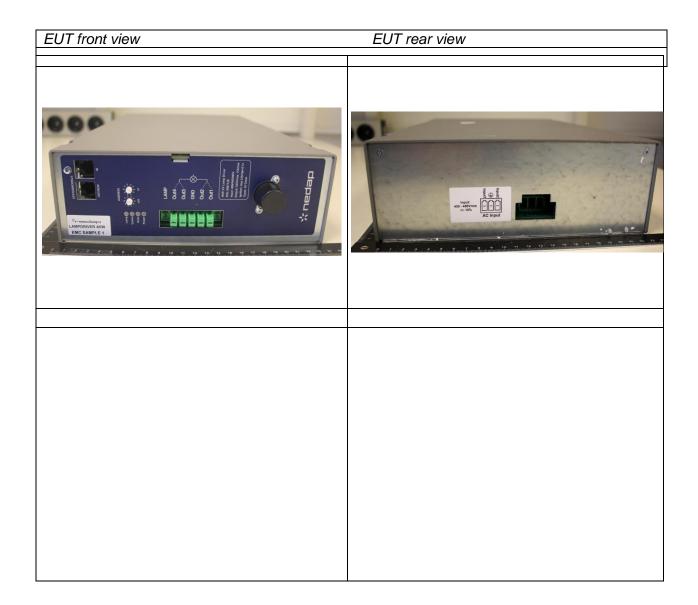


Page 1 of 49

Prüfbericht-Nr.: Test Report No.:	19111401A.r01	Auftrags-Nr.: Order No.:	89003529	Seite 1 von 49 Page 1 of 49
Kunden-Referenz-Nr.: Client Reference No.:	1659792	Auftragsdatur Order date:	m: 23.03.2020	
Auftraggeber: Client:	Nedap N.V.			
Prüfgegenstand: Test item:	Digital Transmission S	System (DTS) Larr	np driver 4kW, Radio inte	rface
Bezeichnung / Typ-Nr.: Identification / Type No.:	Lamp driver 4kW			
Auftrags-Inhalt: Order content:	Compliance with standard			
Prüfgrundlage: Test specification:	FCC 47 CFR Part 15, Sub RSS-Gen (Issue 5, March ANSI C63.10-2013 KDB 558074 D0115.247 I	2019) and RSS-247	(Issue 2, February 2017)	
Wareneingangsdatum: Date of receipt:	23.04.2020		-	I
Prüfmuster-Nr.: Test sample No.:	Sample 1 (radiated tests) Sample 3 (conducted tests	S)		kine the transformer of the tran
Prüfzeitraum: Testing period:	28.04.2020 - 13.05.2020	LAMPER 4W EMC SAMPLE 2		
Ort der Prüfung: Place of testing:	Leek			
Prüflaboratorium: Testing laboratory:	TÜV Rheinland Nederland B. Leek Laboratory	V.		
Prüfergebnis*: Test result*:	PASS			
geprüft von / tested by:		Kontrolliert vo	n / reviewed & approved by	r:
8-Jun-20 Richard van der	Meer/ Test Engineer	8-Jun-20 Eri	k van der Wal, Senior Expe	rt Telecom
Datum N	Name / Stellung Unte	erschrift Date ature Date	um Name / Stellung	
Sonstiges / Other: report iss	ue date is equal to approved da	ite.		
Zustand des Prüfgegenstar Condition of the test item at c			imuster vollständig und unb t item complete and undam	
* Legende: 1 = seh P(ass)	rr gut 2 = gut = entspricht o.g. Prüfgrundlage(n)	3 = befriedigend F(ail) = entspricht nicht o.g.	4 = ausreichend Prüfgrundlage(n) N/A = nicht anwe	
	y good 2 = good = passed a.m. Test specification(s)	3 = satisfactory F(ail) a.m. test specification	4 = sufficient $N/A = not applications$	5 = poor $Bold N/T = not tested$
This test report only relat	es to the a.m. testsample. With duplicated in extracts. This rep			not permitted to be

FCC ID: CGDLD4KW IC: 1444A-LD4KW



Prüfbericht - Nr.: Test Report No.: 19111401A

Seite 2 von 49 Page 2 of 49

TÜV Rheinland Nederland B.V. · Eiberkamp 10 · 9351 VT Leek · Tel: + 31 88 8887888 Mail: <u>info@nl.tuv.com</u> · Web: www.tuv.com

19111401A.r02

Page 3 of 49

TEST SUMMARY

Test Specification Clause	Test Case	Pass	Fail	Not applicable	Not performed
§15.247(a2)	Spectrum Bandwidth of a DTS System / 6dB BW	\square			
§ 15.247 (b) (3)	Maximum output power (conducted)	\square			
§15.247 (e)	Peak power spectral density	\square			
§15.247 (d)	Band-edge compliance of conducted emissions				
§15.205	Band-edge compliance of radiated emissions	\square			
§15.247 (d)	Spurious Emission - conducted (Transmitter)	\square			
§ 15.209	Spurious Emission - radiated (Transmitter)	\square			
§ 15.207	AC Power Line Conducted Emissions <30 MHz	\square			

		Revisions <i>Revisions</i>	
Revision Revision	Datum Date	Anmerkung Remark	Verfasser Author
-	08.06.2020	First release	R. van der Meer
Note: Latest re	evision report will repla	ce all previous reports	

19111401A.r02

Page 4 of 49

Contents

Test Report No.:

1. 1.1.1 1.1.2 1.1.3	2 Special Accessories	5 5
2.	TEST SITES	6
2.1	TEST FACILITIES	6
2.2	LIST OF TEST AND MEASUREMENT INSTRUMENTS TABLE 1: LIST OF TEST AND MEASUREMENT EQUIPMENT	7
2.3	MEASUREMENT UNCERTAINTY	8
3.	GENERAL PRODUCT INFORMATION	9
3.1	COUNTERMEASURES TO ACHIEVE COMPLIANCE	9
3.2	OPERATION MODES	9
3.3	PHYSICAL CONFIGURATION FOR TESTING	. 10
3.4	TEST SOFTWARE	. 13
3.5	SPECIAL ACCESSORIES AND AUXILIARY EQUIPMENT	.13
4. 1. 2 4. 1. 2 4. 1. 2 4. 1. 2 4. 1. 2 1. 1. 2	 Conducted Output Power Peak Power Spectral Density Band Edge Conducted Emissions Radiated Spurious Emissions of Transmitter Plot of the emissions in the range 30 -1000 MHz 	14 19 22 25 28 30
4.2 4.2.1 Plots	AC Power Line Conducted Measurements AC Power Line Conducted Emission of Transmitter s of the AC Power-line Conducted Emissions	48

19111401A.r02

Page 5 of 49

1. General Remarks

1.1.1 Complementary Materials

There is no attachment to this test report.

1.1.2 Special Accessories

None.

1.1.3 Equipment modifications

None

19111401A.r02

Page 6 of 49

2. Test Sites

2.1 Test Facilities

The Semi-Anechoic chamber and AC Line Conducted measurement facility used to collect the radiated and conducted data has been constructed in accordance with ANSI C63.7. The site has been measured in accordance with and verified to comply with the theoretical normalized site attenuation requirements of ANSI C63.4-2014, at a test distance of 3 meters. The site is listed with the FCC and ISED and accredited by RvA (Cert #L484). The 3 meter semi-anechoic chamber used to collect the radiated data has been verified to comply with the theoretical normalized site attenuation requirements of ANSI C63.4-2014, at a test distance of 3 meter semi-anechoic chamber used to collect the radiated data has been verified to comply with the theoretical normalized site attenuation requirements of ANSI C63.4-2014, at a test distance of 3 meter

The Federal Communications Commission and Industry Canada has reviewed the technical characteristics of the test facilities at TÜV Rheinland Nederland B.V., located in Leek, 9351VT Eiberkamp 10, The Netherlands, and has found these test facilities to be in compliance with the requirements of 47 CFR Part 15, section 2.948.

