

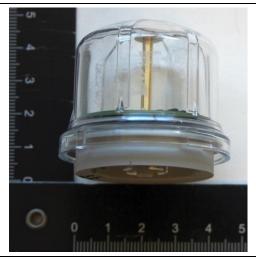
Test Report	No.: 18112704	l.r01	Page 1 of 52
Client:	N.V. Nederlandsche Appa Netherlands, R. Ooijman,		llelweg 2 7141 DC Groenlo
Test Item:	Digital Transmission Sy Luxon loT Node Outdoor	vstem (DTS)	
Identification: HVIN	p/n 9986979 & 9987061	Serial Number:	Node nr. 50, 70, 71,77 (conducted tests) and 34 (radiated tests)
Project No.:	18112704	Date of Receipt	: October 01, 2018
Testing Location:	TÜV Rheinland Nederland Eiberkamp 10 9351VT Leek	i B.V.	
Test Specification:	RSS-Gen (Issue 4, November ANSI C63.10-2013	urt C, Section 15.247 (10-1-18 er 2014) and RSS-247 (Issue as Guidance v05r01, February	2, February 2017)
Test Result:		The test item passed the	test specification(s).
Testing Laboratory:		TÜV Rheinland Nederla Eiberkamp 10 9351 VT Leek	nd B.V.
Tested by: RudMe	8	Reviewed by:	Libel.
2019-05-01 R. van de	r Meer / Inspector	2019-05-01 E. van der Wal	/ Reviewer
Date Name/Po	sition Signature	Date Name/Position	Signature
Other Aspects:two m	odels are covered by one FC0	C/IC certification sharing the	same RFsection.
		F(ail) = N/A =	passed failed not applicable not tested

This report shall not be reproduced, except in full, without the written permission of TÜV Rheinland Nederland B.V.

The test results relate only to the item(s) tested.

The content of this report and measurement results have not been changed other than the way of presenting the data.

Test Report No.: 18112704.r01 Page 2 of 52


Prufbericht-Nr: 18112704.r01

Test report No:

Seite 2 von 52 Page 2 of 52

(Small node) HVIN 9986979 Zhaqa

Test Report No.:	18112704.r01	Page 3 of 52
•	10112107.101	r age o or oz

TEST SUMMARY

Test Specification Clause	Test Case		Fail	Not applicable	Not performed
§15.247(a2)	Spectrum Bandwidth of a DTS System / 6dB BW				
§ 15.247 (b) (3)	Maximum output power (conducted)				
§15.247 (e)	Peak power spectral density				
§15.247 (d)	Band-edge compliance of conducted emissions				
§15.205	Band-edge compliance of radiated emissions				
§15.247 (d)	Spurious Emission - conducted (Transmitter)				
§ 15.209	Spurious Emission - radiated (Transmitter)				
§ 15.207	AC Power Line Conducted Emissions <30 MHz				

Revisions Revisions						
Revision Revision	Datum Date	Anmerkung Remark	Verfasser Author			
-	12.03.2019	First release	R. van der Meer			
01 16.03.2019 typos R. van der Meer						
02 01.05.2019 added FCC ID IC ID, corrected HVIN inconsistency R. van der Meer						

Test Report No.: 18112704.r01 Page 4 of 52

Contents

1. 1.1.1 1.1.2 1.1.3	Special Accessories5
2.	TEST S ITES6
2.1	TEST FACILITIES6
2.2	LIST OF TEST AND MEASUREMENT INSTRUMENTS TABLE 1: LIST OF TEST AND MEASUREMENT EQUIPMENT
2.3	MEASUREMENT UNCERTAINTY
3.	GENERAL PRODUCT INFORMATION9
3.1	COUNTERMEASURES TO ACHIEVE COMPLIANCE
3.2	OPERATION MODES9
3.3	PHYSICAL CONFIGURATION FOR TESTING10
3.4	Test Software
3.5	SPECIAL ACCESSORIES AND AUXILIARY EQUIPMENT
4.1.1 4.1.2 4.1.3 4.1.4 4.1.5	Conducted Output Power
4.2 4.2.1 6.2.2	

Test Report No.:	18112704.r01	Page 5 of 52
1. General Rema	arks	
1.1.1 Complementary	Materials	
There is no attachment to thi	s test report.	
1.1.2 Special Accesso	ories	
None.		
1.1.3 Equipment mod	ifications	
None		

Test Report No.: 18112704.r01 Page 6 of 52

2. Test Sites

2.1 Test Facilities

The Semi-Anechoic chamber and AC Line Conducted measurement facility used to collect the radiated and conducted data has been constructed in accordance with ANSI C63.7. The site has been measured in accordance with and verified to comply with the theoretical normalized site attenuation requirements of ANSI C63.4-2014, at a test distance of 3 meters. The site is listed with the FCC and ISED and accredited by RvA (Cert #L484). The 3 meter semi-anechoic chamber used to collect the radiated data has been verified to comply with the theoretical normalized site attenuation requirements of ANSI C63.4-2014, at a test distance of 3 meter

The Federal Communications Commission and Industry Canada has reviewed the technical characteristics of the test facilities at TÜV Rheinland Nederland B.V., located in Leek, 9351VT Eiberkamp 10, The Netherlands, and has found these test facilities to be in compliance with the requirements of 47 CFR Part 15, section 2.948.

The description of the test facilities has been filed at the Office of the Federal Communications Commission under registration number 786213. The facility has been added to the list of laboratories performing these test services for the public on a fee basis.

The description of the test facilities has been filed to Industry Canada under registration number 2932G-2. The facility has been added to the list of laboratories performing these test services for the public on a fee basis.

Normal test conditions:

Temperature (*) : +15°C to +35°C Relative humidity(*) : 20 % to 75 % Supply voltage : 24 Vdc.

(*)When it was impracticable to carry out the tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests are stated separately.

Test Report No.: 18112704.r01 Page 7 of 52

2.2 List of Test and Measurement Instruments

Table 1: List of Test and Measurement Equipment

Kind of Equipment	Manufacturer	Model Name	Inventory number	Calibration date (mm/yyyy)	Calibration due date (mm/yyyy)			
For Antenna Port Cond	For Antenna Port Conducted Emissions							
Temperature- Humiditymeter	Extech	SD500	A00446	06/2018	06/2019			
Spectrum Analyzer	Rohde & Schwarz	FSV	A01744	07/2018	07/2020			
Power supply	Voltcraft	PS303	2789038 /A00264	12/2018	12/2019			
RF Cable	Rohde & Schwarz	WF	2789116 /A00347	07/2018	07/2019			
For Radiated Emission	s							
Measurement Receiver	Rohde & Schwarz	ESCI	A00314	03/2018	03/2019			
RF Cable S-AR	Gigalink	APG0500	A00447	01/2019	01/2020			
Controller	Maturo	SCU/088/ 8090811	A00450	N/A	N/A			
Controller	EMCS	DOC202	A00257	N/A	N/A			
Test facility	Comtest	FCC listed: 786213 IC: 2932G-2	A00235	10/2017	10/2020			
Spectrum Analyzer	Rohde & Schwarz	FSV	A00377	07/2018	07/2019			
Antenna mast	EMCS	AP-4702C	A00258	N/A	N/A			
Temperature- Humiditymeter	Extech	SD500	A00444	06/2018	06/2019			
Guidehorn 1-18 GHz	EMCO	3115	A00008	12/2017	12/2020			
Guidehorn 18-40 GHz	EMCO	RA42-K-F-4B-C	A00012	01/2018	01/2021			
Biconilog Testantenna	Teseq	CBL 6111D	A00466	10/2018	10/2019			
2.4 GHz bandreject filter	BSC	XN-1783	A00065	N/A	N/A			
Bandpass filter 4-10 GHz	Reactel	7AS-7G-6G- 511	A00131	N/A	N/A			
Bandpass filter 10-26 GHz	Reactel	9HS- 10G/26.5G- S11	A00151	N/A	N/A			
Preamplifier 0.5 - 18 GHz	Miteq	AMF-5D- 005180-28- 13p	A00247	N/A	N/A			
Filterbox	EMCS	RFS06S	A00255	04/2018	04/2019			
Power supply	Voltcraft	PS303	2789038 /A00264	12/2018	12/2019			

Test Report No.: 18112704.r01 Page 8 of 52

Kind of Equipment	Manufacturer	Model Name	Inventory number	Calibration date (mm/yyyy)	Calibration due date (mm/yyyy)
For AC Powerline Conducted Emissions					
Pulse limiter	R&S	ESH3-Z2	2788823 (A00051)	11/2018	11/2019
Variac	RFT	LSS020	A00171	NA	NA
LISN	R&S	ESH2-Z5	2788791 (A00019)	06/2018	06/2020
Measurement Receiver	Rohde & Schwarz	ESCS30	A00726	10/2018	10/2019
Shielded room for Conducted emissions			A00437	NA	NA
Temperature-Humidity meter	Extech	SD500	A00444	06/2018	06/2019
Power supply	Voltcraft	PS303	2789038 /A00264	12/2018	12/2019

Conformance of the used measurement and test equipment with the requirements of ISO/IEC 17025:2005 has been confirmed before testing. NA= Not Applicable

Accreditation

The reported tests were performed under ISO17025 accreditation, unless otherwise specified as 'not under Accreditation'

An overview of all TÜV Rheinland Nederland B.V. accreditations, notifications and designations, please visit our website www.tuv.com/nl. You can find the relevant declarations under the download link.

