FCC Test Report

Product Name	Digital Camera
Model No	COOLPIX S6600
FCC ID.	CGJ1150EB

Applicant	NIKON CORPORATION
Address	6-3, Nishiohi 1-chome, Shinagawa-ku, Tokyo 140-8601, Japan

Date of Receipt	Jul. 01, 2013
Issue Date	Jul. 10, 2013
Report No.	135300R-RFUSP42V01
Report Version	V1.0

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation.

Test Report Certification

Issue Date: Jul. 10, 2013 Report No.: 135300R-RFUSP42V01

Product Name	Digital Camera
Applicant	NIKON CORPORATION
Address	6-3, Nishiohi 1-chome, Shinagawa-ku, Tokyo 140-8601, Japan
Manufacturer	NIKON CORPORATION
Model No.	COOLPIX S6600
FCC ID.	CGJ1150EB
EUT Rated Voltage	DC 3.7V (Power by Battery)
EUT Test Voltage	AC 120V/60Hz
Trade Name	Nikon
Applicable Standard	FCC CFR Title 47 Part 15 Subpart C: 2012
	ANSI C63.4: 2003, ANSI C63.10: 2009, KDB 558074
Test Result	Complied

The test results relate only to the samples tested.

:

:

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation.

Documented By :

Leven Huang

(Senior Adm. Specialist / Leven Huang)

Tested By

plan Chen

(Engineer / Alan Chen)

Approved By

(Manager / Vincent Lin)

TABLE OF CONTENTS

Description		Page
1.	GENERAL INFORMATION	5
1.1.	EUT Description	
12	Operational Description	7
13	Tested System Details	8
1.5.	Configuration of Tested System	Q
1.4.	FUT Exercise Software	10
1.5.	Tost Fagility	10
1.0.	Conducted Emission	
2.	Conducted Emission	12
2.1.	Test Equipment	
2.2.	Test Setup	
2.3.	Limits	
2.4.	Test Procedure	
2.5.	Uncertainty	
2.6.	Test Result of Conducted Emission	
3.	Peak Power Output	20
3.1.	Test Equipment	20
3.2.	Test Setup	
3.3.	Limits	
3.4.	Test Procedure	
3.5.	Uncertainty	
3.6.	Test Result of Peak Power Output	
4.	Radiated Emission	
4.1.	Test Equipment	24
4.2.	Test Setup	
4.3.	Limits	
4.4.	Test Procedure	
4.5.	Uncertainty	
4.6.	Test Result of Radiated Emission	
5.	RF antenna conducted test	
5.1.	Test Equipment	
5.2.	Test Setup	
5.3.	Limits	
5.4.	Test Procedure	
5.5.	Uncertainty	
5.6.	Test Result of RF antenna conducted test	
6.	Band Edge	80
6.1.	Test Equipment	
6.2.	Test Setup	
6.3.	Limits	
6.4.	Test Procedure	
6.5	Uncertainty	
6.6	Test Result of Band Edge	
5.0.	Lost Rebuit of Dully Dugo minimum minimum	

7.	Occupied Bandwidth	94
7.1.	Test Equipment	94
7.2.	Test Setup	94
7.3.	Limits	
7.4.	Test Procedure	
7.5.	Uncertainty	
7.6.	Test Result of Occupied Bandwidth	95
8.	Power Density	
8.1.	Test Equipment	
8.2.	Test Setup	
8.3.	Limits	
8.4.	Test Procedure	
8.5.	Uncertainty	
8.6.	Test Result of Power Density	
9.	EMI Reduction Method During Compliance Testing	

- Attachment 1: EUT Test Photographs
- Attachment 2: EUT Detailed Photographs

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	Digital Camera		
Trade Name	Nikon		
Model No.	COOLPIX S6600		
FCC ID.	CGJ1150EB		
Frequency Range	2412-2462MHz for 802.11b/g/n-20BW		
Number of Channels	802.11b/g/n-20MHz: 11		
Data Speed	802.11b: 1-11Mbps, 802.11g: 6-54Mbps, 802.11n: up to 72.2Mbps		
Type of Modulation	802.11b:DSSS (DBPSK, DQPSK, CCK)		
	802.11g/n:OFDM (BPSK, QPSK, 16QAM, 64QAM)		
Antenna Type	PIFA Antenna		
Antenna Gain	Refer to the table "Antenna List"		
Channel Control	Auto		
USB Cable (M/N: UC-E6)	Shielded, 1.5m, with one ferrite core bonded.		
Charger (1)	MFR: Nikon, M/N: EH-70P		
	Input: AC 100-240V, 50/60Hz, 0.07A-0.044A, 7VA-10.56VA		
	Output: DC 5V, 0.55A		
Charger (2)	MFR: Nikon, M/N: EH-70PCH		
	Input: AC 100-240V, 50/60Hz, 0.07A-0.044A		
	Output: DC 5V, 0.55A		
Contain Module	CyberTAN / WC121		

Antenna List

No.	Manufacturer	Model No.	Antenna Type	Peak Gain
1	Foxlink	789B-F178-1070	PIFA Antenna	-2.3 dBi for 2.4 GHz

Note: The antenna of EUT is conform to FCC 15.203.

802.11b/g/n-20MHz Center Frequency of Each Channel:

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 01:	2412 MHz	Channel 02:	2417 MHz	Channel 03:	2422 MHz	Channel 04:	2427 MHz
Channel 05:	2432 MHz	Channel 06:	2437 MHz	Channel 07:	2442 MHz	Channel 08:	2447 MHz
Channel 09:	2452 MHz	Channel 10:	2457 MHz	Channel 11:	2462 MHz		

- 1. The EUT is a Digital Camera with a built-in 2.4GHz WLAN transceiver.
- 2. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test.
- 3. Lowest and highest data rates are tested in each mode. Only worst case is shown in the report. (802.11b is 1Mbps 802.11g is 6Mbps 802.11n(20M-BW) is 7.2Mbps .
- 4. These tests are conducted on a sample for the purpose of demonstrating compliance of 802.11b/g/n transmitter with Part 15 Subpart C Paragraph 15.247 of spread spectrum devices.
- 5. The radiation measurements are performed in X, Y, Z axis positioning. Only the worst case is shown in the report.

Test Mode:	Mode 1: Transmit (802.11b 1Mbps)			
	Mode 2: Transmit (802.11g 6Mbps)			
	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)			
Mode 4: Charger Mode with EH-70P				
	Mode 5: Charger Mode with EH-70PCH			

1.3. Tested System Details

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

Mod	Mode 1: Transmit (802.11b 1Mbps)							
Mode 2: Transmit (802.11g 6Mbps)								
Mod	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)							
	Product Manufacturer Model No. Serial No. Power Cord							
1	Monitor	DELL	ST2320I	N/A	Non-Shielded, 1.8m			
2	Notebook PC	DELL	PPT	N/A	Non-Shielded, 0.8m			

Mode 4: Charger Mode with EH-70P							
Mod	Mode 5: Charger Mode with EH-70PCH						
	Product	Manufacturer	Model No.	Serial No.	Power Cord		
1	Monitor	DELL	ST2320I	N/A	Non-Shielded, 1.8m		

Mode	Aode 1: Transmit (802.11b 1Mbps)					
Mode	ode 2: Transmit (802.11g 6Mbps)					
Mode	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)					
Mode	Mode 4: Charger Mode with EH-70P					
Mode	e 5: Charger Mode with EH-70PCH					
Signa	Signal Cable Type Signal cable Description					
А	HDMI Cable	Shielded, 1.8m				
В	USB Cable (M/N: UC-E6)	Shielded, 1.5m, with one ferrite core bonded.				

1.4. Configuration of Tested System

- Mode 1: Transmit (802.11b 1Mbps)
- Mode 2: Transmit (802.11g 6Mbps)

Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)

Mode 4: Charger Mode with EH-70P Mode 5: Charger Mode with EH-70PCH

1.5. EUT Exercise Software

- (1) Setup the EUT as shown in Section 1.4
- (2) Execute program "Chiptest v.6.0.0.6" on the Notebook PC.
- (3) Configure the test mode, the test channel, and the data rate.
- (4) Press "OK" to start the continuous Transmit.
- (5) Verify that the EUT works properly.

1.6. Test Facility

Ambient conditions in the laboratory:

Items	Required (IEC 68-1)	Actual
Temperature (°C)	15-35	20-35
Humidity (%RH)	25-75	50-65
Barometric pressure (mbar)	860-1060	950-1000

The related certificate for our laboratories about the test site and management system can be downloaded from

QuieTek Corporation's Web Site: <u>http://www.quietek.com/tw/ctg/cts/accreditations.htm</u> The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site: <u>http://www.quietek.com/</u>

Site Description:	File on
	Federal Communications Commission
	FCC Engineering Laboratory
	7435 Oakland Mills Road
	Columbia, MD 21046
	Registration Number: 92195

Site Name:	Quietek Corporation
Site Address:	No.5-22, Ruishukeng,
	Linkou Dist. New Taipei City 24451,
	Taiwan, R.O.C.
	TEL: 886-2-8601-3788 / FAX : 886-2-8601-3789
	E-Mail : <u>service@quietek.com</u>

FCC Accreditation Number: TW1014

2. Conducted Emission

2.1. Test Equipment

	Equipment	Manufacturer	Model No. / Serial No.	Last Cal.	Remark
X	Test Receiver	R & S	ESCS 30 / 825442/018	Sep., 2012	
Х	Artificial Mains Network	R & S	ENV4200 / 848411/10	Feb., 2013	Peripherals
Х	LISN	R & S	ESH3-Z5 / 825562/002	Feb., 2013	EUT
	DC LISN	Schwarzbeck	8226 / 176	Mar, 2013	EUT
Х	Pulse Limiter	R & S	ESH3-Z2 / 357.8810.52	Feb., 2013	
	No.1 Shielded Room				

Note:

- 1. All equipments are calibrated every one year.
- 2. The test instruments marked by "X" are used to measure the final test results.

2.2. Test Setup

2.3. Limits

FCC Part 15 Subpart C Paragraph 15.207 (dBuV) Limit						
Frequency	Limits					
MHz	QP	AVG				
0.15 - 0.50	66-56	56-46				
0.50-5.0	56	46				
5.0 - 30	60	50				

2.4. Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs.)

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement.

Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

2.5. Uncertainty

± 2.26 dB

2.6. Test Result of Conducted Emission

Product	:	Digital Camera
Test Item	:	Conducted Emission Test
Power Line	:	Line 1
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2437MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV	dB	dBuV
Line 1					
Quasi-Peak					
0.244	9.790	26.370	36.160	-27.154	63.314
0.279	9.790	31.440	41.230	-21.084	62.314
0.298	9.790	30.110	39.900	-21.871	61.771
0.564	9.790	22.660	32.450	-23.550	56.000
0.861	9.790	19.550	29.340	-26.660	56.000
1.142	9.790	15.110	24.900	-31.100	56.000
Average					
0.244	9.790	21.840	31.630	-21.684	53.314
0.279	9.790	31.430	41.220	-11.094	52.314
0.298	9.790	29.990	39.780	-11.991	51.771
0.564	9.790	16.820	26.610	-19.390	46.000
0.861	9.790	17.060	26.850	-19.150	46.000
1.142	9.790	12.520	22.310	-23.690	46.000

Note:

1. All Reading Levels are Quasi-Peak and average value.

2. "means the worst emission level.

3. Measurement Level = Reading Level + Correct Factor

Product	: Digital Camera						
Test Item	: Conducted Emission Test						
Power Line	: Line 2						
Test Mode	: Mode 3: T	ransmit (802.11	n MCS0 7.2Mbps 20	M-BW) (2437MH	Iz)		
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV	dB	dBuV		
Line 2							
Quasi-Peak							
0.220	9.770	22.530	32.300	-31.700	64.000		
0.283	9.770	34.520	44.290	-17.910	62.200		
0.298	9.770	30.770	40.540	-21.231	61.771		
0.560	9.770	23.080	32.850	-23.150	56.000		
0.857	9.780	21.230	31.010	-24.990	56.000		
2.005	9.790	12.780	22.570	-33.430	56.000		
Average							
0.220	9.770	18.440	28.210	-25.790	54.000		
0.283	9.770	31.690	41.460	-10.740	52.200		
0.298	9.770	28.110	37.880	-13.891	51.771		
0.560	9.770	21.180	30.950	-15.050	46.000		
0.857	9.780	15.190	24.970	-21.030	46.000		
2.005	9.790	6.490	16.280	-29.720	46.000		

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	: Digital Camera							
Test Item	: Conducted Emission Test							
Power Line	: Line 1							
Test Mode	: Mode 4:	Charger Mode w	ith EH-70P					
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV	dB	dBuV			
Line 1								
Quasi-Peak								
0.181	9.790	31.940	41.730	-23.384	65.114			
0.396	9.790	37.900	47.690	-11.281	58.971			
0.865	9.790	25.730	35.520	-20.480	56.000			
1.584	9.800	24.480	34.280	-21.720	56.000			
2.279	9.810	23.340	33.150	-22.850	56.000			
14.595	10.075	26.340	36.415	-23.585	60.000			
Average								
0.181	9.790	19.220	29.010	-26.104	55.114			
0.396	9.790	31.230	41.020	-7.951	48.971			
0.865	9.790	20.790	30.580	-15.420	46.000			
1.584	9.800	17.070	26.870	-19.130	46.000			
2.279	9.810	17.600	27.410	-18.590	46.000			
14.595	10.075	21.860	31.935	-18.065	50.000			

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product Test Item Power Line	 Digital Camera Conducted Emission Test Line 2 						
Test Mode	: Mode 4: Ch	arger Mode with	n EH-70P				
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV	dB	dBuV		
Line 2							
Quasi-Peak							
0.205	9.770	29.210	38.980	-25.449	64.429		
0.396	9.770	35.430	45.200	-13.771	58.971		
0.556	9.770	25.040	34.810	-21.190	56.000		
1.318	9.780	22.900	32.680	-23.320	56.000		
2.826	9.800	21.720	31.520	-24.480	56.000		
14.189	10.118	25.700	35.818	-24.182	60.000		
Average							
0.205	9.770	15.810	25.580	-28.849	54.429		
0.396	9.770	27.880	37.650	-11.321	48.971		
0.556	9.770	17.370	27.140	-18.860	46.000		
1.318	9.780	14.780	24.560	-21.440	46.000		
2.826	9.800	12.740	22.540	-23.460	46.000		
14.189	10.118	19.740	29.858	-20.142	50.000		

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	: Digital Camera						
Test Item	: Conducted Emission Test						
Power Line	Power Line : Line 1						
Test Mode	: Mode 5:	Charger Mode w	ith EH-70PCH				
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV	dB	dBuV		
Line 1							
Quasi-Peak							
0.181	9.790	30.300	40.090	-25.024	65.114		
0.298	9.790	32.700	42.490	-19.281	61.771		
0.689	9.790	27.960	37.750	-18.250	56.000		
1.791	9.810	29.080	38.890	-17.110	56.000		
3.212	9.820	26.080	35.900	-20.100	56.000		
7.427	9.899	28.680	38.579	-21.421	60.000		
Average							
0.181	9.790	20.790	30.580	-24.534	55.114		
0.298	9.790	27.710	37.500	-14.271	51.771		
0.689	9.790	21.310	31.100	-14.900	46.000		
1.791	9.810	22.420	32.230	-13.770	46.000		
3.212	9.820	17.330	27.150	-18.850	46.000		
7.427	9.899	22.650	32.549	-17.451	50.000		

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	: Digital Camera							
Test Item	: Conducted Emission Test							
Power Line	: Line 2							
Test Mode	: Mode 5: 0	Charger Mode w	ith EH-70PCH					
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV	dB	dBuV			
Line 2								
Quasi-Peak								
0.185	9.770	29.860	39.630	-25.370	65.000			
0.295	9.770	31.180	40.950	-20.907	61.857			
0.720	9.777	23.540	33.317	-22.683	56.000			
1.791	9.790	25.670	35.460	-20.540	56.000			
4.259	9.810	23.490	33.300	-22.700	56.000			
7.119	9.892	25.350	35.242	-24.758	60.000			
Average								
0.185	9.770	18.870	28.640	-26.360	55.000			
0.295	9.770	25.410	35.180	-16.677	51.857			
0.720	9.777	15.760	25.537	-20.463	46.000			
1.791	9.790	18.550	28.340	-17.660	46.000			
4.259	9.810	16.210	26.020	-19.980	46.000			
7.119	9.892	19.700	29.592	-20.408	50.000			

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

QuieTek

3. Peak Power Output

3.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Х	Power Meter	Anritsu	ML2495A/6K00003357	May, 2013
Х	Power Sensor	Anritsu	MA2411B/0738448	Jun, 2013
Motor				

Note:

1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.

3.2. Test Setup

3.3. Limits

The maximum peak power shall be less 1 Watt.

3.4. Test Procedure

The EUT was tested according to DTS test procedure of KDB 558074 for compliance to FCC 47CFR 15.247 requirements. The maximum peak conducted output power using KDB 558074 section 9.1.3 PKPM1 Peak power meter method.

3.5. Uncertainty

 \pm 1.27 dB

3.6. Test Result of Peak Power Output

Product	:	Digital Camera
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

Channel No.	Frequency	For d	Average ifferent Da	e Power ata Rate (N	(lbps)	Peak Power	Required	Pogult
Channel No	(MHz)	1	2	5.5	11	1	Limit	Kesult
			Measur					
01	2412	14.41				17.36	<30dBm	Pass
06	2437	14.02	13.98	13.97	13.95	16.93	<30dBm	Pass
11	2462	13.81				16.74	<30dBm	Pass

Note: Peak Power Output Value =Reading value on power meter + cable loss

	Digital Camera
	Peak Power Output Data
	No.3 OATS
:	Mode 2: Transmit (802.11g 6Mbps)

			Average Power									
	Frequency		F	For diffe	erent Da	ata Rate	e (Mbps	s)	-	Power	Required	
Channel No	(MHz)	6	9	12	18	24	36	48	54	6	Limit	Result
			Measurement Level (dBm)									
01	2412	14.02								22.89	<30dBm	Pass
06	2437	13.81	13.79	13.78	13.75	13.71	13.69	16.62	13.65	22.29	<30dBm	Pass
11	2462	13.45								22.19	<30dBm	Pass

Note: Peak Power Output Value =Reading value on power meter + cable loss

Product	:	Digital Camera
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)

			Average Power									
	Fraguanay		F	for diffe	erent Da	ata Rate	e (Mbps	5)		Power	Doquirad	
Channel No	(MHz)	7.2	14.4	21.7	28.9	43.3	57.8	65	72.2	7.2	Limit	Result
			Measurement Level (dBm)									
01	2412	11.81								22.07	<30dBm	Pass
06	2437	11.52	11.49	11.47	11.45	11.44	11.32	11.15	10.98	21.89	<30dBm	Pass
11	2462	11.51								21.44	<30dBm	Pass

Note: Peak Power Output Value =Reading value on power meter + cable loss

4. Radiated Emission

4.1. Test Equipment

The following test equipment are used during the radiated emission test:

Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Site # 3	Х	Loop Antenna	Teseq	HLA6120 / 26739	Jul., 2013
	Х	Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2012
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2012
	Х	Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2013
	Х	Pre-Amplifier	Agilent	8447D/2944A09549	Sep., 2012
	Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2013
	Х	Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2012
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2013
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	Χ	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.

4.2. Test Setup

Radiated Emission Below 1GHz

Radiated Emission Above 1GHz

4.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209(a) Limits									
Frequency MHz	Field strength	Measurement distance							
	(microvolts/meter)	(meter)							
0.009-0.490	2400/F(kHz)	300							
0.490-1.705	24000/F(kHz)	30							
1.705-30	30	30							
30-88	100	3							
88-216	150	3							
216-960	200	3							
Above 960	500	3							

Remarks: E field strength $(dBuV/m) = 20 \log E$ field strength (uV/m)

4.4. Test Procedure

The EUT was setup according to ANSI C63.10: 2009 and tested according to DTS test procedure of KDB 558074 for compliance to FCC 47CFR 15.247 requirements.

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10: 2009 on radiated measurement.

The resolution bandwidth below 30MHz setting on the field strength meter is 9kHz and 30MHz~1GHz is 120kHz and above 1GHz is 1MHz.

Radiated emission measurements below 30MHz are made using Loop Antenna and 30MHz~1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas. The measurement is divided into the Preliminary Measurement and the Final Measurement. The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna. The worst radiated emission is measured in the Open Area Test Site on the Final Measurement.

The frequency range from 9kHz to 10th harminics is checked.