The description of the test facilities has been filed at the Office of the Federal Communications Commission under Designation Number NL0005 (test site registration number: 786213). The facility has been added to the list of laboratories performing these test services for the public on a fee basis.

The description of the test facilities has been filed to Industry Canada under CABID number NL0002 (test site registration number: 2932G-2). The facility has been added to the list of laboratories performing these test services for the public on a fee basis.

Normal test conditions:

Temperature (*): +15°C to +35°CRelative humidity(*): 20 % to 75 %Supply voltage: 400 Vac.

(*)When it was impracticable to carry out the tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests are stated separately.

19111401A.r02

Page 7 of 49

2.2 List of Test and Measurement Instruments

Table 1: List of Test and Measurement Equipment

For Antenna Port Conducted Emissions Temperature- Humiditymeter Extech SD500 2789213 06/2019 06/2020 Spectrum Analyzer Rohde & Schwarz FSV 2790260 07/2018 07/2020 Power supply Chroma 61705 2790478 01/2020 01/2020 Power supply Chroma 61705 2790478 07/2019 07/2020 For Radiated Emissions WF 2789116 /A00347 07/2019 07/2020 For Radiated Emissions Rohde & Schwarz ERC7 2790497 07/2019 07/2020 Fr Cable S-AR Gigalink APG0500 2789217 03/2020 03/2021 Controller Maturo SCU/088/ 8090811 A00450 N/A N/A Power supply Chroma 61705 2790478 01/2020 01/2021 Test facility Comtest FSV 2790106 07/2018 07/2020 Spectrum Analyzer Rohde & Schwarz FSV 2790106 07/2018 07/2020 Spect	Kind of Equipment	Manufacturer	Model Name	Inventory number	Calibration date (mm/yyyy)	Calibration due date (mm/yyyy)
Humiditymeter Extectin SD300 2789213 06/2013 06/2013 Spectrum Analyzer Rohde & Schwarz FSV 2790260 07/2018 07/2020 Power supply Chroma 61705 2790478 01/2020 01/2021 RF Cable Rohde & Schwarz WF 2789116 /A00347 07/2019 07/2020 For Radiated Emissions WF 2790497 07/2019 07/2020 RF Cable S-AR Gigalink APG6500 2789217 03/2020 03/2021 Controller Maturo SCU/088/ 8090811 A00450 N/A N/A Power supply Chroma 61705 2790478 01/2020 01/2021 400Vac/60Hz Chroma 61705 2790478 01/2020 01/2021 Test facility Comtest FCC listed: 786213 2789009 03/2020 03/2022 Spectrum Analyzer Rohde & Schwarz FSV 2790106 07/2018 07/2020 Antenna mast+control Innco CO3000 9002463	For Antenna Port Cond	lucted Emissions		·		
Power supply 400Vac/60Hz Chroma 61705 2790478 01/2020 01/2021 RF Cable Rohde & Schwarz WF 2789116 (A00347 07/2019 07/2020 For Radiated Emissions Mesurement Receiver Rohde & Schwarz ERC7 2790497 07/2019 07/2020 RF Cable S-AR Gigalink APG0500 2789217 03/2020 03/2021 Controller Maturo SCU/088/ 8090811 A00450 N/A N/A Power supply 400Vac/60Hz Chroma 61705 2790478 01/2020 03/2021 Controller Maturo SCU/088/ 8090811 A00450 N/A N/A Power supply 400Vac/60Hz Chroma 61705 2790478 01/2020 03/2020 Spectrum Analyzer Rohde & Schwarz FSV 2790106 07/2018 07/2020 Antenna mast+control Innco CO3000 9002463 N/A N/A Guidehom 1-18 GHz EMCO 3115 2789714 06/2019 06/2020 Guidehom 1-8 GHz		Extech	SD500	2789213	06/2019	06/2020
400Vac/60H2 Chroma 61705 2190478 01/2020 01/2021 RF Cable Rohde & Schwarz WF 2789116 07/2019 07/2020 For Radiated Emissions Measurement Receiver Rohde & Schwarz ERC7 2790497 07/2019 07/2020 RF Cable S-AR Gigalink APG0500 2789217 03/2020 03/2021 Controller Maturo SCU/088/ 8090811 A00450 N/A N/A Power supply 400Vac/60Hz Chroma 61705 2790478 01/2020 03/2021 Test facility Comtest FCC listed: 786213 IC: 2932G-2 2789009 03/2020 03/2022 Spectrum Analyzer Rohde & Schwarz FSV 2790106 07/2018 07/2020 Antenna mast+control Innco CO3000 9002463 N/A N/A Temperature- Humiditymeter Extech SD500 278914 06/2019 06/2020 Guidehorn 1-18 GHz EMCO 3115 2789148/ 2790233 01/2018 01/2021 Ampl		Rohde & Schwarz	FSV	2790260	07/2018	07/2020
RF Cable Ronde & Schwarz WF /A00347 07/2019 07/2020 For Radiated Emissions Measurement Receiver Rohde & Schwarz ERC7 2790497 07/2019 07/2020 RF Cable S-AR Gigalink APG0500 2789217 03/2020 03/2021 Controller Maturo SCU/088/ 8090811 A00450 N/A N/A Power supply 400Vac/60Hz Chroma 61705 2790478 01/2020 03/2021 Test facility Comtest FCC listed: 786213 IC: 2932G-2 2789009 03/2020 03/2022 Spectrum Analyzer Rohde & Schwarz FSV 2790106 07/2018 07/2020 Antenna mast+control Innco CO3000 9002463 N/A N/A Temperature- Humiditymeter Extech SD500 2789214 06/2019 06/2020 Guidehorn 1-18 GHz EMCO 3115 2788777 02/2019 02/2022 Guidehorn 1-8-6.5 GHz ETS-Lindgren 3160-09 2789824 01/2018 01/2020		Chroma	61705	2790478	01/2020	01/2021
Measurement Receiver Rohde & Schwarz ERC7 2790497 07/2019 07/2020 RF Cable S-AR Gigalink APG0500 2789217 03/2020 03/2021 Controller Maturo SCU/088/ 8090811 A00450 N/A N/A Power supply 400Vac/60Hz Chroma 61705 2790478 01/2020 01/2021 Test facility Comtest FCC listed: 786213 IC: 2932G-2 2789009 03/2020 03/2022 Spectrum Analyzer Rohde & Schwarz FSV 2790106 07/2018 07/2020 Antenna mast+control Innco CO3000 9002463 N/A N/A Temperature- Humiditymeter Extech SD500 2789214 06/2019 06/2020 Guidehorn 1.18 GHz EMCO 3115 2788777 02/2018 01/2021 Amplifier 18-40 GHz CentricRF C6464-160-120 9001996 12/2019 12/2020 Biconilog Testantenna Teseq CBL 6111D 2789137 N/A N/A Bandpass filter 4-10 GHz	RF Cable	Rohde & Schwarz	WF		07/2019	07/2020
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	For Radiated Emission	S				
Controller Maturo SCU/088/ 8090811 A00450 N/A N/A Power supply 400Vac/60Hz Chroma 61705 2790478 01/2020 01/2021 Test facility Comtest FCC listed: 786213 IC: 2932G-2 2789009 03/2020 03/2022 Spectrum Analyzer Rohde & Schwarz FSV 2790106 07/2018 07/2020 Antenna mast+control Innco CO3000 9002463 N/A N/A Temperature- Humiditymeter Extech SD500 2789214 06/2019 06/2020 Guidehorn 1-18 GHz EMCO 3115 2788777 02/2019 02/2022 Guidehorn 1-8 GHz ETS-Lindgren 3160-09 2789842 01/2018 01/2021 Amplifier 18-40 GHz CentricRF C6464-160-120 9001996 12/2019 12/2020 Biconilog Testantenna Teseq CBL 6111D 2789343 N/A N/A Bandpass filter 4-10 GHz Reactel 7AS-7G-6G- 511 2788904 N/A N/A Bandpass filter 10-GHz <td>Measurement Receiver</td> <td>Rohde & Schwarz</td> <td>ERC7</td> <td>2790497</td> <td>07/2019</td> <td>07/2020</td>	Measurement Receiver	Rohde & Schwarz	ERC7	2790497	07/2019	07/2020
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	RF Cable S-AR	Gigalink	APG0500	2789217	03/2020	03/2021