2.3 Measurement Uncertainty

Table 2: Emission Measurement Uncertainty

Measurement Type	Frequency	Uncertainty
Antenna Port Conducted Emission	< 1.3GHz	1.7dB
	1.3 - 40GHz	2.9 – 3.4dB
Radiated Emission	150kHz - 30MHz	±5.0dB
	30MHz - 1GHz	±5.0dB
	> 1GHz	±5.5dB
AC Power Line Conducted Emissions	150kHz - 30MHz	±3.5dB

Test Report No.: 18112704.r01 Page 9 of 52

3. General Product Information

The EUT is wireless controlled outdoor luminaires. The EUT has the capability of operating in the 2.4 GHz frequency band and uses propriety protocol.

Technical Specifications

Technical Specifications	Value
Operating Frequency band	2408 – 2475 MHz , Non Hopping
Default operating channel	2450 MHz
Modulation	GFSK
Antenna Gain	0 dBi

By factory default, the center frequency for the RF communication is 2450MHz. It It can be changed in a range from 2408 to 2475 MHz, which must be performed by Nedap service personnel in rare case that there is too much interference present on 2450 MHz.

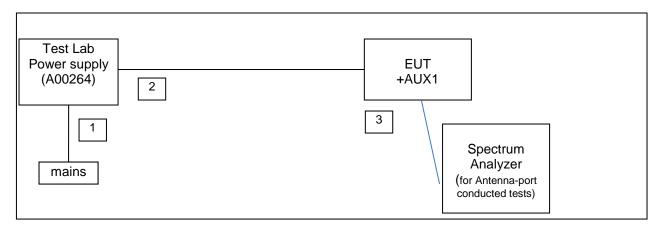
There are no interface ports present on the EUT.

3.1 Countermeasures to achieve compliance

No additional measures were employed to achieve compliance.

3.2 Operation Modes

Testing was performed at the lowest operating frequency (2408 MHz), at the operating frequency in the middle of the specified frequency band (2450 MHz) and at the highest operating frequency (2475 MHz). These operation modes were selected after review of the capabilities and characteristics of the EUT.


Test Report No.: 18112704.r01 Page 10 of 52

3.3 Physical Configuration for Testing

The EUT was tested on a stand-alone basis as per Figure 1 for the antenna port conducted tests and with lamp driver and motion detector.

The justification and manipulation of cables and equipment in order to simulate a worst-case behavior of the test setup has been carried out as prescribed in ANSI C63.10-2013.

Figure 1: Test Setup Diagram – antenna port conducted tests and programming.

No.	Port	From	То	Remarks
1.	Mains	Mains	Power Supply (A00264)	-
2.	DC Power	Power Supply	EUT	-
3.	Antenna port	EUT	Spectrum analyzer	Conducted tests

For radiated tests:

	List of used cables					
No.	Function	From	То	Length	Remarks	
1	Power	EUT	DC *)	< 1 m		
2	Controlling	EUT	Lamp Driver	< 3 m		
3	Motion detecting	EUT	Manual control	< 3 m		

^{*)} EUT is part of lighting system and is powered from Host inside

Test Report No.: 18112704.r01 Page 11 of 52

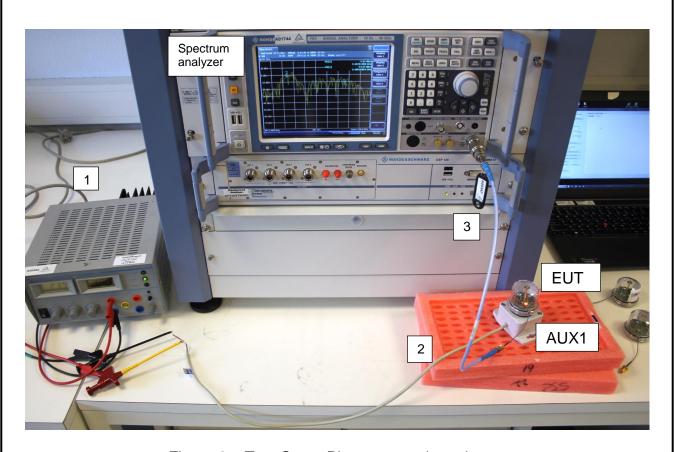


Figure 2a: Test Setup Photos – conducted tests

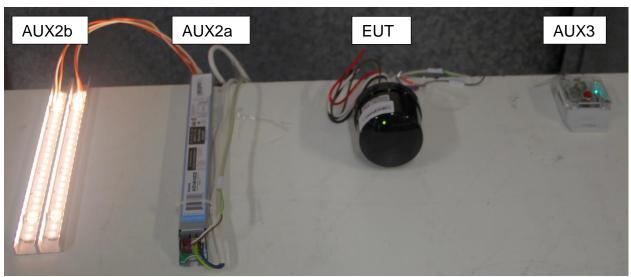


Figure 3b: Test Setup Photos – radiated tests

Test Report No.: 18112704.r01 Page 12 of 52

3.4 Test Software

Luxon wireless control tool v0.1 was used for AC power line conducted emissions to set the Normal operation mode. Dedicated samples for each test frequency was provided by the applicant for conducted and radiated emissions tests.

3.5 Special Accessories and Auxiliary Equipment

The product has been tested together with the following additional accessories: AUX1 Test fixture for holding the EUT AUX2a Lamp driver Philips Advance X1040C110V054VPT1 and AUX2b LED lamps Philips Fortimo AUX3 Motion detector Nedap

Test Report No.: 18112704.r01 Page 13 of 52

4. Test Results

4.1.1 6dB and 99% Bandwidth

RESULT: PASS

Date of testing: 2019-02-15

Requirements:

FCC 15.247(a)(2) and RSS-247 Section 5.2(1)

For systems using digital modulation in the 2400-2483.5MHz band, the 6dB bandwidth shall be at least 500kHz.

For 99% Bandwidth: RSS-Gen Section 4.6.1: No requirement is given.

Test procedure 6dB bandwidth:

ANSI C63.10-2013 section 11.8.1 Option 1

A spectrum analyzer was connected to the antenna port of the EUT. The spectrum analyzer resolution bandwidth was set to 100kHz, video bandwidth to 300kHz and the span wide enough to capture the modulated carrier.

For 99% Bandwidth:

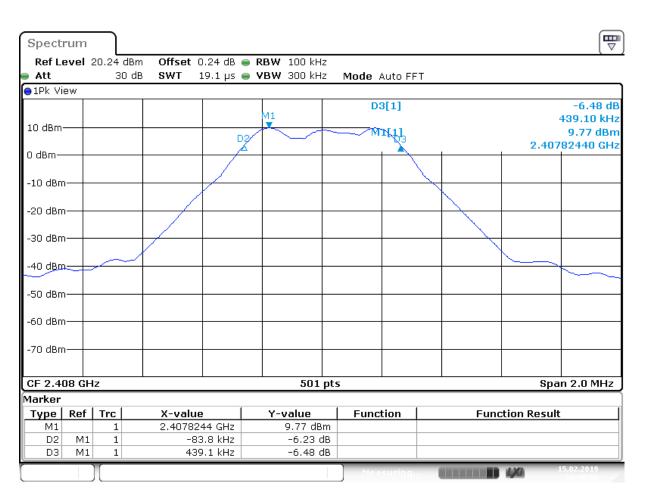
Test procedure: RSS-Gen.

The transmitter shall be operated at its maximum carrier power measured under normal test conditions. The span of the analyzer shall be set to capture all products of the modulation process, including the emission sideskirts. The resolution bandwidth shall be set as close to 1% of the selected span as is possible without being below 1%. The video bandwidth shall be set to 3 times the resolution bandwidth. Video averaging is not permitted. Where practical, a sampling detector shall be used given that a peak or peak hold may produce a wider bandwidth than actual.

A spectrum analyzer was connected to the antenna port of the EUT. The spectrum analyzer resolution bandwidth was set to 1% of the selected span, Video bandwidth was set to 3 times the resolution bandwidth. The span was set to capture the whole modulation process. The Spectrum analyzers automated function for 99% BW was used.

