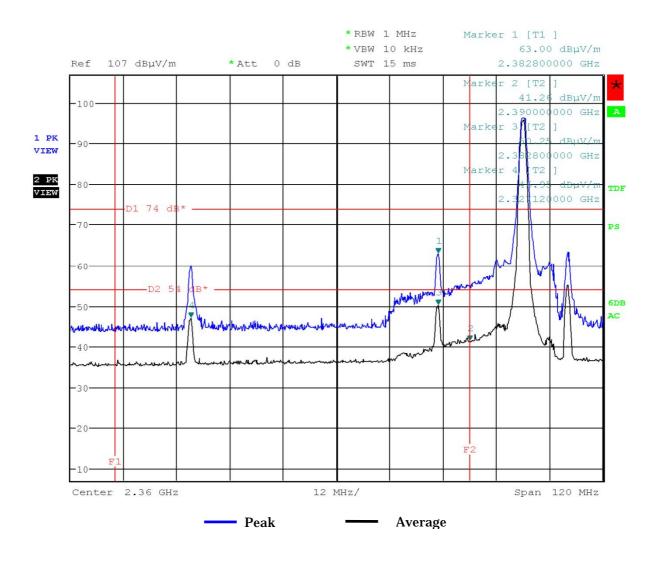
When the EUT is manipulated through three different orientations, the scan height upper range for the measurement antenna is limited to 2.5 m or 0.5 m above the top of the EUT.


Page 29 of 41

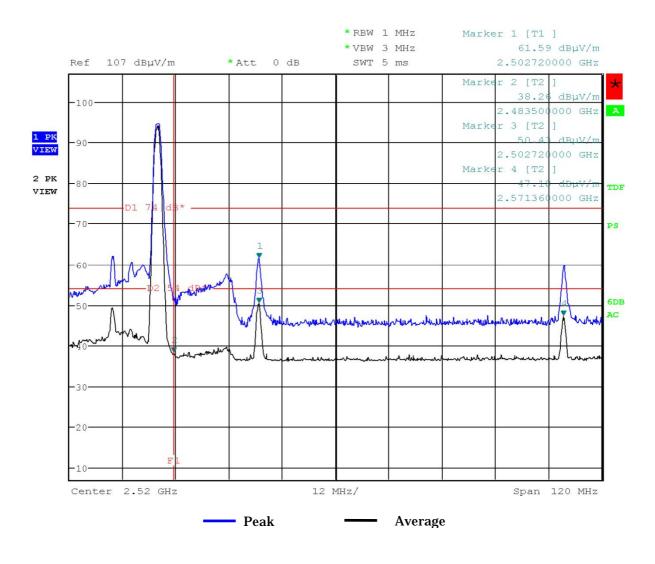
7.9.4 Test Data

7.9.4.1 Band-edge Compliance

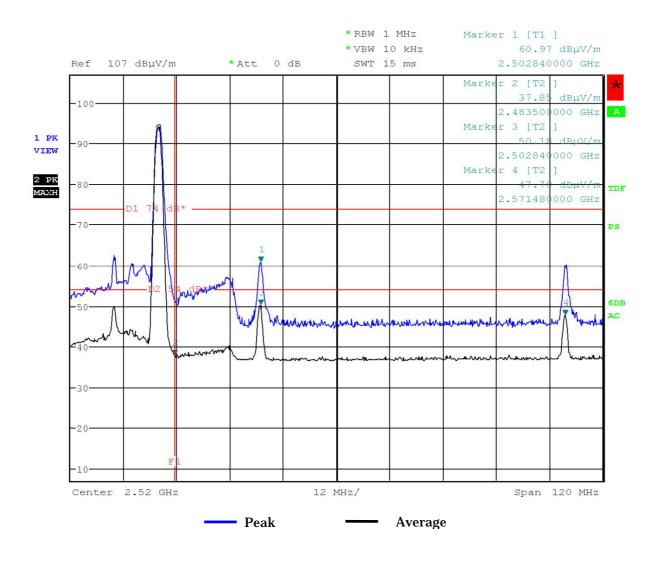
<u>Test Date: May 24, 2017</u> <u>Temp.: 24 °C, Humi: 66 %</u>