400Vac/60Hz Chroma 61705 2790478 01/2020 01/2020 Test facility Comtest FCC listed: 786213 IC: 2932G-2 2789009 03/2020 03/2020 Spectrum Analyzer Rohde & Schwarz FSV 2790106 07/2018 07/2020 Antenna mast+control Innco CO3000 9002463 N/A N/A Temperature- Humiditymeter Extech SD500 2789214 06/2019 06/2020 Guidehorn 1-18 GHz EMCO 3115 2789777 02/2019 02/2022 Guidehorn 18-26.5 GHz ETS-Lindgren 3160-09 278982 01/2018 01/2020 Amplifier 18-40 GHz CentricRF C6464-160-120 9001996 12/2019 12/2020 Biconilog Testantenna Teseq CBL 6111D 2789237 10/2019 10/2020 2.4 GHz bandreject filter BSC XN-1783 278894 N/A N/A Bandpass filter 4-10 GHz Reactel 7AS-7G-6G- 511 278924 N/A N/A Bandpass filter 10-26 GHz		Maturo		A00450	N/A	N/A
Test facility Comtest 786213 IC: 2932G-2 2789009 03/2020 03/2022 Spectrum Analyzer Rohde & Schwarz FSV 2790106 07/2018 07/2020 Antenna mast+control Innco CO3000 9002463 N/A N/A Temperature- Humiditymeter Extech SD500 2789214 06/2019 06/2020 Guidehorn 1-18 GHz EMCO 3115 2788777 02/2019 02/2022 Guidehorn 1-8 GHz ETS-Lindgren 3160-09 2789822 01/2018 01/2021 Amplifier 18-40 GHz EcntricRF C6464-160-120 9001996 12/2019 12/2020 Biconilog Testantenna Teseq CBL 6111D 2789237 10/2019 10/2020 2.4 GHz bandreject filter BSC XN-1783 2788937 N/A N/A Bandpass filter 4-10 GHz Reactel 7AS-7G-6G- 511 2788904 N/A N/A Bandpass filter Reactel 005/26.5G- 511 2788924 N/A N/A D-26 GHz Miteq<		Chroma	61705	2790478	01/2020	01/2021
Antenna mast+control Innco CO3000 9002463 N/A N/A Temperature- Humiditymeter Extech SD500 2789214 06/2019 06/2020 Guidehorn 1-18 GHz EMCO 3115 2788777 02/2019 02/2022 Guidehorn 1-18 GHz EMCO 3115 2788777 02/2019 02/2022 Guidehorn 18-26.5 GHz ETS-Lindgren 3160-09 278948/ 2790233 01/2018 01/2021 Amplifier 18-40 GHz CentricRF C6464-160-120 9001996 12/2019 12/2020 Biconilog Testantenna Teseq CBL 6111D 2789237 10/2019 10/2020 2.4 GHz bandreject filter BSC XN-1783 2788037 N/A N/A Bandpass filter 4-10 GHz Reactel 7AS-7G-6G- 511 2788904 N/A N/A Bandpass filter 10-26 GHz Reactel 005/26.5G- S11 2788924 N/A N/A Preamplifier 0.5 - 18 GHz Miteq AMF-5D- 005180-28- 13p 2789021 N/A N/A	Test facility	Comtest	786213	2789009	03/2020	03/2022
Temperature-HumiditymeterExtechSD500278921406/201906/2020Guidehorn 1-18 GHzEMCO3115278877702/201902/2022Guidehorn 18-26.5 GHzETS-Lindgren3160-09278898201/201801/2021Amplifier 18-40 GHzETS-Lindgren2160-092789148/ 279023311/201911/2020RF Cable 18-40 GHzCentricRFC6464-160-120900199612/201912/2020Biconilog TestantennaTeseqCBL 6111D278923710/201910/20202.4 GHz bandreject filterBSCXN-1783278837N/AN/ABandpass filter 4-10 GHzReactel7AS-7G-6G- 511278904N/AN/ABandpass filter 10-26 GHzReactel9HS- 10G/26.5G- S11278924N/AN/APreamplifier 0.5 - 18 GHzMiteqAMF-5D- 005180-28- 13p2789021N/AN/A	Spectrum Analyzer	Rohde & Schwarz	FSV	2790106	07/2018	07/2020
HumiditymeterExtecnSD500278921406/201906/2019Guidehorn 1-18 GHzEMCO3115278877702/201902/2022Guidehorn 18-26.5 GHzETS-Lindgren3160-09278988201/201801/2021Amplifier 18-40 GHzCentricRFC6464-160-120900199612/201911/2020Biconilog TestantennaTeseqCBL 6111D278923710/201910/20202.4 GHz bandreject filterBSCXN-1783278837N/AN/ABandpass filter 4-10 GHzReactel7AS-7G-6G- 5112789244N/AN/ABandpass filter 10-26 GHzReactel9HS- 10G/26.5G- S11278924N/AN/APreamplifier 0.5 - 18 GHzMiteqAMF-5D- 005180-28- 13p2789021N/AN/A	Antenna mast+control	Innco	CO3000	9002463	N/A	N/A
Guidehorn 18-26.5 GHz ETS-Lindgren 3160-09 2788982 01/2018 01/2021 Amplifier 18-40 GHz 2789148/ 2790233 11/2019 11/2020 RF Cable 18-40 GHz CentricRF C6464-160-120 9001996 12/2019 12/2020 Biconilog Testantenna Teseq CBL 6111D 2789237 10/2019 10/2020 2.4 GHz bandreject filter BSC XN-1783 2788937 N/A N/A Bandpass filter 4-10 GHz Reactel 7AS-7G-6G- 511 2788904 N/A N/A Bandpass filter 10-26 GHz Reactel 9HS- 10G/26.5G- S11 2788924 N/A N/A Preamplifier 0.5 - 18 GHz Miteq AMF-5D- 005180-28- 13p 2789021 N/A N/A		Extech	SD500	2789214	06/2019	06/2020
Amplifier 18-40 GHz CentricRF C6464-160-120 9001996 12/2019 12/2020 Biconilog Testantenna Teseq CBL 6111D 2789237 10/2019 10/2020 2.4 GHz bandreject filter BSC XN-1783 2788837 N/A N/A Bandpass filter 4-10 GHz Reactel 7AS-7G-6G- 511 2788904 N/A N/A Bandpass filter 10-26 GHz Reactel 9HS- 10G/26.5G- S11 2788924 N/A N/A Preamplifier 0.5 - 18 GHz Miteq AMF-5D- 005180-28- 13p 2789021 N/A N/A	Guidehorn 1-18 GHz	EMCO	3115	2788777	02/2019	02/2022
Amplifier 18-40 GHz CentricRF C6464-160-120 9001996 12/2019 12/2020 Biconilog Testantenna Teseq CBL 6111D 2789237 10/2019 10/2020 2.4 GHz bandreject filter BSC XN-1783 2788837 N/A N/A Bandpass filter 4-10 GHz Reactel 7AS-7G-6G- 511 2788904 N/A N/A Bandpass filter 10-26 GHz Reactel 9HS- 10G/26.5G- S11 2788924 N/A N/A Preamplifier 0.5 - 18 GHz Miteq AMF-5D- 005180-28- 13p 2789021 N/A N/A	Guidehorn 18-26.5 GHz	ETS-Lindgren	3160-09	2788982	01/2018	01/2021
Biconilog Testantenna Teseq CBL 6111D 2789237 10/2019 10/2020 2.4 GHz bandreject filter BSC XN-1783 2788837 N/A N/A Bandpass filter 4-10 GHz Reactel 7AS-7G-6G- 511 2788904 N/A N/A Bandpass filter 10-26 GHz Reactel 9HS- 10G/26.5G- S11 2788924 N/A N/A Preamplifier 0.5 - 18 GHz Miteq AMF-5D- 005180-28- 13p 2789021 N/A N/A	Amplifier 18-40 GHz				11/2019	11/2020
2.4 GHz bandreject filter BSC XN-1783 2788837 N/A N/A Bandpass filter 4-10 GHz Reactel 7AS-7G-6G- 511 2788904 N/A N/A Bandpass filter 10-26 GHz Reactel 9HS- 10G/26.5G- S11 2788924 N/A N/A Preamplifier 0.5 - 18 GHz Miteq AMF-5D- 005180-28- 13p 2789021 N/A N/A	RF Cable 18-40 GHz	CentricRF	C6464-160-120	9001996	12/2019	12/2020
Bandpass filter 4-10 GHzReactel7AS-7G-6G- 5112788904N/AN/ABandpass filter 10-26 GHzReactel9HS- 10G/26.5G- \$112788924N/AN/APreamplifier 0.5 - 18 GHzMiteqAMF-5D- 005180-28- 13p2789021N/AN/A	Biconilog Testantenna	Teseq	CBL 6111D	2789237	10/2019	10/2020
Bandpass filter 4-10 GHZ Reactel 511 2788904 N/A N/A Bandpass filter 10-26 GHz Reactel 9HS- 10G/26.5G- S11 2788924 N/A N/A Preamplifier 0.5 - 18 GHz Miteq AMF-5D- 005180-28- 13p 2789021 N/A N/A	2.4 GHz bandreject filter	BSC		2788837	N/A	N/A
Bandpass filter 10-26 GHz Reactel 10G/26.5G- S11 2788924 N/A N/A Preamplifier 0.5 - 18 GHz Miteq AMF-5D- 005180-28- 13p 2789021 N/A N/A	Bandpass filter 4-10 GHz	Reactel	511	2788904	N/A	N/A
Preamplifier Miteq 005180-28- 2789021 N/A N/A 0.5 - 18 GHz 13p 13p <td< td=""><td></td><td>Reactel</td><td>10G/26.5G- S11</td><td>2788924</td><td>N/A</td><td>N/A</td></td<>		Reactel	10G/26.5G- S11	2788924	N/A	N/A
		Miteq	005180-28-	2789021	N/A	N/A
	Filterbox	EMCS		2789029	11/2019	11/2020