Measurement uncertainty is +/-

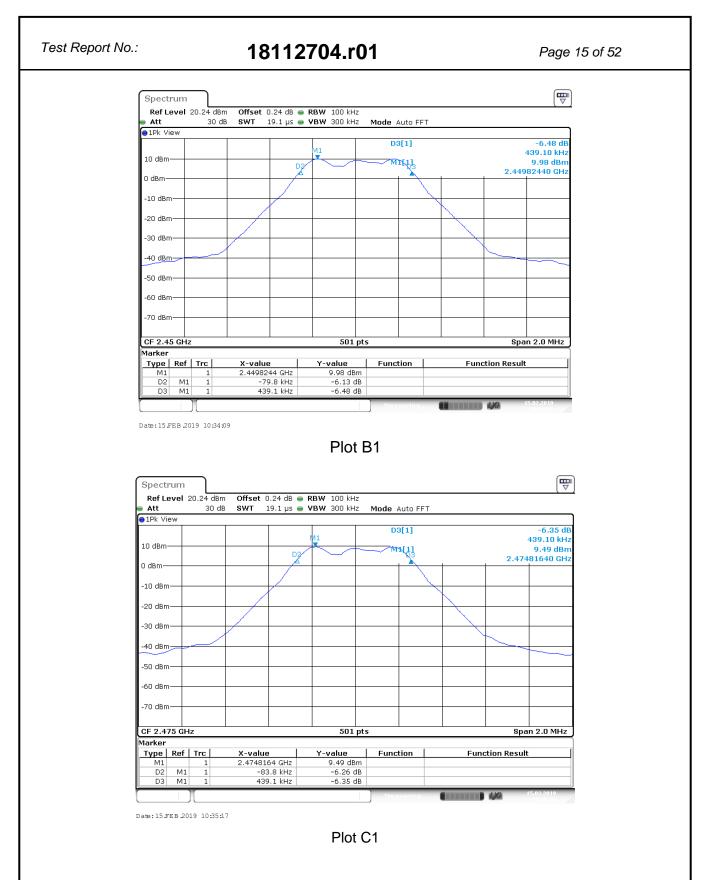
Plots A1,B1 and C1 shown on the next pages are of the 6 dB bandwidth. Plots A2,B2 and C2 shown on the next pages are of the 99% bandwidth



Test Report No.: 18112704.r01 Page 14 of 52

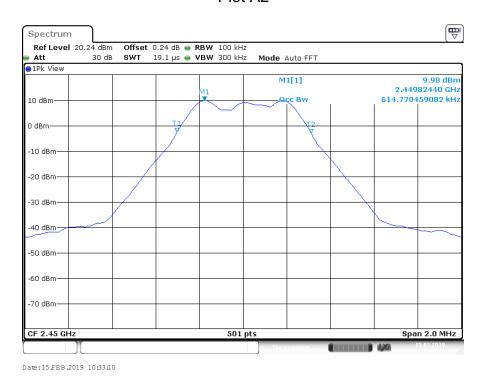
6dB and 99% Bandwidth

Operating Frequency [MHz]	99% Bandwidth [kHz]	6dB Bandwidth [kHz]	Limit [kHz]	Verdict [Pass/Fail]	Plot number
2408	622.8	522.9	>500	Pass	A1/A2
2450	614.8	518.9	>500	Pass	B1/B2
2475	626.7	522.9	>500	Pass	C1/C2



Date:15.FEB 2019 10:30:58

Plot A1




Plot A2

Plot B2

Date: 15.FEB 2019 10:35:47

Plot C2

Test Report No.: 18112704.r01 Page 18 of 52

4.1.2 Conducted Output Power

RESULT: PASS

Date of testing: 2019-02-15

Requirements:

FCC 15.247(b)(3)

For systems using digital modulation in the 2400-2483.5 MHz band, the maximum peak output power is 1W (+30dBm).

RSS-247 section 5.4(4): the e.i.r.p. shall not exceed 4 W (+36 dBm).

Test procedure:

The Peak Conducted Output Power was measured using the method according to section 11.9.1.1 in ANSI C63.10-2013.

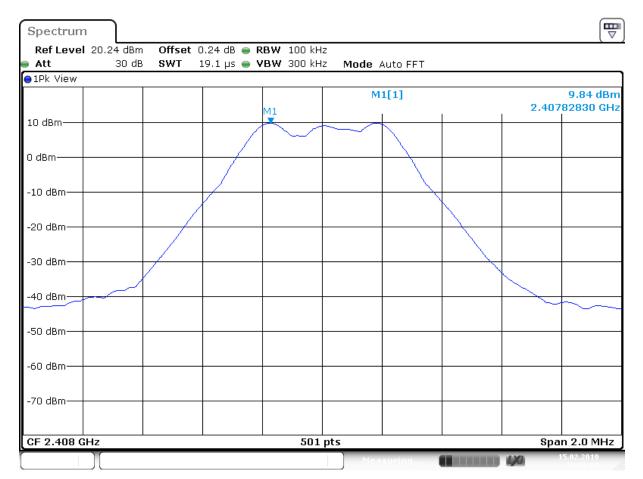
The maximum peak output power (conducted) was measured at the antenna connector with a spectrum analyzer. The final measurement takes into account the loss generated by all the involved cables.

Measurement uncertainty is +/- 0.7 dB.

Notes: $mW = 10 \land (dBm/10)$ $dBm = 10 \times log(mW)$

plots: Peak power plots,

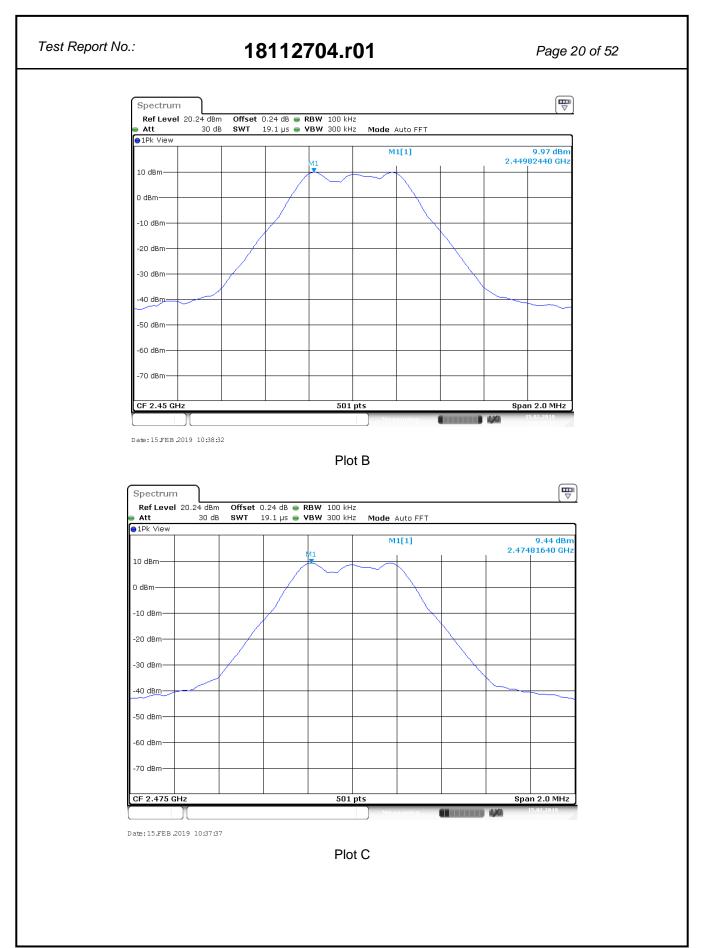
Figures 1a, 1b and 1c show plots of the Peak Power outputs, correction factors (= 0.24dB Cable loss) included in the reading.



Test Report No.: 18112704.r01 Page 19 of 52

Conducted Output Power

Frequency [MHz]	Output Power [dBm]	Limit [dBm]	Verdict [Pass/Fail]	Antenna Gain (dBi)	EIRP (dBm)	EIRP (W)	Plot number
2408	9.84 (9.6 mW)	+30	Pass	0	9.84	0.0096	1A
2450	9.97 (9.9 mW)	+30	Pass	0	9.97	0.0099	1B
2475	9.44 (8.8 mW)	+30	Pass	0	9.44	0.0088	1C



Date: 15.FEB .2019 10:39:22

Plot A

Test Report No.:	18112704.r01	Page 21 of 52

4.1.3 Peak Power Spectral Density

RESULT: PASS

Date of testing: 2019-02-15

Requirements:

FCC 15.247(e) and RSS-247 section 5.2(2)

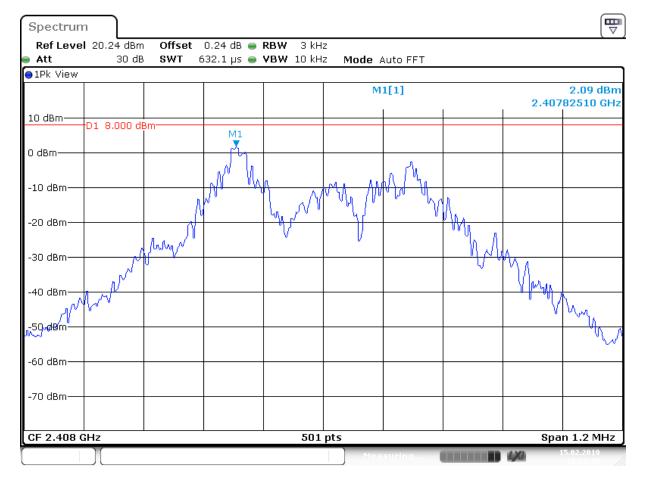
For digitally modulated systems, the power spectral density (PSD) conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission.