Mode of EUT : 0ch: 2402 MHz Antenna Polarization : Horizontal

Page 30 of 41

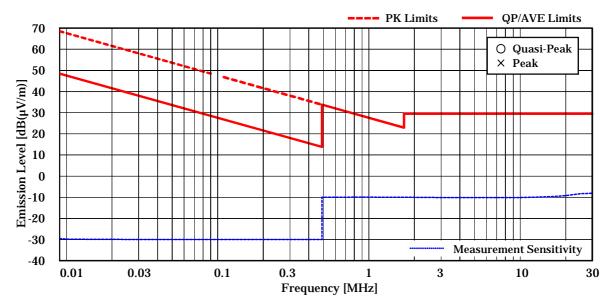

Mode of EUT : 0ch: 2402 MHz Antenna Polarization : Vertical

Page 31 of 41


Mode of EUT : 39ch: 2480 MHz Antenna Polarization : Horizontal

Page 32 of 41

Mode of EUT : 39ch: 2480 MHz Antenna Polarization : Vertical



Page 33 of 41

7.9.4.2 Other Spurious Emission (9kHz – 30MHz)

<u>Test Date: May 26, 2017</u> <u>Temp.: 23 °C, Humi: 62 %</u>

Mode of EUT : All modes have been investigated and the worst case mode has been listed. Results : No spurious emissions in the range 20dB below the limit.

NOTES

1. Test Distance : 3 m (Specified Distance D [m] = 300 m (9 kHz - 490 kHz) / 30 m (490 kHz - 30 MHz))

2. The spectrum was checked from 9 kHz to 30 MHz.

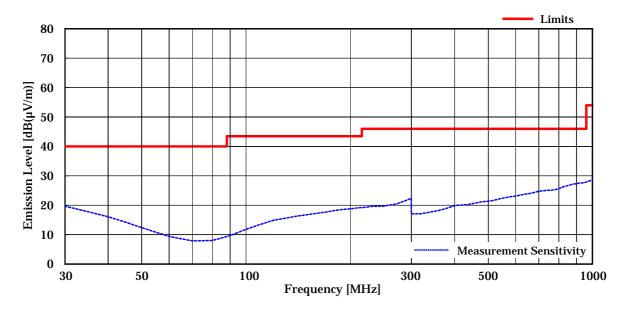
- 3. The distance conversion factor (40dB/decade) is applied for the test result calculation.
- 4. PK : Peak Detector / QP : Quasi-Peak Detector / AVE : Average Detector

5. Test receiver setting(s) :

PK/AVE 200 Hz (9 kHz - 90 kHz, 110 kHz - 150 kHz) / PK/AVE 9 kHz (150 kHz - 490 kHz)

CISPR QP 200 Hz (90 kHz - 110 kHz) / CISPR QP 9 kHz (490 kHz - 30 MHz)

6. Since the average limit is met when using a peak detector , the results are deemed to meet both limits.



Page 34 of 41

7.9.4.3 Other Spurious Emission (30MHz – 1000MHz)

<u>Test Date: May 26, 2017</u> <u>Temp.: 23 °C, Humi: 62 %</u>

Mode of EUT : All modes have been investigated and the worst case mode has been listed. Results : No spurious emissions in the range 20dB below the limit.

NOTES

- 1. Test Distance : 3 m
- 2. The spectrum was checked from 30 MHz to 1000 MHz.
- 3. The correction factor is composed of cable loss, pad attenuation and/or amplifier gain.
- 4. The symbol of "<" means "or less".
- 5. The symbol of ">" means "more than".
- 6. Test receiver setting(s) : CISPR QP 120 kHz [QP : Quasi-Peak]