4.5. Uncertainty

- ± 3.9 dB above 1GHz
- ± 3.8 dB below 1GHz

4.6. Test Result of Radiated Emission

Product	:	Digital Camera
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2412MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
3618.000	0.075	43.500	43.575	-30.425	74.000
4824.000	3.261	40.000	43.261	-30.739	74.000
7236.000	10.650	37.240	47.890	-26.110	74.000
9648.000	13.337	36.750	50.086	-23.914	74.000
Average Detector:					
Vertical					
Peak Detector:					
3618.000	0.748	43.460	44.208	-29.792	74.000
4824.000	6.421	42.420	48.841	-25.159	74.000
7236.000	11.495	37.000	48.495	-25.505	74.000
9648.000	13.807	36.430	50.236	-23.764	74.000
Average Detector:					

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Limit
Limit
Limit
Limit
Limit
dBuV/m
74.000
74.000
74.000
74.000
74.000
74.000

Average Detector:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Digital C	Camera					
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 1: Transmit (802.11b 1Mbps) (2462 MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
3693.000	-0.629	43.110	42.481	-31.519	74.000		
4924.000	2.858	39.610	42.467	-31.533	74.000		
7386.000	12.127	35.910	48.038	-25.962	74.000		
9848.000	12.852	37.170	50.023	-23.977	74.000		
Average Detector:							
Vertical							
Peak Detector:							
3693.000	0.520	42.150	42.670	-31.330	74.000		
4924.000	5.521	43.580	49.100	-24.900	74.000		
7386.000	13.254	36.220	49.474	-24.526	74.000		
9848.000	13.367	37.190	50.557	-23.443	74.000		
Average Detector:							

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Digital C	Camera						
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	: Mode 2:	: Mode 2: Transmit (802.11g 6Mbps) (2412MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
3618.000	0.748	43.710	44.458	-29.542	74.000			
4824.000	6.421	40.230	46.651	-27.349	74.000			
7236.000	11.495	37.120	48.615	-25.385	74.000			
9648.000	13.807	37.290	51.096	-22.904	74.000			
Average Detector:								
Vertical								
Peak Detector:								
3618.000	0.748	43.280	44.028	-29.972	74.000			
4824.000	6.421	39.910	46.331	-27.669	74.000			
7236.000	11.495	36.980	48.475	-25.525	74.000			
9648.000	13.807	37.310	51.116	-22.884	74.000			
Average Detector:								

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Digital (Camera						
Test Item	: Harmonic Radiated Emission Data							
Test Site	Test Site : No.3 OATS							
Test Mode	: Mode 2:	Transmit (802.11	lg 6Mbps) (2437 MH	z)				
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
4874.000	3.038	37.330	40.367	-33.633	74.000			
7311.000	11.795	36.560	48.354	-25.646	74.000			
9748.000	12.635	37.180	49.815	-24.185	74.000			
Average Detector:								
Peak Detector:								
4874.000	5.812	38.990	44.801	-29.199	74.000			
7311.000	12.630	36.250	48.879	-25.121	74.000			
9748.000	13.126	37.210	50.336	-23.664	74.000			

Average Detector:

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Digital (Camera						
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	: Mode 2: Transmit (802.11g 6Mbps) (2462 MHz)							
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
3693.000	-0.629	43.110	42.481	-31.519	74.000			
4924.000	2.858	37.740	40.597	-33.403	74.000			
7386.000	12.127	36.150	48.278	-25.722	74.000			
9848.000	12.852	37.090	49.943	-24.057	74.000			
Average Detector:								
Vertical								
Peak Detector:								
3693.000	0.520	42.130	42.650	-31.350	74.000			
4924.000	5.521	39.820	45.340	-28.660	74.000			
7386.000	13.254	36.050	49.304	-24.696	74.000			
9848.000	13.367	37.760	51.127	-22.873	74.000			
Average Detector:								

_

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Digital Camera						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)(2412MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
3618.000	0.075	43.610	43.685	-30.315	74.000		
4824.000	3.261	37.370	40.631	-33.369	74.000		
7236.000	10.650	37.280	47.930	-26.070	74.000		
9648.000	13.337	37.010	50.346	-23.654	74.000		
Average Detector:							
Vertical							
Peak Detector:							
3618.000	0.748	43.110	43.858	-30.142	74.000		
4824.000	6.421	40.210	46.631	-27.369	74.000		
7236.000	11.495	37.580	49.075	-24.925	74.000		
9648.000	13.807	36.680	50.486	-23.514	74.000		
Average Detector:							

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Digital Camera
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2437 MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4874.000	3.038	37.230	40.267	-33.733	74.000
7311.000	11.795	36.350	48.144	-25.856	74.000
9748.000	12.635	37.770	50.405	-23.595	74.000
Average Detector:					
Vertical					
Peak Detector:					
4874.000	5.812	37.840	43.651	-30.349	74.000
7311.000	12.630	36.340	48.969	-25.031	74.000
9748.000	13.126	37.380	50.506	-23.494	74.000

Average Detector:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

V) (2462 MHz)
,

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
3693.000	-0.629	42.740	42.111	-31.889	74.000
4924.000	2.858	37.790	40.647	-33.353	74.000
7386.000	12.127	36.010	48.138	-25.862	74.000
9848.000	12.852	37.060	49.913	-24.087	74.000
Average Detector:					
Vertical					
Peak Detector:					
3693.000	0.520	41.780	42.300	-31.700	74.000
4924.000	5.521	38.450	43.970	-30.030	74.000
7386.000	13.254	35.750	49.004	-24.996	74.000
9848.000	13.367	37.400	50.767	-23.233	74.000
Average Detector:					

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Digital Camera							
Test Item	: General Radiated Emission Data							
Test Site	: No.3 OA	ATS						
Test Mode	: Mode 1	: Transmit (802.11	b 1Mbps)(2437 MHz	z)				
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
97.900	-7.650	24.725	17.074	-26.426	43.500			
268.620	-4.942	24.930	19.988	-26.012	46.000			
447.100	-2.726	30.038	27.312	-18.688	46.000			
542.160	3.011	27.341	30.352	-15.648	46.000			
699.300	2.875	35.388	38.263	-7.737	46.000			
934.040	6.612	24.875	31.487	-14.513	46.000			
Vertical								
103.720	-0.151	23.558	23.406	-20.094	43.500			
256.980	-7.573	26.765	19.192	-26.808	46.000			
346.220	-3.093	28.050	24.957	-21.043	46.000			
542.160	-0.269	28.859	28.590	-17.410	46.000			
755.560	3.281	23.282	26.563	-19.437	46.000			
968.960	8.191	22.658	30.849	-23.151	54.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.
| Product | : Digital Camera
: General Radiated Emission Data | | | | | | | | | |
|------------|--|------------------------|-----------------------|---------|--------|--|--|--|--|--|
| Test Item | : General F | Radiated Emissio | on Data | | | | | | | |
| Test Mode | · Mode 2· ' | 15
Transmit (802-11 | g 6Mbps)(2437 MHz | y) | | | | | | |
| Test Widde | . Widde 2. | 11anishint (002.11 | g 01010p3)(2+37 10112 | .) | | | | | | |
| Frequency | Correct | Reading | Measurement | Margin | Limit | | | | | |
| | Factor | Level | Level | | | | | | | |
| MHz | dB | dBuV | dBuV/m | dB | dBuV/m | | | | | |
| Horizontal | | | | | | | | | | |
| 105.660 | -6.673 | 23.023 | 16.350 | -27.150 | 43.500 | | | | | |
| 348.160 | -2.268 | 26.104 | 23.836 | -22.164 | 46.000 | | | | | |
| 542.160 | 3.011 | 29.312 | 32.323 | -13.677 | 46.000 | | | | | |
| 697.360 | 3.171 | 27.498 | 30.669 | -15.331 | 46.000 | | | | | |
| 840.920 | 5.191 | 25.422 | 30.613 | -15.387 | 46.000 | | | | | |
| 939.860 | 6.400 | 23.263 | 29.663 | -16.337 | 46.000 | | | | | |
| | | | | | | | | | | |
| Vertical | | | | | | | | | | |
| 111.480 | -0.954 | 23.813 | 22.859 | -20.641 | 43.500 | | | | | |
| 348.160 | -3.458 | 28.034 | 24.576 | -21.424 | 46.000 | | | | | |
| 547.980 | -2.088 | 28.364 | 26.276 | -19.724 | 46.000 | | | | | |
| 687.660 | 2.444 | 22.866 | 25.310 | -20.690 | 46.000 | | | | | |
| 827.340 | 3.162 | 23.709 | 26.871 | -19.129 | 46.000 | | | | | |
| 968.960 | 8.191 | 22.309 | 30.500 | -23.500 | 54.000 | | | | | |
| | | | | | | | | | | |

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product	: Digital Camera							
Test Item	: General	Radiated Emissio	on Data					
Test Site	: No.3 OA	TS						
Test Mode	: Mode 3:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)(2437 MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
256.980	-5.073	24.291	19.218	-26.782	46.000			
443.220	-2.738	30.584	27.846	-18.154	46.000			
542.160	3.011	29.514	32.525	-13.475	46.000			
695.420	3.438	24.796	28.234	-17.766	46.000			
879.720	6.115	22.466	28.581	-17.419	46.000			
968.960	6.981	23.285	30.266	-23.734	54.000			
Vertical								
111.480	-0.954	23.527	22.573	-20.927	43.500			
346.220	-3.093	30.901	27.808	-18.192	46.000			
524.700	-0.379	24.573	24.194	-21.806	46.000			
639.160	-3.538	28.586	25.048	-20.952	46.000			
784.660	3.012	23.259	26.271	-19.729	46.000			
968.960	8.191	24.050	32.241	-21.759	54.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product	: Digital Camera								
Test Item	: General	Radiated Emissio	on Data						
Test Site	: No.3 OA	ATS							
Test Mode	: Mode 4: Charger Mode with EH-70P								
Frequency	Correct	Reading	Measurement	Margin	Limit				
	Factor	Level	Level						
MHz	dB	dBuV	dBuV/m	dB	dBuV/m				
Horizontal									
142.520	-7.627	35.383	27.756	-15.744	43.500				
381.140	1.386	30.177	31.563	-14.437	46.000				
532.460	3.099	29.924	33.023	-12.977	46.000				
641.100	1.005	32.928	33.933	-12.067	46.000				
802.120	6.356	28.723	35.079	-10.921	46.000				
914.640	6.410	25.598	32.008	-13.992	46.000				
Vertical									
156.100	-5.217	32.202	26.985	-16.515	43.500				
299.660	-4.061	36.373	32.312	-13.688	46.000				
458.740	-2.562	35.229	32.667	-13.333	46.000				
598.420	1.114	34.956	36.070	-9.930	46.000				
741.980	-0.358	35.208	34.850	-11.150	46.000				
934.040	2.986	30.071	33.057	-12.943	46.000				

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product	: Digital Camera								
Test Item	: Genera	l Radiated Emissio	n Data						
Test Site	: No.3 O	ATS							
Test Mode	: Mode 5	: Charger Mode w							
Frequency	Correct	Reading	Measurement	Margin	Limit				
	Factor	Level	Level						
MHz	dB	dBuV	dBuV/m	dB	dBuV/m				
Horizontal									
293.840	-3.868	25.439	21.572	-24.428	46.000				
373.380	-1.163	28.831	27.668	-18.332	46.000				
501.420	0.105	23.625	23.730	-22.270	46.000				
602.300	4.287	22.984	27.271	-18.729	46.000				
792.420	5.209	22.623	27.832	-18.168	46.000				
930.160	7.187	25.387	32.574	-13.426	46.000				
Vertical									
105.660	-0.253	24.102	23.849	-19.651	43.500				
344.280	-3.171	27.580	24.410	-21.590	46.000				
540.220	0.121	22.920	23.041	-22.959	46.000				
687.660	2.444	24.042	26.486	-19.514	46.000				
825.400	3.430	22.518	25.948	-20.052	46.000				
968.960	8.191	23.212	31.403	-22.597	54.000				

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

5. **RF** antenna conducted test

5.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2013
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2013
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2013

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.

5.2. Test Setup

RF antenna Conducted Measurement:

5.3. Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

5.4. Test Procedure

The EUT was tested according to DTS test procedure of KDB558074 for compliance to FCC 47CFR 15.247 requirements.

Set RBW = 100 kHz, Set VBW> RBW, scan up through 10th harmonic.

5.5. Uncertainty

The measurement uncertainty Conducted is defined as ± 1.27 dB

5.6. Test Result of RF antenna conducted test

Product	:	Digital Camera
Test Item	:	RF antenna conducted test
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

Channel 01 (2412MHz)

Agilent Spe	ctrum Analyze	er - Swept SA								
K RL	RF	50 Ω AC		SENSE:INT	AL	IGNAUTO		Frequency		
Center	Freq 515	5.000000	MHz PNO: Fast G IFGain:Low	Trig: Free Run #Atten: 30 dB	Avg Type: L	Avg Type: Log-Pwr		requercy		
10 dB/div	Ref 20).00 dBm			Mkr1 815.433 MHz -59.58 dBm					
10,0 0,00								Center Free 515.000000 MHz		
-10.0							-14.52 dBm			
-20.0 -30.0 -40.0								Start Free 30.000000 MHz		
-50.0 -60.0 -70.0		n tay - a - a tai - i a andara a d	niuses of the group of the		ren daren Halania erren ber			Stop Fred 1.000000000 GHz		
Start 30 #Res Bl	0.0 MHz N 100 kH:	z	#VB\	N 300 kHz	Sv	S veep 93.3	top 1.0000 GHz ms (40001 pts)	CF Step 97.000000 MHz		
MKR MODE	TRC SCL	× 81	5.433 MHz	-59.58 dBm	UNCTION INFUNCT	ION WIDTH	FUNCTION VALUE	<u>Auto</u> Mar		
2 3 4 5 6								Freq Offsel 0 Hz		
7 8 9 10 11								11-1		
MSG						STATUS				

		- 11-		T			_	1	wept SA	lyzer - S	m Ana	ectrur	nt Spe	lgiler
Frequency	CE 123456	TRA	Avg Type: Log-Pwr				-	GHz	Ω AC	.0000	eq 3	Fre	ter	Cen
Auto Tur		I			lB	Trig: Free R #Atten: 30 d	t 🏳 w	PNO: Fast IFGain:Lov						
Auto Tun	1 5 GHz 07 dBm	1 2.41	Mkr						dBm	20.00	Ref	v	B/div	10 d
Center Fre				-		5	1_							.og 10.0
3.000000000 GH				-	_				-		-	_		0.00
1	-14.52 dBm					_					-		-	10.0
Start Fre				-			-				- 1			20.0
1.000000000 GH			1						1				1	-40.0
				-	-			-		_	-		-	-50.0
Stop Fre 5 00000000 GH				Callente (1997)		and a second	-				riar fi ar	Apple barrie	they is a	-60.0
	1. 60 1.	-												-70.0
CF Ste	.000 GHz 0001 pts)	Stop : 84 ms (4	Sweep 3			300 kHz	/BW	#V	¥	z KHz	GH:	.000 W 1	t 1. s Bl	star #Re
Auto Ma	ON VALUE	FUNCT	NCTION WIDTH	ICTION		¥ 4.07 dBr		11.5 GHz	×		f	E TRC	MODE	MKB
- 151.020				-		4.07 401	1	TTO OTIZ	2.4			-		2
FreqOffse					1		-						-	4
<u><u>v</u>.</u>					-							-		6
												-		8
					-									10 11
					_								_	12

		-	ALIGNAUTO		VSE:INT	SE		Ω AC	50 9	RF		RI
Frequency	E 123456 PE MWWWWW T P N N N N N	TRACE 1 2 3 4 5 6 TYPE M MM/MM/ DET P N N N N N		Avg Type: Log-Pwr		Trig: Free Run #Atten: 30 dB		00000 G	7.0000	req 7	ter Fi	en
Auto Tune	5 5 GHz 44 dBm	1 6.295	Mki				Guinteow	dBm	20.00	Ref	3/div	0 dF
Center Freq 7.00000000 GHz												og 10.0
Start Freq 5.00000000 GHz	-14.52 dBm											20.0 30.0 40.0
Stop Freq 9.000000000 GHz		and the left of the second	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -		la esta de compe	al – Hjerav Kohres					ll georgia 19	50.0 50.0 70.0
CF Step 400.000000 MHz <u>Juto</u> Man	.000 GHz 0001 pts) NVALUE	Stop 9. 84 ms (4)	Sweep 3	TION FUN	FUN	300 kHz	#VBW	×	z kHz	00 GH 100 I	t 5.00 s BW	tar Re:
Freq Offset 0 Hz					3m	-55.44 di	5 GHz	6.29		r	N 1	1 2 3 4 5 6
10												7 8 9

								I SA	zer - Swe	m Anal	spectru	lent
Frequency		11	ALIGNAUTO		EINT	SENS		AC	50 Ω	RF		RL
6 Trequency	123456	TRACE 1 2 3 4 5 6		Avg Type: Log-Pwr		Tain Fare F	z	0000 G	.0000	eq 1	er Fre	ent
	PNNNNN	DET P N			IB	#Atten: 30 c): Fast 😱 iin:Low	PN IFG:		-		
Auto Tun	5 GHz 8 dBm	12.927	Mkr1					3m	20.00 d	Ref	div	dB.
									1			g
Center Fre			-	-								0.0
11 00000000 GH											_	00
1.0000000000												
	-14.52 dBm							_				F
Start Ero												1.0 -
StartFre				-				-		_		0.0
9.00000000 GH												m
	4											
11.000	and the strangestern	and the state of the	in mark have					Contract of	100			
Stop Fre						and differently with a		pd-section	the same set of		-).0
13.00000000 GH				-		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					and all the	1.0
	1											
CF Ste	.000 GHz 0001 pts)	Stop 13 84 ms (4	Sweep 3			300 kHz	#VBW		Ηz	GHz 00 k	9.000 BW 1	art les
Auto Ma	N VALUE	FUNCTIC	UNCTION WIDTH	NCTION		Y		X		SCL	IDE TRC	B M
1.24					n	-52.98 dBr	GHz	12.927 5		f	1 1	
- AL				_	-	1. 1. No. 1. 1. 1. 1. 1.						2
Freq Offse											1	1
OH											1.00	5
												3
		-			-		1			-	-	-
		-			-						-	
)
					-						_	
											-	-

						vept SA	ılyzer - Sv	m Ana	pectrur	nt Spe	Agiler
TRACE 1 2 3 4 5 6	pe: Log-Pwr	Avg T	SENSE:INT		GHz	2 AC	50 \$	RF eq 1	r Fre	nter	Cer
DET P N N N N N			#Atten: 30 dB		PNO: Fast G	h					
16.924 8 GHz -50.70 dBm	Mkr1					dBm	20.00	Ref	iv	B/di	10 d
		-	- C -	_	<u> </u>	-	1.1.1			-	10.0
					-					-	0.00
-14.52 dBm				-				-			-10.0
											-20.0
										_	-40.0
	and a stand or strength or strength		and the second of	and doubt		Lilling and	a complete			-	-50.0
								and the state	-		-60.0
											-70.0
Stop 17.000 GHz 4 ms (40001 pts)	Sweep 38) kHz	W 3	#VBV		Hz kHz	0 G	3.00 3W 1	rt 1: s B	Star #Re
FUNCTION VALUE	UNCTION WIDTH	NCTION	Y		24 8 GHz	× 16.92		f	E TRC	MODE	MKR
											23
											4
									-		6
									-	-	8
											10
	STATIS	-		-					_	-	12
	TRACE 1 2 3 4 5 6 TYPE MWWWWW DeT P NNNNN 16.924 8 GHz -50.70 dBm -14.52 dBm -14.52 dBm Stop 17.000 GHz 4 ms (40001 pts)	ALIGNAUTO ype: Log.Pwr TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P NNNNN Mkr1 16.924 8 GHz -50.70 dBm -14.52 dBm -14.52 dBm -14.52 dBm Stop 17.000 GHz Sweep 384 ms (40001 pts) FUNETION WIDTH FUNCTION VALUE	ALIGNAUTO Avg Type: Log.Pwr Trace 1.23456 Type MWWWWW DeT P NNNN Mkr1 16.924 8 GHz -50.70 dBm -14.52 dBm -14.52 dBm -14.52 dBm Stop 17.000 GHz Sweep 384 ms (40001 pts)	SENSE:INT Aug Type: Log-Pwr TRACE 1.2.3.4.5.6 Trig: Free Run Atten: 30 dB TYPE MWWWWW DET P NNNN TRACE 1.2.3.4.5.6 Mkr1 16.924.8 GHz -50.70 dBm	SENSE:INT Aug Type: Log-Pwr TRACE 1.2.3.4.5.6 Trig: Free Run #Atten: 30 dB TYPE MWAWAWAY DET P NNNN Mkr1 16.924.8 GHz -50.70 dBm	SENSE:INT Avg Type: Log.Pwr Trace 1, 2, 3, 4, 5, 6 PNO: Fast with them: 30 dB Trig: Free Run #Atten: 30 dB Trig: Free Run #Atten: 30 dB Mkr1 16.924 8 GHz -50.70 dBm -50.70 dBm -14.52 dBm -14.52 dBm Stop 17.000 GHz Stop 17.000 GHz #VBW 300 kHz EUNCTION FoundTion World H Y FUNCTION FoundTion World H EAGHz -50.70 dBm Stop 17.000 GHz Stop 17.000 GHz Sweep 384 ms (40001 pts) Y FUNCTION FoundTion World H FUNCTION FoundTion World H FUNCTION FoundTion World H Stop 17.000 GHz Stop 17.000 GHz	Area of the service o	Igger - Swept SA 50% AC SENSE3NT AUGNAUTO 5.00000000 GHz PN0: Fast Trig: Free Run #Atten: 30 dB Avg Type: Log-Pwr TRACE 1 2 3 4 5 6 Type P NNNN Output the sense sint Avg Type: Log-Pwr Trace 1 2 3 4 5 6 Type P NNNN Output the sense sint Avg Type: Log-Pwr TRACE 1 2 3 4 5 6 Type P NNNN Output the sense sint Avg Type: Log-Pwr TRACE 1 2 3 4 5 6 Type P NNNN Output the sense sint Avg Type: Log-Pwr Trig: Free Run "Atten: 30 dB Mkr1 16.924 8 GHz Stop 17.000 GHz Stop 17.000 GHz K Y FUNCTION WIDTH FUNCTION WIDTH FUNCTION WIDTH Stop 17.000 GHz Stop 7 0 Bm <td>n Analyzer - Swept SA Ref 20:00 GHz PNO: Fast PNO: Trig: Free Run #Atten: 30 dB Mkr1 16.924 8 GHz -50.70 dBm 1452 86 50.70 dBm 50.70 dBm 50.</td> <td>server SA Freq 15.00000000 GHz PNO: Fast Trig: Free Run #Atten: 30 dB Trig: Stog: PWr TRACE 1.2.3.45.6 TYPE MWWWWWWW MKr1 16.924 8 GHz o Ref 20.00 dBm O AC Stop: Trig: Free Run #Atten: 30 dB MKr1 16.924 8 GHz O Ref 20.00 dBm -50.70 dBm O AC -50.70 dBm O Ref 20.00 dBm -14.52.85 O Ref 20.00 dBm -50.70 dBm O AC Stop 17.000 GHz V BW 300 KHz Sweep 384 ms (40001 pts) I FEI SEL -50.70 dBm I FEI SEL -50.70 dBm I FEI SEL -50.70 dBm -50.70 dBm</td> <td>1 Spectrum Analyzer - Swept SA L RP 500 Ac SENSEINT ALGNAUTO ter Freq 15.00000000 GHz Trig: Free Run Avg Type: Log-Pwr TRACE 12345.6 PN0: Fast Trig: Free Run Mkr1 16.924.8 GHz -50.70 dBm B/div Ref 20.00 dBm -50.70 dBm -50.70 dBm Image: State Stat</td>	n Analyzer - Swept SA Ref 20:00 GHz PNO: Fast PNO: Trig: Free Run #Atten: 30 dB Mkr1 16.924 8 GHz -50.70 dBm 1452 86 50.70 dBm 50.70 dBm 50.	server SA Freq 15.00000000 GHz PNO: Fast Trig: Free Run #Atten: 30 dB Trig: Stog: PWr TRACE 1.2.3.45.6 TYPE MWWWWWWW MKr1 16.924 8 GHz o Ref 20.00 dBm O AC Stop: Trig: Free Run #Atten: 30 dB MKr1 16.924 8 GHz O Ref 20.00 dBm -50.70 dBm O AC -50.70 dBm O Ref 20.00 dBm -14.52.85 O Ref 20.00 dBm -50.70 dBm O AC Stop 17.000 GHz V BW 300 KHz Sweep 384 ms (40001 pts) I FEI SEL -50.70 dBm I FEI SEL -50.70 dBm I FEI SEL -50.70 dBm -50.70 dBm	1 Spectrum Analyzer - Swept SA L RP 500 Ac SENSEINT ALGNAUTO ter Freq 15.00000000 GHz Trig: Free Run Avg Type: Log-Pwr TRACE 12345.6 PN0: Fast Trig: Free Run Mkr1 16.924.8 GHz -50.70 dBm B/div Ref 20.00 dBm -50.70 dBm -50.70 dBm Image: State Stat

