

Test Report	No.: 13031902	2.fcc03	Page 1 of 41
Client:	N.V. Nederlandsche Appa Parallelweg 2, 7141 DC Gr		
Test Item:	Spread Spectrum Trans UHF RFID Reader	smitter (DSS)	
Identification:	ID POS Region 2	Serial No.:	D422 A001
Project No.:	13031902	Date of Receipt:	2013-04-25
Testing Location:	TÜV Rheinland EPS B.V. Eiberkamp 10 9351VT Leek		
Test Specification:		art C, Section 15.247 (10-1-12 Ed er 2010) an RSS-210 (Issue 8, D	
Test Result:		The test item passed the te	st specification(s).
Testing Laboratory:		TÜV Rheinland EPS B.V. Eiberkamp 10 9351 VT Leek	
Tested by:	Aler	Reviewed by:	(Y) North
2013-06-07 R. van de	er Meer / Inspector	2013-06-07 O. Hoekstra / Rev	
Date Name/Po	sition Signature	Date Name/Position	Signature
Other Aspects: N/A			
		F(ail) = fai N/A = no	ssed led t applicable t tested
This report sha	ll not be reproduced, except in full, The test results rela	without the written permission of T ate only to the item(s) tested.	ÜV Rheinland EPS B.V.

Test Report No.:	13031902.fcc03	Page 2 of 41
	TEST SUMMARY	
5.1.1 CONDUCTED OU RESULT: PASS	JTPUT POWER	
5.1.2 20dB Bandwid RESULT: Pass	тн	
5.1.3 CONDUCTED SF RESULT: PASS	PURIOUS EMISSION	
5.1.4 BAND EDGE CO RESULT: Pass	NDUCTED EMISSIONS	
5.1.5 RADIATED SPUR	RIOUS EMISSIONS OF THE TRANSMITTER IN	N RESTRICTED BANDS
RESULT: PASS		
5.1.6 RADIATED SPUR RESULT: PASS	RIOUS EMISSIONS OF TRANSMITTER	
5.2 AC Power Lin RESULT: PASS	E CONDUCTED EMISSION OF TRANSMITTE	R
6 Number of ho time of occup RESULT: Pass	opping channels, Carrier frequency s bancy	separation, Average

Test F	Report No.: 130	31902.fcc03	Page 3 of 41
Со	ntents		
1.	GENERAL REMARKS		
1.1	COMPLEMENTARY MATERIAL	S	4
2.	TEST SITES		
2.1	TEST FACILITIES		4
2.2	LIST OF TEST AND MEASUREI MEASUREMENT EQUIPMENT		
2.3	MEASUREMENT UNCERTAINT	Y	6
3.	GENERAL PRODUCT INFORMA	ATION	7
3.1	PRODUCT FUNCTION AND INT	ENDED USE	7
3.2	SYSTEM DETAILS		7
3.3	CLOCK FREQUENCIES		8
3.4	COUNTERMEASURES TO ACHI	EVE EMC COMPLIANCE	8
4.	TEST SET-UP AND OPERATION	N MODES	ç
4.1	TEST METHODOLOGY		ç
4.2	OPERATION MODES		ç
4.3	PHYSICAL CONFIGURATION F	OR TESTING	ç
4.4	TEST SOFTWARE		
4.5	SPECIAL ACCESSORIES AND	AUXILIARY EQUIPMENT	11
5.	TEST RESULTS		
5.1 5.1 5.1 5.1 5.1 5.1 5.1	.2 20dB Bandwidth .3 Conducted Spurious Emission .4 Band Edge Conducted Emissi .5 Radiated Spurious Emissions of	n ions f Transmitter in the restricted bai	
5.2 5.2	AC Power Line Conducted En		31
5.2 6.	NUMBER OF HOPPING CHANNI TIME OF OCCUPANCY	ELS, CARRIER FREQUENCY SI	EPARATION, AVERAGE

13031902.fcc03

Page 4 of 41

1. General Remarks

1.1 Complementary Materials

There is no attachment to this test report.

2. Test Sites

2.1 Test Facilities

The Federal Communications Commission and Industry Canada has reviewed the technical characteristics of the test facilities at TÜV Rheinland EPS B.V., located in Leek, 9351VT Eiberkamp 10, The Netherlands, and has found these test facilities to be in compliance with the requirements of 47 CFR Part 15, section 2.948.

The description of the test facilities has been filed at the Office of the Federal Communications Commission under registration number 90828. The facility has been added to the list of laboratories performing these test services for the public on a fee basis.

The description of the test facilities has been filed to Industry Canada under registration number 2932G-2. The facility has been added to the list of laboratories performing these test services for the public on a fee basis.

Normal test conditions:

Temperature (*)	: +15°C to +35°C
Relative humidity(*)	: 20 % to 75 %
Supply voltage	: 120VAC/60Hz
Air pressure	: 950 – 1050 hPa

When it was impracticable to carry out the tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests are stated separately.

Test Report No.: 13031902.fcc03 Page 5 of 41 List of Test and Measurement Instruments 2.2 **Table 1: List of Test and Measurement Equipment** Calibration Calibration Inventory Kind of Equipment **Model Name** Manufacturer due date date number (mm/yyyy) (mm/yyyy) For Antenna Port Conducted Emission Spectrum Analyzer Rohde & Schwarz FSV 99733 05-24/2012 05-24/2013 Temperature-SD500 02/2013 02/2014 Extech 99857 Humiditymeter **RF** Cable S+H **ST18** 99736 04/2013 04/2014 20 dB attenuator S+H 04/2013 04/2014 6620 ---For Radiated Emission Rohde & Schwarz 03/2013 03/2014 Measurement Receiver ESCI 99699 **RF Cable S-AR** Gigalink APG0500 99858 02/2013 02/2014 Controller Heinrich Deisel 4630-100 99107 N/A N/A FCC listed: 90828 Test fascility Comtest 99580 02/2012 02/2015 IC listed: 2932G-2 Rohde & Schwarz 05-24/2012 05-24/2013 Spectrum Analyzer FSV 99733 Spectrum Analyzer Rohde & Schwarz FSP 99538 12/2012 12/2013 EMCS Controller DOC202 99608 N/A N/A Antenna mast EMCS AP-4702C 99609 N/A N/A Temperature-SD500 99855 02/2013 02/2014 Extech Humiditymeter Guidehorn 1-18 GHz EMCO 3115 12484 04/2013 04/2014 N/A N/A Controller turntable 99861 01/2013 01/2014 **Biconilog Testantenna** Chase CBL 6111B 15633 Bandpass filter 4-10 GHz Reactel 7AS-7G-6G-511 99076 N/A N/A Preamplifier AMF-5D-Miteq 99596 N/A N/A 0.5 - 18 GHz 005180-28-13p For AC Line **Conducted Emission** 10-2012 Measurement Receiver Rohde & Schwarz ESCS30 15667 10-2013 01/2012 01/2014 LISN EMCO 3625/2 12512 01/2014 Pulse limiter R&S ESH3-Z2 01/2013 13313 Shielded room for 99858 -----------Conducted emissions Variac 250V 6A 99161 RFT LTS006 ------

Conformance of the used measurement and test equipment with the requirements of ISO/IEC 17025:2005 has been confirmed before testing.

13031902.fcc03

Page 6 of 41

2.3 Measurement Uncertainty

Table 2: Emission Measurement Uncertainty

Measurement Type	Frequency	Uncertainty
Antenna Port Conducted Emission	< 1GHz	±0.5dB
	> 1GHz	±0.7dB
AC Line Conducted emissions	150kHz - 30MHz	±3.5dB
Radiated Emission	150kHz - 30MHz	±5.0dB
	30MHz - 1GHz	±5.0dB
	> 1GHz	±5.5dB

13031902.fcc03

Page 7 of 41

3. General Product Information

3.1 **Product Function and Intended Use**

The brand Nedap model !D POS Region 2, hereafter referred to as EUT, is a Spread Spectrum Transmitter (DSS) intended to be used in a building access system. The EUT is a UHF RFID reader and is factory configured for the 902.75-927.25 MHz band.

The content of this report and measurement results have not been changed other than the way of presenting the data.

3.2 System Details

Details and an overview of the system and all of its components, as it has been tested, may be found below.