Test procedure:

ANSI C63.10-2013

The section 11.10.2 PKPSD peak PSD procedure was used. A spectrum analyzer was connected to the antenna port of the EUT. The analyzer resolution bandwidth was set to 3kHz and the video bandwidth was set to 10kHz. The sweep time was set to auto couple and the trace was allowed to stabilize before making the final measurement. By using the Peak marker function the maximum amplitude was determined. The final measurement takes into account the loss generated by all the involved cables.

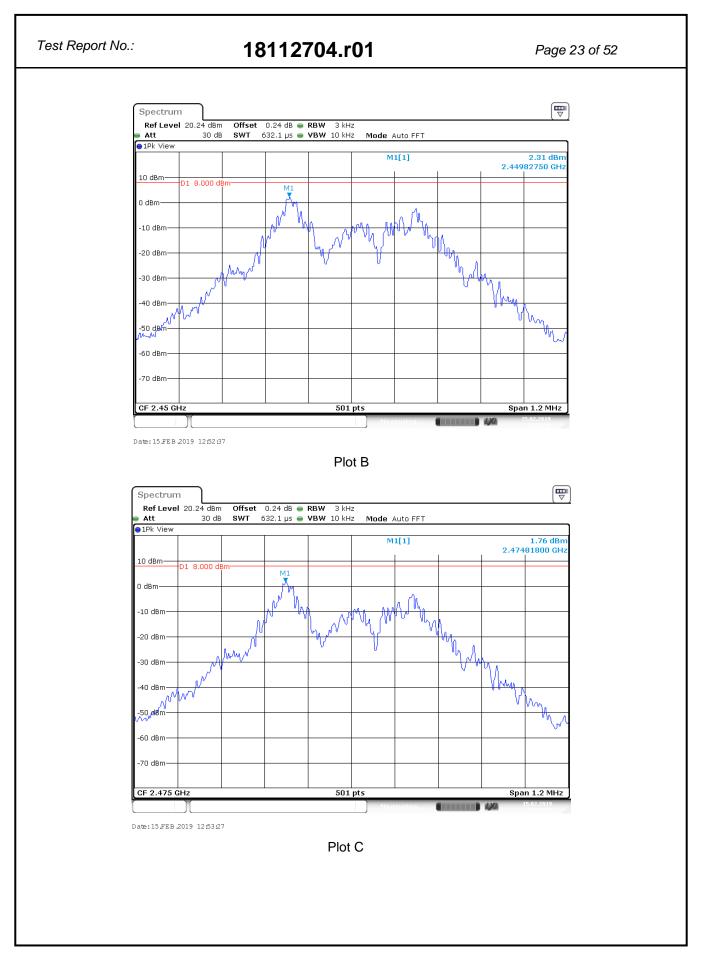
Measurement uncertainty is +/- 0.7 dB.



Test Report No.: 18112704.r01 Page 22 of 52

Peak Power Spectral Density

Operating Frequency [MHz]	Max PSD [dBm]	Limit [dBm]	Verdict [Pass/Fail]	Plot
2408	2.09	8	Pass	Α
2450	2.31	8	Pass	В
2475	1.76	8	Pass	С



Date: 15.FEB .2019 12:51:38

Plot A

Test Report No.: 18112704.r01 Page 24 of 52

4.1.4 Band Edge Conducted Emissions

RESULT: Pass

Date of testing: 2019-02-15

Requirements:

FCC 15.205, FCC 15.209, FCC 15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

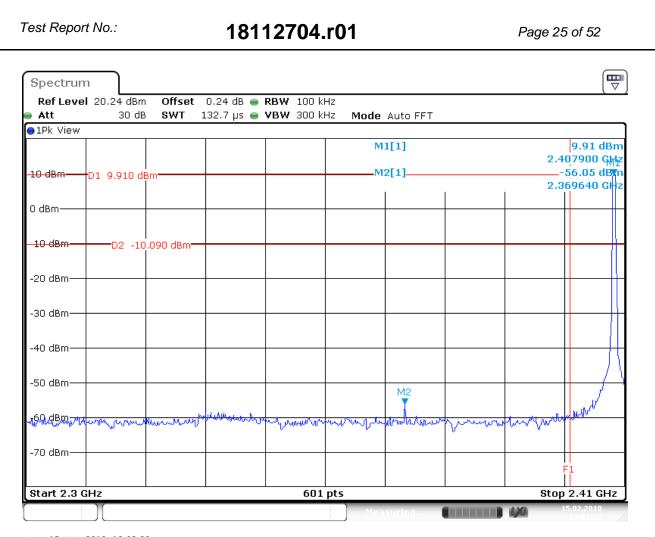
Test procedure:

ANSI C63.10-2013 KDB 558074 D0115.247 Meas Guidance v05r01, February 11, 2019 Section 11.13

The marker-delta method, as described in ANSI C63.10 was used.

Measurements were performed using a spectrum analyzer with a suitable span to encompass the peak of the fundamental and using the following settings:

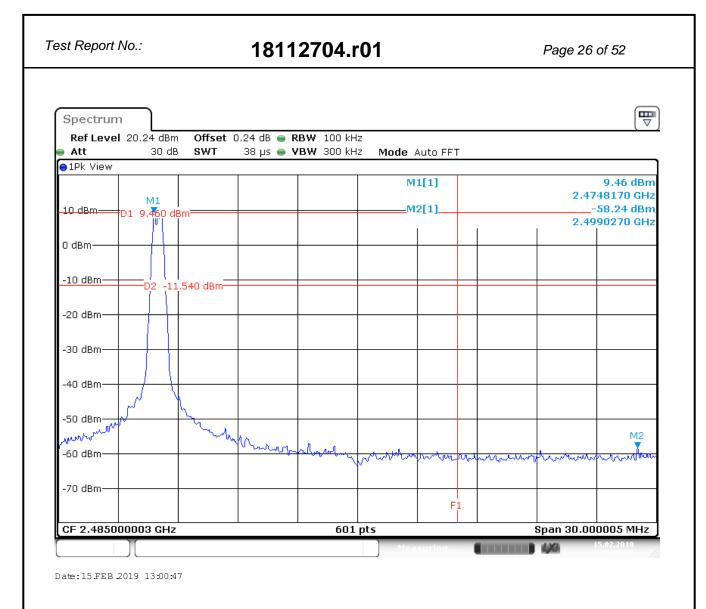
RBW = 100kHz, VBW = 300kHz.


The highest emission amplitudes relative to the appropriate limit were measured and recorded in this report.

Measurement uncertainty is +/- 0.7 dB.

Results: All out of band spurious emissions are more than 20 dB below the fundamental. See the figures on the following pages.

Date: 15.FEB 2019 13:03:38


Plot: Band Edge Conducted Emission, Spectral Diagram, 2408 MHz

Plot showing more than 20 dB band edge attenuation.

F1 shows the band edge frequency of 2400 MHz.

Plot: Band Edge Conducted Emission, Spectral Diagram, 2475 MHz. Plot showing more than 20 dB band edge attenuation. F1 shows the band edge frequency of 2483.5 MHz.

Test Report No.: 18112704.r01 Page 27 of 52

4.1.5 Radiated Spurious Emissions of Transmitter

RESULT: Pass

Date of testing: 2019-02-01 & 19

Frequency range: 30MHz - 25GHz

Requirements:

FCC 15.209 and FCC 15.247(d) and RSS-Gen

Radiated emissions which fall outside the operation frequency band and outside restricted bands shall either meet the limit specified in FCC 15.209(a) or be attenuated at least 20dB below the power level in the 100kHz bandwidth within the band that contains the highest level of the desired power (the less severe limit applies).

Radiated emissions which fall in the restricted bands, as defined in FCC 15.205(a) and RSS-Gen Table 6, must comply with the radiated emission limits specified in FCC 15.209(a) and RSS-Gen Table 4.

Test procedure:

ANSI C63.10-2013 KDB 558074 D0115.247 Meas Guidance v05r01, February 11, 2019

Before final measurements of radiated emissions were performed, the EUT was scanned to determine its emission spectrum profile. The physical arrangement of the test system, the associated cabling were varied in order to ensure that maximum emission amplitudes were attained.