19111401A.r02

Page 8 of 49

Kind of Equipment	Manufacturer	Model Name	Inventory number	Calibration date (mm/yyyy)	Calibration due date (mm/yyyy)
For AC Powerline Conducted Emissions					
Pulse limiter	R&S	ESH3-Z2	2788823	09/2019	09/2020
Variac	RFT	LSS020	2788944	NA	NA
LISN	R&S	ESH2-Z5	2788791	06/2018	06/2020
Measurement Receiver	Rohde & Schwarz	ESCS30	2789421	11/2019	11/2020
Shielded room for Conducted emissions			2789207	NA	NA
Temperature-Humidity meter	Extech	SD500	2789213	06/2019	06/2020
Power supply 400Vac/60Hz	Chroma	61705	2790478	01/2020	01/2021

Conformance of the used measurement and test equipment with the requirements of ISO/IEC 17025:2005 has been confirmed before testing. NA= Not Applicable

Accreditation

The reported tests were performed under ISO17025:2005 accreditation, unless otherwise specified as 'not under Accreditation'

An overview of all TÜV Rheinland Nederland B.V. accreditations, notifications and designations, please visit our website <u>www.tuv.com/nl</u>. You can find the relevant declarations under the download link.

2.3 Measurement Uncertainty

Table 2: Emission Measurement Uncertainty

Measurement Type	Frequency	Uncertainty
Antenna Port Conducted Emission	< 1.3GHz	1.7dB
	1.3 - 40GHz	2.9 – 3.4dB
Radiated Emission	150kHz - 30MHz	±5.0dB
	30MHz - 1GHz	±5.0dB
	> 1GHz	±5.5dB
AC Power Line Conducted Emissions	150kHz - 30MHz	±3.5dB

19111401A.r02

Page 9 of 49

3. General Product Information

The EUT is designed to operate in the 2.4 GHz ISM frequency band. The EUT utilizes communication Protocol based RF Interface:

Protocol: Bluetooth Low Energy (BLE)

The PCB implementation is based on a M41W9VT4 chipset. Bluetooth v4.2 Low Energy compliant 1 Mbps GFSK modulation. The EUT, has 1 antenna for transmitting and receiving.

Technical Specifications	Value
Operating Frequency band	2402 – 2480 MHz , Non Hopping
Modulation	GFSK 1Mbps
Antenna Gain	5.3 dBi

There are no interface ports present on the EUT.

3.1 Countermeasures to achieve compliance

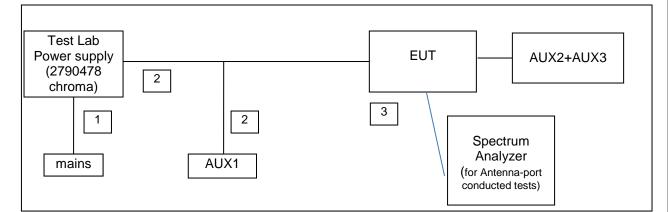
No additional measures were employed to achieve compliance.

3.2 Operation Modes

Testing was performed at the lowest operating frequency (2402 MHz), at the operating frequency in the middle of the specified frequency band (2440 MHz) and at the highest operating frequency (2480 MHz). These operation modes were selected after review of the capabilities and characteristics of the EUT.

Modulation	Power level	Test frequencies (MHz)					Test frequencies (MHz)		z)
	Setting	Lowest	Middle	Highest					
BLE	31 (=Max)	2402	2440	2480					

