

Prüfbericht-Nr.: Test Report No.:	19022705C.r01	Auftrags-Nr.: Order No.:	89003402	Seite 1 von 29 Page 1 of 29		
Kunden-Referenz-Nr.: Client Reference No.:	1541649	Auftragsdatum: Order date:	2020-03-13			
Auftraggeber: Client:	Nedap N.V., Parallelweg 2 71	Nedap N.V., Parallelweg 2 7141 DC Groenlo, Netherlands, A. Haytema				
Prüfgegenstand: Test item:	134.2 kHz Inductive RFID Card Reader / Motor controller					
Bezeichnung / Typ-Nr.: Identification / Type No.:	VP1001B in combination with VP6012 antenna and Single Loop Walk Through antenna.					
Auftrags-Inhalt: Order content:	Compliance with regulatory re	equirements				
Prüfgrundlage: Test specification:	47 CFR PART 15 (10-1-19 EI RSS-Gen (Issue 5 April 2018) Apparatus and RSS-210 (Issu -) General Requirem	ents for Complian			

Wareneingangsdatum: Date of receipt:	2020-03-16
Prüfmuster-Nr.: Test sample No.:	-
Prüfzeitraum: Testing period:	2020-03-20 / 2020-04-02
Ort der Prüfung: Place of testing:	Leek
Prüflaboratorium: Testing laboratory:	TÜV Rheinland Nederland B.V. Leek Laboratory
Prüfergebnis*: Test result*:	Pass

gerprüft von / tested by: genehmigt von / reviewed & authorized by:				rized by:		
<i>Datum /da</i> 2020-04-1		er Meer, Expert		2020-04-17	Erik van der Wal, Ex	pert
Datum	Name / Stellun	g Unt	erschrift	Datum	Name / Stellung	Unterschrift
Date	Name / Positior	n Sigi	nature	Date	Name / Position	Signature
Sonstiges / Other: issue date is equal to authorized date Zustand des Prüfgegenstandes be Anlieferung:2 Prüfmuster vollständig und unbeschädigt						
Conditior	n of the test item at c	lelivery:		Test item com	plete and undamaged	
* Legende:	1 = sehr gut P(ass) = entspricht o.g.	2 = gut Prüfgrundlage(n)	3 = befriedigend F(ail) = entspricht nie	cht o.g. Prüfgrundlag	4 = ausreichend le(n) N/A = nicht anwendbar	5 = mangelhaft N/T/ = nicht getested
Legend:	1 = very good P(ass) = passed a.m.	2 = good Test specification(s)	3 = satisfactory F(ail) a.m. test speci	fication(s)	4 = sufficient N/A = not applicable	5 = poor N/T = not tested
а	uszugsweise vervie s test report only rela	elfältigt werden. ates to the above i	Dieser Bericht b mentioned testsa	erechtigt nicht mple. Without p	ohne Genehmigung d zur Verwending eine ermission of the test ce ot entitle to carry any te	es Prüfzeichens. Enter this test report

19022705C.r01

Page 2 of 29

TEST SUMMARY

Test Specification Clause	Test Case	Pass	Fail	Not applicable	Not performed
§15.209 / RSS-Gen Table 5	Radiated Emissions	\square			
§15.207 / RSS-Gen Table 4	AC Power Line Conducted Emissions	\square			

Revisions Revisions				
Revision Revision	Datum Date	Anmerkung Remark	Verfasser Author	
-	2020.04.17	First release	R. van der Meer	
Note: Latest rev	vision report will repla	ace all previous reports		

19022705C.r01

Page 3 of 29

Contents

Test Report No.:

1.	GENERAL REMARKS	
1.1. ⁻ 1.1.2		
1.1.3		
•		_
2.	TEST SITES	5
2.1	TEST FACILITIES	5
2.2	LIST OF TEST AND MEASUREMENT INSTRUMENTS TABLE 1: LIST OF TEST AND MEASUREMENT EQUIPMENT	6
2.3	MEASUREMENT UNCERTAINTY	7
3.	GENERAL PRODUCT INFORMATION	8
3.1	COUNTERMEASURES TO ACHIEVE COMPLIANCE	8
3.2	OPERATION MODES	8
3.3	PHYSICAL CONFIGURATION FOR TESTING	9
3.4	SPECIAL ACCESSORIES AND AUXILIARY EQUIPMENT	11
4.	TEST RESULTS	12
4.1.1		
4.1.2	2 Radiated Emissions of Transmitter	
	t equipment used (for reference see test equipment listing)	
2	AC Power Line Conducted Measurements	
2.1.		
Plots	s of the AC Power-line Conducted Emissions	25

19022705C.r01

Page 4 of 29

1. General Remarks

1.1.1 Complementary Materials

There is no attachment to this test report.

1.1.2 Special Accessories

None.

1.1.3 Equipment modifications

None

19022705C.r01

Page 5 of 29

2. Test Sites

2.1 Test Facilities

The Semi-Anechoic chamber and AC Line Conducted measurement facility used to collect the radiated and conducted data has been constructed in accordance with ANSI C63.7. The site has been measured in accordance with and verified to comply with the theoretical normalized site attenuation requirements of ANSI C63.4-2014, at a test distance of 3 meters. The site is listed with the FCC and ISED and accredited by RvA (Cert #L484). The 3 meter semi-anechoic chamber used to collect the radiated data has been verified to comply with the theoretical normalized site attenuation requirements of ANSI C63.4-2014, at a test distance of 3 meter. H-field measurements have been done in the Semi-Anechoic chamber to identify emissions from the EUT and final testing been performed on the outside facilities at 3m, 5m and 10m distance.

The Federal Communications Commission and Industry Canada has reviewed the technical characteristics of the test facilities at TÜV Rheinland Nederland B.V., located in Leek, 9351VT Eiberkamp 10, The Netherlands, and has found these test facilities to be in compliance with the requirements of 47 CFR Part 15, section 2.948.

The description of the test facilities has been filed at the Office of the Federal Communications Commission under Designation Number NL0005 (test site registration number: 786213). The facility has been added to the list of laboratories performing these test services for the public on a fee basis.