The spectrum was examined from 30MHz to the 10th harmonic of the highest fundamental transmitter frequency (25GHz). Final radiated emission measurements were made at 3m distance.

At each frequency where a spurious emission was found, the EUT was rotated 360° and the antenna was raised and lowered from 1 to 4m in order to determine the emission's maximum level. Measurements were taken using both horizontal and vertical antenna polarizations.

The highest emission amplitudes relative to the appropriate limit were recorded in this report. Field strength values of radiated emissions at frequencies not listed in the tables are more than 20 dB below the applicable limit. Where Peak (Pk) values where at least 6 dB under the Average (Av) limits, Av value was not tested. Were Average values were tested, Average values were measured using a reduced Video Bandwidth, with a minimum of 10 kHz.

Test Report No.: 18112704.r01 Page 28 of 52

Radiated Emissions, 30MHz - 1GHz

Frequency [MHz]	EUT Orientation	Antenna Orientation	Level QP [dBµV/m]	Limit QP [dBµV/m]	Verdict [Pass/Fail]
48.7	Side	Vertical	34.2	40.0	Pass
160.7	Vertical	Vertical	30.1	43.5	Pass
162.7	Side	Vertical	34.0	43.5	Pass
366.0	Vertical	Vertical	25.1	46.0	Pass
425.0	Side	Horizontal	25.9	46.0	Pass
844-960 noise	-	Vertical	30.9	46.0	Pass

Results of the small node

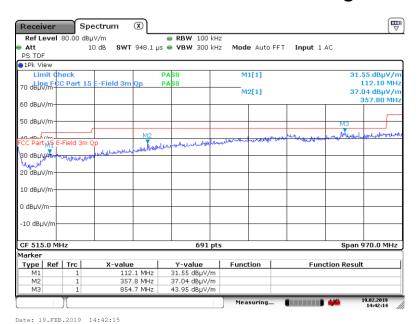
Frequency [MHz]	EUT Orientation	Antenna Orientation	Level QP [dBµV/m]	Limit QP [dBµV/m]	Verdict [Pass/Fail]
36.3	Side	Vertical	28.8	40.0	Pass
47.3	Side	Vertical	25.5	40.0	Pass
163.9	Side	Horizontal	30.9	43.5	Pass
165.5	Side	Horizontal	29.7	43.5	Pass
357.8	Vertical	Horizontal	31.2	46.0	Pass
527.6	Vertical	Horizontal	35.6	46.0	Pass

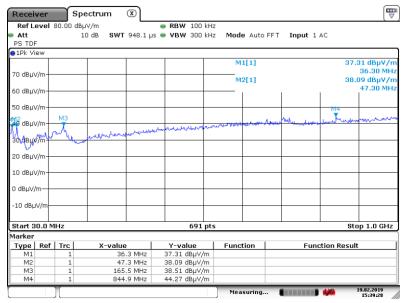
Results of the large node

Note:

- Level QP = Reading QP + Factor
- Tested in modes as described in section 3.2, the 6 highest values noted.

Preliminary measurements indicated that the radiated emissions from EUT were not affected by the EUT's operating mode or frequency.


- *R refers to a frequency in a restricted band, *H refers to a harmonic of the fundamental
- Quasi Peak detector used with a bandwidth of 120 kHz.
- Measurement uncertainty is +/- 5.0 dB.
- a selection of plots are provided on the next pages



Test Report No.: 18112704.r01 Page 29 of 52

4.1.6 Plot of the emissions in the range 30 -1000 MHz

Plot of the emissions in the range 30 - 1000 MHz (Peak detector values shown), Small node

Date: 19.FEB.2019 15:39:28

Plot of the emissions in the range 30 - 1000 MHz (Peak detector values shown), Large node

Test Report No.: 18112704.r01 Page 30 of 52

Radiated Emissions, 1 - 25GHz, 2408 MHz, small node.

Frequency [MHz]	EUT Orientation	Antenna Orientation	Detector	Level [dBµV/m]	Limit [dBµV/m]	Result
1440*R	Side	Horizontal	Pk	41.8	74 Pk 54 Av	Pass
4816*H*R	Vertical	Vertical	Pk	55.8	74	Pass
4816*H*R	Vertical	Vertical	Av	50.9	54	Pass
7225*HR	Vertical	Vertical	Pk	54.4 Pk 51.4 Av	54 (Av) 74 (Pk)	Pass
11.385*R	Vertical	Vertical	Pk	63.3 Pk 48.0 Av	54 (Av) 74 (Pk)	Pass
13.254	Side	Vertical	Pk	57.2 Pk 45.4 Av	54 (Av) 74 (Pk)	Pass
17.97 noise	-	Horizontal	Pk	69.3 Pk 53.0 Av	54 (Av) 74 (Pk)	Pass

Radiated Emissions, 1 - 25GHz, 2450 MHz, small node.

Frequency [MHz]	EUT Orientation	Antenna Orientation	Detector	Level [dBµV/m]	Limit [dBµV/m]	Result
1441*R	Side	Horizontal	Pk	46.0	54 (Av) 74 (Pk)	Pass
4889*H*R	Side	Vertical	Pk	56.0 Pk 51.1 Av	54 (Av) 74 (Pk)	Pass
7350*HR	Side	Horizontal	Pk	53.7 Pk 52.9 Av	54 (Av) 74 (Pk)	Pass
13.928	Side	Vertical	Pk	57.2 Pk 45.4 Av	54 (Av) 74 (Pk)	Pass
15.216	Side	Vertical	Pk	57.2 Pk 45.4 Av	54 (Av) 74 (Pk)	Pass
17.925*R noise	-	Horizontal	Pk	69.2 Pk 53.0 Av	54 (Av) 74 (Pk)	Pass

Test Report No.: 18112704.r01 Page 31 of 52

Radiated Emissions, 1 - 25GHz, 2475 MHz. small node

Frequency [MHz]	EUT Orientation	Antenna Orientation	Detector	Level [dBµV/m]	Limit [dBµV/m]	Result
4949*RH	side	Horizontal	Pk	53.1 Pk 51.3 Av	54 (Av) 74 (Pk)	Pass
7426*H	Side	Vertical	Pk	53.4 Pk 52.8 Av	54 (Av) 74 (Pk)	Pass
11386 noise	-	Vertical	Pk	61.4 Pk 50.3 Av	54 (Av) 74 (Pk)	Pass
17250 noise	-	Vertical	Pk	58.6 Pk 50.0 Av	54 (Av) 74 (Pk)	Pass

Test Report No.: 18112704.r01 Page 32 of 52

Radiated Emissions, 1 - 25GHz, 2408 MHz, large node.

Frequency [MHz]	EUT Orientation	Antenna Orientation	Detector	Level [dBµV/m]	Limit [dBµV/m]	Result
1441*R	Vertical	Horizontal	Pk	46.3	54 (Av) 74 (Pk)	Pass
4816*H*R	Vertical	Vertical	Pk	53.7 Pk	54 (Av) 74 (Pk)	Pass
7224*HR	Vertical	Vertical	Pk	53.7 Pk	54 (Av) 74 (Pk)	Pass
11386 noise	-	Vertical	Pk	63.3 Pk 52.6 Av	54 (Av) 74 (Pk)	Pass
17250 noise	-	Vertical	Pk	58.5 Pk 50.0 Av	54 (Av) 74 (Pk)	Pass

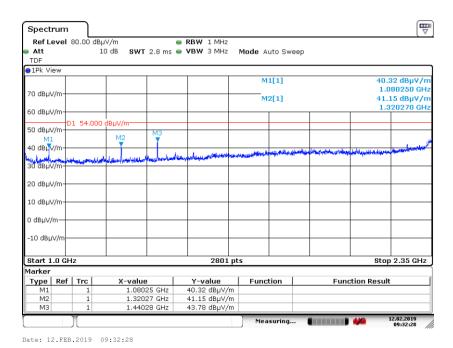
Radiated Emissions, 1 - 25GHz, 2450 MHz, large node.