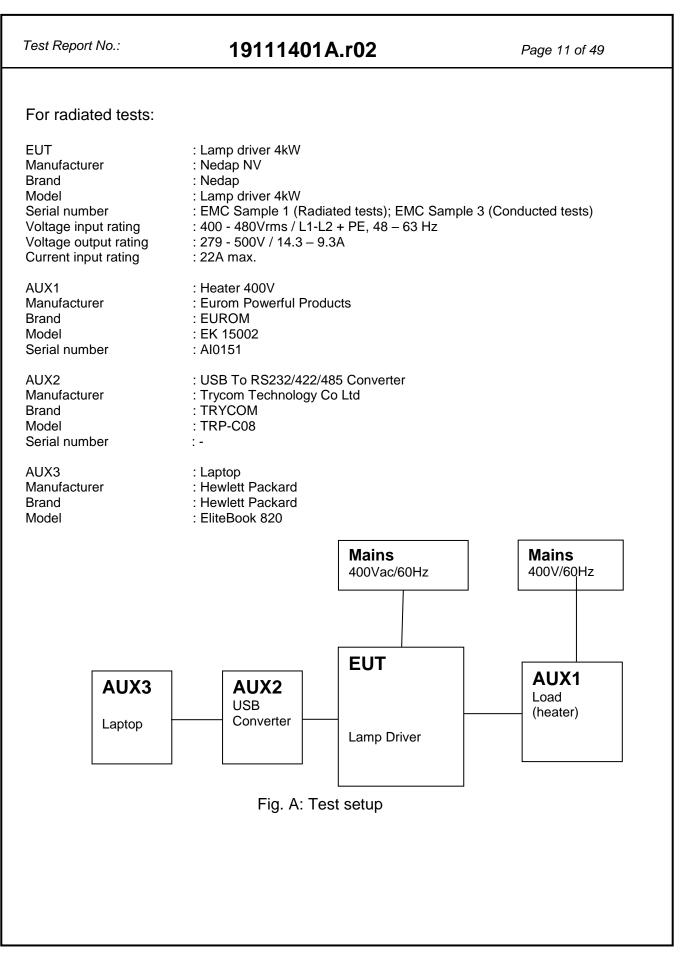
19111401A.r02


Page 10 of 49

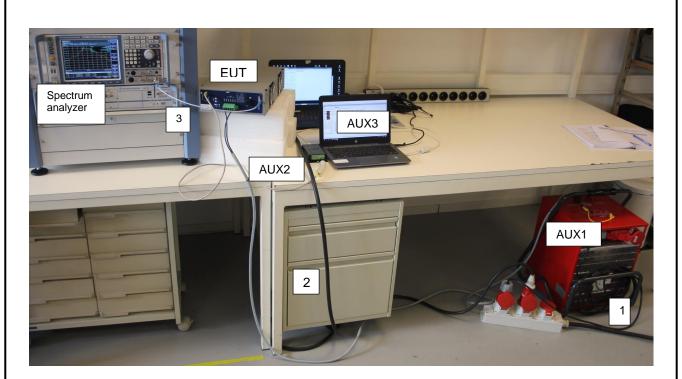
3.3 Physical Configuration for Testing

The EUT was tested on a stand-alone basis as per Figure 1 for the antenna port conducted tests and with lamp driver and motion detector.

The justification and manipulation of cables and equipment in order to simulate a worst-case behavior of the test setup has been carried out as prescribed in ANSI C63.10-2013.


Figure 1: Test Setup Diagram – antenna port conducted tests and programming.

No.	Port	From	То	Remarks
1.	Mains	Mains	Power Supply	-
2.	AC Power	Power Supply	EUT+AUX1	-
3.	Antenna port	EUT	Spectrum analyzer	Conducted tests



19111401A.r02

Page 12 of 49

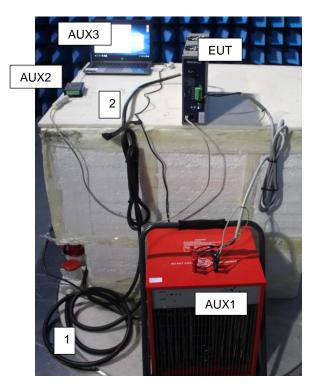


Figure 3: Test Setup Photos – radiated tests

19111401A.r02

Page 13 of 49

3.4 Test Software

The test modes were set by using Windows program ControlTool4kW-FCC-1.5. This software was running on a laptop computer (AUX3). It was used to enable the test operation modes below, as appropriate.

Dedicated samples was provided by the applicant for conducted and radiated emissions tests.

Screenshot of the software:

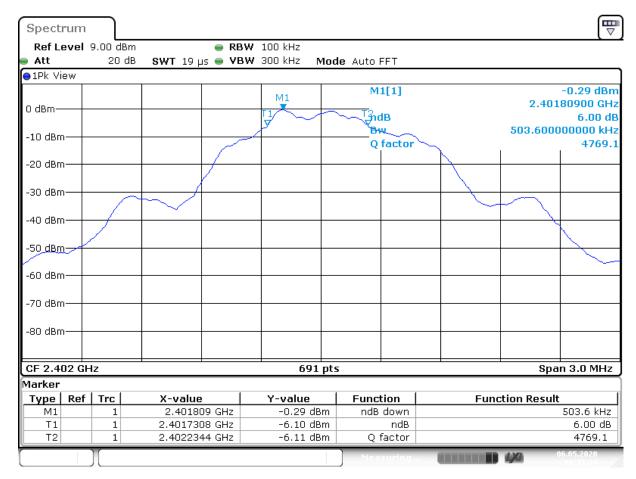
🎇 Nedap ControlTool 4kW (0.0	.1.5)				-	
File Settings Help						
Activate all Monitoring I	mode					
4kW driver						
Rx/Tx Activate	4kW	driver				
Firmware (Major.Minor.Relea	ase.Build): 0 . 0	. 3 . 4 Firmwar	e Version Secondary: 2			Sw update
Power 9 W Vlamp 0 V Iprim 1 m	Control Direct O Phase	Max Power 40 Run current max. 150 Warmup Current 170		opude	Varning 🗌 Reset Wa ault 🗌 Reset Fai	-
Vin 408 V Vout 0 V Iout 0 m	Full range 🗌	Voltage 10 Ignition voltage 10 Ignition duration 10	00 V 00 V Erequency	Normal Message 2402MHz 3125 0 Reset]	
Status	Primary			Temperatures (°C):	Secondary Fanstate	
Driver state: 2	VoutPK (V): 574	SyncAmplIPos: 1165	SyncItDel: 65534	Halfbridge 31.6	RPM1	3113
Fault state id: 0	VignPK (V): 261	SyncAmplINeg: 221	SyncItHigh: 1	PFC 32.2	RPM2	3149
Fault value: 0	Phase: 0			Rectifier 35.8	Fan Current	269
Fault class:	IBus: 17	Range: 4		Ambient 31.2	Leak A	-0.3
Warning state id: 0	DcBus: 567	Mains Freq: 50.0	Cext: 0.0	Airflow 29.9	Leak B	-0.3
Warning value: 0	BusMid: 284	Mains Duty: 49.9	Tper: 1833	Ext Trf 0.0	Leak Gnd	-0.6
TTFailure (min):	Line: 2918	Airflow 1.1	PrimCurrPhase: 0	Humidity(%) 24.1	Gnd¥ Out12Div	-0.4
	Neutral: 2914	3V3 (mV): 8	Ext¥outPhase: 131	LampDC 0.1	Out34Div	26.6
	GndCheck: 3316.0	4¥ (m¥): 4539	ExtCurrPhase: 129		12¥ iso	10344
	Ycm: 0	20¥ (m¥): 15498	PhaseRefPhase: 0		Iso Test V	51.8
Serial number: 2100	104332	Modbus id	:1 ~	J	J	
Serial port no.:5 Baud rate:11520	0					

3.5 Special Accessories and Auxiliary Equipment

The product has been tested together with the following additional accessories:

Test Report No.: 19111401A.r02 Page 14 of 49 4. **Test Results** 4.1.1 DTS (6dB) and 99% Bandwidth **RESULT: PASS** Date of testing: 2020-05-06 **Requirements:** FCC 15.247(a)(2) and RSS-247 Section 5.2(1) For systems using digital modulation in the 2400-2483.5MHz band, the 6dB bandwidth shall be at least 500kHz. For 99% Bandwidth: RSS-Gen Section 4.6.1: No requirement is given. Test procedure 6dB bandwidth: ANSI C63.10-2013 section 11.8.1 Option 1 A spectrum analyzer was connected to the antenna port of the EUT. The spectrum analyzer resolution bandwidth was set to 100kHz, video bandwidth to 300kHz and the span wide enough to capture the modulated carrier. For 99% Bandwidth: Test procedure: RSS-Gen. The transmitter shall be operated at its maximum carrier power measured under normal test conditions. The span of the analyzer shall be set to capture all products of the modulation process, including the emission sideskirts. The resolution bandwidth shall be set as close to 1% of the selected span as is possible without being below 1%. The video bandwidth shall be set to 3 times the resolution bandwidth. Video averaging is not permitted. Where practical, a sampling detector shall be used given that a peak or peak hold may produce a wider bandwidth than actual. A spectrum analyzer was connected to the antenna port of the EUT. The spectrum analyzer resolution bandwidth was set to 1% of the selected span, Video bandwidth was set to 3 times the resolution bandwidth. The span was set to capture the whole modulation process. The Spectrum analyzers automated function for 99% BW was used. Measurement uncertainty is +/-