Manufacturer Brand Model Serial number Voltage input rating Voltage output rating Current input rating Antenna Operating frequency range Modulation Spreading technique	 N.V. Nederlandsche Apparatenfabriek "Nedap" Nedap !D POS Region 2 D422 A001 external antenna. 902.75-927.25 MHz GFSK FHSS
Spreading technique	: FHSS
Remarks	: n.a.
Operating frequency range Modulation Spreading technique	: 902.75-927.25 MHz : GFSK : FHSS

13031902.fcc03

Page 8 of 41

Table 3: Interfaces present on the EUT

There is a Ethernet and an USB interface present on the EUT. The USB interface is for servicing purposes only.

No.	Port	From	То	Remarks
1.	Mains	Mains	Laptop (AUX1)	Through a AC/DC power supply
2.	Mains	Mains	AUX2	
3.	DC power	AUX2	EUT	
4.	Data com.	Laptop USB or Ethernet	EUT	

3.3 Clock Frequencies

The highest clock frequency generated by the EUT is 24.000 MHz.

3.4 Countermeasures to achieve EMC Compliance

No additional measures were employed to achieve compliance.

13031902.fcc03

Page 9 of 41

4. Test Set-up and Operation Modes

4.1 Test Methodology

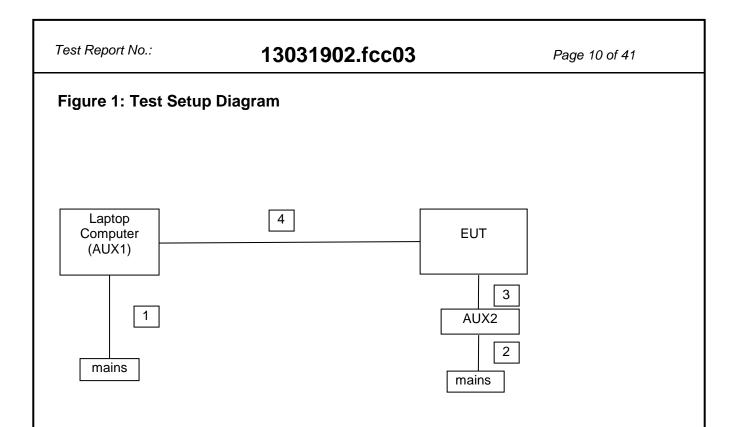
The test methodology used is based on the requirements of 47 CFR Part 15, Sections 15.31, 15.33, 15.35, 15.205, 15.207, 15.209, 15.247 and RSS-Gen and RSS-210.

The test methods, which have been used, are based on ANSI C63.10: 2009.

During pretests no significant differences were observed in testresults while varying supply voltage from 85% to 115%.

For details, see under each test item.

4.2 Operation Modes


Testing was performed at the lowest operating frequency (902.75), at the operating frequency in the middle of the specified frequency band (915.00 MHz) and at the highest operating frequency (927.25 MHz).

4.3 Physical Configuration for Testing

The EUT was tested on a stand-alone basis and the test system was configured in a typical fashion (as a customer would normally use it).

The justification and manipulation of cables and equipment in order to simulate a worst-case behavior of the test setup has been carried out as prescribed in ANSI C63.10:2009.

Notes:

For more details, refer to the document: Test Set-Up Photographs document.

4.4 Test Software

The EUT was provided by the manufacturer with suitable software to allow operation in all the required modes.

Software used for testing: !D Reader Test Application.

This software was running on a laptop computer (AUX1). It was used to enable the test operation modes listed in section 4.2 as appropriate.

Test Report No.:	13031902.fcc03	Page 11 of 41
4.5 Special Ac	cessories and Auxiliary Equipr	nent
•	tested together with the following addition	
1. AUX1 Product: Brand: Model: Serial Number:	Laptop Computer HP Compaq 610 CNU94710W B	
Remark:	property TR-EPS, host for testsoftware	
 AUX2 Product: Brand: Model: Output Voltage: Remarks: 	AC Power Adapter Power-WIN Technology Corp. PW-024A-1Y240K 24 Vdc connects to EUT	

Test Report N	o. <i>:</i>	13031	902.fcc	03		Page 12	of 41
5. Tes	t Results	i					
5.1 Con	ducted an	d Radiatec	l Measur	ements			
5.1.1 Con	ducted Outp	ut Power					
RESULT: F	ASS						
Date of testin	ng:		2013 [.]	05-03			
For systems power is 1W	(b)(2) and RSS using frequen (+30dBm) for	S-210 Section cy hopping in systems empl	the 902-928				output
Test procedu ANSI C63.10							
The Peak Co ANSI C63.10 The maximu	onducted Outp): 2009. m peak output	ut Power was	icted) was i	neasured a	at the anter	na connec	tor with a
involved cab	les and the att		THE LAKES INT	o account t	ne ioss gel		an me
Frequency [MHz]	Configured Average Output Power	Output Peak Power [dBm]	Output Peak Power	Limit [dBm]	Limit [mW]	Result	

Power [dBm] [mW] [dBm] 902.75 28.0 29.2 831.8 +30 1000 Pass 915.00 28.0 29.2 831.8 +30 1000 Pass 927.25 28.0 29.0 794.3 +30 1000 Pass

Notes: $mW = 10 \land (dBm/10)$ dBm = 10 x log(mW)

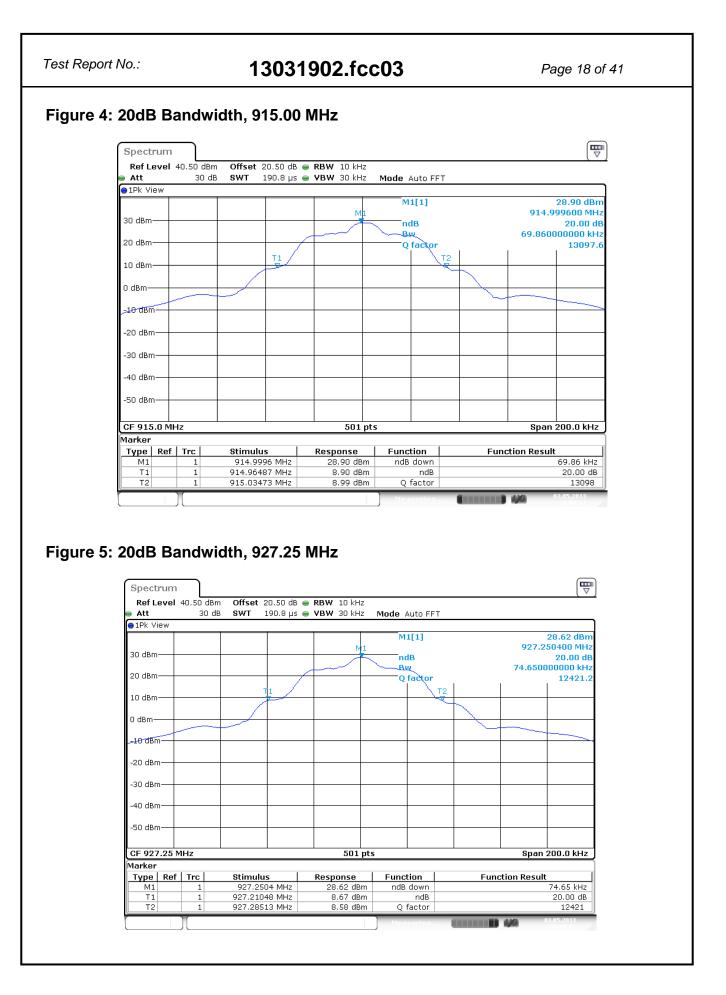
plots : Peak power plots,

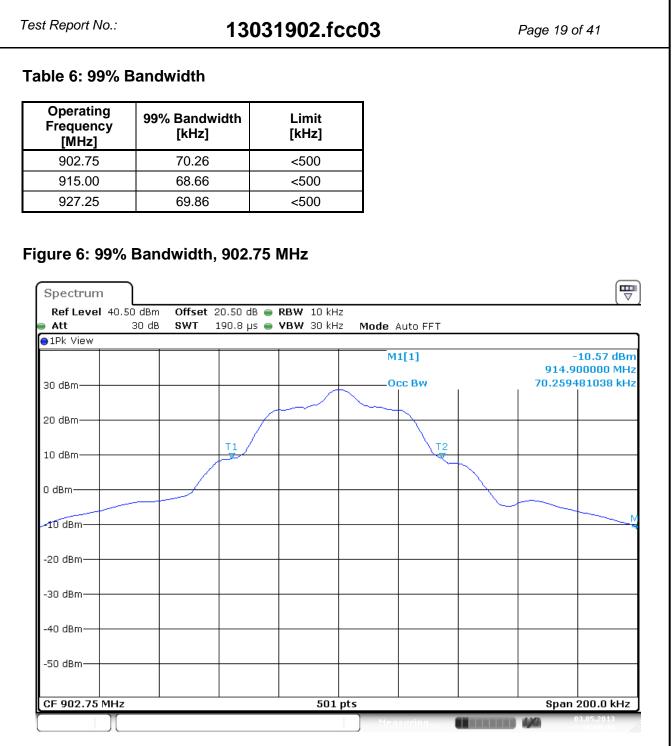
Plots on the next pages show the Peak Power outputs, correction factors included in the reading. Offset in the plots shown is 20.5 dB, this is the total loss of attenuators and cable used.