The description of the test facilities has been filed to Industry Canada under CABID number NL0002 (test site registration number: 2932G-2). The facility has been added to the list of laboratories performing these test services for the public on a fee basis.

Normal test conditions:

Temperature (*): +15°C to +35°CRelative humidity(*): 20 % to 75 %Supply voltage: 120 Vac.

(*)When it was impracticable to carry out the tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests are stated separately.

19022705C.r01

Page 6 of 29

2.2 List of Test and Measurement Instruments

Table 1: List of Test and Measurement Equipment

Kind of Equipment	Manufacturer	Model Name	Inventory number	Calibration date (mm/yyyy)	Calibration due date (mm/yyyy)
For Radiated Emission	15				
Measurement Receiver	Rohde & Schwarz	ERC7	2790497	07/2019	07/2020
Measurement Receiver H-field outside fasc.	Rohde & Schwarz	ESCI	2789083	03/2020	03/2021
RF Cable S-AR	Gigalink	APG0500	2789217	03-10/2020	03-10/2021
Test facility	Comtest	FCC listed: 786213 IC: 2932G-2	2789009	03-15/2020	03-15/2022
Spectrum Analyzer	Rohde & Schwarz	FSV	2790106	07/2018	07/2020
Antenna mast+control	Innco	CO3000	9002463	N/A	N/A
Temperature- Humiditymeter	Extech	SD500	2789214	06/2019	06/2020
Biconilog Testantenna	Teseq	CBL 6111D	2789237	11/2019	11/2020
Magnetic Loop Antenna, Active	Chase	HLA-6120	A01491	12/2017	12/2020
Magnetic Loop Antenna, Passive	EMCO	6509	2788774	12/2017	12/2020
120Vac source	EMtest	DPA500N	2789197	11/2019	11/2021

Kind of Equipment	Manufacturer	Model Name	Inventory number	Calibration date (mm/yyyy)	Calibration due date (mm/yyyy)
For AC Powerline Conducted Emissions					
Pulse limiter	R&S	ESH3-Z2	2788823	09/2019	09/2020
120Vac source	EMtest	DPA500N	2789197	11/2019	11/2021
LISN	Rohde & Schwarz	ESH2-Z5	2788791	06/2018	06/2020
Measurement Receiver	Rohde & Schwarz	ESCS30	2790497	07/2019	07/2020
Shielded room for Conducted emissions			2789207	NA	NA
Temperature- Humiditymeter	Extech	SD500	2789211	06/2019	06/2020

Conformance of the used measurement and test equipment with the requirements of ISO/IEC 17025:2005 has been confirmed before testing. NA= Not Applicable

Accreditation

The reported tests were performed under ISO17025 accreditation, unless otherwise specified as 'not under Accreditation'.

An overview of all TÜV Rheinland Nederland B.V. accreditations, notifications and designations, please visit our website <u>www.tuv.com/nl</u>. You can find the relevant declarations under the download link.

19022705C.r01

Page 7 of 29

2.3 Measurement Uncertainty

Table 2: Emission Measurement Uncertainty

Measurement Type	Frequency	Uncertainty
Radiated Emission	9kHz - 30MHz	±5.0dB
	30MHz - 1GHz	±5.0dB
AC Power Line Conducted Emissions	150kHz - 30MHz	±3.5dB

19022705C.r01

Page 8 of 29

3. General Product Information

The EUT is used for electronic animal identification through RFID. The EUT has the capability of operating on 134.2 kHz. There are nine types of antennas, of which two are tested (the smallest and the largest). For details refer to the User Guide, data sheet and circuit diagram.

Technical Specifications

Technical Specifications	Value
Operating Frequency	134.2 kHz
Channel number	1
Operation Voltage	25 Vdc
Modulation	None (emission designator 1K03 P0N)
Antenna Type tested	VP6012 and Single Loop Walk Through
Antenna Gain	-(loop antenna)

3.1 Countermeasures to achieve compliance

No additional measures were employed to achieve compliance.

3.2 Operation Modes

Testing was performed at 134.2 kHz, the only operating frequency at Maximum Power Level of 99 (0 -99%).

19022705C.r01

Page 9 of 29

3.3 Physical Configuration for Testing

The EUT was tested on a stand-alone basis as per Figure 1.

The justification and manipulation of cables and equipment in order to simulate a worst-case behavior of the test setup has been carried out as prescribed in ANSI C63.10-2013.

	List of used cables					
No.	Function	From	То	Length	Remarks	
1	AC Power	Mains	AUX3	> 1 m	-	
2	DC power	AUX3	AUX2	< 3 m	-	
3	DC power	AUX2	EUT	> 3 m	-	
4	RF Output	EUT	AUX1a/1b	> 3 m	-	

See Figure 1 & 2 on the next page.

Prüfbericht - Produkte Test Report - Products

Test Report No.:

19022705C.r01

Page 10 of 29

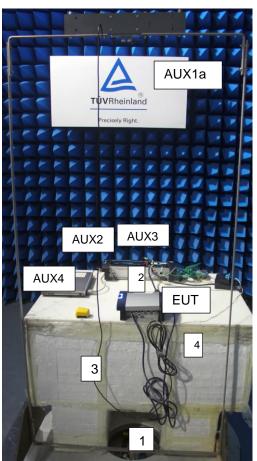
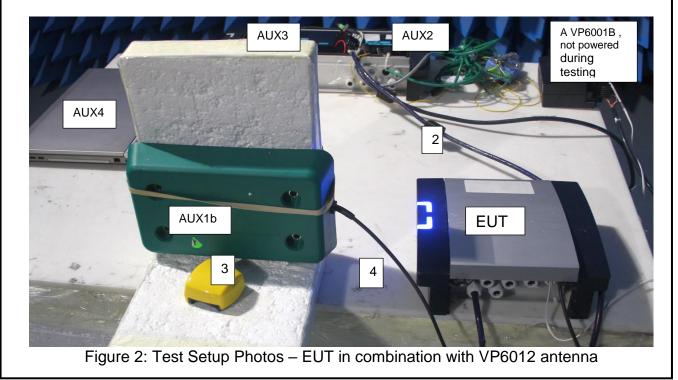



Figure 1: Test Setup Photos – EUT in combination with Single Walk Through Antenna