Plots A1,B1 and C1 shown on the next pages are of the 6 dB bandwidth. Plots A2,B2 and C2 shown on the next pages are of the 99% bandwidth



19111401A.r02

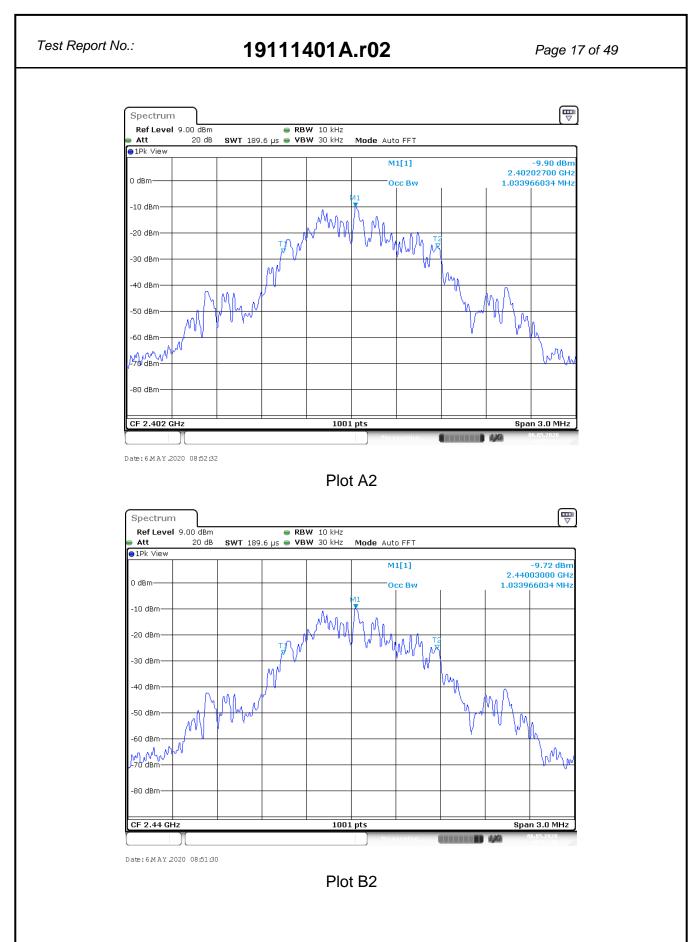
Page 15 of 49

6dB and 99% Bandwidth

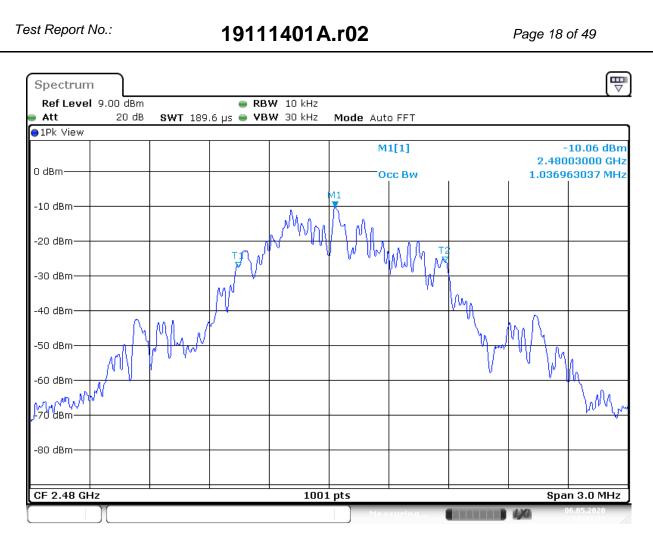
Operating Frequency [MHz]	99% Bandwidth [kHz]	6dB Bandwidth [kHz]	Limit [kHz]	Verdict [Pass/Fail]	Plot number
2402	1034	503.6	>500	Pass	A1/A2
2440	1034	503.6	>500	Pass	B1/B2
2480	1037	508.0	>500	Pass	C1/C2

Date: 6 M AY 2020 08:41:24

Plot A1



Plot C1



Date: 6 MAY .2020 08:47:24

Plot C2

19111401A.r02

Page 19 of 49

4.1.2 Conducted Output Power

RESULT: PASS

Date of testing:

2020-05-06

Requirements:

FCC 15.247(b)(3)

For systems using digital modulation in the 2400-2483.5 MHz band, the maximum peak output power is 1W (+30dBm).

RSS-247 section 5.4(4): the e.i.r.p. shall not exceed 4 W (+36 dBm).

Test procedure:

The Peak Conducted Output Power was measured using the method according to section 11.9.1.1 in ANSI C63.10-2013.

The maximum peak output power (conducted) was measured at the antenna connector with a spectrum analyzer. The final measurement takes into account the loss generated by all the involved cables.

Measurement uncertainty is +/- 0.7 dB.

Notes: $mW = 10 \land (dBm/10)$ dBm = 10 x log(mW)

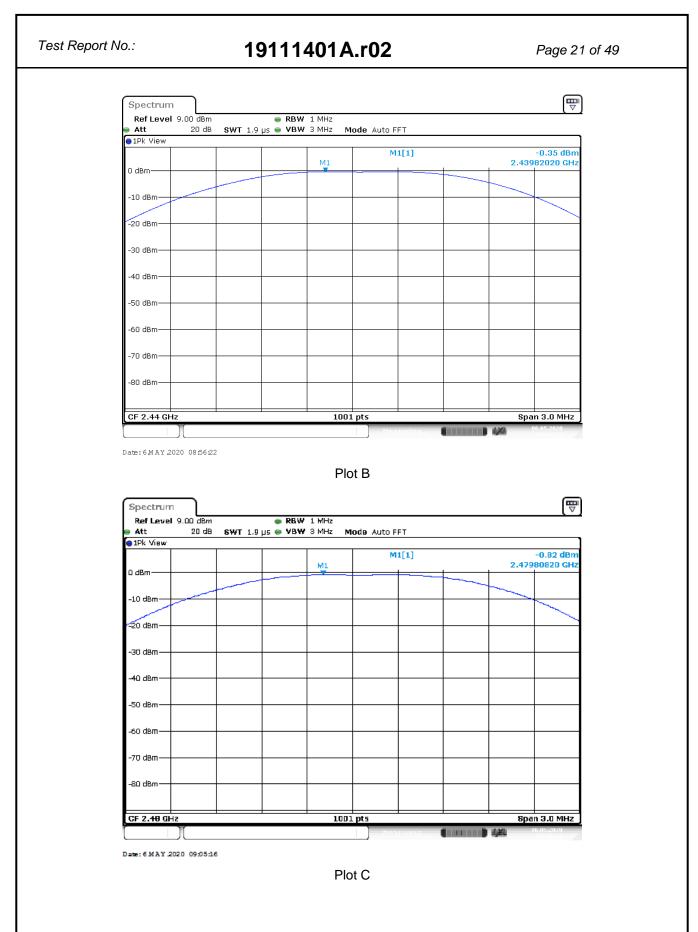
plots : Peak power plots,

Figures 1a, 1b and 1c show plots of the Peak Power outputs, correction factors (= 0.01 dB Cable loss) included in the reading.