Spectrum						
Ref Level 40.50 d		0.50 dB 👄 RBW 1 MHz				(🗸)
Att 30 1Pk View	dB SWT	1 ms 👄 VBW 3 MHz Mo	de Auto Sweep			
:0 dBm						
:0 dBm						
.0 dBm						
I dBm						
10 dBm						
20 dBm						
30,0800	white	manual 1	Multilitier	manue	mmm	winner
40 dBm						ľ
50 dBm						
F 902.75 MHz		501 pts			Spar	40.7 MHz
:F 902.75 MHz hannel Power	20.00 MHz		dBm	Ty Tot		
50 dBm CF 902.75 MHz hannel Power Bandwidth 2	20.00 MHz	501 pts Power 29.24		Tx Tot	Span al 29.24	
F 902.75 MHz hannel Power Bandwidth 2						
CF 902.75 MHz hannel Power Bandwidth 2 te: 3.MAY.2013	09:44:53	Power 29.24				
CF 902.75 MHz hannel Power	09:44:53	Power 29.24				
CF 902.75 MHz hannel Power Bandwidth 2 te: 3.MAY.2013	09:44:53	Power 29.24				
F 902.75 MHz hannel Power Bandwidth 2 te: 3.MAY.2013	09:44:53	Power 29.24				
F 902.75 MHz hannel Power Bandwidth 2 te: 3.MAY.2013	09:44:53	Power 29.24				
F 902.75 MHz hannel Power Bandwidth 2 te: 3.MAY.2013	09:44:53	Power 29.24				
F 902.75 MHz hannel Power Bandwidth 2 te: 3.MAY.2013	09:44:53	Power 29.24				
CF 902.75 MHz hannel Power Bandwidth 2 te: 3.MAY.2013	09:44:53	Power 29.24				
F 902.75 MHz hannel Power Bandwidth 2 te: 3.MAY.2013	09:44:53	Power 29.24				
F 902.75 MHz hannel Power Bandwidth 2 te: 3.MAY.2013	09:44:53	Power 29.24				
CF 902.75 MHz hannel Power Bandwidth 2 te: 3.MAY.2013	09:44:53	Power 29.24				
F 902.75 MHz hannel Power Bandwidth 2 te: 3.MAY.2013	09:44:53	Power 29.24				

Spectrum		
Ref Level 40.50 dB		
Att 30 c 1Pk View	dB SWT 1 ms 👄 VBW 3 MHz Mode Auto Sweep)
0 dBm		
:0 dBm		
LO dBm		
) dBm		
10 dBm		
20 dBm		
30 dBm	man war what have her have a second	www.w
40 dBm		
50 dBm		
E 915 0 MHz	501 nts	Snan 40 7 MHz
	501 pts	Span 40.7 MHz
		Span 40.7 MHz Tx Total 29.22 dBm
hannel Power		
hannel Power Bandwidth 20	0.00 MHz Power 29.22 dBm	Tx Total 29.22 dBm
te: 3.MAY.2013 0	0.00 MHz Power 29.22 dBm	Tx Total 29.22 dBm
hannel Power Bandwidth 20 te: 3.MAY.2013 0	0.00 MHz Power 29.22 dBm Measuring	Tx Total 29.22 dBm
hannel Power Bandwidth 20 te: 3.MAY.2013 0	0.00 MHz Power 29.22 dBm Measuring	Tx Total 29.22 dBm
hannel Power Bandwidth 20 te: 3.MAY.2013 0	0.00 MHz Power 29.22 dBm Measuring	Tx Total 29.22 dBm
hannel Power Bandwidth 20 te: 3.MAY.2013 0	0.00 MHz Power 29.22 dBm Measuring	Tx Total 29.22 dBm
hannel Power Bandwidth 20 te: 3.MAY.2013 0	0.00 MHz Power 29.22 dBm Measuring	Tx Total 29.22 dBm
hannel Power Bandwidth 20 te: 3.MAY.2013 0	0.00 MHz Power 29.22 dBm Measuring	Tx Total 29.22 dBm
hannel Power Bandwidth 20 te: 3.MAY.2013 0	0.00 MHz Power 29.22 dBm Measuring	Tx Total 29.22 dBm
hannel Power Bandwidth 20 te: 3.MAY.2013 0	0.00 MHz Power 29.22 dBm Measuring	Tx Total 29.22 dBm
hannel Power Bandwidth 20 te: 3.MAY.2013 0	0.00 MHz Power 29.22 dBm Measuring	Tx Total 29.22 dBm
hannel Power Bandwidth 20 te: 3.MAY.2013 0	0.00 MHz Power 29.22 dBm Measuring	Tx Total 29.22 dBm
hannel Power Bandwidth 20 te: 3.MAY.2013 0	0.00 MHz Power 29.22 dBm Measuring	Tx Total 29.22 dBm
hannel Power Bandwidth 20 te: 3.MAY.2013 0	0.00 MHz Power 29.22 dBm Measuring	Tx Total 29.22 dBm

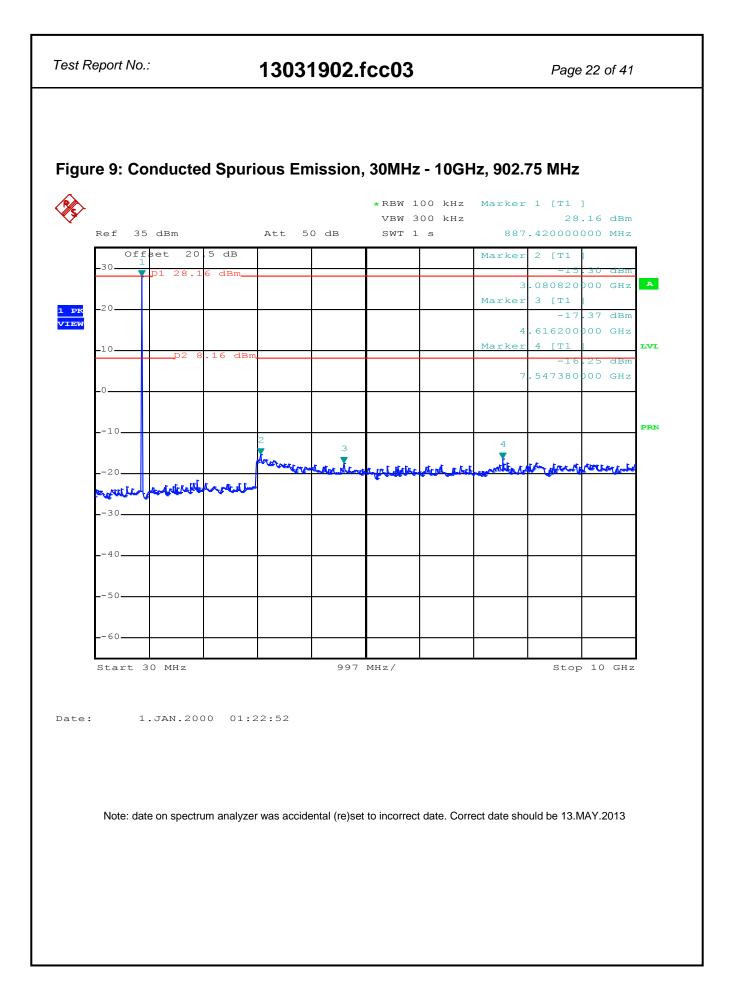
	13031902.fcc03	Page 15 of 41
Spectrum		
Ref Level40.50 dBmAtt30 dB		``````````````````````````````````````
1Pk View	8 SWT 1 ms ⊜ VBW 3 MHz Mode Auto Sweep	J
0 dBm		
0 dBm		
0 dBm		
dBm		
10 dBm		
20 dBm		
30 dBm	monumenter have have a finally have a second of the second	man man and the second
		and an a short a share to the second
40 dBm		
50 dBm		
E 927.25 MHz	501 pts	Span 40.7 MHz
nannel Power	501 pts	Span 40.7 MHz
		Tx Total 29.01 dBm
F 927.25 MHz hannel Power Bandwidth 20.	.00 MHz Power 29.01 dBm	
hannel Power Bandwidth 20.	.00 MHz Power 29.01 dBm	Tx Total 29.01 dBm
hannel Power Bandwidth 20.	.00 MHz Power 29.01 dBm Measuring	Tx Total 29.01 dBm
hannel Power Bandwidth 20.	.00 MHz Power 29.01 dBm Measuring	Tx Total 29.01 dBm
hannel Power Bandwidth 20.	.00 MHz Power 29.01 dBm Measuring	Tx Total 29.01 dBm
hannel Power Bandwidth 20.	.00 MHz Power 29.01 dBm Measuring	Tx Total 29.01 dBm
hannel Power Bandwidth 20.	.00 MHz Power 29.01 dBm Measuring	Tx Total 29.01 dBm
hannel Power Bandwidth 20.	.00 MHz Power 29.01 dBm Measuring	Tx Total 29.01 dBm
hannel Power Bandwidth 20.	.00 MHz Power 29.01 dBm Measuring	Tx Total 29.01 dBm
hannel Power Bandwidth 20.	.00 MHz Power 29.01 dBm Measuring	Tx Total 29.01 dBm
hannel Power Bandwidth 20.	.00 MHz Power 29.01 dBm Measuring	Tx Total 29.01 dBm
hannel Power Bandwidth 20.	.00 MHz Power 29.01 dBm Measuring	Tx Total 29.01 dBm
hannel Power Bandwidth 20.	.00 MHz Power 29.01 dBm Measuring	Tx Total 29.01 dBm