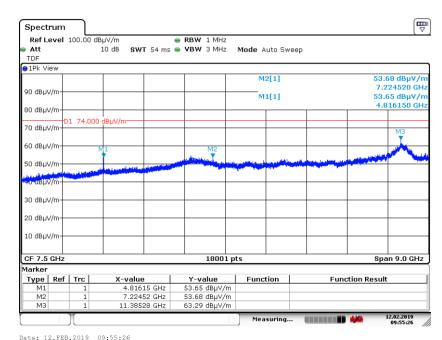
Frequency [MHz]	EUT Orientation	Antenna Orientation	Detector	Level [dBµV/m]	Limit [dBµV/m]	Result
1441.8*R	Vertical	Vertical	Pk	45.0	54 (Av) 74 (Pk)	Pass
4900*H*R	Vertical	Vertical	Pk	41.3	54 (Av) 74 (Pk)	Pass
7350*HR	Vertical	Vertical	Pk	45.0	54 (Av) 74 (Pk)	Pass
11386 noise	-	Vertical	Pk	61.0 Pk 53.0 Av	54 (Av) 74 (Pk)	Pass
17250 noise	-	Vertical	Pk	58.5 Pk 50.0 Av	54 (Av) 74 (Pk)	Pass

Radiated Emissions, 1 - 25GHz, 2475 MHz. large node

Frequency [MHz]	EUT Orientation	Antenna Orientation	Detector	Level [dBµV/m]	Limit [dBµV/m]	Result
1440.8*R	Vertical	Vertical	Pk	40.0	54 (Av) 74 (Pk)	Pass
4950*H*R	Vertical	Vertical	Pk	51.3Pk 48.0 Av	54 (Av) 74 (Pk)	Pass
7425*HR	Vertical	Vertical	Pk	52.8 Pk 50.5 Av	54 (Av) 74 (Pk)	Pass
11401noise	-	Vertical	Pk	61.0 Pk 53.0 Av	54 (Av) 74 (Pk)	Pass
17250 noise	-	Vertical	Pk	58.5 Pk 50.0 Av	54 (Av) 74 (Pk)	Pass

Test Report No.:	18112704.r01	Page 33 of 52

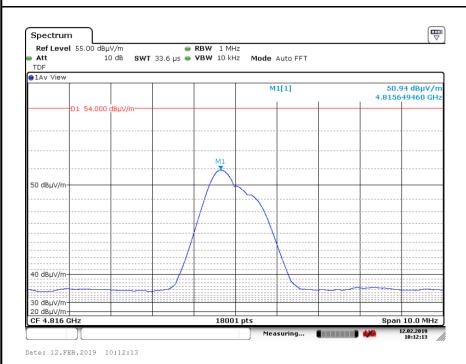

- Notes: *R refers to a frequency in a restricted band, *H refers to a frequency which is a harmonic of the fundamental.
 - 1 MHz residual bandwidth filter setting used.
 - Field strength values of radiated emissions not listed in the tables above are more than 20 dB below the applicable limit.
 - Measurement uncertainty is +/- 5.5 dB
 - a selection of plots are provided on the next pages.



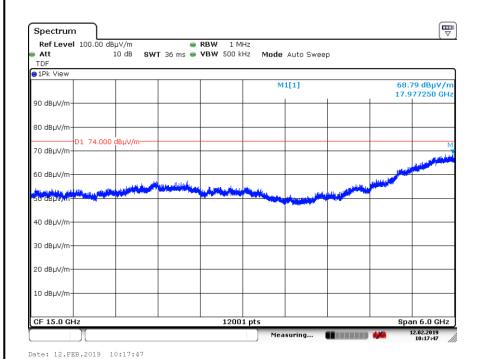
Test Report No.: 18112704.r01 Page 34 of 52

4.1.7 Plots of the radiated unwanted emissions 1 – 25 GHz, small node

Radiated unwanted emissions in the range 1 - 2.35 GHz at 2408 MHz (Peak values, EUT Vertical, Antenna Horizontal position shown).

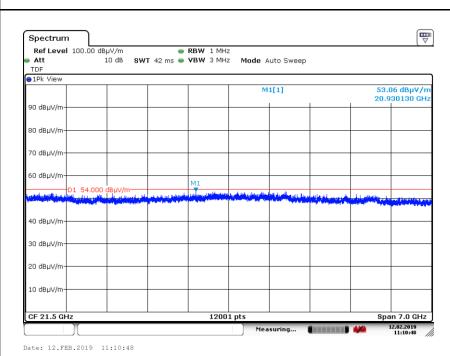


Radiated unwanted emissions in the range $3-12~\mathrm{GHz}$ at 2408 MHz (Peak values, EUT side ways, Antenna horizontal position shown)

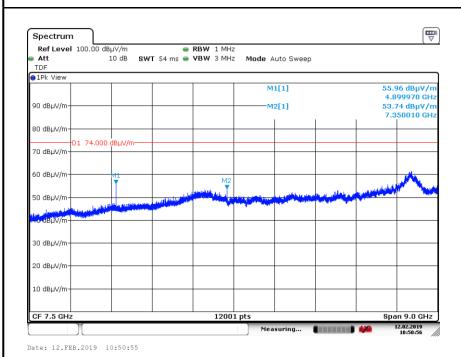


Test Report No.: 18112704.r01 Page 35 of 52

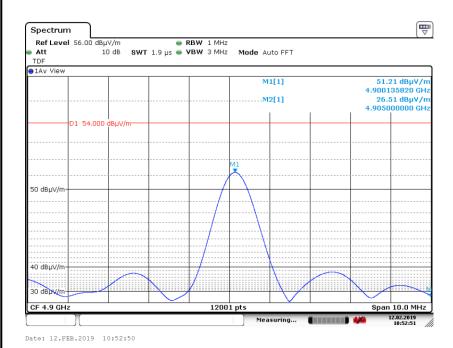
Radiated unwanted emissions at 4.8 GHz, harmonic of 2408 MHz (Average value, EUT Side ways, Antenna vertical position shown)



Radiated unwanted emissions in the range 12 – 18 GHz at 2408 MHz (Peak value, EUT Side ways, Antenna vertical position, reduced bw shown)

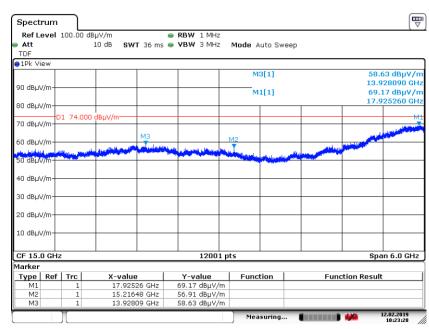


Radiated unwanted emissions in the range $18-25~\mathrm{GHz}$ at 2408 MHz (Peak values, EUT Side ways, Antenna vertical position shown)

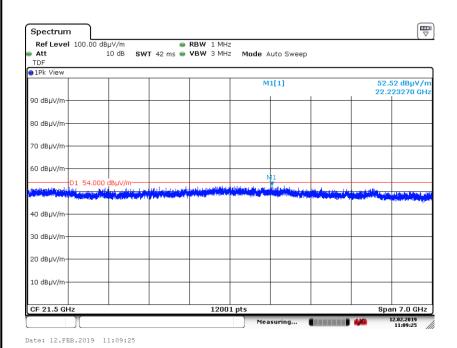


Test Report No.: 18112704.r01 Page 37 of 52

Radiated unwanted emissions in the range 3 – 12 GHz at 2450 MHz (Peak values, EUT side ways, Antenna vertical position shown)

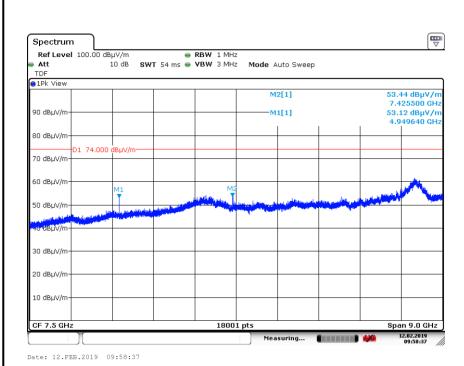


Radiated unwanted emissions at 4.9 GHz, harmonic of 2450 MHz (Average value, EUT Side ways, Antenna vertical position shown)

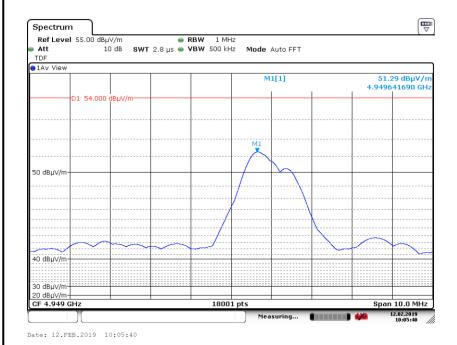


Date: 12.FEB.2019 10:23:28

Radiated unwanted emissions in the range $12-18\ GHz$ at 2450 MHz (Peak values, EUT Side, Antenna horizontal position shown)



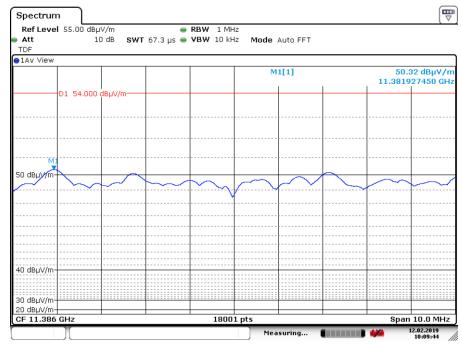
Radiated unwanted emissions in the range 18 – 25 GHz at 2450 MHz (Peak values, EUT side ways, Antenna vertical position shown)