19022705C.r01

Page 11 of 29

3.4 Special Accessories and Auxiliary Equipment

The product has been tested together with the following additional accessories:

AUX1 Antenna Auxiliary 1a & 1b Manufacturer Brand Model Serial number Part number Remark	Antenna Single Loop Walk Through and Nedap N.V. Nedap 9835733 and VP6012 -	V-Sence
AUX2 Interface Auxiliary 2 Manufacturer Brand Model Part number Voltage input rating	Interface bridge milking Nedap N.V. Nedap VP8002 - 25Vdc	
AUX3 Power supply Auxiliary 3 Manufacturer Brand Model Voltage input rating Voltage output rating	Power supply (AC/DC switched power su Nedap N.V. Nedap VP2001B 100240V/ 50/60 Hz 25Vdc 4 Amp	ıpply)
Auxiliary 4 Manufacturer Brand Models Serial number Remark: operation of the system	Laptop HP HP NC6400 Nedap NCV1007 not used during test, used only to check o	correct

19022705C.r01

Page 12 of 29

4. Test Results

4.1.1 20dB and 99% Bandwidth

RESULT: PASS

Tested by: Date of testing: R. van der Meer 2020-03-23

Requirements:

For 99% Bandwidth: RSS-Gen Section 4.6.1: No requirement is given.

Test procedure 20dB bandwidth:

ANSI C63.10-2013 section 11.8.1

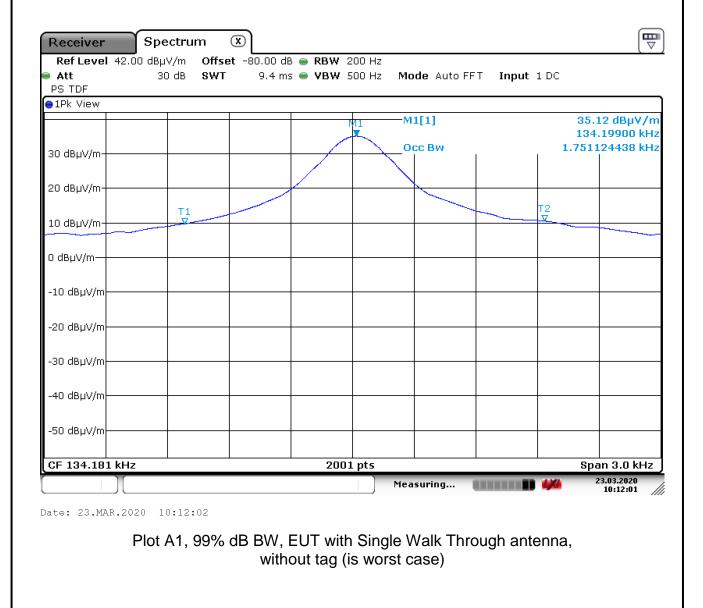
A spectrum analyzer was connected to the antenna port of the EUT. The spectrum analyzer resolution bandwidth was set to 200 Hz, video bandwidth to 1kHz and the span wide enough to capture the modulated carrier.

For 99% Bandwidth:

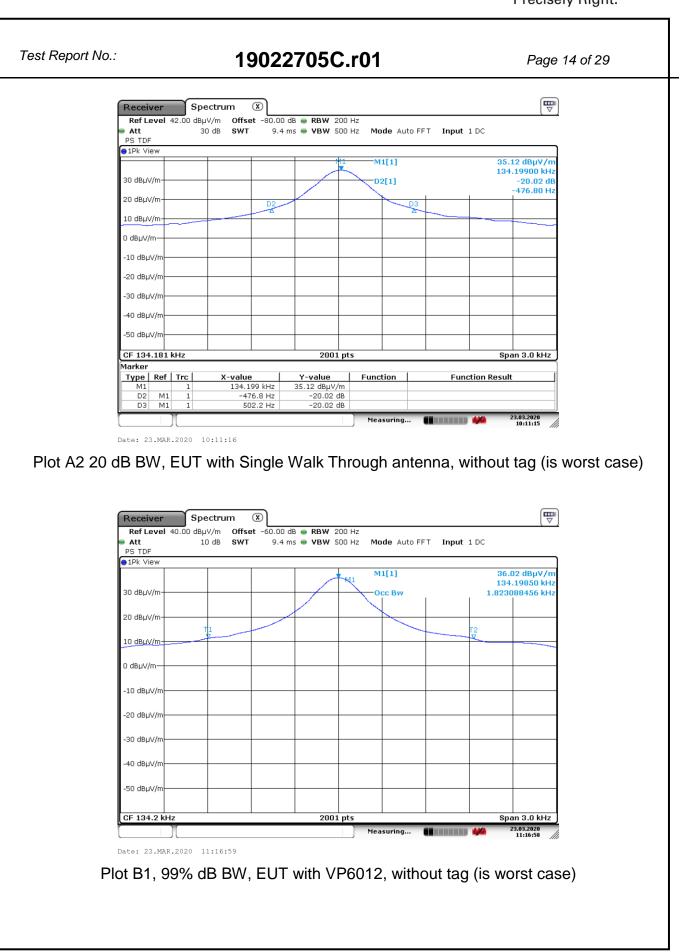
Test procedure: RSS-Gen.

The transmitter shall be operated at its maximum carrier power measured under normal test conditions. The span of the analyzer shall be set to capture all products of the modulation process, including the emission sideskirts. The resolution bandwidth shall be set as close to 1% of the selected span as is possible without being below 1%. The video bandwidth shall be set to 3 times the resolution bandwidth. Video averaging is not permitted. Where practical, a sampling detector shall be used given that a peak or peak hold may produce a wider bandwidth than actual.

A spectrum analyzer was connected to the antenna port of the EUT. The spectrum analyzer resolution bandwidth was set to 1% of the selected span, Video bandwidth was set to 3 times the resolution bandwidth. The span was set to capture the whole modulation process. The Spectrum analyzers automated function for 99% BW was used.