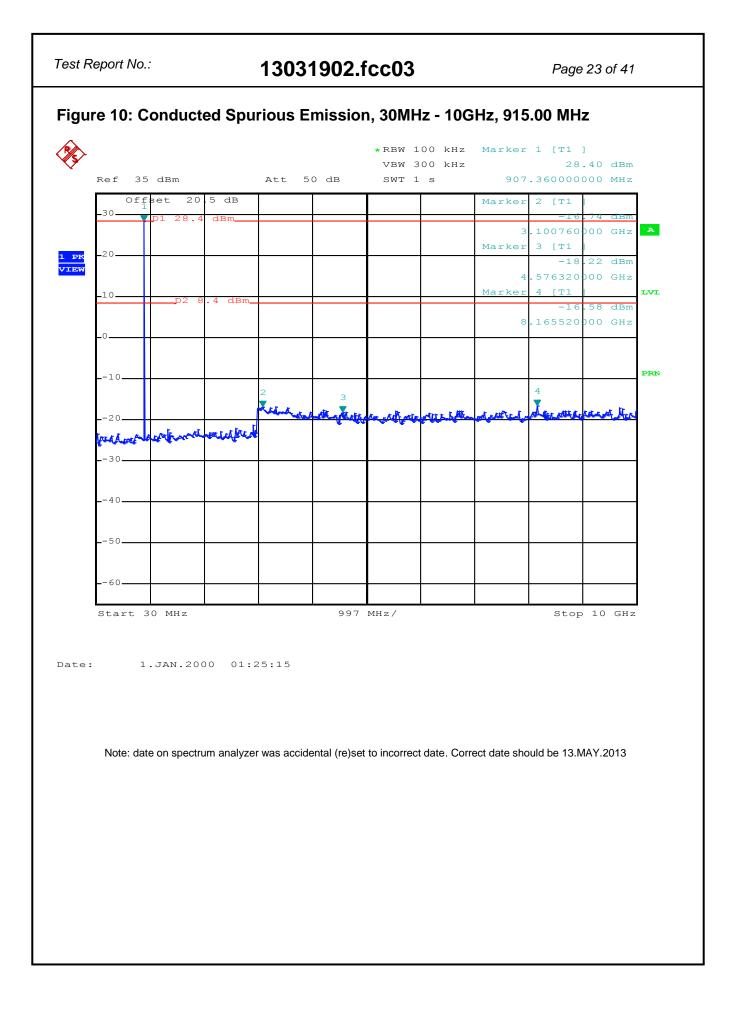

Test Report No.:	13031902.fcc03	Page 16 of 41
5.1.2 20dB Bandwidth	ı	
RESULT: PASS		
Date of testing:	2013-05-03	
-		
Deguiremente		
Requirements: FCC 15.247(a)(1)(i) and R	SS-210 Section A8 $1(c)$	
	tems operating in the 902–928 MHz I	pand: if the 20 dB bandwidth of
the hopping channel is less	s than 250 kHz, the system shall have time of occupancy on any frequency	e at least have 50 hopping
seconds within a 20 secon	d period; if the 20 dB bandwidth of the	e hopping channel is 250 kHz or
	se at least 25 hopping frequencies ar cy shall not be greater than 0.4 secor	
	dB bandwidth of the hopping channel	
Test procedure:		
ANSI C63.10: 2009.		
	connected to the antenna port of the E	
resolution bandwidth was s bandwidth.	set to 10kHz and the span between 2	– 5 times the emission
Offset in the plots shown is 2	0.5 dB, this is the total loss of attenuators	and cable used.
Note: 99% bandwidth is provi	ided for info.	


Test Report No.: 13031902.fcc03 Page 17 of 41 Table 5: 20dB Bandwidth Operating 20dB Limit Bandwidth Frequency [kHz] [MHz] [kHz] 902.75 71.06 <500 915.00 69.86 <500 927.25 74.65 <500 Figure 3: 20dB Bandwidth, 902.75 MHz ₽ Spectrum Ref Level 40.50 dBm Offset 20.50 dB 🔵 RBW 10 kHz Att 30 dB SWT 190.8 µs 👄 **VBW** 30 kHz Mode Auto FFT ⊖1Pk View M1[1] 28.81 dBm 902.750000 MHz M 30 dBm-20.00 dB ndB 71.06000000 kHz Bw 20 dBm-Q factor 12704.4 т1 Т2 10 dBm· 0 dBm--10 dBm--20 dBm--30 dBm--40 dBm--50 dBm-CF 902.75 MHz Span 200.0 kHz 501 pts Marker Type | Ref | Trc | Function **Function Result** Stimulus Response 71.06 kHz Μ1 1 902.75 MHz 28.81 dBm ndB down 20.00 dB Τ1 1 902.71367 MHz 8.80 dBm ndB 902.78473 MHz 8.88 dBm 12704 Т2 1 Q factor n