19111401A.r02

Page 20 of 49

Conducted Output Power


Frequency	Output Power	Limit	Verdict	Plot number
[MHz]	[W]	[W]	[Pass/Fail]	
2402	0.00089 (-0.50 dBm)	1 (+30 dBm)	Pass	1A
2440	0.00092 (-0.35 dBm)	1 (+30 dBm)	Pass	1B
2480	0.00083 (-0.82 dBm)	1 (+30 dBm)	Pass	1C

	е RBW 1 MHz 1.9 µs е VBW 3 MHz М 6	ode Auto FFT	
●1Pk View		M1[1]	-0.50 dBi
	M1	milil	2.40180820 GF
0 dBm			
-10 dBm			
-20 dBm			
-30 dBm			
-40 dBm			
-50 dBm			
-60 dBm			
-70 dBm			
-80 dBm			
CF 2.402 GHz	1001	nts	Span 3.0 MHz
	1001		06.05.2020

Plot A

19111401A.r02

Page 22 of 49

4.1.3 Peak Power Spectral Density

RESULT: PASS

Date of testing:

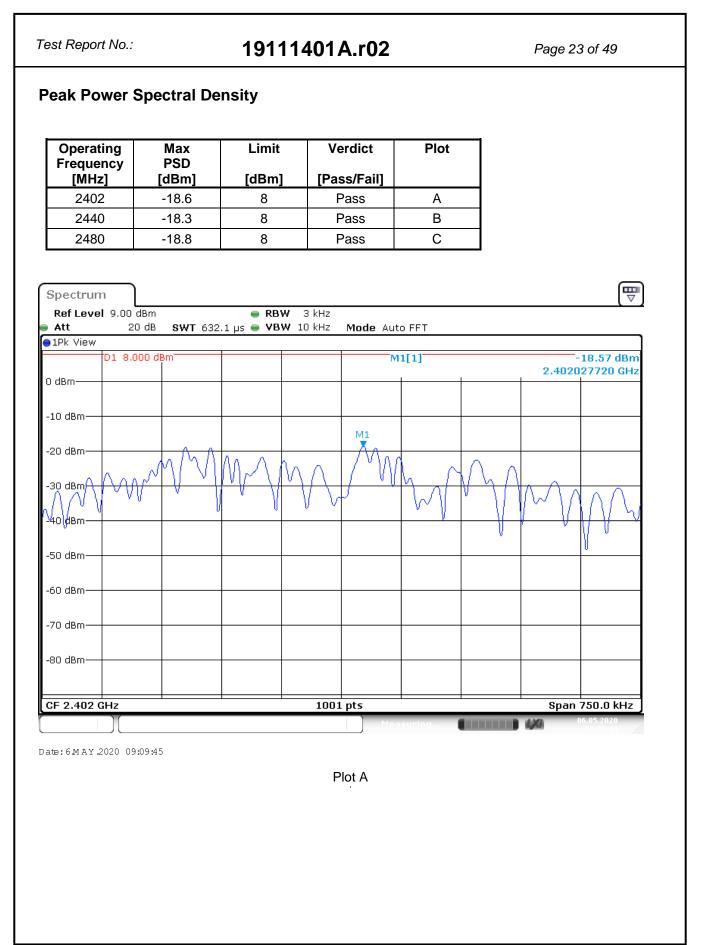
2020-05-06

Requirements:

FCC 15.247(e) and RSS-247 section 5.2(2)

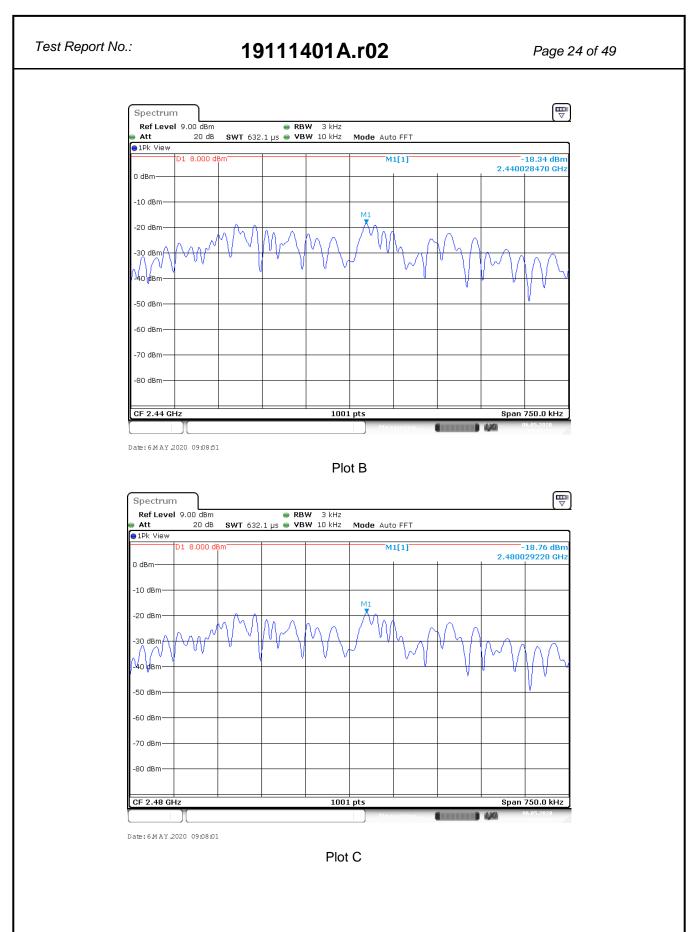
For digitally modulated systems, the power spectral density (PSD) conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission.

Test procedure:


ANSI C63.10-2013

The section 11.10.2 PKPSD peak PSD procedure was used. A spectrum analyzer was connected to the antenna port of the EUT. The analyzer resolution bandwidth was set to 3kHz and the video bandwidth was set to 10kHz. The sweep time was set to auto couple and the trace was allowed to stabilize before making the final measurement. By using the Peak marker function the maximum amplitude was determined. The final measurement takes into account the loss generated by all the involved cables.

Measurement uncertainty is +/- 0.7 dB.



19111401A.r02

Page 25 of 49

4.1.4 Band Edge Conducted Emissions

RESULT: Pass

Date of testing:

2020-05-06

Requirements:

FCC 15.205, FCC 15.209, FCC 15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

Test procedure:

The marker-delta method, as described in ANSI C63.10 was used.

Antenna port conducted measurements were performed using a spectrum analyzer with a suitable span to encompass the peak of the fundamental and using the following settings: RBW = 100kHz, VBW = 300kHz.

The highest emission amplitudes relative to the appropriate limit were measured and recorded in this report.

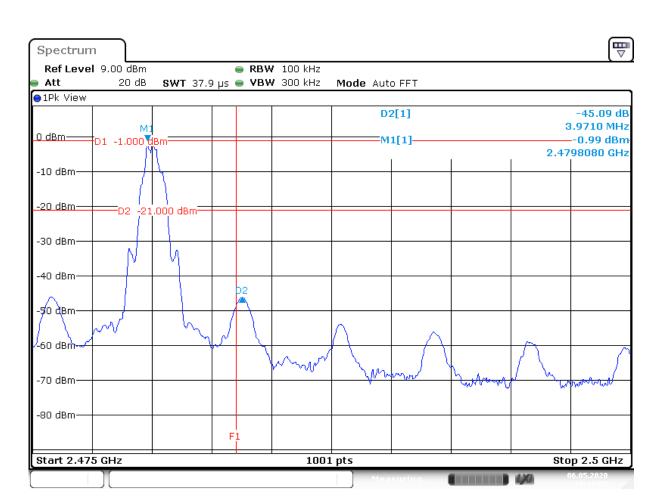
Measurement uncertainty is +/- 0.7 dB.

Results: All out of band spurious emissions are more than 20 dB below the fundamental. See the figures on the following pages.

Spectrum				Ē
Ref Level 9.00 dBm Att 20 dB	● RBW 100 k SWT 132.7 μs ● VBW 300 k			
1Pk View	3W1 132.7 µ3 • 7 BW 300 k			
		M1[1]		-0.73 dBm 2.401810 GHz
D. dBm D1 -0.700 de	Bm	D2[1]		-45.15 dB -3.960 MHz
-10 dBm				-3.900 MH2
20.dBmD2 -20.7	700 dBm			
30 dBm				
				144
-40 dBm				D2
-50 dBm				<u> </u>
			A	
-60 dBm				1.1
R. A. Har March March	untration material and	About we for the but here be		af ur m
Ů U	and the second sec	or of the contract of the cont	₩ ₩ ₩	
80 dBm				
-80 dBm		001 pts		F1 Stop 2.41 GH:

Date: 6 MAY 2020 10:15:26

Plot: Band Edge Conducted Emission, Spectral Diagram, 2402 MHz


Plot showing more than 20 dB band edge attenuation. F1 shows the band edge frequency of 2400 MHz.