19022705C.r01


Page 13 of 29

20dB and 99% Bandwidth

with Antenna	Operating Frequency [MHz]	99% Bandwidth [kHz]	20dB Bandwidth [kHz]	Plot number
AUX1a Single Walk Through	0.1342	1.751	0.979	A1/A2
AUX1b VP6012	0.1342	1.823	1.002	B1/B2

st Report No.:	1902270	5C.r01	Page	e 15 of 29
Receiver Spectr				
Ref Level 40.00 dBµV/m Att 10 dB PS TDF			FFT Input 1 DC	
)1Pk View				
30 dBµV/m		M1[1] D2[1]		36.02 dBµV/m 134.19850 kHz -20.03 dB
20 dBµV/m	D2		3	-503.70 Hz
1 <u>0 dBµV/m</u>		2		
0 dBµV/m				
-10 dBµV/m				
-20 dBµV/m				
-30 dBµV/m				
-40 dBµV/m				
-50 dBµV/m				
CF 134.2 kHz	2	001 pts		Span 3.0 kHz
1arker				
Type Ref Trc M1 1	X-value Y-valu 134.1985 kHz 36.02 dB		Function R	lesult
D2 M1 1		3µ∨/m 03 dB		
D3 M1 1		03 dB		
Ĩ		Measuring	••••	23.03.2020 11:16:11

Plot B2, 20 dB BW, EUT with VP6012, without tag (is worst case)

19022705C.r01

Page 16 of 29

4.1.2 Radiated Emissions of Transmitter

RESULT: PASS

Tested by: Date of testing: R. van der Meer 2020-03-20 / 2020-04-02

Frequency range:

9kHz - 1GHz

Requirements:

FCC 15.209 and RSS-Gen

(a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following tables:

Frequency (MHz)	Field strength (microvolts/meter)	Field strength (dBµV/m)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	43.5-13.8	300
0.490-1.705	24000/F(kHz)	33.8-22.9	30
1.705-30.0	30	29.5	30

Table 2a. Field strength limits

Frequency (MHz)	Field strength (µV/meter)	Field strength (dBµV/m)	Measurement distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0 (Av), 74 (Pk)	3

Table 2b applicable limits

Radiated emissions which fall in the restricted bands, as defined in FCC 15.205(a) and RSS-Gen Table 7, must comply with the radiated emission limits specified in FCC 15.209(a) and RSS-Gen Table 5&6.

19022705C.r01

Page 17 of 29

Test procedure:

Test Report No .:

ANSI C63.10-2013.

Before final measurements of radiated emissions were performed, the EUT was scanned to determine its emission spectrum profile. The physical arrangement of the test system, the associated cabling were varied in order to ensure that maximum emission amplitudes were attained. The spectrum was examined from 9 kHz to 1 GHz. Radiated emission testing was performed at a distance of 3 meters in a 5 meter semi-anechoic chamber. I

Final radiated emission measurements below 30MHz were made at 3m, 5m and 10m distance on the outside open field facility. The measured values were corrected to the 30m distance using the extrapolation factor of 40dB/decade as per FCC Part 15.31(f)(2) or by determining the proper extrapolation factor by using the measurement results at 3m and 10m distance.

At each frequency where a spurious emission was found, the EUT was rotated 360° and the antenna was raised and lowered from 1 to 4m in order to determine the emission's maximum level. Measurements were taken using both horizontal and vertical antenna polarizations.

The highest emission amplitudes relative to the appropriate limit were recorded in this report. Field strength values of radiated emissions at frequencies not listed in the tables are more than 20 dB below the applicable limit.

19022705C.r01

Page 18 of 29

4.1.3 Radiated field strength measurements H-field, 0.009-30 MHz.

Frequency (MHz)	Measurement results	Measurement results (for info only)	Measurement results (for info only)	Detector	Extrapolation factor	Measurement results (calculated)	Limits	Pass/ Fail
	dBµV @3m	dBµV @5m	dBµV @10m		dB	dBµV/m @300m	dBµV/m @300m	
0.1342 (fundamental)	115.1 (x) 92,0 (y) 97.8 (z)	99.5 (x) 86.0 (y) 94.0 (z)	87.2 (x) 83.2 (y) 90.2 (z)	Pk	80	35.1 (x)	45.1	Pass
0.1342 (fundamental)	103.6 (x) 88.7 (y) 85.4 (z)	90.8 (x) 79.1 (y) 80.5 (z)	75.3 (x) 76.3 (y) 76.2 (z)	Av	80	23.6 (x)	25.1	Pass
0.2684 *H	100.6 (x)	-	-	Pk	80	20.6	39.0	Pass
0.2684 *H	75.6 (x)	-	-	Av	80	-4.6	19.0	Pass
0.4026 *H	91.4 (x)	-	-	Pk	80	11.4	35.5	Pass
0.4026 *H	72.0 (x)	-	-	Av	80	-8.0	15.5	Pass
1.283	44.0 (x)	-	-	Pk ⁶	40	4.0	29.5@30m	Pass
15.254	34.9 (x)	-	-	Pk ⁶	40	-5.1	29.5@30m	Pass

Table 3a Radiated emissions of the EUT with Single Loop Walk Through Antenna

Frequency (MHz)	Measurement results	results	Measurement results (for info only)		Extrapolation factor	Measurement results (calculated)	Limits	Pass/ Fail
	dBµV @3m	dBµV @5m	dBµV @10m		dB	dBµV/m @300m	dBµV/m @300m	
0.1342 (fundamental)	99.0 (x) 87.2 (y) 94.0 (z)	90.0 (x) 81.2 (y) 87.0 (z)	76.0 (x) 67.3 (y) 73.0 (z)	Pk	80	19.0	45.1	Pass
0.1342 (fundamental)	85.3 (x) 75.7 (y) 83.3 (z)	72.3 (x) 71.8 (y) 79.9 (z)	68.3 (x) 57.7 (y) 69.4 (z)	Av	80	5.3	25.1	Pass
0.2684 *H	80.8 (x)	-	-	Pk	80	0.8	39.0	Pass
0.2684 *H	74.1 (x)	-	-	Av	80	-5.9	19.0	Pass
0.4026 *H	80.3 (x)	-	-	Pk	80	0.3	35.5	Pass
0.4026 *H	72.0 (x)	-	-	Av	80	-8.0	15.5	Pass
1.355	45.3 (x)	-	-	Pk ⁶	40	5.3	29.5@30m	Pass
15.572	33.3 (x)	-	-	Pk ⁶	40	-6.7	29.5@30m	Pass

Table 3b Radiated emissions of the EUT with VP6012 antenna (vertical- is worst case)

Test equipment used (for reference see test equipment listing).