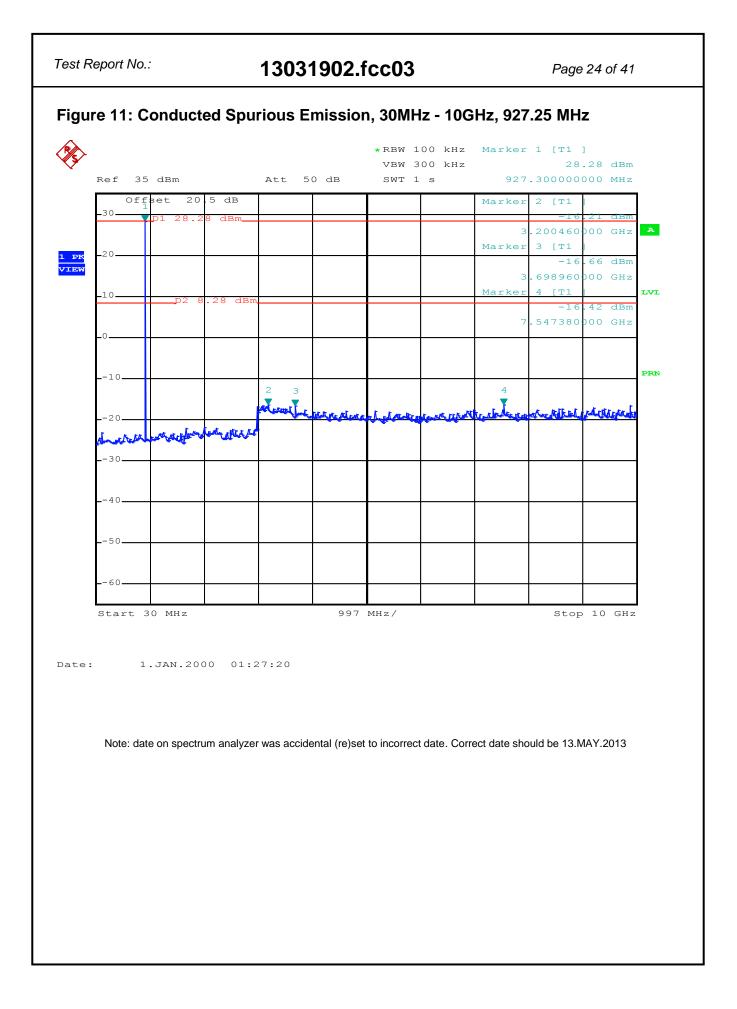
Date: 3.MAY.2013 10:08:37

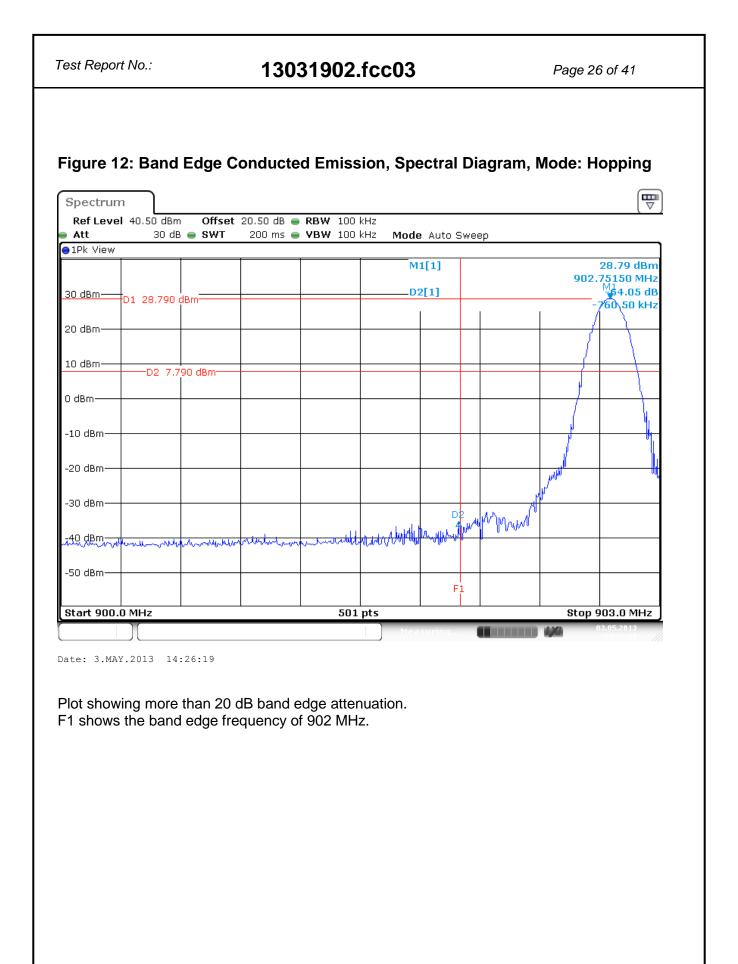
Date: 3.MAY.2013 10:09:16

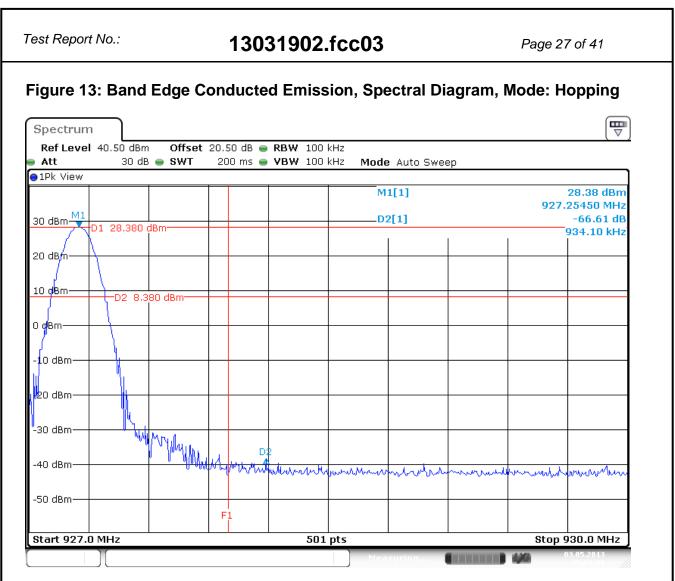




est Report No.:	13031902.fcc03	Page 21 of 41
5.1.3 Conducted S	Spurious Emission	
RESULT: PASS		
Date of testing:	2013-05-13	
Requirements:		
FCC 15.247(d) and RSS	S-210 Section A8.5.	
	h outside the frequency band, the RF p um in-band 100kHz emission.	ower shall be at least 20dB
Test procedure:		
ANSI C63.10: 2009.		
bandwidth was set to 10 emission measurements 30MHz to 10GHz (10 th h		ne in-band and out-of-band ssions were measured from
	takes into account the loss generated by 20.5 dB, this is the total loss of attenuators	







Test Report No.:	13031902.fcc03	Page 25 of 41
5.1.4 Band Edge C	Conducted Emissions	
RESULT: Pass		
Date of testing:	2013-05-03	
Requirements:		
FCC 15.205, FCC 15.20	9, FCC 15.247(d) and RSS-210 section	A8.5.
spectrum or digitally mod frequency power that is p least 20 dB below that in the highest level of the d	th outside the frequency band in which the dulated intentional radiator is operating, the produced by the intentional radiator shall the 100 kHz bandwidth within the band desired power, based on either an RF core the transmitter demonstrates compliance	he radio be at that contains nducted or a radiated
Test procedure:		
ANSI C63.10: 2009.		
•	formed using a spectrum analyzer with a ntal and using the following settings: 100kHz.	a suitable span to encompass
The highest emission am in this report.	nplitudes relative to the appropriate limit	were measured and recorded
	spurious emissions are more than 20 dB	below the fundamental.
See Figures on the follow Offset in the plots shown is	ving pages. 20.5 dB, this is the total loss of attenuators a	and cable used.

Date: 3.MAY.2013 15:01:08

Plot showing more than 20 dB band edge attenuation. F1 shows the band edge frequency of 928 MHz.

Test Report No.:	13031902.fcc03	Page 28 of 41
		Ŭ
5.1.5 Radiated Sp bands	urious Emissions of Transmit	tter in the restricted
RESULT: PASS		
Date of testing:	2013-06-04	
Frequency range:	30MHz - 10GHz	
Requirements:		
FCC 15.205, FCC 15.20	9 and RSS-Gen Section 7.2.2.	
	ch fall in the restricted bands, as defined comply with the radiated emission limits	
bands shall either meet t at least 20dB below the	ch fall outside the operation frequency ba the limit specified in FCC 15.209(a)/ RSS power level in the 100kHz bandwidth with ed power (the less severe limit applies).	Gen Table 5 or be attenuated
Test procedure:		
ANSI C63.10: 2009.		
measurements of radiate emission spectrum profil	a nonconductive turntable 0.8m above the ed emissions were performed, the EUT w e. The physical arrangement of the test s (X, Y, Z) were varied in order to ensure to d.	vas scanned to determine its system, the associated cabling
	ined from 30MHz to the 10th harmonic o nal radiated emission measurements we	
antenna was raised and	e a spurious emission was found, the EU lowered from 1 to 4m in order to determi re taken using both horizontal and vertica	ine the emission's maximum
•	nplitudes relative to the appropriate limit v radiated emissions at frequencies not list ple limit.	
20 dB below the applical	ole limit.	