Page 35 of 41

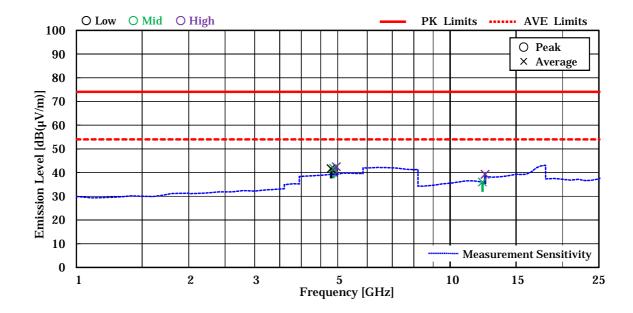
_

7.9.4.4 Other Spurious Emission (above 1 GHz)

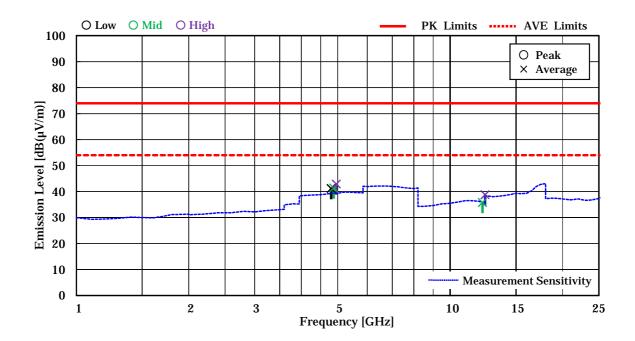
Test Da	ate: N	May 24	4, 201	7
Temp.: 2	4 °C,	Hum	i: 66 🤉	%

Frequency	Antenna Factor	Corr. Factor		Meter Read izontal		V)] rtical		nits V/m)]		sults ıV/m)]	Margin [dB]	Remarks
[MHz]	[dB(1/m)]	[dB]	РК	AVE	РК	AVE	РК	AVE	РК	AVE		
Test conditi	on:Tx Low	Ch										
4804.0	27.1	-15.8	< 40.0	30.4	< 40.0	29.9	74.0	54.0	< 51.3	41.7	+12.3	-
12010.0	33.5	-25.3	< 40.0	< 28.0	< 40.0	< 28.0	74.0	54.0	< 48.2	< 36.2	> +17.8	-
19216.0	40.5	-43.1	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.4	< 37.4	> +16.6	-
Test conditie	on : TX Mid	dle Ch										
4880.0	27.0	-15.8	< 40.0	30.6	< 40.0	30.2	74.0	54.0	< 51.2	41.8	+12.2	-
7320.0	29.9	-16.3	< 40.0	< 28.0	< 40.0	< 28.0	74.0	54.0	< 53.6	< 41.6	> +12.4	-
12200.0	33.3	-25.8	< 40.0	28.5	< 40.0	28.3	74.0	54.0	< 47.5	36.0	+18.0	-
19520.0	40.4	-43.0	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.4	< 37.4	> +16.6	-
Test conditi	on : TX Higl	n Ch										
4960.0	27.0	-15.7	< 40.0	31.2	< 40.0	31.6	74.0	54.0	< 51.3	42.9	+11.1	-
7440.0	29.8	-16.3	< 40.0	< 28.0	< 40.0	< 28.0	74.0	54.0	< 53.5	< 41.5	> +12.5	-
12400.0	33.3	-26.1	< 40.0	32.1	< 40.0	31.6	74.0	54.0	< 47.2	39.3	+14.7	-

Calculated result at 4960.0 M	Hz, a	as the v	worst point shown on underline:
Antenna Factor	=	27.0	dB(1/m)
Corr. Factor	=	-15.7	dB
+) Meter Reading	=	31.6	dB(µV)
Result	=	42.9	dB(µV/m)
Minimum Margin: 54.0 - 42.9	= 11	.1 (dB)	


NOTES

- 1. Test Distance : 3 m
- 2. The spectrum was checked from 1 GHz to 25 GHz (10th harmonic of the highest fundamental frequency).
- 3. The correction factor is shown as follows:
- Corr. Factor [dB] = Cable Loss + 20dB Pad Att. Pre-Amp. Gain [dB] (1.0 8.2 GHz)
 - Corr. Factor [dB] = Cable Loss + 10dB Pad Att. Pre-Amp. Gain [dB] (8.2 18.0 GHz)
- Corr. Factor [dB] = Cable Loss Pre-Amp. Gain [dB] (over 18 GHz)
- 4. The symbol of "<" means "or less".
- 5. The symbol of ">" means "more than".
- 6. PK : Peak / AVE : Average



Page 36 of 41

Antenna Pole : Horizontal

Antenna Pole : Vertical