2789083	2790033	2788774	2789217			

19022705C.r01

Page 19 of 29

Notes:

- Calculated measurement results are obtained by using the 40 dB/decade extrapolation factor and the antenna factor and cable loss is included. For instance the corrected value for 0.1342 MHz fundamental frequency is calculated as: Measurement result– Extrapolation Factor => 99 dBµV– 80 dB = 19 dBµV/m.
- In the frequency range 9 kHz 10 MHz Peak detector used during measurements with a
 resolution bandwidth of 9kHz was used. Most Peak values were already within Av limits. For the
 frequency range 10 MHz 30 MHz a Quasi peak detector used during measurements with a
 resolution bandwidth of 9kHz was used.
- 3. Field strength values of radiated emissions at frequencies in the frequency range 0.009 30 MHz not listed in Tables 3a and 3b are more than 20 dB below the applicable limit. The reported value is the worst case found at the reported frequency. Measurement antenna in axial position was the worst case.
- 4. Restricted bands were investigated and were found to be below the levels as reported in Tables 3a and 3b.
- 5. Measurement uncertainty is ±5.0dB.
- 6. Pk value within Qp limit.

19022705C.r01

Page 20 of 29

4.1.4 Radiated Spurious Emissions, 30MHz - 1GHz

Frequency [MHz]	EUT Orientation	Antenna Orientation	Level QP [dBµV/m]	Limit QP [dBµV/m]	Verdict [Pass/Fail]
31.2	Vertical	Vertical	20.3	40.0	Pass
102.0	Vertical	Vertical	25.8	43.5	Pass
233.4	Vertical	Vertical	27.8	46.0	Pass
278.8	Vertical	Vertical	33.5	46.0	Pass
322.0	Vertical	Vertical	35.2	46.0	Pass
386.4	Vertical	Vertical	32.0	46.0	Pass

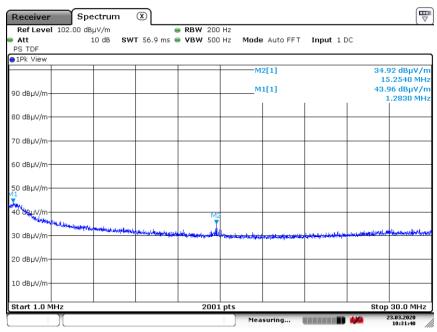
Table 4a Radiated emissions of the EUT with Single Loop Walk Through Antenna

Frequency [MHz]	EUT Orientation	Antenna Orientation	Level QP [dBµV/m]	Limit QP [dBµV/m]	Verdict [Pass/Fail]
31.2	Vertical	Vertical	30.4	40.0	Pass
50.6	Vertical	Vertical	30.7	40.0	Pass
140.0	Vertical	Vertical	31.7	43.5	Pass
177.5	Vertical	Vertical	25.7	43.5	Pass
287.5	Vertical	Vertical	27.4	46.0	Pass
472.2	Vertical	Vertical	32.0	46.0	Pass

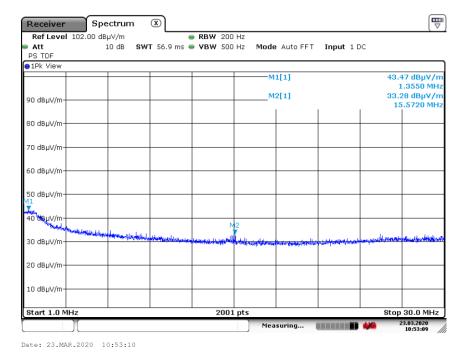
Table 4b Radiated emissions of the EUT with VP6012 antenna

Note: - Level QP = Reading QP + Factor

- Tested in modes as described in section 3.2, the 6 highest values noted.
 *^R refers to a frequency in a restricted band, *^H refers to a harmonic of the fundamental
- Quasi Peak detector used with a bandwidth of 120 kHz.
- Measurement uncertainty is +/- 5.0 dB.
- a selection of plots are provided on the next pages



19022705C.r01


Page 21 of 29

4.1.5 Plots of the emissions

Date: 23.MAR.2020 10:31:41

Plot of the emissions in the range 1 – 30 MHz (Peak detector values shown), EUT with Single Loop Walk Through antenna

Plot of the emissions in the range 1 - 30 MHz (Peak detector values shown), EUT with VP6012 antenna