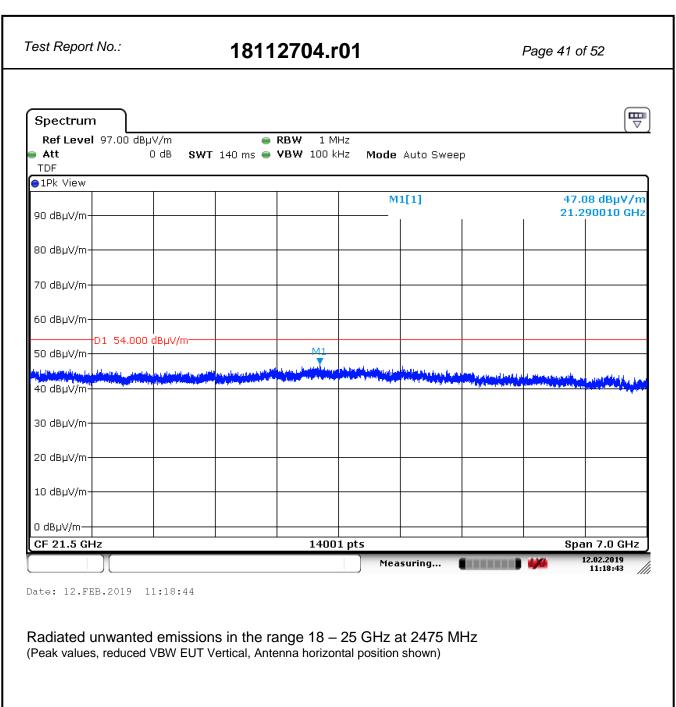
Test Report No.: 18112704.r01 Page 39 of 52

Radiated unwanted emissions in the range 3 – 12 GHz at 2475 MHz (Peak values, EUT Vertical, Antenna horizontal position shown)

Radiated unwanted emissions at 4.9 GHz, harmonic of 2475 MHz (Average value, EUT Side ways, Antenna vertical position shown)

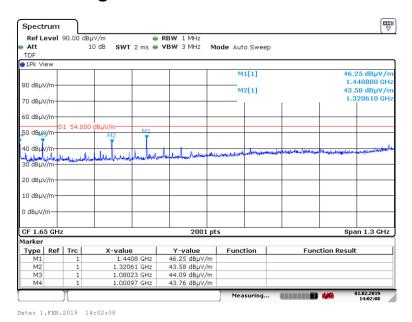


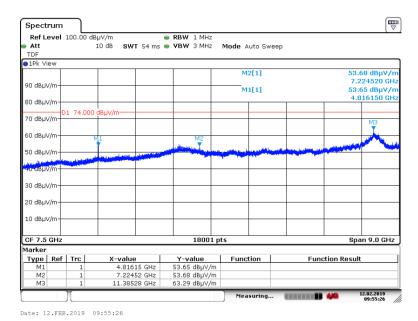
Radiated unwanted emissions in the range 12 – 18 GHz at 2475MHz (Peak values reduced VBW, EUT Side ways, Antenna vertical position shown)



Date: 12.FEB.2019 10:09:44

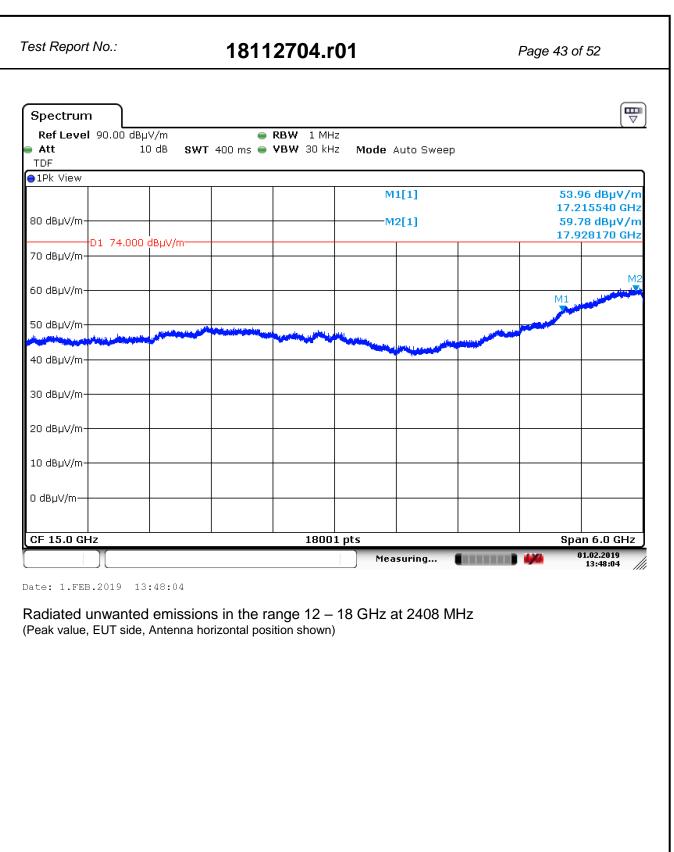
Radiated unwanted emissions at 11.4 GHz @ 2475 MHz (Average value, EUT vertical, Antenna vertical position shown)



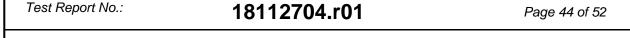


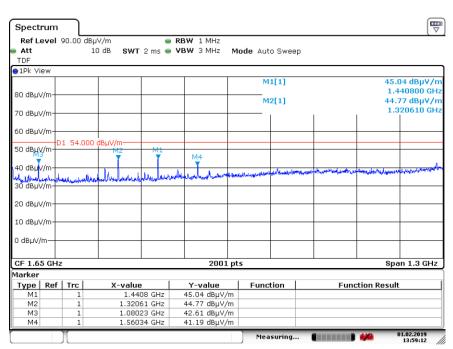
Test Report No.: 18112704.r01 Page 42 of 52

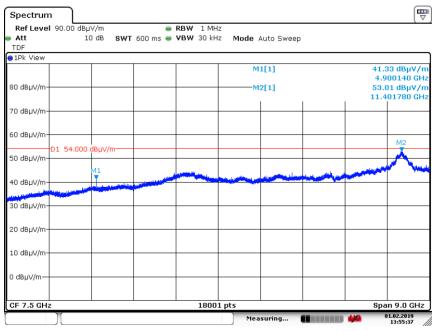
4.1.8 Plots of the radiated unwanted emissions 1 – 25 GHz, Large node


Radiated unwanted emissions in the range $1-2.46~\mathrm{GHz}$ at 2408 MHz (Peak values, reduced VBW, EUT side, Antenna horizontal position shown).

Radiated unwanted emissions in the range 3 – 12 GHz at 2408 MHz (Peak values, EUT Vertical, Antenna horizontal position shown)



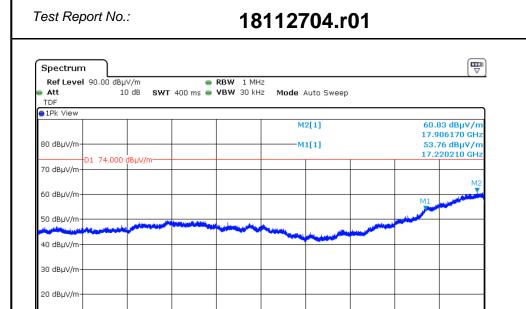




Date: 1.FEB.2019 13:59:13

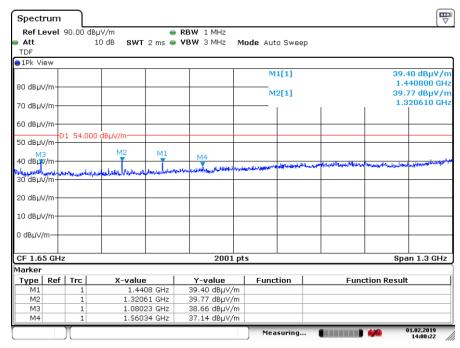
Radiated unwanted emissions in the range 1 - 2.46 GHz at 2450 MHz (Peak values, EUT Vertical, Antenna horizontal position shown).

Date: 1.FEB.2019 13:55:37


Radiated unwanted emissions in the range $3-12~\mathrm{GHz}$ at 2450 MHz (Peak values, EUT Vertical, Antenna vertical position shown)

Page 45 of 52

Span 6.0 GHz


Date: 1.FEB.2019 13:53:28

10 dBμV/m 0 dBμV/m-

CF 15.0 GHz

Radiated unwanted emissions in the range 12 – 18 GHz at 2450 MHz (Peak value, EUT Vertical, Antenna vertical position shown)

18001 pts

Date: 1.FEB.2019 14:00:21

Radiated unwanted emissions in the range 1 - 2.46 GHz at 2475 MHz (Peak values, EUT Vertical, Antenna vertical position shown).