Agile	nt Spe	ectru	m Ana	lyzer - S	wept SA							
	RL	1.1	RF	50	Ω AC		-	SENSE	INT	ALIGNAUTO		Frequency
Cei	nter	Fre	eq 1	9.000	00000	00 GHz	East (Trig: Free Ru	an Avg	Type: Log-Pwr	TYPE MWWWWW	6 ·····
						IFGain	Low	#Atten: 30 dB	3		DET P N N N N N	
10 0	B/di	v	Ref	20.00	dBm					Mkr	1 20.655 5 GHz -49.54 dBm	Auto Tune
Log		-			1	110					1	
10,1	-											Center Freq
0.0	1		-									19.00000000 GHz
-10.0			-		-						-14.52 dBm	
-20.0			-									Constant of
-301							_					Start Freq
40.0						1111						17.00000000 GHz
-40.0												
-50.0		in the second	int i	and a strength	of the second		a de como Vilo da	and the second	Inner Lines April 10	and the state of the state of the state	the second second second second	
-60.0	1		-									Stop Fred
-70.0		-	-		-					-		21.000000000 GHz
Sta	rt 17	7 00	0 G	Hz			-			_	Stop 21 000 GHz	
#R	es B	W 1	00 1	Hz			#VBW	300 kHz		Sweep 3	84 ms (40001 pts)	CF Step
MKB	MODE	I TRC	SCL		×			Y	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	Auto Man
1	N	1	f	_	20).655 5 G	Hz	-49.54 dBm				
2	-				-	00000						In the second second
4	-											Freq Offset
5												0 Hz
6		-				-						2 m
8											-	
9										-		
11				-								
12	_					_	1		1			
MSG										STATUS		P.

						rept SA	lyzer - Sw	rum Ana	t Spec	gilent
Frequency	TRACE 1 2 2 4 5 6			SENSE:INT	CUT	2 AC	50 Ω	RF	tor	RL
T.S.S.T.	TYPE MWWWWW DET P N N N N N	ille: reg i m		Trig: Free Run #Atten: 30 dB	PNO: Fast G	1	5.000	req 2	lerr	en
Auto Tune	23.114 9 GHz -47.30 dBm	Mkr1 :			1.1	dBm	20.00	Ref	3/div	0 dE
Center Freq		- P			<u> (h. 1</u>			_		10,0
23.000000000 GHz		_	-					-	-	0.00
	-14.52 dBm		-					_		10.0
Start Freq		- 1								20.0
21.000000000 GHz									1	30.0 40.0
	the state of the s	. lande - ware as a second and	and the second second			-	t processo the		and a local second	50.0
Stop Freq	- A CONTRACTOR OF THE PARTY OF THE PARTY OF THE			malitation open state		Anna Anna Anna Anna			tor the set	60.0
25.00000000 GHz			-				_			70.0
CF Step	stop 25.000 GHz ms (40001 pts)	Sweep 384		300 kHz	#VBW		Hz (Hz	000 G	t 21. s BW	stari Res
Auto Man	FUNCTION VALUE	FUNCTION WIDTH	FUNCT	Y		X		RC SCL	MODE	ikb M
				-47.30 dBm	14 9 GHz	23.11		I f	N	2
Freq Offset										3
0 Hz		-								5
·										7
										9
									-	11
N		STATUS			4			1 1	-	SG

Channel 06 (2437MHz)

Frequency		-	ALIGN AUTO		SENSE:INT	SE		AC	50 \$	RF		RL	
Frequency	E 123456	TRA TY	vpe: Log-Pwr	Avg	ee Run	Tria: Fre	Z	0000 MH	15.00	req 5	er Fr	ent	
1000	ET P N N N N N	D			30 dB	#Atten: 3	Gain:Low	IF					
Auto Tur	36 MHz 13 dBm	1 987.5 -59.	Mkr	0 dB/div Ref 20.00 dBm									
40.20.4	1000	Page All				1	200	1					
Center Fre							1					0.0	
515.000000 MIP	-14.41 dBm	-14.41 dBm					11					0.0	
Start Fre							1		_	-	-	0.0	
30.000000 MH						_					-	0.0	
											-	3.0	
Stop Ere			1		1		11	1				D.O -	
1.000000000 GH					and the second second				and had her and			10	
											1		
CF Ste	0000 GHz 0001 pts)	Stop 1. .3 ms (4	Sweep 93		z	300 kHz	#VBW		KHz	MHz 100 k	30.0 BW	tart Res	
<u>Auto</u> Ma	IN VALUE	FUNCTI	FUNCTION WIDTH	NCTION	dBm	-59.13 d	6 MHz	× 987.53		f Sou		(B) M	
												2	
Freq Offs												4	
0 F				-								6	
					1							7 B	
			-									9	
					-					-		1	

Frequency	RACE 1 2 3 4 5 6	TI	e: Log-Pwr	Ava Tvi	NOEANI	1 30		17	0000 G	3 0000	en 3	r Fre	nte
LEAST	DET P N N N N N		1000		e Run) dB	Trig: Free #Atten: 30		NO: Fast Gain:Lov	P		oq o		ito
Auto Tur	37 5 GHz 4.21 dBm	r1 2.4	Mki						dBm	20.00	Ref	div	B/d
Center Fre 3.000000000 Gł							1-)
l	-14.41 dBm	_			-	_				_	-		
Start Fre 1.000000000 GH		_											
Stop Fre 5.000000000 GR		ande over de la seconda de Seconda de la seconda de la				101 - 10 <u>1</u>	-		a and a second second	alanisi matanisi Manaziri			
CF Ste 400.000000 MI	o 5.000 GHz (40001 pts)	Stop 84 ms	Sweep 3			300 kHz	вw	#V		iz kHz	0 GH 100 H	1.000 BW 1	rt 1 es E
<u>Auto</u> Ma	CTION VALUE	FUNC	INCTION WIDTH	CTION CA	FUN Bro	Y 4 21 di		5 GHz	× 2 437		f	DE TRC	MOD
Freq Offs 01									2.14				
1.0													
													-

Frequency		TDA	ALIGNACTO	0	SENS	-	OΩ AC	RF	RL
	123456 PEM WWWWW ETPNNNNN	TYI DI	/pe: Log-Pwr	Avg	Trig: Free F #Atten: 30	HZ 'NO: Fast Ģ Gain:Low	1000000 GI F IF	Freq 7.000	enter F
Auto Tu	28 GHz 88 dBm	1 6.29: -55.	Mkr				0 dBm	Ref 20.0	dB/div
Center F	1.2				1	2	1 1 - 1		9.0 0.0
7.000000000 (-			-		00
	-14.41 dBm						_		.0
Start F	1	-				11			0.0
5.000000000	1					11	11		0.0
						A1			10
Stop F	Landress and spille	- Sun and an	and showing a sure of	the pirm the state to		- Anno -	dis approved and	ner and a second	0.0
9.000000000 0									2.0
CFS	.000 GHz	Stop 9	Sween 3	1	300 kHz	#\/B\A		000 GHz	art 5.00
400.000000 M Auto	IN VALUE	FUNCTION	FUNCTION WIDTH	FUNCTION	Y		×		R MODE T
					-55.88 dBi	8 GHz	6.292	1 f	1 N 2
Freq Off									3
C									5
						1.1			7 B
									9
	11								1
		-		_					2
			STATUS	_					2
			STATUS				Swept SA	ctrum Analyzer	2 3 ilent Spect
Frequency	¥123456	TRAC	STATUS ALIGNAUTO /pe: Log-Pwr	Avg	SENS	3Hz	Swept SA 0 Ω AC	ctrum Analyzer	2 3 ilent Spect RL enter F
Frequency	E 123456 MWWWW ET P NNNN	TRAC TYI DI	ALIGNAUTO //pe: Log-Pwr	Avg	SENS Trig: Free F #Atten: 30 (SHz NO: Fast Gain:Low	Swept SA 0 Q AC 10000000 (F IF	ctrum Analyzer	ilent Spect RL enter F
Frequency Auto Tu	# 123456 # MMMMM # 7 GHz 69 dBm	тка ТУЛ 12.874 -53.1	ALIGNAUTO ppe: Log-Pwr Mkr1	Avg	Trig: Free F #Atten: 30 d	GHz SHz NO: Fast ⊊ Gain:Low	Swept SA □ Ω AC 100000000 (F IF 0 dBm	rrum Analyzer	ilent Spect RL enter F
Frequency Auto Tu	E 123456 E MUMUUU TP NNNN 4 7 GHz 69 dBm	тках туј 12.874 -53.1	ALIGNAUTO //pe: Log-Pwr Mkr1	Avg	Trig: Free F #Atten: 30 (SHz NO: Fast Gain:Low	Swept SA 0 2 AC 00000000 (F IF 0 dBm	rrum Analyzer	2 silent Spect RL enter F odB/div 9 0.0
Frequency Auto Tu Center F 11.000000000	E 123456 E 123456 E M WWW ETP NNNN ETP NNNN 4 7 GHz 69 dBm	тка туп 12.874 -53.	ALIGNAUTO //pe: Log-Pwr Mkr1	Avg	Trig: Free F #Atten: 30 o	SHz NO: Fast Gain:Low	Swept SA 0 2 AC 0000000 (F IF 0 dBm	Ctrum Analyzer	ilent Spect RL enter F 0 dB/div 0.0
Frequency Auto Tu Center F 11.00000000 0	123456 MMMMMM TPNNNN 47GHz 69dBm -1441 dBm	тка ту ту 12.874 -53.1	ALIGN AUTO /pe: Log-Pwr Mkr1	Avg	Trig: Free F #Atten: 30 d	3Hz NO: Fast Gain:Low	Swept SA 0 Q AC 100000000 C F IF 0 dBm	Freq 11.00	2 ilent Spect RL enter F 0.0 0.0 0.0
Frequency Auto Tu Center F 11.00000000 0	E 123456 E MWWWWW ET P NNNN 4 7 GHz 69 dBm -1441 dBm	тка тү р 12.874 -53.	ALIGNAUTO /pe: Log-Pwr Mkr1	Avg	SENS Trig: Free F #Atten: 30 (SHz NO: Fast Gain:Low	Swept SA 0 2 AC 00000000 (F IF 0 dBm	rrum Analyzer RF 5 Freq 11.00	2 ilent Spect RL enter F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Frequency Auto Tu Center F 11.00000000 0 Start F 9.00000000 0	E 123456 E MWWWWWW F P NNNN 4 7 GHz 69 dBm -1441 dbm	тка ту 12.874 -53.	ALIGNAUTO //pe: Log-Pwr Mkr1	Avg	Trig: Free F #Atten: 30 d	Gain:Low	Swept SA 0 2 AC 00000000 (F IF 0 dBm	rum Analyzer	2 ilent Spect RL enter F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Frequency Auto Tu Center F 11.000000000 0 Start F 9.000000000 0	E 123456 E MMMMMM ET P NNNN 4 7 GHz 69 dBm -14.41 aBm	тка ту 12.874 -53.1	ALIGNAUTO //pe: Log-Pwr Mkr1	Avg	Trig: Free F #Atten: 30 d	Gain:Low	Swept SA 0 2 AC P IF 0 dBm	Ctrum Analyzer	2 ilent Spect RL dB/div dB/div d d d d d d d d d d d d d
Frequency Auto Tu Center F 11.000000000 0 Start F 9.000000000 0	E 123456 E MMMMMM er P NNNN 4 7 GHz 69 dBm -11.41 dBm	тем ту о 12.874 -53.1	ALIGNAUTO /pe: Log-Pwr Mkr1	Avg	SENS Trig: Free F #Atten: 30 d	SHz NO: Fast Gain:Low	Swept SA 0 2 AC 00000000 C F IF 0 dBm	Etrum Analyzer - RF 5 Freq 11.00	2 ilent Spect RL odB/div S 0 0 0 0 0 0 0 0 0 0 0 0
Frequency Auto Tu Center F 11.000000000 0 Start F 9.000000000 0 Stop F 13.000000000 0	E 123456 E MWWWWW TP NNNN 47 GHz 69 dBm -14.41 dBm	TRAA TYI DO 12.874 -53.	ALIGNAUTO //pe: Log-Pwr Mkr1	Avg	SENS	SHz NO: Fast Gain:Low	Swept SA 0 2 AC F IF 0 dBm	Etrum Analyzer	2 ilent Spect RL dB/div g dB/div
Frequency Auto Tu Center F 11.000000000 0 Start F 9.000000000 0 Stop F 13.000000000 0	E 123456 E MMWWWW TP NNNN 4 7 GHz 69 dBm -14.41 aBm -14.41 aBm -14.41 aBm -14.41 aBm	тка ту 12.874 -53.1	ALIGNAUTO (pe: Log-Pwr Mkr1	Avg	SENS Trig: Free J #Atten: 30 d	SHz NO: Fast Gain:Low	Swept SA 0 2 AC 00000000 C F IF 0 dBm	Clrum Analyzer- RF 19 Freq 11.00 Ref 20.0	2 Ident Spect RL OdB/div Og 0,0 0,0 0,0 0,0 0,0 0,0 0,0
Frequency Auto Tu Center F 11.000000000 0 Start F 9.000000000 0 Stop F 13.000000000 0 CF S 400.000000 0	E 123456 E MUMUMU T P NNNN 4 7 GHz 69 dBm -14.41 dBm -14.41 dBm -14.41 dBm -14.41 dBm -14.41 dBm -14.41 dBm -14.41 dBm	TRAA TVI DI 12.874 -53. -53. 	ALIGNAUTO /pe: Log-Pwr Mkr1	Avg	SENS Trig: Free F #Atten: 30 d	SHz NO: Fast Gain:Low	Swept SA 0 2 AC 100000000 C F 1F 0 dBm	Crum Analyzer RF 5 Freq 11.00 Ref 20.0 000 GHz 000 GHz 000 KHz	2 s s enter F o dB/div o dB/div
Frequency Auto Tu Center F 11.000000000 0 Start F 9.000000000 0 Stop F 13.000000000 0 CF S 400.000000 N Auto	E 123456 FE MMMMMMM FT P NNNN 4 7 GHz 69 dBm -14.41 aBm -14.41 aBm	тка ту 12.874 -53.1 -53.1 Stop 13 84 ms (4	ALIGNAUTO //pe: Log-Pwr Mkr1	Avg	SENS Trig: Free J #Atten: 30 d	SHz NO: Fast Gain:Low #VBM	Swept SA 0 2 AC 00000000 C F IF 0 dBm 10 11 12.874	Ctrum Analyzer- RF 19 Freq 11.00 Ref 20.0 D00 GHz AV 100 KHz TEE 554	2 s s enter F enter F dB/div s dB/div dB/di div dB/div dB/div dB/div dB/div dB/div dB/div B/di B/di B/d
Frequency Auto Tu Center F 11.000000000 0 Start F 9.000000000 0 Stop F 13.000000000 0 CF S 400.000000 0 Auto	E 1 2 3 4 5 6 E M 4 7 GHz 69 dBm -11.41 dBm	тем ту о 12.874 -53.1 -		Avg	300 kHz	SHz NO: Fast Gain:Low #VBM	Swept SA 0 2 AC 00000000 C F 0 dBm 0 dBm	Ctrum Analyzer - Ref 20.0 Ref 20.0 000 GHz V 100 KHz TRC 5C4 1 f	2
Frequency Auto Tu Center F 11.000000000 0 Start F 9.000000000 0 Stop F 13.000000000 0 CF S 400.000000 f Auto	E 123456 E MANANA T PNNNN 47 GHz 69 dBm -14.41 dbm -14.	тка ту о 12.874 -53. -53. -53. -53. -53. -53. -53. -53.	STATUS	Avg	300 kHz	SHz NO: Fast G Gain:Low #VBM	Swept SA 0 Q AC 100000000 C P 1F 0 dBm	Crum Analyzer - Ref 20.0 Ref 20.0 000 GHz V 100 KHz TEE 524	2
Frequency Auto Tu Center F 11.000000000 0 Start F 9.000000000 0 Stop F 13.000000000 0 CF S 400.000000 0 Auto T	E 123456 E MWWWWW TP NNNN 47 GHz 69 dBm -14.41 dBm	TRAA TY D 12.874 -53. 53. 53. 53. 53. 53. 53. 53. 53. 53.	STATUS	FUNCTION	SENS Trig: Free F #Atten: 30 d 300 kHz \$300 kHz	SHz NO: Fast Gain:Low #VBM	Swept SA 0 2 AC IOOOOOOOO C F IF 0 dBm 	Crum Analyzer Ref 20.0 Ref 20.0 000 GHz V 100 KHz TRO 604 1 f	2
Frequency Auto Tu Center F 11.000000000 0 Start F 9.000000000 0 Stop F 13.000000000 0 CF S 400.000000 0 Auto Tu Freq Off 0	E 123456 MWWWWW TP NNNN 4 7 GHz 69 dBm -14.41 abn -14.41 abn 1 .0000 GHz 0001 pts) N VALUE	12.874 -53.1 Stop 13 84 ms (4	ALIGNAUTO //pe: Log-Pwr Mkr1	EUNCTION	300 kHz	SHz Gain:Low #VBM	Swept SA 0 2 AC 00000000 C F IF 0 dBm 12.874	Clrum Analyzer- RF 19 Freq 11.00 Ref 20.0 000 GHz AV 100 KHz TEP 524 TEP 524	2 ilent Spect RL enter F dB/div g
Frequency Auto Tu Center F 11.000000000 0 Start F 9.000000000 0 Stop F 13.000000000 0 CF S 400.0000000 0 Freq Off	E 123456 E MMMMMM FT P NNNN 4 7 GHz 69 dBm -11.41 dBm -11.41 dBm -11.41 dBm -11.41 dBm -11.41 dBm -11.41 dBm	тка ту 12.874 -53.1 -53.1 Stop 13 84 ms (4	STATUS	FUNCTION	300 KHz	SHz NO: Fast Gain:Low #VBM	Swept SA 0 2 AC 00000000 C F IF 0 dBm 12.874	Ctrum Analyzer - Ref 20.0 Ref 20.0 000 GHz V 100 KHz TRE ECL 1 f	2

Energy services		1	ALIGNAUTO		SENSE:INT	SE		AC	50 Ω	RF		RL
Frequency		TRAC	Type: Log-Pwr	Avg 1	oo Dun	Tria: From	GHz	000000	5.000	eq 1	er Fr	ent
T Alacat	PNNNNN	D			30 dB	#Atten: 30	NO: Fast G Gain:Low	1				
Auto Tur	02 GHz 95 dBm	16.98 -50.	Mkr1				0.5	dBm	20.00	Ref	/div	dE
	1.2.5.4		C12		-	1.1.1.1	1.1.1.1	1 1				g
Center Fre	1									-		0.0
15.000000000 GI		-14.41 dBr			-		11.2.2	11			-	UU
	-14.41 dBm	-14.41 dBi			_				_	_		I.U
Start Fre	1		- 11		-		1					.0
13.000000000 GI		-	_					in the second			-	.0
	1	-								-		0.0
11 Mar	Same of the state	A. COLOR D. L. P. G.	and a standa course	a sere a		the state of the state						0
Stop Fre	Concernance Development	ondation along transmis		Astop access in 1997			and the second second second second				- cheele	.0
17.000000000 GI		_	-	-	-		1			+		0.0
CF Ste	.000 GHz 0001 pts)	Stop 17 84 ms (4	Sweep 3		z	300 kHz	#VB		Hz KHz	00 G	13.0 BW	antes
400.000000 Mi	NVALUE	EUNCTU		INCTION		Y		×	1077	R SAL		RI N
					dBm	-50.95 d	2 GHz	16.980	_	f	N 1	
		-										2
Freqons			A									1
01			-									3
					-							1
												3
)
				1							-	2