19022705C.r01

Page 22 of 29

PA TDF k View	10 dB SWT	540.1 µ5	🗢 VBW 300 k	ing mode	Auto FF1	⊺ Input 1			
Limit Check <u> bjtynFCC Part 1</u>	5 E-Eield 3m		PASS PASS		.[1] :[1]		29.	03 dBµV/m 31.210 MHz 80 dBµV/m	
IBµV/m							1	01.990 MHz	
Part 25 E-Field 3m		5 M6						and the second second	
	alle Ann	the linguisting	Anthe Marken Marken Marken	opposite data managements of	handerlandstar	the second states and the second s	drog man in fransminister	And the short of the state of the	
	YMIN								
IBµV/m									
μV/m									
dBµV/m									
rt 30.0 MHz			2001	pts			Sto	p 1.0 GHz	
ker pe Ref Trc	X-value	1	Y-value	Funct	ion	Funr	tion Result	. 1	
V1 1	31.2	1 MHz	26.03 dBµV/n	n					
M2 1 M3 1	233.3	9 MHz 6 MHz	29.80 dBµV/n 30.89 dBµV/n	n					
VI4 1 VI5 1		9 MHz 4 MHz	39.55 dBµV/n 37.01 dBµV/n						
M6 1	386.4	1 MHz	35.13 dBµV/n					20.03.2020	
t of the er	nissions i	in the	range 30	- 1000) MHz	(Peak d	etector	values	shown), EUT with VP6012, Te
t of the er enna Vert ceiver s	nissions i ical pectrum Bµ∨/m	®	e RBW 100 ● VBW 300	kHz		(Peak d		values T	
t of the er enna Vert ceiver s of Level 80.00 d t PA TDF	nissions i ical pectrum Bµ∨/m	®	• RBW 100	kHz				_	
t of the er cenna Vert ceiver s of Level 80.00 d t PA TDF k View Limit ¢heck	nissions i ical pectrum BµV/m 10 dB swr	948.1 µs	• RBW 100	kHz kHz Mode			AC	.88 dBμV/n	
t of the er enna Vert f Level 80.00 d t PA TDF k View Limit Check bjivym CC Part 1	nissions i ical pectrum BµV/m 10 dB swr	948.1 µs	• RBW 100 • VBW 300	kHz kHz Mode M3	e Auto FF		AC 34	.88 dBµV/n 31.210 MH .72 dBµV/n	
ceiver S of Level 80.00 d t PA TDF k View Limit Check bliv/m C Part 1 BµV/m	nissions i ical pectrum BµV/m 10 dB swr	948.1 µs	• RBW 100 • VBW 300	kHz kHz Mode M3	9 Auto FF		AC 34	.88 dBµV/n 31.210 MH	
t of the er enna Vert ceiver S of Level 80.00 d t PA TDF k View Limit Check Bjrym CC Part 1 BµV/m	nissions i ical pectrum BµV/m 10 dB swr	948.1 µs	• RBW 100 • VBW 300	kHz kHz Mode M3	9 Auto FF 1[1] 2[1]	T Input 1	AC 34 33	.88 dBµV/n 31.210 MH 50.600 MH	
t of the er enna Vert ceiver S of Level 80.00 d t PA TDF View Limit Check bjrym CC Part BµV/m BµV/m	nissions i ical pectrum BμV/m 10 dB swT	948.1 µs	RBW 100 VBW 300 PASS PASS	kHz kHz Mode M: 	9 Auto FF 1[1] 2[1]		AC 34 33	.88 dBµV/n 31.210 MH 50.600 MH	
t of the er enna Vert ceiver S of Level 80.00 d t PA TDF View Limit Check bjrym CC Part 1 BµV/m BµV/m BµV/m BµV/m BµV/m BµV/m BµV/m BµV/m	nissions i ical pectrum BμV/m 10 dB swT	948.1 µs	RBW 100 VBW 300 PASS PASS M6	kHz kHz Mode M: 	9 Auto FF 1[1] 2[1]	T Input 1	AC 34 33	.88 dBµV/n 31.210 MH 50.600 MH	
t of the er enna Vert	nissions i ical pectrum BμV/m 10 dB swT	948.1 µs	RBW 100 VBW 300 PASS PASS M6	kHz kHz Mode M: 	9 Auto FF 1[1] 2[1]	T Input 1	AC 34 33	.88 dBµV/n 31.210 MH 50.600 MH	
t of the er enna Vert St Level 80.00 d t PA TDF < View Limit Check Bjryfn CC Part 1 BµV/m BµV/m BµV/m BµV/m BµV/m BµV/m	nissions i ical pectrum BμV/m 10 dB swT	948.1 µs	RBW 100 VBW 300 PASS PASS M6	kHz kHz Mode M: 	9 Auto FF 1[1] 2[1]	T Input 1	AC 34 33	.88 dBµV/n 31.210 MH 50.600 MH	
t of the er eenna Vert of Level 80.00 d t PA TDF k View Limit Check blivyn DC Part Bliptyn DC	nissions i ical pectrum BμV/m 10 dB swT	948.1 µs	RBW 100 VBW 300 PASS ASS ASS ASS ASS ASS ASS ASS ASS A	kHz kHz Mode M: 	9 Auto FF 1[1] 2[1]	T Input 1	AC 34 33	.88 dBµV/n 31.210 MH 50.600 MH	
t of the er cenna Vert	nissions i ical pectrum BμV/m 10 dB swT	948.1 µs	RBW 100 VBW 300 PASS PASS M6	kHz kHz Mode M: 	9 Auto FF 1[1] 2[1]	T Input 1	AC 34 33	.88 dBµV/n 31.210 MH 50.600 MH	
t of the er enna Vert	nissions i ical pectrum BµV/m 10 dB swT 5 5 - Field 3m 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	948.1 µs ор	RBW 100 VBW 300 PASS M6 M6 2001 Y-value	kHz kHz Mode M: M: M: 	9 Auto FF 1[1] 2[1]	T Input 1	AC 34 33	.88 dBµV/n 31.210 MH 50.600 MH	
t of the er enna Vert	nissions i ical pectrum BµV/m 10 dB SWT 5 =- Field 3m 5 =- Fi	8 948.1 μs	RBW 100 VBW 300 PASS PASS M6 M6 M6 M6 M6 M6 M6 M6 M6	kHz kHz Mode M: M: m: pts Funct m:	9 Auto FF 1[1] 2[1]	T Input 1	AC 34 33	.88 dBµV/n 31.210 MH 50.600 MH	
t of the er enna Vert stevel 80.00 d t PA TDF View Limit Check bjrym CC Part BµV/m BµV/m BµV/m BµV/m BµV/m dD dD d	nissions i ical pectrum вµV/m 10 dB SWT 5.5-Field 3m 5.5-Field 3m 4.5 5.5-Field 3m 5.5-Field 3m 5.5-Fiel	8	RBW 100 VBW 300 PASS A65 A65 A65 A65 A65 A65 A65	kHz kHz Mode 	9 Auto FF 1[1] 2[1]	T Input 1	AC 34 33	.88 dBµV/n 31.210 MH 50.600 MH	
t of the er enna Vert ceiver S f Level 80.00 d t PA TDF k View Limit Check Bjuym CC Part 1 Bjuym CC	nissions i ical pectrum BµV/m 10 dB SWT 5 5-Field 3m 5 5-Field 3m	(948.1 µs (948.1 µs	RBW 100 VBW 300 PASS ASS ASS ASS ASS ASS ASS	kHz kHz Mode M: m m m m m m m	9 Auto FF 1[1] 2[1]	T Input 1	AC 34 33	.88 dBµV/n 31.210 MH 50.600 MH	

19022705C.r01

2 AC Power Line Conducted Measurements

RESULT: Pass.