13031902.fcc03

Page 29 of 41

Table 7: Radiated Emission of the transmitter in restricted bands, 30MHz - 10GHz, Horizontal and Vertical Antenna Orientations, EUT Mode 1: Hopping

Freq. [MHz]	Antenna Orientation	Level Peak [dBµV/m]	Limit Average [dBµV/m]	Limit Peak [dBµV/m]	Result
1137	Vertical	36.5	54	74	Pass
4054	Horizontal	36.2	54	74	Pass
4810	Vertical	41.8	54	74	Pass
5070	Vertical	40.6	54	74	Pass
7675	Vertical	39.0	54	74	Pass
9342	Horizontal	40.4	54	74	Pass

Notes:

- 1. Field strength values of radiated emissions at frequencies not listed in the table above are more than 20 dB below the applicable limit.
- 2. Measurement uncertainty is ± 5.0 dB.
- 3. The EUT was tested as shown in figure 1, the measuring antenna was varied in horizontal and vertical orientations and also around it's axis and height. The reported value is the worst case found at the reported frequency.
- 4. Tested with EUT in operation mode 1, it's intended use, as described in section 2.2, the 6 worst case values noted.
- 5. A Peak detector was used with a bandwidth of 1 MHz.
- 6. Peak values already within Average limits, therefor Average not tested.

Used test equipment and ancillaries:

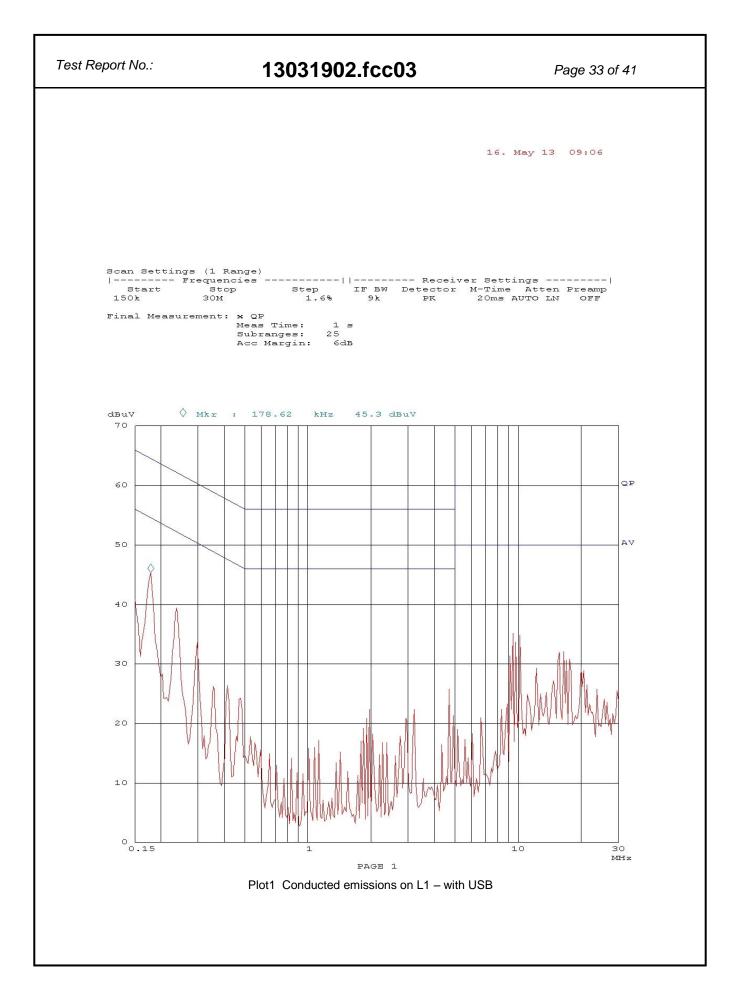
15453	99699	99861	99847	99855		

.6 R	adiated fie	ld strength r	neasureme	ents (30 MF	iz – 1 GHz. E	E-fiel
_		J			- ,	_
[Freq. [MHz]	Antenna Orientation	Level QP [dBµV/m]	Limit [dBµV/m]	Result Pass/Fail]
	55.50	Vertical	15.7	40.0	Pass	
	240.800	Horizontal	26.5	46.0	Pass	
	344.500	Horizontal	28.5	46.0	Pass	
	817.100	Horizontal	35.5	46.0	Pass	
ļ	846.700	Horizontal	39.0	46.0	Pass	
L	876.600	Horizontal	39.8	46.0	Pass	
pment : es: 1. 2.	as shown in Fig Field strength more than 20 Measurement	values of radiated dB below the appli uncertainty is ±5.0	l as in whole, be functioning. emissions at fre cable limit. dB	ing the worst ca quencies not lis	ted in the table ab	th all ove are
ipment a es: 1. 2. 3. 4. 5.	as shown in Fig Field strength more than 20 Measurement The reported 1 receiving ante (between 1m a A Quasi-peak The EUT was mode (i.e. with	values of radiated dB below the appli uncertainty is ±5.0 field strength value nna was varied in and 4m). detector was used tested in both pass n a tag in its proxim	I as in whole, be functioning. emissions at fre cable limit. dB s are the worst of horizontal and ve with a resolutio sive mode (i.e. v	ing the worst ca quencies not lis case values at th ertical orientatio n bandwidth of <i>'</i> vithout a tag in it	se situation. So wi ted in the table ab ne indicated freque ns and also in heig 120 kHz. s proximity) and ir	ith all ove are ency. T ght
ipment a es: 1. 2. 3. 4. 5.	Field strength more than 20 Measurement The reported f receiving ante (between 1m a A Quasi-peak The EUT was	values of radiated dB below the appli uncertainty is ±5.0 field strength value nna was varied in and 4m). detector was used tested in both pass n a tag in its proxim	as in whole, be functioning. emissions at fre cable limit. dB s are the worst of horizontal and vol- with a resolutio sive mode (i.e. v nity). Maximum v	ing the worst ca quencies not lis case values at th ertical orientatio n bandwidth of <i>'</i> vithout a tag in it	se situation. So wi ted in the table ab ne indicated freque ns and also in heig 120 kHz. s proximity) and ir	ith all ove are ency. T ght
ipment a es: 1. 2. 3. 4. 5. d test e	as shown in Fig Field strength more than 20 Measurement The reported 1 receiving ante (between 1m a A Quasi-peak The EUT was mode (i.e. with quipment and a 99699	values of radiated dB below the appli uncertainty is ±5.0 ield strength value nna was varied in and 4m). detector was used tested in both pase n a tag in its proxim	as in whole, be functioning. emissions at fre cable limit. dB s are the worst of horizontal and volume with a resolution sive mode (i.e. volume hity). Maximum volume	ing the worst ca quencies not lis case values at th ertical orientatio n bandwidth of 1 vithout a tag in it values have bee	se situation. So wi ted in the table ab ne indicated freque ns and also in heig 120 kHz. s proximity) and ir	ith all ove are ency. T ght
ipment a es: 1. 2. 3. 4. 5. d test e	as shown in Fig Field strength more than 20 Measurement The reported 1 receiving ante (between 1m a A Quasi-peak The EUT was mode (i.e. with quipment and a 99699	values of radiated dB below the appli uncertainty is ±5.0 ield strength value nna was varied in and 4m). detector was used tested in both pase n a tag in its proxim	as in whole, be functioning. emissions at fre cable limit. dB s are the worst of horizontal and volume with a resolution sive mode (i.e. volume hity). Maximum volume	ing the worst ca quencies not lis case values at th ertical orientatio n bandwidth of 1 vithout a tag in it values have bee	se situation. So wi ted in the table ab ne indicated freque ns and also in heig 120 kHz. s proximity) and ir	ith all ove are ency. T ght
ipment a es: 1. 2. 3. 4. 5. d test e	as shown in Fig Field strength more than 20 Measurement The reported 1 receiving ante (between 1m a A Quasi-peak The EUT was mode (i.e. with quipment and a <u>99699</u>	values of radiated dB below the appli uncertainty is ±5.0 ield strength value nna was varied in and 4m). detector was used tested in both pase n a tag in its proxim	as in whole, be functioning. emissions at fre cable limit. dB s are the worst of horizontal and volume with a resolution sive mode (i.e. volume hity). Maximum volume	ing the worst ca quencies not lis case values at th ertical orientatio n bandwidth of 1 vithout a tag in it values have bee	se situation. So wi ted in the table ab ne indicated freque ns and also in heig 120 kHz. s proximity) and ir	ith all ove are ency. T ght
25: 1. 2. 3. 4. 5. d test e 608	Field strength more than 20 Measurement The reported f receiving ante (between 1m and A Quasi-peak The EUT was mode (i.e. with quipment and a <u>99699</u>	yalues of radiated dB below the appli uncertainty is ±5.0 iield strength value nna was varied in and 4m). detector was used tested in both pase na tag in its proxim ancillaries: <u>99847</u> <u>99861</u> ////////////////////////////////////	as in whole, be functioning. emissions at fre cable limit. dB s are the worst of horizontal and volume with a resolution sive mode (i.e. volume hity). Maximum volume	ing the worst ca quencies not lis case values at th ertical orientatio n bandwidth of 1 vithout a tag in it values have bee	se situation. So wi ted in the table ab ne indicated freque ns and also in heig 120 kHz. s proximity) and ir	ith all ove are ency. T ght
2. 3. 4. 5. d test e 608 engine ature le	Field strength more than 20 Measurement The reported f receiving ante (between 1m a A Quasi-peak The EUT was mode (i.e. with quipment and a <u>99699</u>	yalues of radiated dB below the appli uncertainty is ±5.0 iield strength value nna was varied in and 4m). detector was used tested in both pase na tag in its proxim ancillaries: <u>99847</u> <u>99861</u> ////////////////////////////////////	as in whole, be functioning. emissions at fre cable limit. dB s are the worst of horizontal and volume with a resolution sive mode (i.e. volume hity). Maximum volume	ing the worst ca quencies not lis case values at th ertical orientatio n bandwidth of 1 vithout a tag in it values have bee	se situation. So wi ted in the table ab ne indicated freque ns and also in heig 120 kHz. s proximity) and ir	ith all ove are ency. T ght