RL	cetrui	RP	50.0	AC		SE	VSEINT		ALIGNAUTO	1		
enter	Fre	q 19	.0000	00000	GHz	Tria: From	Due	Avg Type	e: Log-Pwr	TRACE	123456	Frequency
				,b	PNO: Fast G IFGain:Low	#Atten: 30	dB			DET	PNNNNN	
) dB/di	v	Ref 2	0.00 c	iBm	1.1				Mkr1	20.676 -49.5	3 GHz 3 dBm	Auto Tune
					6 h - 1	9	-	1	10000		~~~~!·	
0.0											1	Center Free
.00	-											19.00000000 GH
					-						-14.41 dBm	
									1			Start Free
			- 1			1				a1		17.00000000 GHz
1.0										↓ ¹		1
	19 - 19 - 19 	tree in a series			any list of a second second		1		and the local process of the set	none of a strend of	- No. of Concession, Name	Stop Free
1.0									1			21 00000000 GH
1.0	_		1			1.114						
tart 1 Res B	7.00 W 1	0 GH: 00 kH	z Iz		#VB	N 300 kHz			Sweep 3	Stop 21.0 84 ms (40)	00 GHz 001 pts)	CF Step
KR MODE	TRC	SCL		X		Y	FU	NCTION FU	NCTION WIDTH	FUNCTION	VALUE	Auto Mar
1 N 2	1	f	-	20.67	76 3 GHz	-49.53 di	3m					
3												Freq Offse
5												0 Ha
6 7												
8												
0												
1							-					
-	4						-		071710			

		-	ALIGN AUTO		NSE:INT	SE		AC	50 \$	RF		L
Frequency	E 123456	TRA	e: Log-Pwr	Avg	- Dun	Tuin Fue	GHz	000000	3.000	eq 2	Fre	ter
1.5.5.2.5	PNNNNN	Ľ			0 dB	#Atten: 30	PNO: Fast G FGain:Low	, i				
Auto Tun	5 7 GHz 13 dBm	21.35 -47.	Mkr				0.5	dBm	20.00	Ref	v	B/div
	1	1.00	1.00									
23 00000000 GH												1
23.00000000 81	-14 41 dBm	-14.41 dB										
		-					-					
Start Fre				-	-					-	_	-
21.00000000 GH				-	-		-		-	1º-	-	-
and share				white over same	and the second second		na na subse - 0 76 -	-		u.Tul	-	-
Stop Fre	1										-	-
25.00000000 GH									1.771			
CF Ste	.000 GHz 0001 pts)	Stop 24 84 ms (4	Sweep 3			/ 300 kHz	#VB		Hz (Hz	0 GI	1.00 W 1	t 21 s Bl
Auto Ma	IN VALUE	FUNCT	UNCTION WIDTH	INCTION		Y		X		SCL	TRC	MODE
					Bm	-47.13 d	57 GHz	21.35		Ť	1	N
Freq Offse				_								
0 H				_	_							
-					-							
		_									-	
							-					
1		-			1							

RI	50	Ω AC	· · · · · · · · · · · · · · · · · · ·	SENSE:INT		ALIGNAUTO	-		
Freq	515.00	00000	MHz PNO: Fast	Trig: Free Run #Atten: 30 dB	Avg	Type: Log-Pwr	TRAC TYP DE	CE 123456 PE M MMMMM ET P N N N N N	Frequency
Mkr1 872.057 MHz Ref 20.00 dBm -59.11 dBm							57 MHz 11 dBm	Auto Tune	
	20.00							-14.50 dBm	Center Freq 515.000000 MHz
									Start Free 30.000000 MHz
			Al reserver of Sticks (personalise) 	an (n. 1996), and a state of the state of th			● ¹		Stop Fred 1.000000000 GHz
).0 MH W 100	z kHz		#VB	W 300 kHz		Sweep 9	Stop 1.0 3.3 ms (4	0000 GHz 0001 pts)	CF Step 97.000000 MHz
TRC SC 1 f		× 87	2.057 MHz	-59.11 dBm	FUNCTION	FUNCTION WIDTH	FUNCTIO	IN VALUE	<u>Auto</u> Man
									Freq Offset 0 Hz
	.0 MH .0 MH .0 TRE SEC	Ref 20.00	Ref 20.00 dBm	Ref 20.00 AC PNO: Fast C IFGain:Low Ref 20.00 dBm Image: Comparison of the second secon	RF 50 Q. AC SENSEJNT Freq 515.000000 MHz PN0: Fast IFGain:Low Trig: Free Run #Atten: 30 dB Ref 20.00 dBm	RF 50 % AC SENSE (NT) Freq 515.000000 MHz PN0: Fast IFGain:Low Trig: Free Run #Atten: 30 dB Avg Ref 20.00 dBm	RF 50 2 AC SENSE:INT ALIGNAUTO Freq 515.000000 MHz PN0: Fast IFGain:Low Trig: Free Run #Atten: 30 dB Avg Type: Log-Pwr MKI Ref 20.00 dBm Image: Sense:INT Augraphic MKi Augraphic Image: Sense:INT Avg Type: Log-Pwr MKi MKi Image: Sense:INT Augraphic Mission Mission Mission Image: Sense:INT Avg Type: Log-Pwr Mission Mission Mission Image: Sense:INT Augraphic Image: Sense:INT Augraphic Image: Sense:INT Augraphic Image: Sense:INT Augraphic Sense:INT Augraphic Image: Sense:INT Augraphic Image: Sense:INT Augraphic Image: Sense:INT Image: Sense: Int	RF 50.2 AC SENSEJNT ALIGNAUTO Freq 515.000000 MHz PN0: Fast Trig: Free Run Avg Type: Log-Pwr Train PN0: Fast #Atten: 30 dB Mkr1 872.0 Mkr1 872.0 Ref 20.00 dBm -59. -59. Image: Sense Junction Sense JunctiSense Junction	RF SD 2 AC SENSE(INT ALIGNAUTO Freq 515.000000 MHz PN0: Fast IFGain(Low Trig: Free Run #Atten: 30 dB Avg Type: Log-Pwr Trace 1 2 3 4 5 6 Tree Munumuter Mkr1 872.057 MHz -59.11 dBm Trace 1 2 3 4 5 6 Trace 1 2 3 4 5 6 Trace 1 2 3 4 5 6 Mkr1 872.057 MHz -59.11 dBm Aug Type: Log-Pwr IFACE 1 2 3 4 5 6 Trace 1 2 3 4 5 6 Trac

Channel 11 (2462MHz)

Frequency		1	ALIGNAUTO	1	ISE:INT	SEI	_		AC	50 \$	RF		RL
Frequency	E 123456 E M WWWWW	TRAC	: Log-Pwr	Avg Typ	Run	Trig: Free	0	Z	00000 GI	3.0000	req 3	ter F	ent
Auto Tuni		DE		1.1	dB	#Atten: 30	+	Gain:Low	IF	_	-		_
Auto Tune	Mkr1 2.463 0 GHz 10 dB/div Ref 20.00 dBm 5.03 dBm												
	10000		A	1.00			1		1	111			.og
Center Fred	1		1 1				2					-	0.00
3.00000000 611	-14.50 dBm										-		10.0
Start Free	1		11	-				1	1				20.0
1.00000000 GH												1	30.0
												1	40.0
Ston Free		l atom				And and a second starting	in.	mulant					50.0 ·
5.000000000 GH	and a second			1	e - and the April			and the second		and tests			70.0
CF Step	.000 GHz 0001 pts)	Stop 5 34 ms (4	Sweep 38			300 kHz	BW	#VI		z kHz	0 GH 100 I	t 1.0 s BW	tari #Res
400.000000 MH: <u>Auto</u> Mar	IN VALUE	FUNCTIO	NCTION WIDTH	TION F	FUN	Y			×		IC SCL	IODE 1	MKR N
					3m	5.03 di	-	0 GHz	2.463		f	N	1
Freq Offse													3 4 5
				- 11	-		-					_	6
					1		-						8
													10
		_						-			+ +	-	11
			STATUS								-		

Agile	nt Spe	ectru	m Ana	lyzer - S	wept S	Δ.						-				
Ce	nter	Fre	eq 7	.0000	Ω A0	00 G	-IZ	-	SEN Trig: Free	Run	Avg	Туре:	LIGNAUTO	τι	RACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency
10 0	B/di [,]	v	Ref	20.00	dBn	ı⊧ n	Gain:Low	-	#Atten: 30	dB			Mk	r1 6.2 -56	67 6 GHz 6.09 dBm	Auto Tune
Log 10,1 0,0 -10,0)) 														-14.50 dBm	Center Freq 7.000000000 GHz
-20.0 -30.0 -40.0																Start Freq 5.000000000 GHz
-50.(-60.(-70.(-	0		ure drivite	*'	12.0		ana Shashe Dasara		a agenal				Stop Frec 9.000000000 GH;
Sta #R	rt 5. es B	000 W 1	GH	z KHz			#VE	sw	300 kHz			4	Sweep 3	Stop 84 ms	9.000 GHz (40001 pts)	CF Step 400.000000 MH
MKR 1	NODE	TRC 1	f			× 6.267	6 GHz		-56.09 dE	Bm	UNCTION	FUN	ICTION WIDTH	FUNC	TION VALUE	<u>Auto</u> Mar
3 4 5 6 7 8 9 10																Freq Offsel 0 Hz
12 MSG	-				_					1		1	STATUS			

		ALIGNALITO		GENGE/INT	1	AC	50.0	RE	21
Frequency	TRACE 1 2 3 4 5 6	pe: Log-Pwr	Avg	Tria: Free Run	Hz	00000 G	1.0000	Freq 1	nter
T. S	DET P NNNNN		_	#Atten: 30 dB	iO: Fast 😱 Jain:Low	PN			
Auto Tune	2.935 8 GHz -52.94 dBm	Mkr1 :				dBm	20.00	Ref	B/div
Center Free					<u> </u>	1			
11.00000000 GHz	1.1.1.								-
	-14.50 dBm		-				_		-
Start Fred									1
9.00000000 GH									
	4								
Stop Free	a shale data share the firster				al program and a start and a start of	a and a second second			
13.00000000 GHz								And the second sec	
CF Step	op 13.000 GHz ms (40001 pts)	Sweep 384	-	300 kHz	#VBW		z «Hz	100 GH V 100 I	rt 9.0 es BV
Auto Mar	FUNCTION VALUE	FUNCTION WIDTH	UNCTION	Y		×		TRC SCL	MODE
			-	-52.94 dBm	3 GHz	12.935 8		1 f	N
Freq Offset 0 Hz									
			_						

Agilent	Spec	trum /	Inalyze	r - Swe	pt SA									
Cent	er F	Frec	RP 1 15 (50 Ω 0000	AC	GHz	1	SEN	ISE:INT	Avg	ALIGNAUTO	TRA	CE 123456	Frequency
- orice		100	1.101			PNO: Fa	ist 🖵 ow	^J Trig: Free #Atten: 30	Run dB			TY D	PE MAAAAAAAA ET P N N N N N	T.S.S.S.
10 dB	div	R	ef 20	.00 d	Bm						Mkr	1 16.98 -50.	8 9 GHz 49 dBm	Auto Tune
10.0 -						1			-	-				Center Freq
-10.0 =												14.50 dBr		15.000000000 GHz
-20.0 = -30.0 =										-	-			Start Freq
-40.0 - -50.0 -					1.16					. (c. 1.0000.0				
-60.0 -70.0 -												an ann an Alum an A		Stop Fred 17.000000000 GHz
Start #Res	13. BW	.000 V 10	GHz 0 kHz	1		#	VBW	300 kHz		1	Sweep 3	Stop 17 84 ms (4	.000 GHz 0001 pts)	CF Step
MKR M	ODE N		CL .		× 16.9	88 9 GH	z	Y -50.49 dB	m	JNCTION	FUNCTION WIDTH	FUNCTI	ON VALUE	Auto Man
2 3 4 5														Freq Offsel 0 Hz
7 8 9														
11 12	+													
MSG											STATUS			

- Andrewski - A			ALIGNAUTO		SENSE:INT			50 Ω AC	RF	1 1 1	RL
Frequency	TYPE M WWWWWW DET P N N N N N		Type: Log-Pwr	Avg	rig: Free Run	Ģ	00 GHz PNO: Fast C	0000000	q 19.0	Fre	nter
Auto Tune	9.18 dBm	1 20.5	Mkr		Attent 50 GB		IFGain:Low	.00 dBm	Ref 20	v	dB/di
Center Freq											
	-14.50 dBm		_	_		_			_		
Start Freq 17.000000000 GHz	1										
Stop Freq 21.000000000 GHz		i in prizven di			the many share and the second s		ann de regional (est per pick (per per per per per per per per per per	org Marine and Lange and Lang			
CF Step	21.000 GHz (40001 pts)	Stop 384 ms	Sweep :		0 kHz	sw :	#VB	2	0 GHz 00 kHz	7.00 W 1	es B
Auto Man	ICTION VALUE	FUN	FUNCTION WIDTH	FUNCTION	49.18 dBm		.585 0 GHz	× 2	sci. f	TRC	MODE
Freq Offset 0 Hz											
10											

Frequency	E123456	TRAC	e: Log-Pwr	Avg T	SEAN (GHz	00000	3.000	eq 2	Fre	ter	en
T. States		DI			Run dB	#Atten: 30	NO: Fast G Gain:Low	l UF					
Auto Tu	74 GHz 05 dBm	23.10 -47.	Mkr1					lBm	20.00	Ref	v	3/div	dE
Center Fr	12.54			-			1	1	100				g 0.0
23.000000000 G		-			_					-		1	00
	-14.50 dBm		-							-		_	1.0
Start Fr			1			1				-			.0
21.00000000 G					A1.					-		1	1.0
		Second Second	heresunan	terror and the	cilemitics.	The state of the s		Service Constantial and	wind the second	due	- Miles	ALC: NO.	0
Stop Fr	and the state of the	, and course that				None College Courts of Co	·····	Contract of Contract of		-			.0
25.000000000 G											-		.0
CF Ste	.000 GHz 0001 pts)	Stop 25 84 ms (4	Sweep 3			300 kHz	#VBV		Hz (Hz	0 GI 00 k	1.00 W 1	t 21 s Bl	ar
Auto M	IN VALUE	FUNCTIO	JNCTION WIDTH	NCTION		Y 47.05 48		X		SCL	TRC	MODE	B
				-	m	-47.05 dB	4 GHZ	23.107		T	1	N	2
Freq Offs	1												1
0							-					_	3
		_		1									3
)
		-			-						-	-	

Product	:	Digital Camera
Test Item	:	RF Antenna Conducted Spurious
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)

Channel 01 (2412MHz)

Agilent Sp	ectrum	Analyzer - S	wept SA								
Cente	r Fred	RF 50	Ω AC	Iz	SEN	Bun	Avg Type	ALIGNAUTO e: Log-Pwr	TRAC	E 1 2 3 4 5 6	Frequency
	-	-	10	PNO: Fast G Gain:Low	#Atten: 30	dB			DE	TPNNNNN	Auto Tupe
10 dB/d	iv R	ef 20.00	dBm					Mkr	1 884.8 -58.8	13 MHz 34 dBm	Auto Tune
10,0				1		-	1			1.3.5.4	Center Fred
0.00	_					-					515.000000 MHz
-10.0										-17.06 dBm	
-20.0	-			1							Start Freq
-40.0	_	1								1	30.000000 MHz
-50.0	-	-	-								
-60.0	01000-010 		and the state of the state	Contrast of the							Stop Fred 1.000000000 GHz
	0.0.04					-			04++ 4 C		
#Res E	0.0 M BW 10	nz 0 kHz	1	#VBV	V 300 kHz	_	R	Sweep 9:	3.3 ms (4	0000 GH2 0001 pts)	CF Step
MKR MOD	e tro s		X 994.9	12 ML/2	Y		INCTION FU	NCTION WIDTH	FUNCTIC	IN VALUE	<u>Auto</u> Man
2			004.0		-00.04 UE						
4		-				1	jų.				Freq Offsel
6											011
8						-					
10 11											
12				1		_		10100	_		0
MSG								STATUS			

			ALICALALITO		CENCE INT		1		O AC	50	DD.			R
Frequency	CE 123456	TRA	ype: Log-Pwr	Avg T	SENSEAN		-	GHz	000000	.0000	ea 3	Fre	ter	en
1.0.0.		т			Free Run n: 30 dB	^{-'} Trig: Fr #Atten:	t 🗭 W	PNO: Fast IFGain:Lov						
Auto Tun	1 4 GHz 43 dBm	1 2.41 -0	Mkr				÷.,) dBm	20.00	Ref		B/div	0 d
Center Fre 3.000000000 GH							1-							. og 10.0 0.00
	-17.06 dBm						-						1	10.0
Start Free 1.000000000 GH			-										1	20.0 30.0 40.0
Stop Fre 5.000000000 GH						and the second	Verter	-		an ta an		199 ¹	di territe	50.0 60.0 70.0
CF Ste	5.000 GHz 40001 pts)	Stop 84 ms (•	Sweep 38		Hz	300 kH	/BW	#V		z KHz	GH	000 W 1	t 1.0 s Bl	star Re
Auto Ma	ION VALUE	FUNCT	FUNCTION WIDTH	FUNCTION	3 dBm	Y -0.43		111 4 GHz	× 2.4		SCL f	TRC 1	MODE	4KB
Freq Offse 0 H														2 3 4 5 6 7 8
														9 10 11 12

XI RL	RF 50	Ω AC		SENS	EXINT	1	ALIGNAUTO			- Province and
Center F	req 7.000	000000	GHz PNO: Fast G	Trig: Free F	lun	Avg Typ	e: Log-Pwr	TRACE 1 TYPE N	23456 10000000	Frequency
			IFGain:Low	#Atten: 30 d	В		Mk	r1 7.301 {	5 GHz	Auto Tune
10 dB/div	Ref 20.00) dBm		· · · ·	_			-55.95	dBm	
10.0		-			-		-			Center Free
0.00					-					7.000000000 GH:
-10.0				_	-		1		-17.06 dBm	_
-30.0										Start Fred
-40.0					-					5.000000000 GHz
-50.0		1	N		$-\phi^1$		-	000		1.1.1.1.1.1.1
-60.0					and a second second	levile teatPoor	and the second	and the second secon		Stop Fred
-70.0									- A 1	5.000000000000
Start 5.0 #Res BW	00 GHz 100 kHz		#VBV	V 300 kHz	-		Sweep 3	Stop 9.00 84 ms (400	00 GHz 01 pts)	CF Step
MKR MODE 1		X 7.30		Y 55.95 dBr	FUNC	TION FL	INCTION WIDTH	FUNCTION V	ALUE	Auto Mar
2		7.50	10 012	-00.30 UBI						
4 5										Freq Offse 0 Hi
7										
9										
11					-					
14			- J.		d.		1.5.5.C			

								ept SA	lyzer - Swi	um Ana	it Specti	Agiler
Frequency	CE 1 2 3 4 5 6 PE MWWWWW	TRA	ype: Log-Pwr	Avg 1	sense in			AC 000000 G	50 Ω 1.0000	req 1	ter F	Cen
Auto Tune		12 06	Mkrt		tten: 30 dB	•	Gain:Low	IFO			_	
	47 dBm	-53.	IVINI				C 4 7	dBm	20.00	Ref	B/div	10 d
Center Fred		1		-		_			0.2.2			10.0
11.000000000 GH:	1		-				1				1	0.00
	-17.06 dBm											-10.0
Start Fred		-	-				1			-	_	-30.0
9.00000000 GH	1					-	-					-40.0
Stop Free		-	and the second second	and an and the second	Statement of the State	linan	and by two ():	-	of the strength			-50.0
13.000000000 GH		t - de - de										-70.0
CF Step	.000 GHz 0001 pts)	Stop 13 84 ms (4	Sweep 3) kHz	w 3	#VBV		z kHz	0 GH 100 I	t 9.00 s BW	Star #Re
Auto Mar	ON VALUE	FUNCT	FUNCTION WIDTH	UNCTION	Y			X		RC SCL	MODE T	MKR
				_	3.47 dBm		2 GHZ	12.868		T	N	2
Freq Offse						_						4
0 1.				-		-						6
	1	_							1			8
												10 11
						_					-	12

RF 50 Q AC	SENSE:INT	ALIGNAUTO		and the second se
Freq 15.00000000 GHz	Tria: Free Pup	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6	Frequency
PNO: Fast 🕞 IFGain:Low	#Atten: 30 dB		DET PNNNNN	
 Ref 20.00 dBm 		Mkr1	16.944 3 GHz -50.20 dBm	Auto Tune
			- 1	15 00000000 CH
				15.00000000 GHz
			-17.06 dBm	
				Start Fred
			1	13.000000000 GHz
	a logical de la companya de la compa	mail of a service statement of a Conference of		
		1	and the second second second second second	Stop Fred
				17.000000000 GHz
3.000 GHz W 100 kHz #VBV	V 300 kHz	s Sweep 384	stop 17.000 GHz I ms (40001 pts)	CF Step
	Y FL	INCTION IN FUNCTION WIDTH	FUNCTION VALUE	Auto Mar
1 1 10.944 3 3Hz	-00.20 dBill			
				Freq Offset 0 Hz
			1	1.