Tested by: Date of testing: R. van der Meer 2020-03-30

Requirements: for equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the band edges.

Frequency of Emission (MHz)	Conducted Limit (dBµV) Quasi-Peak	Conducted Limit (dBµV) Average
0.15 – 0.5	66 to 56*	56 to 46*
0.5 - 5	56	46
5 - 30	46	50

*Decreases with the logarithm of the frequency.

Test procedure:

ANSI C63.10-2013.

Each phase and neutral of the AC power line were measured with respect to ground. Measurements were performed using a 50 μ H / 50 Ω LISN. The frequency range from 150kHz to 30MHz was searched. The six highest EUT emissions relative to the limit were noted. The EUT was positioned at least 80cm from the LISN. A VP1006B (reported separately) was also on the test table, because of the complex wiring that could not be disconnected easily, but was not powered.

19022705C.r01

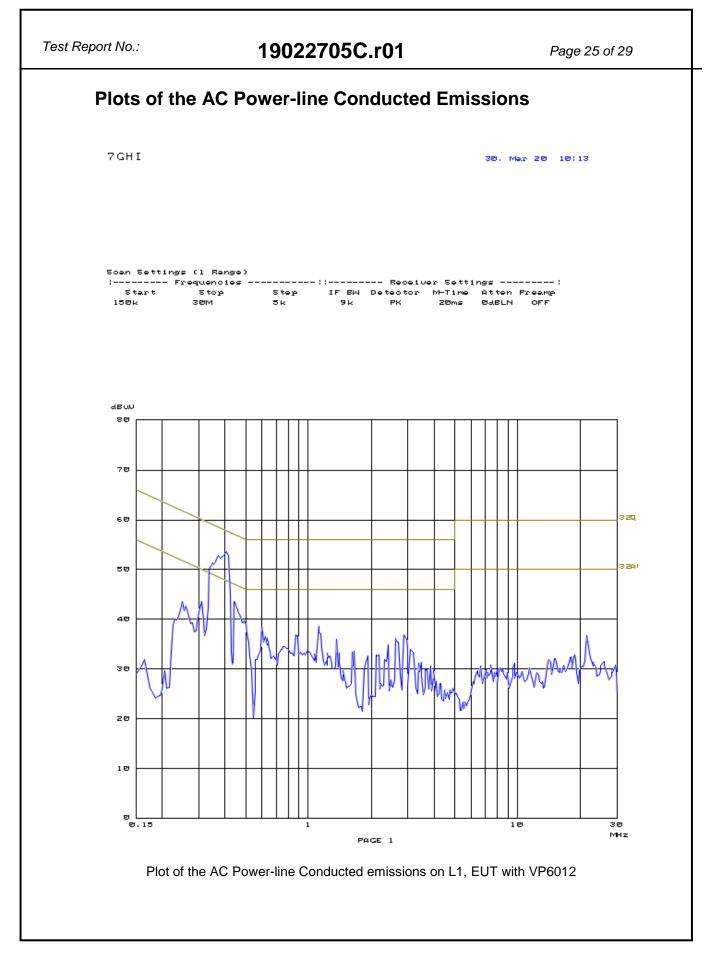
Page 24 of 29

2.1.1 AC Power Line Conducted Emission of Transmitter

Frequency (MHz)	Measurement results (dBµV) L1		(d	ment results BµV) Neutral		mits BµV)	Verdict (Pass/Fail)
	QP	AV	QP	AV	QP	AV	
0.310	42.6	*	42.6	*	60.0	50.0	Pass
0.405	51.6	39.2	53.5	39.3	57.6	47.6	Pass
0.440	28.3	*	38.1	*	57.1	47.1	Pass
0.600	30.1	*	31.9	*	56.0	46.0	Pass
1.120	32.2	*	33.5	*	56.0	46.0	Pass
2.855	28.3	*	31.2	*	56.0	46.0	Pass

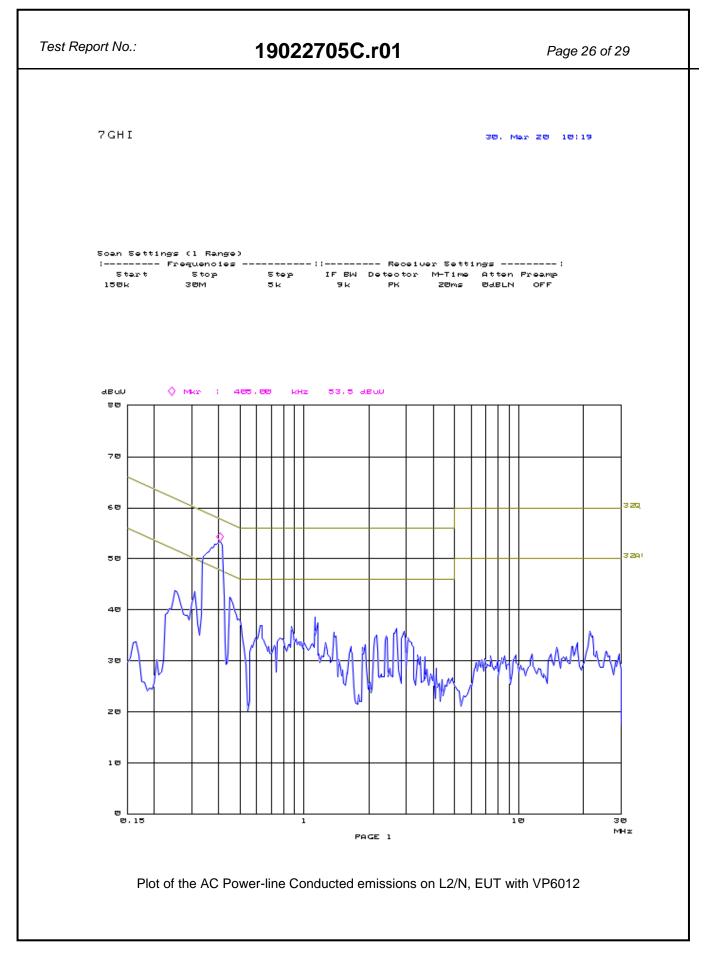
The results of the AC power line conducted emission tests, carried out in accordance with 47 CFR Part 15 section 15.207(a) and RSS-Gen section 8.8, at the 120 Volts/ 60 Hz AC mains connection terminals of the EUT (with VP6012 antenna), are depicted in the table above.