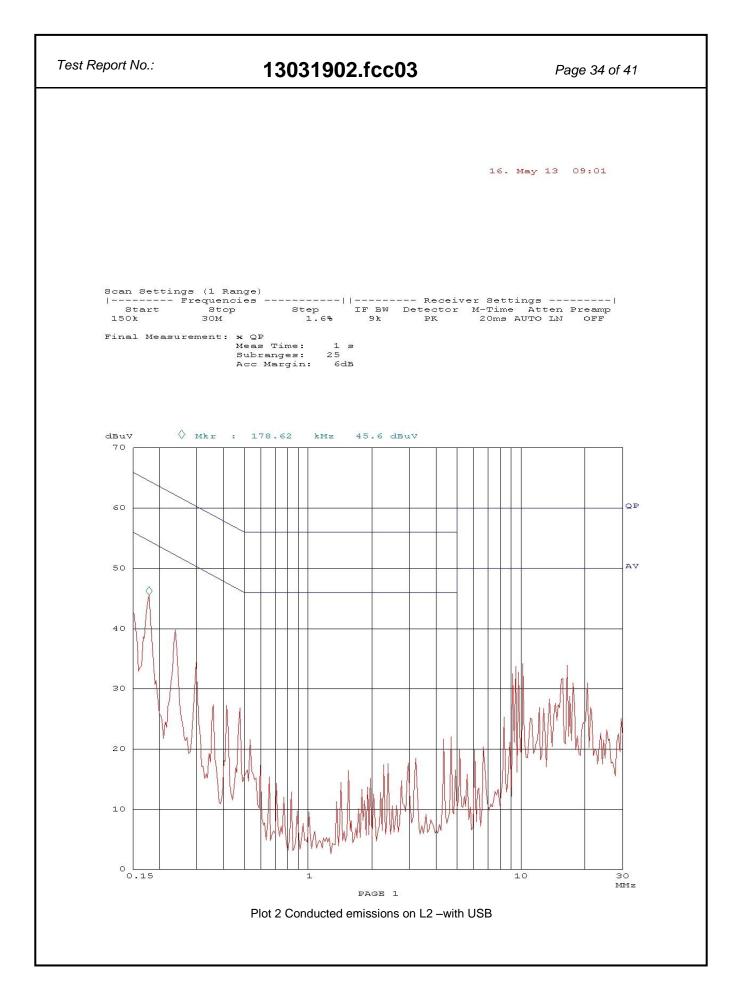
Test Report No.:	13031902.fcc03	Page 31 of 41
5.2 AC Power Line	e Conducted Measurements	5
5.2.1 AC Power Line (Conducted Emission of Transmit	ter
RESULT: Pass		
Date of testing:	2013-05-16	
Requirements: FCC 15.2	07 and RSS-Gen Section 7.2.4.	
license-exempt radio con AC power supply, either conducted back onto the	ments applicable to a given device mmunication device equipped to o directly or indirectly, the radio freq AC power lines in the frequency r ts shown in the following table. The tries.	perate from the public utility uency voltage that is ange of 0.15 MHz to 30 MHz
Frequency of Emissio		Conducted Limit (dBµV)
(MHz)	Quasi-Peak	Average
(MHz) 0.15 – 0.5	Quasi-Peak 66 to 56*	Average 56 to 46*
(MHz)	Quasi-Peak	Average
(MHz) 0.15 – 0.5 0.5 – 5	Quasi-Peak 66 to 56* 56 46	Average 56 to 46* 46

Test Report No.: 13031902.fcc03 Page 32 of 41 Measurement Measurement Limits (dBµV) results results Frequency (dBµV) (dBµV) Result (MHz) Neutral/L2 Line 1 AV (note 4) AV (note 4) QP QP AV QP 0.15000 35.7 33.9 56.0 46.0 PASS ----0.17862 44.3 43.8 64.5 54.5 PASS -----0.23769 38.8 38.3 62.1 52.1 PASS -----61.1 51.1 0.26984 33.2 11.4 PASS -----10.22863 33.1 --34.1 --60.0 50.0 PASS 31.4 30.2 60.0 PASS 16.46754 50.0 -----

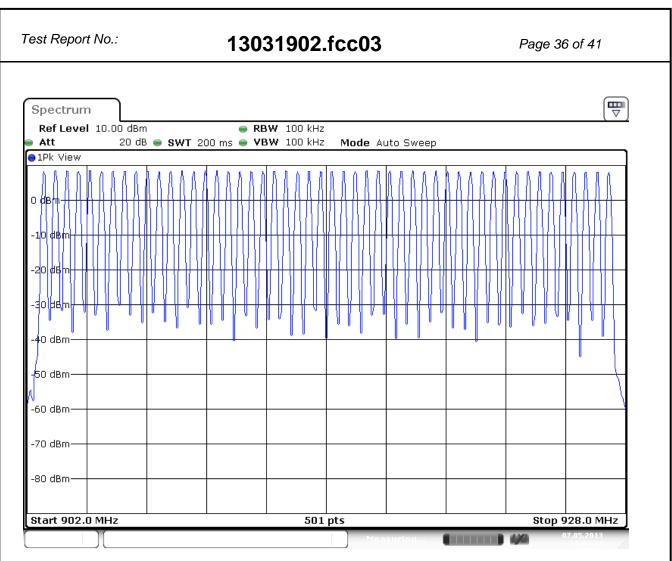
The results of the conducted emission tests, carried out in accordance with 47 CFR Part 15 section 15.207(a) and RSS-Gen Section 7.2.4, at the 120 Volts/ 60 Hz AC mains connection terminals of the power supply which was connected to the AUX2 which connects to the EUT, are depicted in the table above. The system is tested as in whole, so with all equipment as shown in Figure 1 in place and functioning. Being the worst case situation. See plots on pages 32 - 33.


Notes:

- 1. Tests were performed with the EUT in Mode1, it's intended use.
- 2. Tested with USB connection.
- 3. Measurement uncertainty is ± 3.5 dB
- 4. The resolution bandwidth used was 9 kHz.
- 5. Qp values are already within Av limits, therefor not retested on Av.