Agile	nt Spe	etru	m Ana	lyzer - Sv	vept SA									
ix∥ Cer	nter	Fre	RF eq 1	50 s 9.000	2 AC	00 GHz		SEN	SE:INT	Avg	ALIGNAUTO Type: Log-Pwr	TRA	CE 1 2 3 4 5 6	Frequency
						PNO: IFGain	Fast G Low	#Atten: 30	dB		-	D	ET P N N N N N	Auto Tuno
10 c	B/div	,	Ref	20.00	dBm						Mkr	1 17.61 -50.	5 5 GHz 01 dBm	Auto Tune
10.0		_				10								Center Freg
0.00	-	_	-		-									19.000000000 GHz
-10.0													-17.06 dBm	
-20.0														Start Freq
-40.0	-		-	A1-	-	_	_							17.000000000 GHz
-50.0		hand) -	a. alia esta	nder offer side	of stream in			- Annal-Annal-	-	in flant, do në		Contraction of the local data		Oton Eron
-60.0 -70.0														21.000000000 GHz
Sta #Re	rt 17 es Bi	7.00 W 1	0 G	Hz (Hz			#VBW	/ 300 kHz		_	Sweep 3	Stop 21 84 ms (4	.000 GHz 0001 pts)	CF Step
MKR	MODE	TRC	SCL	-	X 17	615 5 C		Y .50.01 dB	m	UNCTION	FUNCTION WIDTH	FUNCTI	ON VALUE	<u>Auto</u> Man
23					11	.01000	112	-00.01 00				-		
4													11	Freq Oπset 0 Hz
6 7														1. E. S
8														1.0
10											-			
MSG	-	-					-				STATUS			

X RL	RF	50 Ω	AC		SENSE:1	T	ALIGNAUTO)	1	
Center	Freq 2	3.0000	00000 G	SHz NO: Fast 😱	Trig: Free Ru	Avç	g Type: Log-Pwr	TRA T\	CE 1 2 3 4 5 6 PE MWWWWWW DET P N N N N N	Frequency
	u Bof	20 00 d	Bm	Gain:Low	#Atten: 50 dB		Mk	r1 23.78 -47	9 4 GHz 27 dBm	Auto Tune
		20.00 0	UII	<u>1</u>				()		Center Fred
0.00										23.000000000 GHz
-10.0									-17.06 dBm	
-30.0							1			Start Freq 21.000000000 GHz
-50.0	- a jacobie			1 minutes	, and the second second					in a said
-60.0										Stop Freq 25.000000000 GHz
Start 2 #Res B	1.000 G W 100 I	Hz (Hz		#VBW	300 kHz		Sweep	Stop 2: 384 ms (4	5.000 GHz 10001 pts)	CF Step
			X 22 700	4.042	Y 47.27 dBm	FUNCTION	FUNCTION WIDT	H FUNCT	ION VALUE	Auto Man
2 3			23.789	4 GHZ	-41.21 dBm	-				Freq Offset
4 5 6								-		0 Hz
7 8										
10 11										
12							1200			

Channel 06 (2437MHz)

RL	F	F 50 S	2 AC		SENSE	iτ	ALIGNAUTO	-		
nter	Freq	515.00	0000 MHz	1000		Avg	Type: Log-Pwr	TRAC	E123456	Frequency
			PN IFGa	0: Fast Ģ ain:Low	#Atten: 30 dB			DE	TPNNNNN	T.S.a.a.
dB/div	v R	ef 20.00	dBm		10.5		Mkr	1 944.4 -58.9	92 MHz 97 dBm	Auto Tun
g n			1	1.1.1	2-2-		100	1 an 1	Part and	Contor Fra
		1							1	515 00000 MH
.0							-		-17.24 dBm	
0									1	Start Fre
0									1	30.000000 MH
0		1	1 []]	1			- El	1		
0					a and the second second second second	Boone and a distant	the second statement of the second statement		-	Stop Fre
0		- HARADA - AND								1.00000000 GH
art 30 es B	0.0 MH W 100	lz) kHz		#VBV	/ 300 kHz		Sweep 9	Stop 1.0 3.3 ms (4	0000 GHz 0001 pts)	CF Ste
	TRC SO		X		Y	FUNCTION	FUNCTION WIDTH	FUNCTIO	N VALUE	Auto Ma
N	1 1		944.492	MHZ	-58.97 dBm					
										Freq Offse
		-								0 H
-		1								
		-								
-		- de		- W-		-	10.00	-		

Agilent Spo	ectru	m Anal	yzer - Sv	wept SA	1		_				7				
Center	Fre	eq 3.	0000	Ω AC	0 GH	łz		STria: Fra	ENSE:INT	Avg	Туре	LIGNAUTO	TRA	CE 123456	Frequency
1					P IFC	NO: Fas Sain:Lo	st 🕞 w	#Atten: 3	0 dB		-		0	PNNNN	Auto Turo
10 dB/di	v	Ref	20.00	dBm		1						Mk	r1 2.43 1.	5 8 GHz 32 dBm	Auto Tune
10.0							4 1-			-	_		-	1	Center Fred
0.00						1									3.000000000 GHz
-20.0				1		+++				-				-17.24 dBm	
-30.0		-								-					Start Fred
-40.0	-									-				1	1.00000000000
-60.0	diam. Au					- In	1		a destanting of the			and the second	a contace) therefore		Stop Fred
-70.0				no ant mu							(And the second		and the first of the second		5.00000000 GHz
Start 1. #Res B	000 W 1	GH2 00 k	r Hz			#\	VBW	/ 300 kHz			3	Sweep 3	Stop 4 84 ms (4	5.000 GHz 0001 pts)	CF Step
MKR MODE	TRC	SCL		X				Y	FUN	ICTION	FUI	NCTION WIDTH	FUNCT	ON VALUE	400.000000 MH2 <u>Auto</u> Mar
2 2	1	f		-	2.435	8 GHz	-	1.32 c	Bm	-					
4		1											_		Freq Offsel
6	-				_	-									011
8	-								-		-				
10 11												-			
12	-		_	_	_	-	1			_	1	071710	-		

Agile	nt Spe	ectru	m Ana	lyzer - S	wept S	A.											
Ce	nter	Fre	eq 7	.0000	Ω AC	00 G		at ()	SE Trig: Fre	e Run	-	Avg 1	ALIGN) Type: Log-	Pwr	TRA T	CE 1 2 3 4 5 6 /PE M WWWWWW	Frequency
10 0	B/di	v	Ref	20.00	dBn	ıF n	Gain:Lo	w	#Atten: 3	0 dB				Mkr	1 7.27	9 2 GHz 31 dBm	Auto Tune
Log 10, 0.0											-						Center Freq 7.000000000 GHz
-10.) -20.) -30.) -40.)																-17.24 dBm	Start Freq 5.000000000 GHz
-50.) -60.) -70.)			-						and a family start of the off (see		♦ ¹		Lunna Alleboord	lessed in the			Stop Fred 9.000000000 GHz
Sta #R	rt 5. es B	.000 W 1	GH 00	z KHz		× 7 270	#\	VBW	300 kHz	Dml	FUNC	TION	Swe	ep 38 WIDTH	Stop 9 4 ms (4	9.000 GHz 10001 pts) ION VALUE	CF Step 400.000000 MHz Auto Man
2 3 4 5 6 7 8 9 10						1.219	2 GHZ		-56.31 0	BM							Freq Offsel 0 Hz
12 MSG	-	_				_	_	1				_	e	STATUS	_		

Agilent Spectrum Analyzer - Swept SA				
M RL RF 50Ω AC	SENSE:INT	ALIGNAUTO	TRACE	Frequency
Center Freq 11.00000000 GHZ PNO: Fast G IFGain:Low	Trig: Free Run #Atten: 30 dB	Avg Type. Log-Pwr	TYPE MWWWWW DET P N N N N N	
10 dB/div Ref 20.00 dBm		Mkr1	12.773 0 GHz -52.97 dBm	Auto Tune
				Center Freq 11.000000000 GHz
-10.0			17.24 dBm	
-20.0				Start Freq 9.000000000 GHz
-50.0				Stop Free
-70.0 Start 9.000 GHz #Res BW 100 kHz #VBW	300 kHz	Sweep 38	Stop 13.000 GHz 4 ms (40001 pts)	CF Step
MKR MODE TRC SCL	Y FL		FUNCTION VALUE	400.000000 MHz <u>Auto</u> Mar
1 N T 12.//3 U GHz 2 3 - - 3 - - - 4 - - - 5 - - - 6 - - - -	-52.97 dBm			Freq Offsel 0 Hz
7 8 9 10 11				
12		STATUS		

Pura una la		-	ALIGNAUTO		SENSE:INT	-		AC	50 \$	RF	-	2
Frequency	CE 1 2 3 4 5 6 PE MWWWWWW	TRAC TYI	/pe: Log-Pwr	Avg 1	: Free Run		GHz PNO: Fast C	000000	5.000	eq 1	Fre	ter
Auto Tune	0 7 GHz	16.94	Mkr1		en: 30 dB	#	Gain:Low		1.00			
	98 aBm	-50.		1	-	_	-	dBm	20.00	Ref	v —	3/div
Center Fre				-		_		1			_	
15.00000000 GH		_		_		_					_	
100000000000000000000000000000000000000	1701 17	_	-	-			-			-	_	-
	17.24 dBm		-	-		-				-		-
StartFree		-	_	_	_	_			_	-		-
13.00000000 GH						-	-			_		
	C. C		which set one of	10 Red Tax	Marriella		S.A. us		-	-	-	_
Stop Fre	a second and a second second	_		for the second					1	na a la a		listicity.
17.000000000 GH				-					-			
1	.000 GH7	Stop 17	-	-	-	-	-		17	0 GF	3.00	t 13
CF Step	0001 pts)	84 ms (4	Sweep 3		kHz	W 30	#VB	_	Hz	00 k	W 1	s Bl
Auto Mar	ON VALUE	FUNCTIO	FUNCTION WIDTH	UNCTION	OQ al Day			X 46.040		SEL	TRC	MODE
				-	.96 UDIII			10.940				N
Freq Offse					-		-					
0 H												
							- 11-				- 1	

RL		RF	50 Ω	AC	-	SE	NSE:INT	1	ALIGN AUTO			
enter	Fre	q 23.	0000	00000	GHz	Tulas Face	Deen	Avg	Type: Log-Pwr	TRA	CE 1 2 3 4 5 6	Frequency
				1	PNO: Fast G IFGain:Low	#Atten: 30) dB			D	ET P N N N N N	T.S.S.
dB/di	v I	Ref 20	0.00 d	Bm	1.1				Mkr	1 23.15 -46.	3 2 GHz 91 dBm	Auto Tune
				1 1						1	1 danser	
00												Center Free
10												23.00000000 GH.
10											-17.24 dBm	
10												Start Free
10						1				1	1	21.000000000 GH:
					1				Land at the second s		and and an and an and	
			and a start of the	the second second	- 14 - 14 - 14 - 14 - 14 - 14 - 14 - 14				and and a second second	1	and the second second	Stop Free
1.0												25.00000000 GH
	÷										1.000	20100-000-000 740
art 2 Res B	1.000 W 10) GHz)0 kH	z		#VBI	N 300 kHz			Sweep :	Stop 25 384 ms (4	5.000 GHz 0001 pts)	CF Step
R MODE	TRC	SCL		X 02.45	20.011-	Y	FU	NCTION	FUNCTION WIDTH	FUNCTI	ON VALUE	<u>Auto</u> Mar
2		T		23.15	SZ GHZ	-40.91 0	Sm	-				
3		-					-					Freq Offse
5												0 H:
7												1
3								_		-		
í –												
		-					-			-		
	-	-			1		*		le l	1		

		GNAUTO	A		SENSE:INT			Ω AC	50	RF		RL
Frequency	TRACE 1 2 3 4 5 6 TYPE MWWWWWW DET P N N N N N	og-Pwr	Type: l	A	Trig: Free Run #Atten: 30 dB		NHz PNO: Fast IFGain:Low	00000	15.00	eq 5	r Fr	nte
Auto Tune	986.493 MHz -59.22 dBm	Mkr1						dBm	20.00	Ref	liv	dB/d
Center Free 515.000000 MH:												
	-17.50 dBm											
Start Free 30.000000 MH:												0
Stop Free 1.000000000 GH:	•		a e da i a dala		- topo - no statement - t		an de la casterna					0
CF Step	top 1.0000 GHz ms (40001 pts)	s eep 93.3	SI		00 kHz	/BW :	#VE		Hz	MHz 100 k	30.0 BW 1	es E
Auto Mar	FUNCTION VALUE	ON WIDTH	FUNC	FUNCTION	-59.22 dBm		6.493 MHz	× 98		C SCU	DE TRO	MOL
Freq Offse 0 H:												

Channel 11 (2462MHz)

Agilent Spectr	um Analyzer	- Swept SA							-	
Center Fi	req 3.00	0000000 GH	Z IO: Fast 🕞	Trig: Free	Run	Avg Typ	e: Log-Pwr	TRAC	E 123456 E MWWWWW	Frequency
10 dB/div	Ref 20.	IFG 00 dBm	ain:Low	#Atten: 30	dB		Mkr	1 2.45 0.1	9 6 GHz 33 dBm	Auto Tune
10.0 0.00			• ¹							Center Freq 3.000000000 GHz
-10.0 -20.0 -30.0 -40.0								_	-17.50 dBm	Start Freq 1.00000000 GHz
-50.0 -60.0 -70.0		na (sent) surtani mangan (s	A	All all annuals at agent a	an bis ai				A	Stop Frec 5.00000000 GHz
Start 1.00 #Res BW	0 GHz 100 kHz		#VBV	/ 300 kHz			Sweep 38	Stop 5 34 ms (4	.000 GHz 0001 pts)	CF Step 400.000000 MHz
	f	2.459 6	5 GHz	0.33 dE	im Fu		INCTION WIDTH	FUNCTI	JN VALUE	<u>Auto</u> Mar
2 3 4 5 6										Freq Offsel 0 Hz
7 8 9 10 11 12										
MSG					- b		STATUS			

	1	ALIGNALITO	1	CENCE-IN		rept SA	lyzer - Sw	trum Ana	nt Spec	Agiler
Frequency	TRACE 1 2 3 4 5 6	/pe: Log-Pwr	Avg		Hz	00000 GH	.0000	Freq 7	ter	Cen
1	DET P N N N N N			' Trig: Free Run #Atten: 30 dB	'NO: Fast 😱 Gain:Low	PI IF(-		
Auto i un	5.176 9 GHz -56.12 dBm	Mkr1				dBm	20.00	Ref	B/div	10 d
Center Fre	A 244				1					10,0
7.000000000 GH	-	-			-			-		0.00
	-17.50 dBm								-	-10.0
Start Fre					1					-20.0 -30.0
5.00000000 GH					1				17	-40.0
	_	-			• ¹			-	-	-50.0
Stop Fre			A CONTRACTOR	Alter States and a second						-60.0
3.000000000									1	-70.0
CF Ste 400.000000 MH	top 9.000 GHz ns (40001 pts)	Sweep 384		300 kHz	#VBW		z «Hz	00 GH V 100 I	t 5.0 s BV	Star #Re
<u>Auto</u> Ma	FUNCTION VALUE	FUNCTION WIDTH	FUNCTION	-56,12 dBm	9 GHz	× 6,176		TRC SCL	MODE	MKB 1
Eron Office						4.0			-	23
Prequisi 01									-	4
Q.										6
			_		_				-	8
										10 11
		a fair and	_						_	12

		1	ALIGNAUTO	1	SENSE:INT	S		BC	50.0	RE	L	XI RI
Frequency	E 123456	TRAC	e: Log-Pwr	Avg T		1	Hz	00000 G	1.0000	req 1	ter l	Cen
LUNCT		D			ree Run 1: 30 dB	#Atten: 3	10: Fast Ģ Jain:Low	PN IFG	1.000			
Auto Tune	2 5 GHz 16 dBm	12.92 -53	Mkr1					IBm	20.00 d	Ref	B/div	10 di
	1		1 m	-	ć -	1	1.1					Log
Center Free											1	0.00
11.000000000 GH					-		11 11 11					10.0
	-17.50 dBm			-			11 1 1 1			-		20.0
Start Free		-		_	- 1					_		30.0
9.000000000 GH											1	40.0
				-					_	_		50.0
Stop Free	a da a transmissione						el a été terré herebe	and the last state	and the second se	- Columbia	-	60.0
13.00000000 GH				-								70.0
CF Step	.000 GHz 0001 pts)	Stop 13 34 ms (4	Sweep 3	1	Hz	/ 300 kH:	#VBW		z KHz	00 GH	t 9.0 s BW	star #Re
400.000000 MH: Auto Mar	IN VALUE	FUNCTIO	UNCTION WIDTH	NCTION		Y		×		RC SCL	MODE	MKB
					5 dBm	-53.16 c	5 GHz	12.922		l f	N	1
Freg Offse												3
0 H;				-								4
												6
												8
												10
											-	11
p			STATUS									ISG

Agilent S	pectru	m Anal	yzer - Sw	ept SA								
Cente	r Fr	RF eq 1	50 G	AC	GHz	SE	NSE:INT	Avg	ALIGNAUTO	TRA	CE 123456	Frequency
				, i	PNO: Fast (FGain:Low	Trig: Free #Atten: 30	∋Run DdB			TY	PE MWWWWWW DET P N N N N N N	1.8557
10 dB/c	liv	Ref	20.00	dBm					Mkr	1 16.99 -51.	2 6 GHz 16 dBm	Auto Tune
10.0				1	1	5				2	1	Contor From
0.00	_						-				1 - 1	15.000000000 GHz
-10.0	_	-					-	_				
-20.0		-	-	-	-	-	-	-	-		-17.50 aBm	Otort Eron
-30.0 —	_	-	-	-		-	-	-				13 00000000 GHz
-40.0 —		-			-	-			-		1	10.000000000000
-50.0 —	(L. ~			And the Advantage	Angeneration of the second	and the second se	in-Hailton		week in the second	and the second	a conferentieren	
-60.0				T							a new particular that the	Stop Freq
-70.0 —	_										1	17.00000000 GHZ
Start ' #Res I	13.00 BW 1	0 GH	iz Hz		#VB	W 300 kHz			Sweep :	Stop 17 384 ms (4	7.000 GHz 10001 pts)	CF Step 400.000000 MHz
	DE TIRU 1	f		× 16.99	2 6 GHz	-51.16 d	Bm	UNCTION	FUNCTION WIDTH	FUNCTI	ON VALUE	<u>Auto</u> Man
2						214.51				-		
4												Freq Offset
6												0 Hz
7	+						-	-	-	-		
9										-		
11	-								-			
	-	-	-						li Liston			

		-	ALIGNAUTO	- 1	INSE:INT	SE		AC	50 Ω	RF	L	KI RI
Frequency	E123456	TRAC	oe: Log-Pwr	Avg 1	-		Hz	00000 G	9.0000	req 1	ter F	Cen
1.8.57		D			e Run 0 dB	#Atten: 3	0: Fast Ģ ain:Low	PN IFG				
Auto Tune	5 1 GHz 69 dBm	18.12 -49.	Mkr1					Bm	20.00	Ref	B/div	10 di
	1.0	1		-	-		h - 18	1	111			10.0
Center Free	1										1	10.0
19.000000000 GH	1						1	11 11			1	0.00
	-17.50 dBm					· · · · · · · · · · · · · · · · · · ·	11 2	12	1 2 4			-10.0
Start Free			1				1				-	-20.0
17.00000000 GH				-	1						1	-30.0
				-				A ¹				-40.0
and the second	Contraction of the second bill	and the second sec			n manhanda abaan	And the Date of the P	a line to the day of the	- Augustan - Alam	and see the second	-	all and a state	-50.0
Stop Free	and the second se		to a la constante de		an in the state of	webstand and a second second	10-Verenzy a transfered	1). <u> </u>		Altr-		-60.0
21.000000000 GH												-70.0
CF Step	.000 GHz 0001 pts)	Stop 21 84 ms (4	Sweep 3			300 kHz	#VBW		Hz (Hz	00 G	t 17. s BW	Star #Re
Auto Mar	ON VALUE	FUNCTI	UNCTION WIDTH	NCTION	FU	Y		×		RC SCL	MODE	MKB
					Bm	-49.69 d	GHz	18.125		f	N	1
Eron Offen												3
nu				4	-					-	-	4
011											_	6
			-		-				-	-	-	7
												9
		_									-	11
												1.1.1

Agilent Spectrun	n Analyzer - Swept SA					
X RL	RF 50 Ω AC		SENSE:INT	ALIGNAUTO		Frequency
Center Fre	q 23.000000	DOO GHZ PNO: Fast 🖵 IFGain:Low] Trig: Free Run #Atten: 30 dB	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE MWWWWWW DET P N N N N N	Frequency
10 dB/div	Ref 20.00 dBm			Mkr	1 23.206 4 GHz -47.70 dBm	Auto Tune
10.0 0.00						Center Free 23.000000000 GH
-10.0					-17.50 dBm	
-30.0			1			Start Free 21.000000000 GH:
-50.0 -60.0 -70.0			(Ann y 200 A Anna y 200			Stop Fred 25.000000000 GH:
L Start 21.00 #Res BW 1	0 GHz 00 kHz	#VBW	300 kHz	Sweep :	Stop 25.000 GHz 384 ms (40001 pts)	CF Step
MKR MODE TRC		3 206 4 GHz	47.70 dBm	UNCTION IN FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Mar
2 3 4 5 6						Freq Offse 0 H:
7 8 9 10 11						
2				STATUS		

:	Digital Camera
:	RF Antenna Conducted Spurious
:	No.3 OATS
:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)
	: : :

Channel 01 (2412MHz)