Test Report No.: 18112704.r01 Page 46 of 52

4.2 AC Power Line Conducted Measurements

RESULT: Pass.

Date of testing: 2016-01-30

Requirements: for equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 $\mu\text{H}/50$ ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the band edges.

Frequency of Emission (MHz)	Conducted Limit (dBµV) Quasi-Peak	Conducted Limit (dBµV) Average
0.15 – 0.5	66 to 56*	56 to 46*
0.5 – 5	56	46
5 - 30	46	50

^{*}Decreases with the logarithm of the frequency.

Test procedure:

ANSI C63.10-2013.

Each phase and neutral of the AC power line were measured with respect to ground. Measurements were performed using a 50 μ H / 50 Ω LISN. The frequency range from 150kHz to 30MHz was searched. The six highest EUT emissions relative to the limit were noted. The EUT was positioned at least 80cm from the LISN. The power cable was routed over the non-conductive plate to the LISN.

Test Report No.: 18112704.r01 Page 47 of 52

4.2.1 AC Power Line Conducted Emission of Transmitter

Frequency (MHz)	Measurement results (dBµV) L1		Measurement results (dBµV) L2/Neutral		Limits (dBµV)		Verdict (Pass/Fail)
	QP	AV	QP	AV	QP	AV	
0.19297	52.6	45.2	52.8	46.7	64.0	54.0	Pass
0.20078	45.8	35.0	49.2	43.2	63.6	53.6	Pass
0.25156	46.4	40.1	48.1	44.3	61.8	51.8	Pass
1.0875	47.6	40.0	44.8	40.2	56.0	46.0	Pass
6.4234	44.0	33.3	43.1	34.1	60.0	50.0	Pass
9.76719	44.5	39.2	42.9	35.2	60.0	50.0	Pass

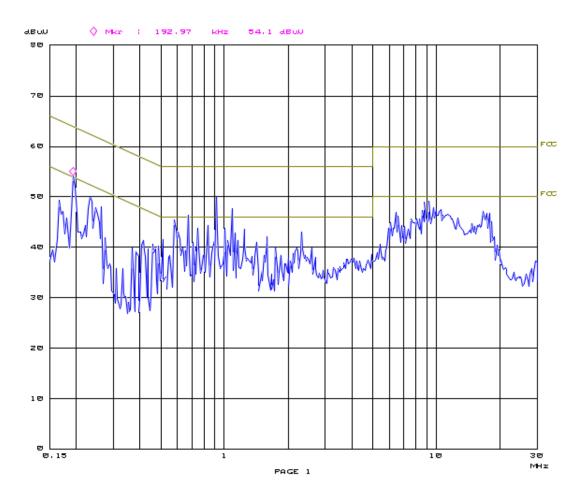
The results of the AC power line conducted emission tests, carried out in accordance with 47 CFR Part 15 section 15.207(a) and RSS-Gen section 8.8, at the 120 Volts/ 60 Hz AC mains connection terminals of the EUT (small node), are depicted in the table above.

Frequency (MHz)	Measurement results (dBµV) L1		Measurement results (dBµV) L2/Neutral		Limits (dBµV)		Verdict (Pass/Fail)
	QP	AV	QP	AV	QP	AV	
0.1973	53.4	48.2	53.6	50.6	63.6	53.6	Pass
0.2516	48.4	44.0	47.4	44.3	61.8	51.8	Pass
0.2672	48.0	39.0	48.4	44.3	61.1	51.1	Pass
0.7516	48.2	41.8	48.4	42.2	56.0	46.0	Pass
0.9195	48.0	40.8	47.4	41.3	56.0	46.0	Pass
8.768	43.8	36.3	40.0	35.0	60.0	50.0	Pass

The results of the AC power line conducted emission tests, carried out in accordance with 47 CFR Part 15 section 15.207(a) and RSS-Gen section 8.8, at the 120 Volts/ 60 Hz AC mains connection terminals of the EUT (large node), are depicted in the table above.

Notes:

- 1. The resolution bandwidth used was 9 kHz.
- From pre-test the worst case configuration proved to be the normal operation mode wherein both DTS transmitter and Bluetooth were operational but not transmitting simultaneously. Worst case values noted.
- 3. Measurement uncertainty is +/- 3.5 dB.
- 4. Plots are provided on the next pages.



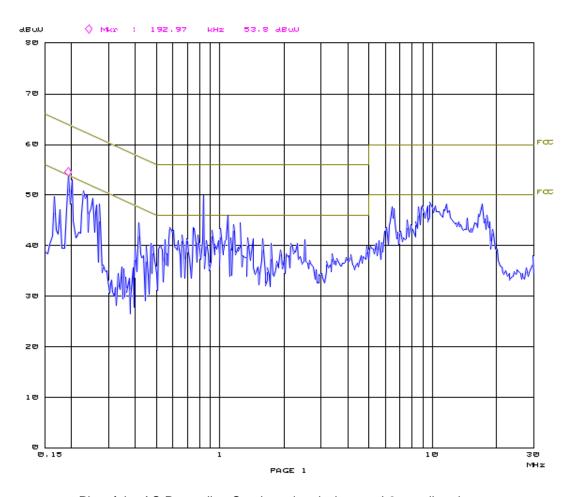
Test Report No.: 18112704.r01 Page 48 of 52

9.2.2 Plots of the AC Power-line Conducted Emissions

38. Jan 19 14:36

Overview Soan Settings (1 Range) :----- Frequencies -----::----- Receiver Settings ------Start Stop Step IF BW Detector M-Time Atten Preamp 158k 38M 3.9k 9k PK 8.18ms 28dBLN OFF

Plot of the AC Power-line Conducted emissions on L1, small node

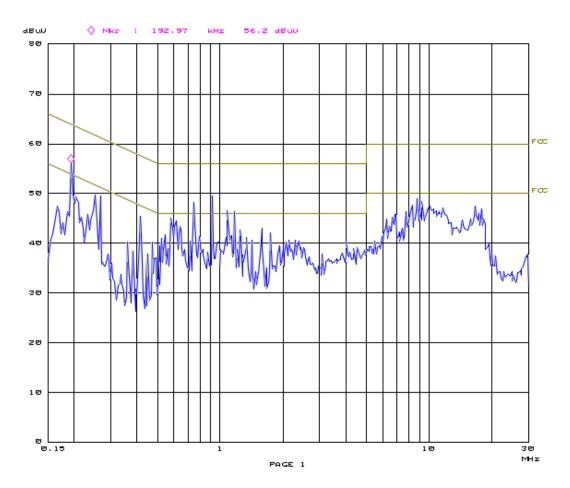


Test Report No.: 18112704.r01 Page 49 of 52

30. Jan 19 | 14:27

Ouerview Scan Settings (1 Range)
:----- Frequencies ------: Receiver Settings -----:
Start Stop Step IF BW Detector M-Time Atten Preamp
158k 38M 3.9k 9k PK 8.18ms 28d8LN OFF

Plot of the AC Power-line Conducted emissions on L2, small node

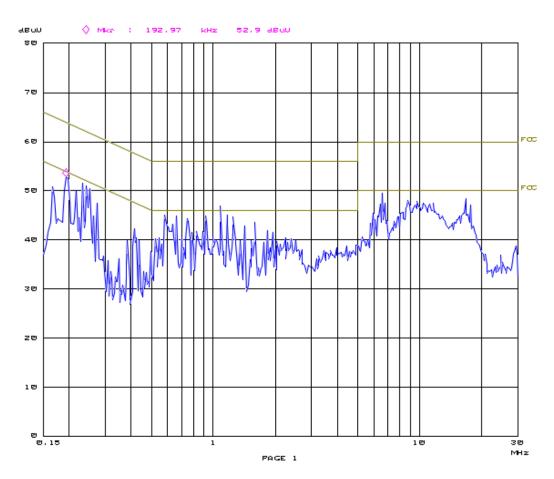


Test Report No.: 18112704.r01 Page 50 of 52

30, Jan 19 14:05

Overview Soan Settings (1 Range) :------ Frequencies ------::----- Receiver Settings ------: Start Stop Step IF BW Detector M-Time Atten Preamp 150k 30M 3.9k 9k PK 8.10ms 20d8LN OFF

Plot of the AC Power-line Conducted emissions on L1, large node



Test Report No.: 18112704.r01 Page 51 of 52

38. Jan 19 14:12

Ouerview Soan Settings (1 Range)
:------ Frequencies -------:----- Receiver Settings -----Start Stop Step IF BW Detector M-Time Atten Preamp
158k 38M 3.9k 9k PK 8.18mg 2848LN OFF

Plot of the AC Power-line Conducted emissions on L2, large node

Test Report No.:	18112704.r01	Page 52 of 52
	End of report	