Used test equipment and ancillaries:

13313	99161	12512	15667	99852	99855	



Test Report No.:	13031902.fcc03	Page 35 of 41
	of hopping channels, Ca n, Average time of occu	• •
RESULT: PASS		
Date of testing:	2013-05-07 and 20	013-05-13
the hopping channel is I any frequency shall not bandwidth of the hoppin hopping frequencies and than 0.4 seconds within hopping channel is 500 Frequency hopping system	systems operating in the 902–928 MHz backers than 250 kHz, the system shall the average than 0.4 seconds within a 20 s in the average time of occupancy on any from a 10 second period. The maximum allower	verage time of occupancy on econd period; if the 20 dB em shall use at least 25 requency shall not be greater ed 20 dB bandwidth of the requencies separated by a
Test procedure:		
	is connected to the antenna port of the EL s 20.5 dB, this is the total loss of attenuators a	

FCC ID: CGDSTOREIDP IC: 1444A-STOREIDP

Date: 7.MAY.2013 14:04:34

Plot showing 50 hopping frequencies as required by section FCC 15.247(a)(1)(i) and RSS-210 A8.1(c), as measured on a spectrum analyzer.

Requirement: the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall therefore have at least 50 hopping channels.

Result: Pass

FCC ID: CGDSTOREIDP IC: 1444A-STOREIDP

est Report No.:	13031902		Page 37 of 41	
Spectrum Ref Level 9.50 dBm Att 20 dB • SW TRG:VID	● RBW 1 MHz /T 1 s VBW 1 MHz			
●1Pk View				
jū dBm	D2	D2[1]		-0.59 dB 391.30 ms -3.21 dBm 0.00000 s
-10 dBm				
-20 dBm				
-30 dBm				
-40 dBm				
-50 dBm				
-60 dBm		anangenanthangapula	workward	
-70 dBm				
-80 dBm				
CF 902.75 MHz		L pts		 100.0 ms/

```
Date: 13.MAY.2013 09:42:29
```

Plot showing Dwell time of a hop as measured on a spectrum analyzer.

FCC ID: CGDSTOREIDP IC: 1444A-STOREIDP

est Report No.:	13031902.fcc03	Page 38 of 41
Spectrum		[⊞ ⊽
Ref Level 9.50 dBm	● RBW (CHAN) 500 kHz	(\
🛛 🗚 tt 🛛 50 dB 👄	SWT 20 s 🖷 VBW 1 MHz	
TRG:VID IPk View		
	D2[1]	-0.04 dB
0 dBm		390.02 ms
	M1[1]	8.34 dBm 0.00000 s
-10 dBm		
-20 dBm TRG -18.500 dB	3m	
-30 dBm		
	المراجع والمراجع ومرجع المراجع والمراجع و	en presidente de la contraction de la distante de la contraction de la contra Contraction de la contraction de la cont
-40 dBm	nonens een seperate see terde strong te eer jegen aan de part de stel stel stel stel de lande de de lande de st Nonens een seperate see terde strong te eer jegen aan de part de stel stel stel stel stel stel stel ste	innen in printen er et i jur <mark>friending i in britan</mark> en kinnen i print ^j ur ¹ it free teren begittere
-50 dBm		
-60 dBm		
-70 dBm		
-80 dBm		
CF 902.75 MHz	16000 pts	2.0 s/

Date: 13.MAY.2013 11:13:41

Plot showing average time of occupancy in a 20 second period as measured on a spectrum analyzer.

Note: Not measured in 1 MHz resolution bandwidth to avoid hops from next channel being registred. Instead a RBW of 500 kHz is used with a sharp Channel filter.

Limit: The 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall therefore have an average time of occupancy not greater than 0.4 seconds within a 20 second period.

Result: Pass

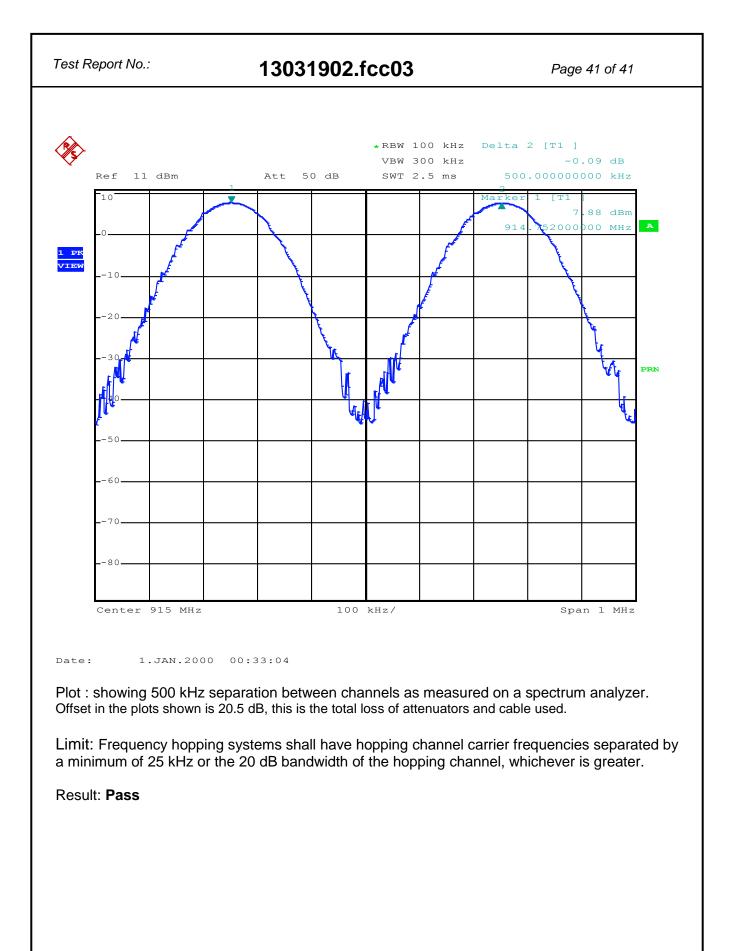
13031902.fcc03

Page 39 of 41

Channel	Frequency (MHz)	Power	Average occupancy time (ms)	Percentage of Total On Time (%)
1	902.75	Full	391.30	1.9565
2	903.25	Full	390.98	1.9549
3	903.75	Full	390.98	1.9549
4	904.25	Full	390.98	1.9549
5	904.75	Full	390.98	1.9549
6	905.25	Full	390.98	1.9549
7	905.75	Full	390.98	1.9549
8	906.25	Full	390.98	1.9549
9	906.75	Full	390.98	1.9549
10	907.25	Full	390.98	1.9549
11	907.75	Full	390.98	1.9549
12	908.25	Full	390.98	1.9549
13	908.75	Full	390.98	1.9549
14	909.25	Full	390.98	1.9549
15	909.75	Full	390.98	1.9549
16	910.25	Full	390.98	1.9549
17	910.75	Full	390.98	1.9549
18	911.25	Full	390.98	1.9549
10	911.75	Full	390.98	1.9549
20	912.25	Full	390.98	1.9549
20	912.25	Full	390.98	1.9549
21	912.75	Full		1.9549
	913.25	Full	390.98	1.9549
23 24		Full	390.98	
	914.25		390.95	1.9548
25	914.75	Full	390.95	1.9548
26	915.25	Full	390.95	1.9548
27	915.75	Full	390.95	1.9548
28	916.25	Full	391.01	1.9551
29	916.75	Full	391.01	1.9551
30	917.25	Full	391.01	1.9551
31	917.75	Full	391.01	1.9551
32	918.25	Full	391.01	1.9551
33	918.75	Full	391.01	1.9551
34	919.25	Full	391.01	1.9551
35	919.75	Full	391.01	1.9551
36	920.25	Full	391.01	1.9551
37	920.75	Full	391.01	1.9551
38	921.25	Full	391.01	1.9551
39	921.75	Full	391.01	1.9551
40	922.25	Full	391.01	1.9551
41	922.75	Full	391.01	1.9551
42	923.25	Full	391.01	1.9551
43	923.75	Full	391.01	1.9551
44	924.25	Full	391.01	1.9551
45	924.75	Full	391.01	1.9551
46	925.25	Full	391.01	1.9551
47	925.75	Full	391.01	1.9551
48	926.25	Full	391.01	1.9551
49	926.75	Full	391.01	1.9551
50	927.25	Full	391.01	1.9551

13031902.fcc03

Page 40 of 41


Table on previous page shows average time of occupancy per channel is less than 0.4 seconds and each frequency is used equally.

Note: Percentage of total On Time = (Dwell time(ms) / Period time (ms) of 1 cycle) * 100%

Limit: The 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall therefore have an average time of occupancy not greater than 0.4 seconds within a 20 second period.

Result: Pass