Agilent Spec	rum Analyzer - S	iwept SA	1			
Center I	req 515.0	DOOOO MHz PNO: Fast	Trig: Free Run	Aug Type: Log-Pwr	TRACE 123456 TYPE MWWWWW	Frequency
10 dB/div	Ref 20.00	IFGain:Low	#Atten: 30 dB	Mk	r1 769.043 MHz -59.16 dBm	Auto Tune
10,0 0.00						Center Fred 515.000000 MH:
-10.0 -20.0 -30.0 -40.0					-18.78 dBm	Start Free 30.000000 MH:
-50.0 -60.0	ani (s. f. l. n. (as an f. as an f. l. n. Af Constants	al de la filie esta de la companya d La companya de la comp		_ 1	na nasi na stania na stania na stania sa stani sa sa Ingina na stania na stania sa stani sa stani sa stani sa stani	Stop Fred 1.000000000 GH;
Start 30. #Res BW	0 MHz / 100 kHz	#VBI	N 300 kHz	Sweep	Stop 1.0000 GHz 93.3 ms (40001 pts)	CF Step 97.000000 MH
1 N 2 3	1 f	× 769.043 MHz	-59.16 dBm		F FUNCTION VALUE	Auto Mar
4 5 6 7 8 9 10 11						0 Hz
12 MSG				STAT	JS	

Agile	nt Spe	ectru	m Ana	lyzer - Sv	wept SA											
Cer	nter	Fre	RF eq 3	.0000	Ω AC	GHz	Front C		Tria: Free		Avg	ALIO Type: Lo	GNAUTO og-Pwr	π	RACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency
10 d	B/di ¹	v	Ref	20.00	dBm	IFGai	n:Low	•	#Atten: 30	dB			Mk	r1 2.4	09 5 GHz 1.03 dBm	Auto Tune
Log 10.0							•								1	Center Freq 3.000000000 GHz
-10.0 -20.0 -30.0 -40.0															-18.78 dBm	Start Freq 1.000000000 GHz
-50.0 -60.0 -70.0		anse be					A		an data a dag	-	-		a ang	and the state of	- <u> </u>	Stop Fred 5.000000000 GHz
Sta #Re	rt 1. s B	.000 W 1	GH	z (Hz			#VB	w 3	300 kHz		4	SN	veep 3	Stop 84 ms	5.000 GHz (40001 pts)	CF Step
MKR 1	MODE	TRC 1	f		× 2.	409 5 (GHz		Y -1.03 di	3m	UNCTION	FUNCTI	DN WIDTH	FUN	CTION VALUE	<u>Auto</u> Mar
2 3 4 5 6 7 8 9 10																Freq Offsel 0 Hz
12 MSG	-	1						_			_	1	STATUS	_		

N RI	DI DI	50.0	AC	T	GEN	ISENNE	1	ALIGNALITO	-		
Center	Freq	7 000000	000 GHz				Avg Typ	e: Log-Pwr	TRAC	E123456	Frequency
Conton	Tioq	11000000	PNO: F IFGain:l	ast 🖵	Trig: Free #Atten: 30	Run dB			TYP		
10 dB/di	iv Re	f 20.00 dE	3m					Mk	r1 5.720 -55.4	6 6 GHz 43 dBm	Auto Tune
10.0											Center Fred
0.00											7.000000000 GH
-10.0		I						-		-18.78 dBm	
-30.0									-		Start Fred 5.00000000 GHz
-40.0											
-60.0	and a standard	and the second	en e			ini and a station of	and the design of the			- and a state	Stop Free
-70.0 —											9.000000000 GHz
Start 5 #Res B	.000 GI W 100	Hz kHz	#	#VBW	300 kHz			Sweep 3	Stop 9 84 ms (4	.000 GHz 0001 pts)	CF Step
	e TRC SC	4	X		55.43 dB	FUNC	CTION FL	UNCTION WIDTH	FUNCTIO	IN VALUE	<u>Auto</u> Mar
2 3			0.720 0 01		-00.40 uL	,			-		Free 08-1
4 5						_					0 Hi
7 8					_						1
9 10											
11 12		1						-	_		
MSG				0				STATUS			

Agilen	it Spe	etrur	m Ana	lyzer - S	wept S	Å.										
Cen	ter	Fre	RF	1.000	Ω A0	000 0	SHz	_] Tria: Fre	NSE:INT	Avg	Туре	LIGNAUTO	TI	RACE 123456	Frequency
				_	_	IF	NO: Fast Gain:Low	4	#Atten: 3	0 dB	-	-	Mkr	1 12 9		Auto Tune
10 dE	3/div	,	Ref	20.00	dBn	n							WIN	-52	2.86 dBm	
10,0					-			_			-			-		Center Fred
0.00						22.1										11.000000000 GHz
-20.0		_	_		-							_			-18.78 dBm	
-30.0	-	_			-				-							Start Fred 9.000000000 GHz
-40.0															1	
-60.0			-			alana si		in the second			in a sea i	anna da		defension and de		Stop Free
-70.0	1														1.000	13.000000000 GHz
Star #Res	t 9. s Bi	000 W 1	GH 00	z KHz			#VI	зw	300 kHz			1	Sweep 3	Stop 184 ms	13.000 GHz (40001 pts)	CF Step 400.000000 MHz
MKR 1	MODE	TRC	SCL f	-	-	× 12.855	0 GHz	-	-52.86 d	Bm	FUNCTION	FUI	NCTION WIDTH	FUNC	TION VALUE	<u>Auto</u> Man
23						- 0.4										Freg Offse
5	_							-				-				0 Hz
7		-					-			-						-
9 10		-								-		-	-			
11 12					_	_		_			_					
MSG													STATUS	1		

Agilent Spectrum Analyze	er - Swept SA				
RL RP	50 Ω AC	SENSE:INT	ALIGNAUTO		Frequency
Center Freq 15.	000000000 GHz	Trig: Free Run	Avg Type: Log-Pwr	TYPE MWWWWWW	inequeiney
	IFGain:Low	#Atten: 30 dB		DET P N N N N N	The second second
10 dB/div Ref 20).00 dBm		Mkr1	16.958 7 GHz -50.09 dBm	Auto Tune
Log				the second second	
10,0					Center Free
0.00					15.00000000 GH:
-10.0					100 - C.C. C.A. 74
20.0				-18.78 dBm	
-20.0					Start Free
-30.0				· · · · · · · · · · · · · · · · · · ·	13.000000000 GH
-40.0				1	
-50.0					
-60.0	A second s		and the second se	the second se	Stop Free
70.0					17.000000000 GH:
70.0					
Start 13.000 GHz		1.777		Stop 17.000 GHz	
#Res BW 100 kH:	z #VBW	300 kHz	Sweep 3	84 ms (40001 pts)	CF Step
MKB MODEL TROUGOUL	× 11	Y I I		EUNCTION VALUE	Auto Mar
1 N 1 f	16,958 7 GHz	-50.09 dBm			Adio Mai
2					
3					Freq Offse
5					0 H
6					2
8		-			
9					
10					
12					
uso			STATIS		
73			314103		

trum Analyzer	- Swept SA				
Freq 19.00	50 Ω AC D00000000 GHz PNO: Fast C	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency
Ref 20.0	IFGain:Low	#Atten: 30 dB	Mkr	1 20.703 7 GHz -50.43 dBm	Auto Tune
					Center Free 19.000000000 GH
				-18.78 dBm	Start Free 17.000000000 GH:
					Stop Free 21.000000000 GH
.000 GHz V 100 kHz	#VB	W 300 kHz	Sweep 3	Stop 21.000 GHz 384 ms (40001 pts)	CF Ster 400.000000 MH
TRC SCL	× 20.703 7 GHz	-50.43 dBm	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Mar
					Freq Offse 0 H
	Ref 20.0	RF SD 2 AC Preq 19.00000000 GHz PN0: Fast C IFGain:Low Ref 20.00 dBm IFGain:Low IFGain:Low 000 GHz IFGain:Low IFGain:Low 000 GHz IFGain:Low IFGain:Low IFGain:Low IFGain:Low IFGain:Low	Ref 20.00 dBm Freq Sense:INT Ref 20.00 dBm Trig: Free Run #Atten: 30 dB Ref 20.00 dBm Image: Sense:Int Image: Sense:Int Image: Sense:Int 000 GHz Image: Sense:Int Image: Sense:Int Image: Sense:Int Image: Sense:Int Image: Sense:Int 000 GHz Image: Sense:Int Image: Se	Trink analyzer - Swep 15A RF 50 @ AC SENSE::NT ALIGNAUTO Freq 19.000000000 GHz Avg Type::Log-Pwr PN0: Fast Trig: Free Run Mkr Ref 20.00 dBm Mkr OUD GHZ 000 GHz WBW 300 kHz Sweep 3 TRES SCL X Y EUNCTION FUNCTION WIDTH f 20.703 7 GHz SO 2. 43 dBm	Trig: Free Run PN0: Fast Trig: Free Run PN0: Fast Trig: Free Run Atten: 30 dB Mkr1 20.703 7 GHz -50.43 dBm -50.43 dBm Iteration -50.43 dBm -16.78 dBm -50.43 dBm -16.78 dBm -50.43 dBm -16.78 dBm -50.43 dBm -176.78 dBm -76.78 dBm -176.78 dBm -76.78 dBm -176.78 dBm -76.78 dBm -176.78 dBm -76.73 7 GHz -176.78 dBm -50.43 dBm -176.78 dBm -50.43 dBm

		- 1						ept SA	llyzer - Sw	JM Ana	Spectru	gilen
Frequency	RACE 1 2 3 4 5 6	TI	ype: Log-Pwr	A	SENSE(INT)		GHz	000000	23.000	ea 2	er Fr	en
Lasar	DET P N N N N N				ree Run n: 30 dB	Trig: Fr #Atten:	PNO: Fast Gain:Low	F				
Auto Tune	02 4 GHz 7.69 dBm	1 24.6 -47	Mkr					dBm	20.00	Ref	/div	0 dE
Center Fred		2		1	<u></u>			1	1.1.1			og 10.0
23.000000000 GHz	-		_	-						-	_	0.00
	-18.78 dBm							_	-			0.0
Start Freq												20.0 20.0
21.00000000 GHz	1											10.0
				a				-				i0.0
25.00000000 GHz												50.0 70.0
	1.000											0.0
CF Step	25.000 GHz (40001 pts)	Stop 3 884 ms	Sweep 3		Hz	V 300 KH	#VBV		HZ KHZ	00 GI 100 k	21.00 BW 1	tar Res
Auto Man	TION VALUE	FUNC	FUNCTION WIDTH	FUNCTIO		Y 47.60		X 24.605		C SCL	ODE TRO	
a total and				_	авт	-41.09	24 GHZ	24.002		T		2
Freq Offsel											-	4
0 112												6
	1											8
												0
					1							2
			STATUS									G

-			ALICALALITO		CENICE/INIT	1 0		AC	50.0	DC	1	R		
Frequency	CE 123456	TRA	pe: Log-Pwr	Ava T	SERVERING		17	OOO MI	15 000	rog 5	tor F	on		
LEAD	PE MWWWWW DET P N N N N N	TY D			ree Run :: 30 dB	Trig: Fr #Atten:	PNO: Fast 😱 FGain:Low	1	15.000	ieq J		Jen		
Auto Tune	572 MHz 34 dBm	1 833.5 -59.	Mkr					div Ref 20.00 dBm						
Center Fred		1 may 1 million			<u></u>	2			(* * Y			.og 10.0		
515.000000 MHz												0.00		
	-19.15 dBm											-10.0 -20.0		
Start Freq					-					_	-	-30.0		
30.000000 MH2					-					-	-	40.0		
Stop Fred	1	● ¹									14	-50.0		
1.000000000 GHz	and the providence of the prov		and other trapped problem in	- iniversion		and a Konstand for		ill a			senters on	-60.0		
CF Step	0000 GHz 0001 pts)	Stop 1. .3 ms (4	Sweep 93	1	Hz	300 kH	#VBW		Hz	0 MHz 100 k	t 30.0 s BW	Star #Re:		
97.000000 MHz <u>Auto</u> Man	ION VALUE	FUNCTI	FUNCTION WIDTH	NCTION		Y		X		RC SCL	MODE	MKR		
		_		-	dBm	-59.34	72 MHz	833.5		f	N	2		
Freq Offset											-	3		
0112												6		
												8		
												10 11		
		_				_		_	_			12		

Channel 06 (2437MHz)

Frequency		-	ALIGNAUTO		VSE:INT	SE	_	-	AC	50 S	RF		RL
requercy	RACE 1 2 3 4 5 6 TYPE M WWWWWW	TRA T	e: Log-Pwr	Avg Ty	Run	Trig: Free	-	Z	00000 GI	.0000	eq 3	er F	ente
A	DET P N N N N N	12		1	dB	#Atten: 30	N	Gain:Lov	IF		-		
Auto Tune	40 8 GHz 2.01 dBm	1 2.44	Mkr						dBm	20.00	Ref	div	dB/
A	-		1	1.00	6 (C-		1	1 I.				
3 00000000 CH												_	- nn
5.000000000 611												-	0.0 -
	-19.15 dBm	_	·				1	1.1.1			-	_	0.0 =
Start Free											-		0.0 -
1.000000000 GH:										_		_	J.0 -
									-			_	
Stop Free	and a state of the state		www. It the supply to	and the second	with the state	and the part of the state of the	-	- and	A Course Stevensor	And to Result		. Filmelia	j.0
5.000000000 GH		and the second				a to a function							2.0
CF Step	5.000 GHz	Stop	Sweep 38			300 kHz	/BW	#V		z Hz	0 GH	1.00 BW	tart Res
400.000000 MH: Auto Mar					Elini	Y			×				
					Зm	-2.01 dl		8 GHz	2.440		f	1	1 1
Fred Offse													3
0 Ha				14	-			-		-		-	4 5
5-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		_										-	6
								-1				1	B
			-										9
				-						-		+	1
			CTATIO	- 1	- U								

						/ept SA	lyzer - Sw	rum Ana	nt Spect	gilen
Frequency	TRACE 1 2 3 4 5 6	pe: Log-Pwr	Avg 1	SENSEAN	Hz	00000 GI	7.00000	rea 7	ter F	Cen
1	DET P N N N N N			⁴ Trig: Free Run #Atten: 30 dB	PNO: Fast Ģ "Gain:Low	P		-		
Auto Tune	6.193 7 GHz -56.03 dBm	Mkr1				dBm	20.00	Ref	B/div	10 dE
Center Fred			1		12 - 2	1 - 1			11.2	. og 10.0
7.000000000 GHz			-					_		0.00
	-19.15 dBm		-						1	10.0
Start Free					1			_		20.0 30.0
5.00000000 GHz									1	40.0
		0.00			♦ ¹ —			_	1.10	50.0
9.000000000 GHz	and the set of second									60.0 70.0
										0.0
CF Step	ms (40001 pts)	Sweep 384		300 kHz	#VBW	1	kHz	100 GH	s BW	Re
Auto Man	FUNCTION VALUE	FUNCTION WIDTH	FUNCTION	56.03 dBm	37 CHz	× 6 193		RC SCL	MODE T	MKR I
				-00.05 dBill		0.130				2
Freq Offset			1							4
									-	6
										8
										10 11
									-	12

RL		RF	50 Ω /	AC		SEN	VSE:INT	1	ALIGNAUTO		1	
enter	r Fre	q 11.00	0000	0000 G	Hz	Tria: Free	Run	Avg T	ype: Log-Pwr	TRA TY	CE 1 2 3 4 5 6 PE MWWWWW	Frequency
				IFC	NU: Fast 🕞 Gain:Low	#Atten: 30	dB			C	ETPNNNNN	1.5.5.5.
0 dB/di	iv I	Ref 20.0)0 dB	m	6.5				Mkr	1 12.90 -53.	2 0 GHz 81 dBm	Auto Tune
og		1			h - 16	1	-	-		1	1.2 5.54	
10.0									-	-		Center Fre
1.00					11 2 23							11.000000000 GH
0.0							-		-		-19.15 dBm	
20.0					1							Start Fre
30.0		-						-	-			9.000000000 GH
0.0											A1	1
0.0				A AND	al and the second			1	and an and a lost	the second states and	The second second second	
0.0	1 A											Stop Fre
0.0	-											13.00000000 GH
tart 9	.000	GHz			41/014	200 -			Ouroan A	Stop 13	.000 GHz	CF Ster
Res D	944 II		_		#VDV	300 KHZ			sweep .	384 IIIS (4	0001 pts)	400.000000 MH
KR MOD	ETRC	f		12 902	0 GHz	-53.81 dF	3m	INCTION	FUNCTION WIDTH	FUNCTI	ON VALUE	<u>Auto</u> Ma
2	-			12.002		-00.01 01	200	-				
4							1					Freq Offse
5									-			0 H
7												-
8	-			_			-	-	-	-		1.1.1
0												
2							1					
c.									STATUS	6		
Frequency	E122456	TRA	me: Log-Pwr	Ava T	SEGNI			AL DODOO C	5 000	RF	Ere	tor
-------------------------------	-----------------------	---------------------	----------------	---------	-----------	------------------------------	---	---	---------------	------	-------------	--------------
		TY D	Pec. Log I Al		Run dB	Trig: Free F #Atten: 30 d	NO: Fast 🕞 Gain:Low	P IF	5.000	eq i	FIE	ler
Auto Tur	1 2 GHz 36 dBm	16.89 -50.	Mkr1					dBm	20.00	Ref	v	3/div
Center Fre 15.000000000 GF					-							
	-19.15 dBm											-
Start Fre 13.000000000 GF												
Stop Fre		ana a and	-				a tempo de trabajo de la composición de	alar faillean an a	in the second	100	davat	motika
17.000000000 GH												
CF Ste	.000 GHz 0001 pts)	Stop 17 34 ms (4	Sweep 3			300 kHz	#VBW		Hz (Hz	0 GI	3.00 W 1	t 13 s B\
<u>Auto</u> Ma	ON VALUE	FUNCTI	FUNCTION WIDTH	INCTION	m	-50.36 dBr	2 GHz	× 16.891		f	TRC	MODE
Freq Offs 0 H												
		_			-						-	

Agilent Spectrum A	nalyzer - Swept SA							
Center Freq	F 50 Ω AC	00 GHz	SENSE:INT	Avg	ALIGNAUTO Type: Log-Pwr	TRACE	123456	Frequency
1		PNO: Fast G	Trig: Free Run #Atten: 30 dB			TYPE DE1		T State
10 dB/div Re	ef 20.00 dBm				Mkr	1 18.199 -50.0	1 GHz 6 dBm	Auto Tune
10,0		- Ch - 1		1	2	1	1000	Center Fred
0.00				-		-		19.00000000 GHz
-10.0					-		-19.15 dBm	
-20.0	·				-			Start Freq
-40.0		1		_	_			17.000000000 GHz
-50.0	a destruction state and	aster the design of the second second	electra a secondaria de la contracta de la cont	TOWNS, MADE OF	and the second			
-60.0				Water and the second se				21.000000000 GHz
Start 17.000	GHz					Stop 21.	000 GHz	05.01
#Res BW 100) kHz	#VBV	V 300 kHz		Sweep 3	84 ms (40	0001 pts)	400.000000 MHz
MKR MODE TRC SC	18 X	8.199 1 GHz	-50.06 dBm	FUNCTION	FUNCTION WIDTH	FUNCTION	VALUE	<u>Auto</u> Man
2 3								Freg Offse
5					-			0 Hz
7								
9					-			
11 12							1	
MSG			-		STATUS			

Agile	nt Spe	ectru	m Ana	lyzer - Swe	pt SA								
Cer	nter	Fre	RF eq 2	50 Ω 23.0000	AC 00000	GHz	SE Tria: Fre		Avg	ALIGNAUTO Type: Log-Pwr	06:25:07 F TRA TY	PM May 30, 2013 CE 1 2 3 4 5 6 PE M 4444444	Frequency
					3	PNO: Fast (IFGain:Low	#Atten: 3	0 dB		Mkr	1 23.88	20 GHz	Auto Tune
10 0	B/div	v	Ref	20.00 d	IBm		-		1		-46.	72 dBm	
10,0 0,00	1												Center Freq 23.000000000 GHz
-10.0												-19.15 dBm	
-30.0										1			Start Freq 21.000000000 GHz
-50.0	-	- den				and the second second		Second for the			and the second		
-60.0 -70.0													Stop Freq 25.000000000 GHz
Sta #Re	rt 21 es Bi	1.00 W 1	0 G	Hz kHz		#VB	W 300 kHz			Sweep :	Stop 2: 384 ms (4	5.000 GHz 10001 pts)	CF Step
MKR	MODE	TRO	SCL f		23.99	20.647	Y 46.72 d	Bm	INCTION	FUNCTION WIDTH	FUNCT	ON VALUE	<u>Auto</u> Man
23450	- 19				20.00		40.72 G						Freq Offset 0 Hz
6 7 8 9													
10 11 12													
MSG										STATU	s		

		CNAUTO	1	NICEANT	L cra		ipt SA	yzer - Swi	um Ana	t Spectr	giler
Frequency	TRACE 1 2 3 4 5 6	og-Pwr	Avg Type:	NOEANI			000 MH	15.000	req 5	ter Fi	Cen
18557	DET P N N N N N			e Run 0 dB	^J Trig: Free #Atten: 30	NO: Fast 😱 Gain:Low	P		-		
Auto Tune	7.465 MHz 58.98 dBm	Mkr1 8					lBm	20.00	Ref	3/div	10 dl
		1.0	-	19 F	1	200	1				Log
515.000000 MHz										1	0.00
-	-19.42 dBm									1	-10.0
Start Freq				1.1.1.1	1.11	11	1			12.2	-30.0
30.000000 MHz						1			1	12	-40.0
	A1					_		_	-		-50.0
Stop Freq			-	the second s	(- ST PROPERTY	In all the state of the	col tilen	al and an App	-60.0
1.000000000 GHz							0.00		of-an estim		-70.0
CF Step	o 1.0000 GHz s (40001 pts)	S1 veep 93.3	s		300 kHz	#VBW		Hz	MHz 100 k	t 30.0 s BW	Star #Re
<u>Auto</u> Man	INCTION VALUE	ION WIDTH	CTION CTION FUNC	Bm	58 98 dE	5 MHz	X 877.46		C SCL	MODE TF	MKR
and the second second				BIII	-00.50 GL	V MIL 12	011.45				2
Freq Offset	11		- 14								4
0 Hz											6
				1							7
		-									9
		-							-		11
		STATUS							-		MSG