Frequency (MHz)	Measurement results (dBµV) L1		Measurement results (dBµV) L2/Neutral		Limits (dBµV)		Verdict (Pass/Fail)
	QP	AV	QP	AV	QP	AV	
0.349	50.5	*	45.3	*	59.0	49.0	Pass
0.373	51.7	33.2	35.0	*	58.5	48.5	Pass
0.384	51.8	33.3	35.0	*	58.3	48.3	Pass
0.400	40.0	*	52.3	39.4	57.9	47.9	Pass
0.408	51.6	39.2	35.0	*	56.0	46.0	Pass
0.455	38.6	*	35.0	*	56.0	46.0	Pass

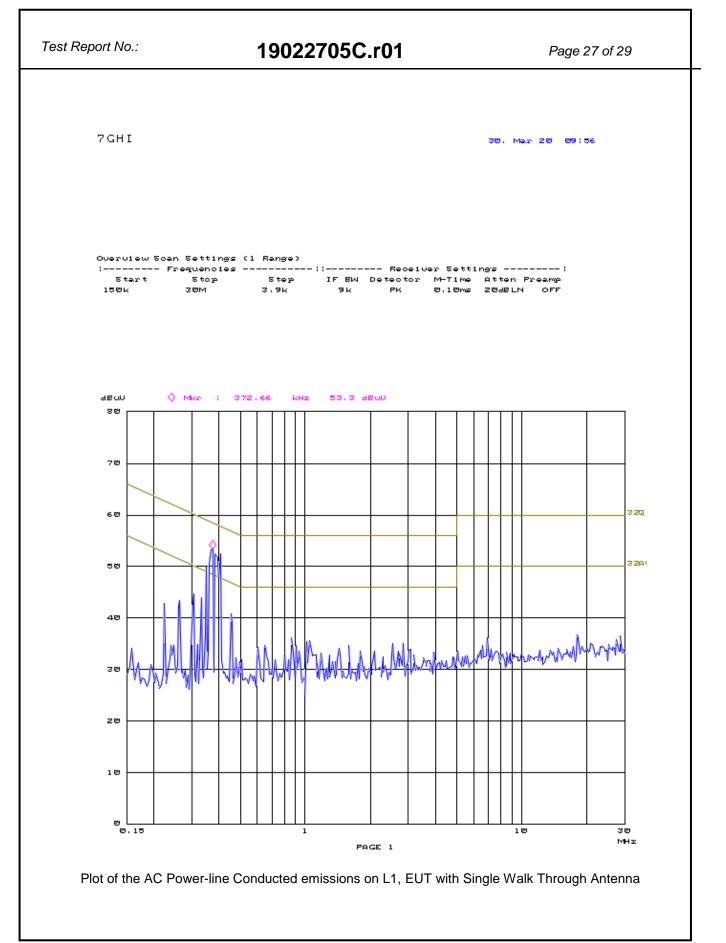

The results of the AC power line conducted emission tests, carried out in accordance with 47 CFR Part 15 section 15.207(a) and RSS-Gen section 8.8, at the 120 Volts/ 60 Hz AC mains connection terminals of the EUT (with Single WalkThrough antenna), are depicted in the table above.

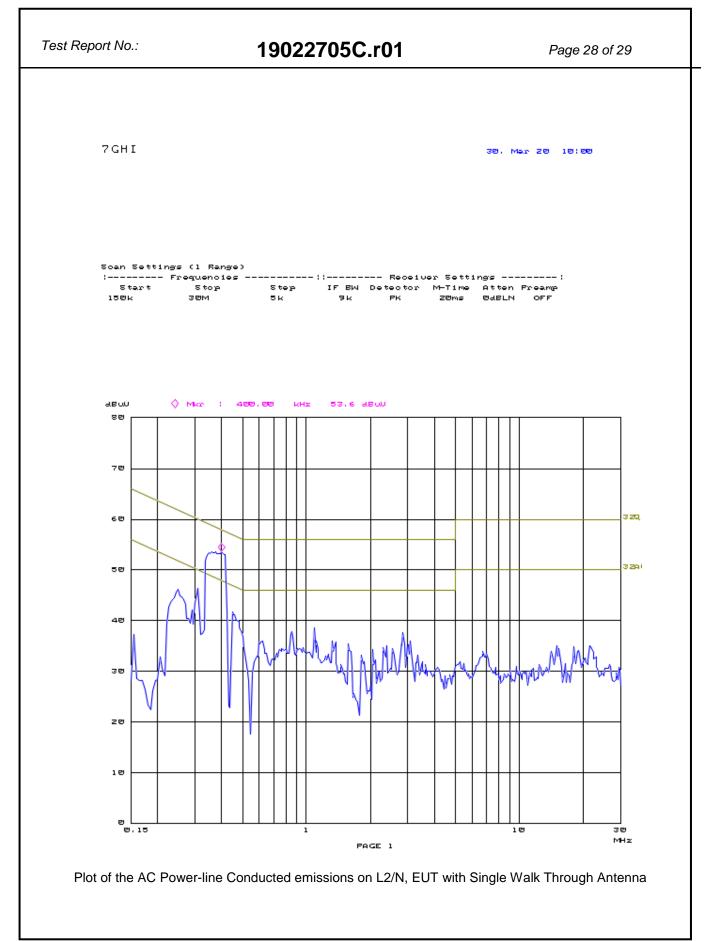
Notes:

- 1. The resolution bandwidth used was 9 kHz.
- 2. From pre-test the worst case configuration proved to be mode wherein the EUT was not scanning a tag. Worst case values noted.
- 3. Qp values already within Av limits, therefor Av not tested.
- 4. Measurement uncertainty is +/- 3.5 dB.
- 5. Plots are provided on the next pages.



Prüfbericht - Produkte Test Report - Products





19022705C.r01

Page 29 of 29

End of report