Channel 11 (2462MHz)

Frequency	-	0	ALIGNAUTO		NSE:INT	SE	_		2 AC	50 \$	RF		L
Frequency	TRACE 123456 TYPE MWWWWW	r	ype: Log-Pwr	Avg	e Run	Trig: Free	(7)		00000 G	.0000	q 3	Fre	ter
A	DET PNNNNN	1.1.1			0 dB	#Atten: 30	-	Gain:Low	Ű				_
Auto Tune	.460 7 GHz -0.49 dBm	lkr1 2	M						dBm	20.00	Ref	v	B/div
		1		1		100			· · · · · ·	0.11		-	
Center Free													
3.00000000 GH.				-			6		115 53				
-	-19.42 dBm			÷					1.1			_	-
Start Free									11.11.1				
1.00000000 GH			21						11:				
Stop Free	a - and the second second second	-	and the state of			ol adauto	1.		All south and the second second	i the same of state of the		T also a	
5.00000000 GH		distriction and	1990 - 1990			College and	-			49-14-27-14 (MAR)			
CF Step	op 5.000 GHz is (40001 pts)	St 384 r	Sweep			300 kHz	вw	#VI		z KHz	GH: 00 k	000 W 1	t 1.0 s Bl
400.000000 MH Auto Mar	UNCTION VALUE		FUNCTION WIDTH	UNCTION		Y			X		SCL	TRC	MODE
		-			Bm	-0.49 d		7 GHz	2.460		f	1	N
Freq Offse													_
0 H				_									
						_							
												-	-
		_											
												1	
		115	STATU								-		

- Proteins and a		-	ALIGNAUTO	1	EINT	SENSE:			AC	50 Ω	RF		L	R
Frequency	ACE 123456	TRA	e: Log-Pwr	Avg 1	un	n: Free Ru		Hz	00000	.00000	q 7	Fre	nter	en
	DET PNNNNN	D			в	ten: 30 dE	*	PNU: Fast C FGain:Low						
Auto Tun	0 9 GHz .30 dBm	1 7.37 -56.	Mkr			2.0			dBm	20.00	Ref		B/div	0 d
								· · · · ·	1					0g
Zenter Fre	1		1										1	10.0 1 NN
7.0000000000									11.					0.0
1.0.0.1	-19.42 dBm						_					_	-	20.0
Start Fre	12				_				11.11	1			2	30.0
5.00000000 GH					_	_				_			1	40.0
				1	_	-								5Ö.O
Stop Fre	a second second		all and the second	A conservation of	- he start	- 10 P 10	-			e andara a		100 P 11 P		50.0
9.000000000 GH		ded)					-			in a second			-	70.0
CF Ste	9.000 GHz 40001 pts)	Stop 9 4 ms (4	Sweep 38			kHz	W 3	#VB		z Hz	GH2 00 k	000 W 1	t 5. s Bi	itar Re
Auto Ma	ION VALUE	FUNCTI	UNCTION WIDTH	ICTION	FL	30 dBm			×		SCL	TRC	MODE	IKR
				-				03 0112	1.91			-	19	2
Freq Offse					-									3
0 H					-		_				_		_	5
					-									7
					-									9
														10
					+		_				-	-		

Agilent Spe	ectrum An	alyzer - Sw	ept SA								
Center	Freq	50 G	AC 000000 G	Hz	SEN	ISE:INT	Avg	ALIGNAUTO	TRA	CE 1 2 3 4 5 6	Frequency
	-		PN IFG	i0: Fast () iain:Low	#Atten: 30	dB		-	D	ETPNNNNN	Auto Tuno
10 dB/div	v Re	f 20.00	dBm					Mkr	1 12.84 -52.	8 0 GHz 83 dBm	Auto Tulle
10,0		41.7.8.8		1	9	-	-		1	1.2.5.4	Center Fred
0.00											11.000000000 GHz
-10.0						-				-19.42 dBm	-
-30.0			1.221							2	Start Fred
-40.0										A1	9.00000000 GH2
-50.0			بشار بيسترين	vent-files more	A. Stanson		, and the second	do a sta same	- data and a 184		Ston Free
-70.0	·	and the second		Course Courself and	the floor part of particular of	n - Charlestan		and the second	11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1		13.000000000 GHz
Start 9. #Res B	000 GI W 100	lz kHz		#VBV	V 300 kHz	-		Sweep 3	Stop 13 384 ms (4	.000 GHz 0001 pts)	CF Step
MKR MODE			×	CH4	52.93 dE	FL	INCTION	FUNCTION WIDTH	FUNCTI	ON VALUE	<u>Auto</u> Mar
2			12.040 (-02.00 UL	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
4											Freq Oπsei 0 Hz
6						-					
9								-			
11						-		-	-		
MSG								STATUS			0

Frequency	779 4 05 1	GNAUTO	ALIO	-	ENSE:INT	S	-	IC	50 Ω	RF		L
	TYPE MWWWAMAA DET P N N N N N	og-Pwr	g Type: Lo	A	ee Run	Trig: Fre	Z Fast G	DOOD GH	0000	15.0	Free	nter
Auto Tun	6.975 6 GHz	Mkr1 1			30 dB	#Atten: 3	n:Low	IFGa				ate
	-50.75 UBII	-	-	-		_	-	m	00 dE	ef 20	/ F	Bidi
Center Fre 15.00000000 GH												
	-19.42 dBm											
Start Fre 13.000000000 GH												1
Oton Ero	of the second second second	Wagin-scrawing amous	man and some	aan ar		ana da se al para	Ar Is A reason	the long on the				
17.000000000 GH											b	1.10-1
CF Ste	op 17.000 GHz ms (40001 pts)	St veep 384	Sw		z	300 kHz	#VBV			GHz 0 kHz	3.000 W 10	nt 1: s B
Auto Ma	FUNCTION VALUE	DN WIDTH		FUNCTION	dBm	-50.73 d	Hz	× 16.975 6		f	TRC	MODE
Freq Offse 0 H												
								_				

Agilent Spe	ectrum Ar	nalyzer - Swe	ept SA								
RL	RI	50 Ω	AC		SENS	BEINT	August Trees	ALIGNAUTO	TDAC		Frequency
Center	Freq	19.0000	P00000 C	SHZ NO: Fast G	Trig: Free	Run	Avgiyp	e: Log-Pwr	TYP		
			IF	Gain:Low	#Atten: 30	dB	_			the internation	Auto Tupe
10 dB/di	v Re	f 20.00 c	dBm					Mkr	1 20.628 -49.4	9 GHz 14 dBm	
Log		11.77.27	11 11	1.1	C	6	1.00	1.0	1	1.0.00	1
10.0		1								1	Center Freq
0.00			11	11 2 2						1	19.000000000 GHz
-10.0		1.1							-	-19.42 dBm	
-20.0		10.000	11000	10.000				1	1	100000	Start Freq
-30.0										1	17.000000000 GHz
-40.0							-			1	201011112
-50.0	-	and the second	an a company	the second second second	- Marine roll, inc., sparing	- Inthe real	a contraction of the		Alexandre State	deline Specification	
-60.0	The last second	a se data series de la constante de la constant				And strengthered in the second		- (and a second		Stop Freq
-70.0	-			-							21.000000000 GHz
Start 1	7.000 0	GHz	-						Stop 21	.000 GHz	CESten
#Res B	W 100	kHz		#VB	N 300 kHz			Sweep 3	84 ms (4	0001 pts)	400.000000 MHz
MKR MODE	TRC SC		X	0.011-	Y 40.44 dB	FU	NCTION FU	INCTION WIDTH	FUNCTIO	IN VALUE	<u>Auto</u> Man
2			20.625	9 GHZ	-49.44 dB	m		_			
3		-									Freq Offset
5		1									0 Hz
6		-									
8		1							-	1	
10											
11						-				1.0	
12								1545.0	-		
ASG								STATUS			

Agile	nt Spe	ctru	m Ana	yzer - Sv	wept SA									
Cer	ter	Fre	RF	3.000	2 AC	00 GH	z	S	ENSE:INT	Avg	ALIGNAUTO Type: Log-Pwr	TRA	CE 123456	Frequency
						PNO IFGa	: Fast C in:Low	Trig: Fre #Atten: 3	e Run 0 dB			TY	PE MWWWWWW ET P N N N N N	1.8557
10 d	B/div	,	Ref	20.00	dBm						Mkr	1 23.83 -47.	2 5 GHz 75 dBm	Auto Tune
10.0						_		<u></u>	-	1	1	2	1244	Center Fred
0.00	í	_	+							-		-		23.000000000 GHz
-10.0	-	-	+										-19.42 dBm	
-20.0												1	12-22	Start Freq
-30.C	17		1								1	1		21.000000000 GHz
-50.0			and a				-		-		alere Merry Maria		la alla discontration	
-60.0	-						the second second		10101-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0				1 (area)	Stop Freq
-70.0	-		-							-				25.000000000 GHz
Sta #Re	rt 21 Is B	1.00 W 1	0 GI 00 k	lz Hz			#VB	AV 300 KHz			Sweep	Stop 25 384 ms (4	5.000 GHz 0001 pts)	CF Step
MKR	MODE	TRC	SCL		× 23	832.5	GHz	¥ -47.75 c	Bm	FUNCTION	FUNCTION WIDTH	FUNCTI	ON VALUE	Auto Man
2							0112	41.100						
4	-										1			Freq Offset
6		_												0112
8	-													
10														
11 12							-					-		
MSG											STATU	s		

6. Band Edge

6.1. Test Equipment

RF Radiated Measurement:

The following test equipments are used during the band edge tests:

Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Site # 3		Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2012
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2012
		Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2013
	Х	Pre-Amplifier	Agilent	8447D/2944A09549	Sep., 2012
	Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2013
		Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2012
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2013
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	X	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

Note: 1. All instruments are calibrated every one year.

2. The test instruments marked by "X" are used to measure the final test results.

6.2. Test Setup

RF Radiated Measurement:

6.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

6.4. Test Procedure

The EUT was setup according to ANSI C63.10: 2009 and tested according to DTS test procedure of KDB558074 for compliance to FCC 47CFR 15.247 requirements.

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10: 2009 on radiated measurement.

6.5. Uncertainty

- ± 3.9 dB above 1GHz
- ± 3.8 dB below 1GHz

6.6. Test Result of Band Edge

Product	:	Digital Camera
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Average Limit (dBuV/m)	Result
01 (Peak)	2390.000	31.509	22.116	53.625	74.00	54.00	Pass
01 (Peak)	2413.000	31.646	62.561	94.207			Pass
01 (Average)	2390.000	31.509	10.029	41.538	74.00	54.00	Pass
01 (Average)	2411.200	31.632	58.562	90.194			Pass

Figure Channel 01:

Horizontal (Peak)

Horizontal (Average)

Note:1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Digital Camera
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

RF Radiated Measurement (Vertical):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Average Limit (dBuV/m)	Result
01 (Peak)	2390.000	30.915	22.421	53.336	74.00	54.00	Pass
01 (Peak)	2413.000	30.956	63.570	94.526			Pass
01 (Average)	2390.000	30.915	10.049	40.964	74.00	54.00	Pass
01 (Average)	2411.400	30.945	59.406	90.351			Pass

Note:1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Digital Camera
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Average Limit (dBuV/m)	Result
11 (Peak)	2461.100	32.013	61.952	93.965			Pass
11 (Peak)	2483.500	32.182	23.064	55.246	74.00	54.00	Pass
11 (Average)	2461.300	32.014	57.980	89.994			Pass
11 (Average)	2483.500	32.182	9.955	42.137	74.00	54.00	Pass

Figure Channel 11:

Horizontal (Peak)

Figure Channel 11:

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Digital Camera
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

RF Radiated Measurement (Vertical):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Average Limit (dBuV/m)	Result
11 (Peak)	2461.100	31.285	65.485	96.769			Pass
11 (Peak)	2483.500	31.435	23.002	54.437	74.00	54.00	Pass
11 (Peak)	2485.100	31.446	24.394	55.840	74.00	54.00	Pass
11 (Average)	2461.300	31.286	61.437	92.723			Pass
11 (Average)	2483.500	31.435	10.072	41.507	74.00	54.00	Pass

Figure Channel 11:

Vertical (Average)

Note: 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Digital Camera
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Average Limit (dBuV/m)	Result
01 (Peak)	2390.000	31.509	26.000	57.509	74.00	54.00	Pass
01 (Peak)	2411.800	31.636	63.535	95.172			Pass
01(Average)	2390.000	31.509	11.453	42.962	74.00	54.00	Pass
01(Average)	2412.800	31.645	49.288	80.932			Pass

Horizontal (Average)

Note:1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Digital Camera
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)

RF Radiated Measurement (Vertical):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Average Limit (dBuV/m)	Result
01 (Peak)	2390.000	30.915	35.097	66.012	74.00	54.00	Pass
01 (Peak)	2412.000	30.950	66.285	97.234			Pass
01 (Average)	2390.000	30.915	14.506	45.421	74.00	54.00	Pass
01 (Average)	2411.200	30.944	51.557	82.501			Pass

Note:1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Digital Camera
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Average Limit (dBuV/m)	Result
11 (Peak)	2461.700	32.017	65.188	97.205			Pass
11 (Peak)	2483.500	32.182	25.133	57.315	74.00	54.00	Pass
11 (Average)	2461.100	32.013	50.507	82.520			Pass
11 (Average)	2483.500	32.182	11.440	43.622	74.00	54.00	Pass

Note: 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Digital Camera
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)

RF Radiated Measurement (Vertical):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Average Limit (dBuV/m)	Result
11 (Peak)	2461.900	31.289	68.165	99.455			Pass
11 (Peak)	2483.500	31.435	28.197	59.632	74.00	54.00	Pass
11 (Average)	2461.300	31.286	53.505	84.791			Pass
11 (Average)	2483.500	31.435	11.978	43.413	74.00	54.00	Pass

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Digital Camera
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHZ)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
01 (Peak)	2389.000	31.505	24.871	56.376	74.00	54.00	Pass
01 (Peak)	2390.000	31.509	23.683	55.192	74.00	54.00	Pass
01 (Peak)	2411.000	31.630	60.474	92.104			Pass
01 (Average)	2390.000	31.509	10.643	42.152	74.00	54.00	Pass
01 (Average)	2411.200	31.632	47.338	78.970			Pass

Figure Channel 01:

Horizontal (Peak)

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Digital Camera
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)

RF Radiated Measurement (Vertical):

Channal No	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Pacult
Channel NO.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
01 (Peak)	2390.000	30.915	24.941	55.856	74.00	54.00	Pass
01 (Peak)	2412.400	30.952	62.842	93.794			Pass
01 (Average)	2390.000	30.915	11.143	42.058	74.00	54.00	Pass
01 (Average)	2411.000	30.942	49.259	80.201			Pass

Figure Channel 01:

Vertical (Peak)

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto. 2.
- Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto. 3.
- "*", means this data is the worst emission level. 4.
- 5. Measurement Level = Reading Level + Correct Factor.
- The average measurement was not performed when the peak measured data under the limit of average 6. detection.

Product	:	Digital Camera
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Average Limit (dBuV/m)	Result
11 (Peak)	2462.100	32.020	60.727	92.747			Pass
11 (Peak)	2483.500	32.182	23.547	55.729	74.00	54.00	Pass
11 (Average)	2461.100	32.013	47.725	79.738			Pass
11 (Average)	2483.500	32.182	10.389	42.571	74.00	54.00	Pass

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Digital Camera
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)

RF Radiated Measurement (Vertical):

Channel No	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Recult
Channel NO.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
11 (Peak)	2462.100	31.291	64.986	96.277			Pass
11 (Peak)	2483.500	31.435	23.241	54.676	74.00	54.00	Pass
11 (Average)	2461.100	31.285	51.160	82.444			Pass
11 (Average)	2483.500	31.435	11.115	42.550	74.00	54.00	Pass

Figure Channel 11:

Vertical (Peak)

Figure Channel 11:

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

7. Occupied Bandwidth

7.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2013
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2013
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2013

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

7.2. Test Setup

7.3. Limits

The minimum bandwidth shall be at least 500 kHz.

7.4. Test Procedure

The EUT was setup according to ANSI C63.10: 2009; tested according to DTS test procedure of KDB558074 for compliance to FCC 47CFR 15.247 requirements.

7.5. Uncertainty

 \pm 150Hz

7.6. Test Result of Occupied Bandwidth

Product	:	Digital Camera
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2412MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
1	2412	8200	>500	Pass

Figure Channel 1:

RL		R	P 50 S	AC AC		SE	NSE:INT		ALIGN AUTO	1		Frequency
Cente	r F	req	2.4120	00000 GH	z	Tria: Ero	Due	Avg Ty	pe: Log-Pwr	TRA	CE 123456	Frequency
				PI IFC	NO: Fast 🕒 Gain:Low	#Atten: 3) dB	- 1		E	ET P NNNNN	
10 dB/d	liv	Re	ef 20.00	dBm					Mkr	2 2.407 -2.	90 GHz 68 dBm	
10.0				1.000	·		∆1	-				Contor From
0.00						2 and MIM	marian				-0.82 dBm	2 412000000 GH:
-10.0					A.	hours		P4				2.412000000 611
-20.0		_			MA			* M				
-30.0					and the second s	-		1		_		Start Free
-40.0			Press Pres	paraments	A.W.				MAN AND PALA	nn=t		2.387000000 GH:
-50.0	.No. t	- stille	Manhour	a star					M.	" Jun was	nat.	
-60.0	1.40	44	_			-		_			1- marchant and hard	Stop Free
-70.0	-	-				-		-	-			2.437000000 GH
Cente	r 2.	412	00 GHz		1.5.5		-			Span :	50.00 MHz	05.04
#Res E	BW	100	kHz	_	#VBV	V 300 kHz			Sweep	4.80 ms	(1001 pts)	5.00000 MHz
MKR MOD	DET	RC SC	4	×		Y	FU	NCTION	UNCTION WIDTH	FUNCT	ON VALUE	<u>Auto</u> Mar
1 N 2 N		l f		2.412 5	0 GHz 0 GHz	-2.68 d	Bm Bm					/ +
3 N		1 f		2.416 1	0 GHz	-2.49 d	Bm					Freq Offse
5	1											0 H:
6												
8	-				_		_			-		
10												
11	-		1					1		-		
ISG									STATUS			

Product	:	Digital Camera
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
6	2437	8150	>500	Pass

Figure Channel 6:

Agilent Spectru	m Analyzer - Swept SA							
Center Fre	RF 50 Ω AC eq 2.437000000	GHz	SENSE:IN	Avg	ALIGNAUTO	TRA	CE 1 2 3 4 5 6	Frequency
	Pof 20.00 dPm	PNO: Fast IFGain:Low	#Atten: 30 dB		Mkr	¤ 2 2.432 -1	95 GHz	Auto Tune
10.08/01V 10.0 0.00			2 1 Maria Maria	Jan Ja			-0.51 dBm	Center Fred 2.437000000 GH:
-20.0 -30.0 -40.0	un Juonking	Demander		V May	My month	ber an		Start Fred 2.412000000 GH:
-50.0	and the start of the					- V - V-re	She man man	Stop Free 2.462000000 GH:
Center 2.4 #Res BW 1	3700 GHz 00 kHz	#VBV	V 300 kHz		Sweep	Span 5 4.80 ms (0.00 MHz (1001 pts)	CF Step 5.000000 MH
MKR MODE TRO	50L X f 2.43	36 50 GHz	5.49 dBm	FUNCTION	FUNCTION WIDTH	FUNCTI	ON VALUE	<u>Auto</u> Mar
3 N 1 4 5 6 7 8 9	f 2.44	11 10 GHz	-2.02 dBm					Freq Offse 0 H;
11 12					CTATIO			

Product	:	Digital Camera
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2462MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
11	2462	8150	>500	Pass

Figure Channel 11:

				1	ice av inf	ern		pt SA	yzer - Swe	m Anal	pectru	nt Sp	giler
Frequency Auto Tune Center Frec 2.45200000 GHz Start Frec 2.437000000 GHz Stop Frec 2.48700000 GHz 5.000000 GHz 6.00000 MHz 5.000000 MHz Auto Mar	ACE 1 2 3 4 5 6		Log-Pwr	Avg Type	Run	Trig: Free	Z IO: Fast 😱	0000 GH	46200	eq 2.	r Fre	nter	Cer
	IFGain:Low #Atten: 30 dB Mkr2 2.457 95 GHz 0 dB/div Ref 20.00 dBm -1.87 dBm												
Center Fre 2.462000000 GH	-0.52 dBm				Mun	2 augunt							. og 10.0 0.00
Start Fre 2.437000000 GH				Mar Nav			and the second second						10.0 20.0 30.0 40.0
Stop Fre 2.487000000 GH	to we - month of	Ne Jun	M. Maria					and and M	and the) ,	50.0 30.0 70.0
CF Ste	50.00 MHz (1001 pts)	Spa 4.80 m	Sweep			300 kHz	#VBW		GHz Hz	6200 100 k	r 2.4 3W 1	nter es B	er
Start Fre 2.437000000 GH Stop Fre 2.487000000 GH 5.000000 MH Auto Ma Freq Offse 0 H	TION VALUE	FU	CTION WIDTH	CTION FU	3m	5.48 dE) GHz	× 2.462.50		f		MODE	KE 1
Freq Offse 0 H					3m	-1.97 di	GHz	2.466 10		f	1	N	3456
													7 9 10 11
			CTATIO						_		1	-	12

Product	:	Digital Camera
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2412MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
1	2412	15200	>500	Pass

Figure Channel 1:

	F	11	ALIGNALITO	1	NCENNT	QE.	1	AF	50.0	DE.		RI
Frequency	RACE 1 2 3 4 5 6 TYPE MWMMMM		: Log-Pwr	Avg Type	Run	Trig: Free	Z 0: Fast 😱	0000 GH	2.4120	eq 2	er Fro	nte
Frequency Auto Tune Center Freq 2.412000000 GH Start Freq 2.387000000 GH Stop Freq 2.437000000 GH Stop Freq 2.437000000 GH Stop Freq 2.437000000 GH Stop Freq 2.437000000 GH Freq Offseq 0 H	4 40 GHz 3.89 dBm	2 2.4	Mkr) ab	#Atten: 30	ain:Low	IFG	20.00	Ref	div	dB/c
Center Free 2.412000000 GH	-2.83 dBm			A 3	Al molecule	-Simology flow	2 dest					
Start Free 2.387000000 GH	Magueriero	Maringo	mathdam-AlWey	1			/	John and a state	with the second s	marri	1000 March	
Stop Fre 2.437000000 GH												0 0 0
CF Ste	50.00 MHz s (1001 pts)	Spa 4.80 r	Sweep 4			300 kHz	#VBW		0 GHz kHz	1200 100	er 2.4 BW 1	nte es l
Auto Ma	CTION VALUE	FERRE FL	ICTION WIDTH	NCTION	Bm	Y 3.17 di	GHz	× 2.413 30		f		MOI
Freq Offse 0 H					Bm	-3.18 d	GHZ	2.404 40		f	1	N
10												
					1					+ +	-	

Product	:	Digital Camera
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
6	2437	15200	>500	Pass

Figure Channel 6:

Executional	Contraction (ALIGNAUTO		ENSE:INT	5		AC	Ρ 50 Ω	R	Ľ,
Frequency	123456 MWWWWW PNNNNN	TRACE TYPI	: Log-Pwr	Avg Type	e Run	Trig: Fre	iz 10: Fast G	0000 GH	2.43700	Freq	ter
Auto Tune		DL			30 dB	#Atten: 3	Gain:Low	IFG			
riato Fallo	6 dBm	2.429	MKr2					IBm	f 20.00 d	v Re	B/div
A					A1	9	1	1			
2 437000000 GHz	-3.35 (Bro			3	IV.		▲2		1.1.1		1.
2.407000000 0112	0.00 0.01			- And - Ang		and a substance of	Harris				
Otomb Frank				1	-	-	1		_	_	-
2 412000000 GHz		Terrer	Man Muma	N.	-	-	-	Jud har yhour	and a	-	-
2.4 12000000 0112	Planancenter	VIVIL-VIL-Month			-				of and some fill water	Nanahyrat	aller
Oton From	- House										
2.462000000 GHz											
CF Step	0.00 MHz	Span 50 .80 ms (1	Sweep 4	-	2	W 300 kHz	#VBI		00 GHz kHz	2.437 W 100	ter : s Bl
		CALC INCOMING	11 11 1 0 D	and the second se	E COLORE	Y		×		TRC SC	MODE
5.000000 MHz Auto Man	VALUE	FUNCTIO	ICTION WIDTH	NCTION FUI						1 6	NL
5.000000 MHz <u>Auto</u> Man	NVALUE	FUNCTIO	NCTION WIDTH	NCTION	iBm iBm	2.65 0	5 GHz	2.438 2	-	1 6	N
5.000000 MHz Auto Man Freq Offset	N VALUE	FUNCTIO	NCTION WIDTH	NCTION	1Bm 1Bm 1Bm	2.65 c -5.26 c -4.06 c	5 GHz 0 GHz 0 GHz	2.438 20 2.429 40 2.444 60		1 f 1 f	N N
5.000000 MHz Auto Man Freq Offset 0 Hz	VALUE	FUNCTIO	NCTION WIDTH		1Bm 1Bm 1Bm	2.65 c -5.26 c -4.06 c	5 GHz 0 GHz 0 GHz	2,438 25 2,429 40 2,444 60		1 f	NN
5.000000 MHz Auto Man Freq Offset 0 Hz	N VALUE	FUNCTIO	NCTION WIDTH		1Bm 1Bm 1Bm	2.65 c -5.26 c -4.06 c	5 GHz 0 GHz 0 GHz	2.438 2 2.429 40 2.444 60		1 f 1 f	N N
5.000000 MHz <u>Auto</u> Man Freq Offset 0 Hz	N VALUE	FUNCTIO	NCTION WIDTH		IBm IBm IBm	2.65 c -5.26 c -4.06 c	5 GHz 0 GHz 0 GHz	2,438 2 2,429 40 2,444 60			
5.000000 MHz <u>Auto</u> Man Freq Offset 0 Hz		FUNCTIO	NCTION WIDTH			2.65 c -5.26 c -4.06 c	5 GHz 0 GHz 0 GHz	2.438 2 2.429 40 2.444 60			

Product	:	Digital Camera
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2462MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
11	2462	15200	>500	Pass

Figure Channel 11:

Agilent Spe	ctrum Analy	zer - Swept SA						
RL	RF	50 Ω AC	SENSE:IN	T L	ALIGNAUTO	TELAC	-	Frequency
Center	Freq 2.4	462000000 GHz PNO: Fast C IFGain:Low	Trig: Free Run #Atten: 30 dB	Avgily	pe: Log-Pwr	TYP	E 1 2 3 4 5 6 MWWWWWW T P N N N N N	requerey
10 dB/div	Ref 2	20.00 dBm			Mkr	2 2.454 -4.1	40 GHz 81 dBm	Auto Tune
10.0 0.00		2 // // //	A A	harman and			-3.47 dBm	Center Free 2.462000000 GH
-20.0	And Margal Marmarket	www.material.compatie		3	Constanting with	Americana	altern former	Start Free 2.437000000 GH:
50.0 60.0 70.0								Stop Fre 2.487000000 GH
Center : #Res Bi	2.46200 N 100 ki	GHz Iz #VB	W 300 kHz		Sweep 4	Span 5 1.80 ms (0.00 MHz 1001 pts)	CF Step
MKR MODE	TRC SOL	× 2.463 30 GHz	2.53 dBm	FUNCTION	FUNCTION WIDTH	FUNCTIO	IN VALUE	Auto Mai
2 N 3 N 4 5 6	1 f	2.454 40 GHz 2.469 60 GHz	-4.81 dBm -3.87 dBm					Freq Offse 0 H
7 8 9 10 11								
12					STATUS	-		

Product	:	Digital Camera
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2412MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
1	2412	15200	>500	Pass

Figure Channel 1:

				-			T	pt SA	alyzer - Swe	m An	Spectru	ilen
Frequency	E 1 2 3 4 5 6 E MWWWW	TRAC	LIGNAUTO	Avg Typ	Run	SEI Trig: Free	Z O: Fast (,)	AC 0000 GH	50 Ω 2.41200	eq 2	ter Fr	en
Auto Tun		DE) dB	#Atten: 30	ain:Low	IFG	• •	-		
<u></u>	40 GHZ 62 dBm	-6.6	WIKF2	_				Bm	20.00 d	Rei	div) dE
Center Fre	1.2.	1-00			<u>1</u>			1-1				og 10.0
2.412000000 GH	-4.84 dBm			- A	martinetant	- hardboord from	2 and	_	_			0.00
							1					0.0
Start Free							1	hand hand hand hand				0.0
2.387000000 GH	Matulature -	Waynapolina Viery	Mar Walth		-			AP NAMA MABILANA S.	-adjuby-graftery	- Aler	why when T	10.0
Stop Free	Suman						= :					0.0 0.0
2.437000000 GH										-	1	0.0
CF Step	0.00 MHz	Span 5	Sween 4	1		300 kHz	#VBW		0 GHz kHz	120	er 2.4	en
5.000000 MH Auto Mai					FUN	Y		×				KRI
					3m 3m	1.16 di	GHz	2.413 30		f	N 1	1
Freq Offse				1	Зm	-5.46 di	GHz	2.419 60		f	N 1	34
UH												6
		_										8
	1											0
					1						1	2

Product	:	Digital Camera
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
6	2437	15200	>500	Pass

Figure Channel 6:

RL RF 50.Ω AC		
enter Freq 2.43700000	RACE 123456 Frequency TYPE MWWWWW DET P N N N N N	TRACE 1 2 TYPE MW DET P N
dB/div Ref 20.00 dBm	9 40 GHz 6.88 dBm	2 2.429 40 -6.88 d
29 0.0 00	-5.30 dBm 2.437000000 GH	
0 0 0	Start Free 2.412000000 GH	- 24
0	2.462000000 GH	Kunika je Mana Kana Kunina kana kana kana kana kana kana kana
nter 2.43700 GHz es BW 100 kHz	n 50.00 MHz s (1001 pts) 5.000000 MH	Span 50.00 I.80 ms (100′
N 1 f 2, N 1 f 2, N 1 f 2, N 1 f 2,	Freq Offse 0 H	FUNCTION VAL
á III.		

Product	:	Digital Camera
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2462MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
11	2462	16050	>500	Pass

Figure Channel 11:

	-							ept SA	yzer - Swa	n Anal	ctr un	nt Spe	Agiler
Frequency	E 1 2 3 4 5 6 E MWWWW	TRACI	ALIGNAUTO E: Log-Pwr	Avg Type	Run	SE Tria: Free	IZ	AC 00000 GH	50 Ω .46200	RF q 2	Fre	L Iter	Cer
Auto Tune	PN0: Fast C Trig: Free Run TrycElmwwwww IFGain:Low #Atten: 30 dB Det PNNNN Mkr2 2,453 55 GHz												
	6 dBm	-6.1	WIKIZ	1			_	dBm	20.00 d	Ref	1	B/div	10 d
Center Free		-		-	01		. 2			-		-	10.0
2.462000000 GH	-5.52 dBm	-		and fry	pondbaught st	- Aughter	Paul alans						0.00
StartFree				t		-	1					-	-20.0
2.437000000 GH	Philippings	material and a	an Maryangen		_			d te milares mar	wyMr. M.M.	W	hand		-30.0
Stop Free		_							_		A Dec	Andr	-50.0
2.487000000 GH												-	-50.0
CF Ste	0.00 MHz 1001 pts)	Span 50 .80 ms (*	Sweep 4			300 kHz	#VBW	4	GHz	6200 00 k	2.46 W 1	ter: s Bl	Cen #Re
Auto Ma	N VALUE	FUNCTIO	NCTION WIDTH	CTION	i i i i i i i i i i i i i i i i i i i	Y 0.48 di	CH4	X 2 463 26		SCL	TRC	MODE	MKR
FregOffse					3m 3m 3m	-6.16 d -7.28 d	5 GHz 5 GHz 0 GHz	2.463 56		f	1	NN	2
он													4 5 6
													7
													9 10 11
						_						_	12

8. Power Density

8.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2013
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2013
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2013

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

8.2. Test Setup

8.3. Limits

The transmitted power density averaged over any 1 second interval shall not be greater +8dBm in any 3kHz bandwidth.

8.4. Test Procedure

The EUT was setup according to ANSI C63.10, 2009; tested according to DTS test procedure of KDB 558074 for compliance to FCC 47CFR 15.247 requirements. The maximum power spectral density using KDB 558074 section 10.2 PKPSD (peak PSD) method.

8.5. Uncertainty

 \pm 1.27 dB

8.6. Test Result of Power Density

Product	:	Digital Camera
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2412MHz)

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
1	2412	5.483	< 8dBm	Pass

Figure Channel 1:

Agilent Spectrum Analyzer - Swept SA				
Center Freq 2.412000000 (SHZ	ALIGNAUTO Avg Type: Log-Pwr	TRACE 123456	Frequency
10 dB/div Ref 20.00 dBm	PNO: Wide C Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Hold>100/100 Mkr1 2.4	12 516 6 GHz 5.483 dBm	Auto Tune
10.0		0		Center Freq 2.412000000 GHz
-10.0			mys	Start Freq 2.405850000 GHz
-20.0				Stop Freq 2.418150000 GHz
-40.0			-	CF Step 1.230000 MHz <u>Auto</u> Man
-60.0			-	Freq Offset 0 Hz
-70.0 Center 2.412000 GHz			span 12.30 MHz	
#Res BW 100 KHz Msg	#VBW 300 KHz	Sweep 1.2 STATUS	u ms (1001 pts)	

Product	:	Digital Camera
Test Item	:	Power Density Data
Test Site	:	No.3OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
6	2437	5.591	< 8dBm	Pass

Figure Channel 6:

SENSEINT	ALIGNAUTO		and the second second second
Tria: Free Run	Avg Type: Log-Pwr Avg Hold:>100/100	TRACE 123456 TYPE MWWWWWW	Frequency
n:Low #Atten: 30 dB	Mkr1 2	^{DET ^P NNNNN 436 511 GHz 5.591 dBm}	Auto Tune
			Center Fred 2.437000000 GH:
		han ha	Start Free 2.430887500 GH:
			Stop Free 2.443112500 GH:
			CF Step 1.222500 MH: <u>Auto</u> Mar
		-	Freq Offse 0 H
#VBW 300 kHz	Sweep 1.	Span 12.23 MHz 20 ms (1001 pts)	
	Wide Trig: Free Run #Atten: 30 dB	Wide Trig: Free Run #Atten: 30 dB Avg Type: Log-Pwr Avg Hold>100/100 Mkr1 2	Wide Trig: Free Run #Atten: 30 dB Avg Type: Log-Pwr Avg Heid> 100/100 TRACE 123456 Mkr1 2.436 511 GHz 5.591 dBm

Product	•	Digital Camera
Test Item		Power Density Data
Test Site	•	No 3 OATS
Test Mode	•	Mode 1: Transmit (802 11h 1Mhps) $(2462MHz)$
Test widde	•	(002.110 IMOps)(2402 MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
11	2462	5.503	< 8dBm	Pass

Figure Channel 11:

RL RF 50.0 AC	SENSEINT	ALIGNAUTO		
Center Freq 2.462000000 GHz		Avg Type: Log-Pwr	TRACE 123456	Frequency
PNO: Wide Constraints of the second s	#Atten: 30 dB	Mkr1 2	.462 526 GHz 5.503 dBm	Auto Tune
10.0				Center Fred 2.462000000 GH:
0.00			1 mg	Start Free 2.455887500 GH:
30.0				Stop Free 2.468112500 GH
40.0			_	CF Step 1.222500 MH <u>Auto</u> Ma
60.0				Freq Offse 0 H
Center 2.462000 GHz #Res BW 100 kHz #VBW	300 kHz	Sweep 1.	Span 12.23 MHz 20 ms (1001 pts)	
#Res BW 100 kHz #VBW	300 kHz	Sweep 1.	20 ms (1001 pts)	

Product	:	Digital Camera
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2412MHz)

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
1	2412	2.943	< 8dBm	Pass

Figure Channel 1:

Agilent Spectrum Analyzer - Swept SA					
RL RF 50Ω AC	20-2	SENSE:INT	ALIGNAUTO	TRACE	Frequency
10 dB/div Ref 20.00 dBm	PNO: Fast 😱 IFGain:Low	Trig: Free Run #Atten: 30 dB	Avg Held>100/100	2.413 277 GH 2.943 dBr	z Auto Tune
					Center Free 2.412000000 GH:
-10,0	hundun	with the second second	and man have blocked to	nmling h	Start Free 2.400600000 GH
-20.0 1				Norther Parts	Stop Free 2.423400000 GH
-40.0					CF Ste 2.280000 MH <u>Auto</u> Ma
-60.0					Freq Offse
-70.0 Center 2.41200 GHz	#\/B\A	300 kHz	Swaan	Span 22.80 MH	Z
MSG	#**D**	000 NH2	SWEED	s	2)

Product	:	Digital Camera
Test Item	:	Power Density Data
Test Site	:	No.3OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
6	2437	2.765	< 8dBm	Pass

Figure Channel 6:

RL HF 50Ω AC	SENSE:INT	ALIGNAUTO		
Center Freq 2.437000000 GHz	ast 🕞 Trig: Free Run	Avg Type: Log-Pwr Avg Hold:>100/100	TRACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency
0 d <mark>B</mark> /div Ref 20.00 dBm	Jow #Atten: 30 dB	Mkr1	2.438 277 GHz 2.765 dBm	Auto Tune
10.0	1			Center Fred 2.437000000 GH:
0.00 million throw the marked the second sec	undurdrow produ	when have brough	mlhy	Start Free 2.425600000 GH:
20.0 WPACH				Stop Free 2.448400000 GH:
40.0				CF Step 2.280000 MH <u>Auto</u> Mai
50.0				Freq Offse 0 H
Center 2.43700 GHz	#VBW 300 kHz	Sweep	Span 22.80 MHz	
Product	:	Digital Camera		
-----------	---	--		
Test Item	:	Power Density Data		
Test Site	:	No.3 OATS		
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2462MHz)		

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
11	2462	2.504	< 8dBm	Pass

Figure Channel 11:

BI BE SOO AF				
enter Freq 2.462000000 GHz	Talas Face Dam	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6	Frequency
PNO IFGai 0 dB/div Ref 20.00 dBm	:Fast C Trig: Free Run n:Low #Atten: 30 dB	Mkr1 2	.463 277 GHz 2.504 dBm	Auto Tune
10.0	↓ 1			Center Free 2.462000000 GH
0.00 10.0	at when the man from the	when the providence of the second sec	My	Start Free 2.450600000 GH
20.0 000 000 000 000 000 000 000 000 000			h h h h h h h h h h h h h h h h h h h	Stop Free 2.473400000 GH
40.0				CF Ste 2.280000 MH Auto Ma
70.0				Freq Offse 0 H
Center 2.46200 GHz Res BW 100 kHz	#VBW 300 kHz	Sweep 2.	Span 22.80 MHz 20 ms (1001 pts)	
Res BW 100 KHZ	#VBW 300 KH2	Sweep 2.	20 ms (1001 pts)	

Product	:	Digital Camera
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2412MHz)

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
1	2412	1.216	< 8dBm	Pass

Figure Channel 1:

Agilent Spectrum Analyze	r - Swept SA								
RE RF	50 Ω AC	lz	SE	NSE:INT	Avg Type	ALIGNAUTO	TRAC	E 123456	Frequency
10 dB/div Ref 20	۹ ۱۴۰ 00 dBm.	NO: Fast 😱 Gain:Low	^J Trig: Free #Atten: 30	eRun)dB	Avg Hold:	>100/100 Mkr1	2.413 2 1.2	77 GHz 16 dBm	Auto Tune
10.0			1-4	A 1					Center Free 2.412000000 GH
-10,0	nul man him him him	amana	water	porten	Marahan	Man	mulmin		Start Free 2.400600000 GH
20.0									Stop Free 2.423400000 GH
40.0 50.0								Նինդր	CF Ste 2.280000 MH <u>Auto</u> Ma
70.0									Freq Offse 0 H
Center 2.41200 G #Res BW 100 kHz	Hz	#VBW	300 kHz			Sweep	Span 2 2.20 ms (2.80 MHz 1001 pts)	
SG						STATU	S		

Product	:	Digital Camera
Test Item	:	Power Density Data
Test Site	:	No.3OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
6	2437	0.848	< 8dBm	Pass

Figure Channel 6:

	SENSERIAL		ALIGNAUTO		
GHz	Tria: Free Run	Avg Type: Avg Hold>	Log-Pwr 100/100	TRACE 1 2 3 4 5 TYPE MWWWWW	6 Frequency
IFGain:Low	#Atten: 30 dB		Mkr1 2	оет Р NNNN 438 277 GH: 0.848 dBn	Auto Tune
		1			Center Freq 2.437000000 GHz
Manan	man moral	han han have	and the second	Mony	Start Freq 2.425600000 GHz
					Stop Freq 2.448400000 GHz
				¯ ^ν γγ ₁	CF Step 2.280000 MHz <u>Auto</u> Man
					Freq Offset 0 Hz
#VBW	300 kHz		Sweep 2.3	Span 22.80 MH	z
	GHz PNO: Fast P IFGain:Low	GHZ PNO: Fast IFGain:Low #Atten: 30 dB what when the set of th	GHz Avg Type PNO: Fast Trig: Free Run IFGain:Low #Atten: 30 dB	GHz Avg Type: Log-Pwr Avg Hold>100/100 PN0: Fast IFGain:Low Trig: Free Run #Atten: 30 dB Mkr1 2.	GHz Trig: Free Run Avg Type: Log-Pwr Trig: Free Run PN0: Fast #Atten: 30 dB Mkr1 2.438 277 GH: 0.848 dBn

Product	:	Digital Camera
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2462MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
11	2462	0.580	< 8dBm	Pass

Figure Channel 11:

gilent Spectrum Ana	lyzer - Swept SA	1	I cri	ICT IN IC		ALTCALALITC			r
enter Freq 2	.462000000	GHz	Tular Face	Dum .	Avg Type	: Log-Pwr	TRA	CE 123456	Frequency
0 dB/div Ref	20.00 dBm	PNO: Fast 😱 IFGain:Low	#Atten: 30	dB	Αναμτοία.	Mkr1	2.463 2 0.5	252 GHz 80 dBm	Auto Tuno
10,0				≜ 1		-			Center Fre 2.462000000 GH
10.0	punnlinman	no Anom Incont	or a formand	mantin	humhun	Amulu	a mong		Start Fre 2.449962500 GH
20.0							L L	A A A A A A A A A A A A A A A A A A A	Stop Fre 2.474037500 GH
40.0								*brywyw	CF Ste 2.407500 MH Auto Ma
				-					Freq Offse 0 H
Center 2.46200 Res BW 100 k	GHz	#VBW	300 kHz			Sweep	Span 2 2.33 ms	4.08 MHz (1001 pts)	
sg						STATU	s		

9. EMI Reduction Method During Compliance Testing

No modification was made during testing.