19111401A.r02

Page 27 of 49

Date: 6 MAY 2020 10:17:52

Plot: Band Edge Conducted Emission, Spectral Diagram, 2480 MHz. Plot showing more than 20 dB band edge attenuation. F1 shows the band edge frequency of 2483.5 MHz.

19111401A.r02

Page 28 of 49

4.1.5 Radiated Spurious Emissions of Transmitter

RESULT: PASS

Date of testing:

Frequency range:

Requirements:

FCC 15.209 and FCC 15.247(d) and RSS-Gen

Radiated emissions which fall outside the operation frequency band and outside restricted bands shall either meet the limit specified in FCC 15.209(a) or be attenuated at least 20dB below the power level in the 100kHz bandwidth within the band that contains the highest level of the desired power (the less severe limit applies).

2020-05-12 & 13

30MHz - 25GHz

Radiated emissions which fall in the restricted bands, as defined in FCC 15.205(a) and RSS-Gen Table 6, must comply with the radiated emission limits specified in FCC 15.209(a) and RSS-Gen Table 4.

Test procedure:

ANSI C63.10-2013

Before final measurements of radiated emissions were performed, the EUT was scanned to determine its emission spectrum profile. The physical arrangement of the test system, the associated cabling were varied in order to ensure that maximum emission amplitudes were attained.

The spectrum was examined from 30MHz to the 10th harmonic of the highest fundamental transmitter frequency (25GHz). Final radiated emission measurements were made at 3m distance.

Final testing was performed on an NSA compliant test site. The EUT was placed on a 1.0m x 1.5m non-conductive table 80cm (<1 GHz) and 150cm (>1 GHz) above the ground plane. The placement of EUT and cables were the same as for preliminary testing and is shown in the setup photographs. At each frequency where a spurious emission was found, the EUT was rotated 360° and the antenna was raised and lowered from 1 to 4m in order to determine the emission's maximum level. Measurements were taken using both horizontal and vertical antenna polarizations.

The highest emission amplitudes relative to the appropriate limit were recorded in this report. Field strength values of radiated emissions at frequencies not listed in the tables are more than 20 dB below the applicable limit. Where Peak (Pk) values where at least 6 dB under the Average (Av) limits, Av value was not tested. Were Average values were tested, Average values were measured using a reduced Video Bandwidth, with a minimum of 10 kHz.

19111401A.r02

Page 29 of 49

Radiated Emissions, 30MHz - 1GHz

Frequency [MHz]	EUT Orientation	Antenna Orientation	Level QP [dBµV/m]	Limit QP [dBµV/m]	Verdict [Pass/Fail]
52.0	Vertical	Vertical	37.1	40.0	Pass
58.8	Side	Vertical	32.0	40.0	Pass
103.4	Side	Vertical	33.5	43.5	Pass
117.5	Side	Vertical	35.1	43.5	Pass
121.9	Vertical	Vertical	36.0	43.5	Pass
667.4 noise	-	Vertical	23.5	46.0	Pass

Note: - Level QP = Reading QP + Factor

- Tested in modes as described in section 3.2, the 6 highest values noted. Preliminary measurements indicated that the radiated emissions from EUT were not affected by the EUT's operating mode or frequency.

- *R refers to a frequency in a restricted band, *H refers to a harmonic of the fundamental

- Quasi Peak detector used with a bandwidth of 120 kHz..

- Measurement uncertainty is +/- 5.0 dB.

- a selection of plots are provided on the next pages

SOIDBUV/M

30 dBµv/m-30 dBµV/m-10 dBµV/m-0 dBµV/m--10 dBµV/m-

CF 515.0 MHz

Marker Type Ref Trc

M1 M2 M3 M4

M5 M6

19111401A.r02

Y

Apply a fresh and a star

Span 970.0 MHz

12.05.2020 09:52:11

Function Result

Page 30 of 49

Plot of the emissions in the range 30 -1000 MHz ♥ Spectrum X Receiver Ref Level 82.00 dBµV/m RBW 100 kHz SWT 948.1 µs ● VBW 300 kHz Mode Auto FFT Input 1 AC Att 10 dB PS PA TDF ⊖1Pk View 45.84 dBµV/n 52.060 MH M1[1] 70 dBµV/m 41.70 dBμV/n 72.420 MH M2[1] 60 dBµV/m

2001 pts

Function

Measuring...

Y-value 45.84 dBµV/m 41.70 dBµV/m

45.15 dBµV/m 32.55 dBµV/m

27.43 dBµV/m 34.70 dBµV/m

Date: 12.MAY.2020 09:52:11

X-value 52.06 MHz 72.42 MHz

121.86 MHz 151.05 MHz

176.74 MHz 677.39 MHz

Plot of the emissions in the range 30 – 1000 MHz (Peak detector values shown), EUT Vertical, Normal mode

Receiver	s	pectrum	×						
Ref Leve	82.00 d	BµV/m		RBW 100	kHz				
Att		10 dB SWT	948.1 µs	• VBW 300 l	kHz Mo	de Auto	FFT Inp	ut 1 AC	
PS PA TDF							•		
●1Pk View									
Limit	heck		P	ASS		M1[1]			35.58 dBµV/m
Line F	CC Part 1	.5 E-Field 3m	Op P	ASS					58.840 MHz
70 dBµV/m-			si	+ +		M2[1]			37.52 dBµV/m
60 ID 11/									103.440 MHz
60 dBµV/m-									
50 dBµV/m-									
						_			
FCC Part 15	n riald oa	_				_			virangelysisteritoristations and and
FCC Part 15	E-Field 3ff	i Qp			a deficient a	يم والس	alle an and the second	Line and the party way to	And the state of the second state of the secon
30 dBµV/m-		M1-M5	and a second second	Anether the provident the	A BUILDING AND AND A	We show the			
Y	March March	مر المراجع المرجع الم	Harrison Harrison						
20 dBµV/m-		- Marine - M							
10 dBµV/m-									
10 0001,111									
0 dBµV/m—						_			
-10 dBµV/m				+ +					
Start 30.0	MHz			2001	pts				Stop 1.0 GHz
Marker									
Type Re	f Trc	X-value		Y-value	Fun	ction		Function R	esult
M1	1		4 MHz	35.58 dBµV/r					
M2	1		4 MHz	37.52 dBµV/r					
M3	1		5 MHz	38.16 dBµV/r					
M4	1		4 MHz	25.50 dBµV/r					
M5	1	287.6	5 MHz	25.20 dBµV/r	n				
					Mr	asuring.			12.05.2020
						as as mig.			09:45:24

Date: 12.MAY.2020 09:45:25

Plot of the emissions in the range 30 – 1000 MHz (Peak detector values shown). EUT Sideways, Normal mode

19111401A.r02

Page 31 of 49

20 dBµV/m	and a star water of the start o	and the second s					
0 dBµV/m	late and manager of respective to be derived and a feature of the second and the						
10 dBµV/m							
0 dBµV/m							
-10 dBµV/m							
CF 515.0 MHz Marker		2001	pts		Span 97	0.0 MHz	
Type Ref Trc M1 1 M2 1 M3 1 M4 1	X-value 52.06 MHz 70.48 MHz 114.11 MHz 129.77 MHz	Y-value 36.57 dBµV/m 34.68 dBµV/m 40.34 dBµV/m 35.35 dBµV/m 29.54 dDµV/m	1 1 1	n Fur	nction Result		
M5 1	145.77 MHz	29.54 dBµV/m	Measuri	ing		05.2020	
lot of the em	nissions in the	e range 30 -	– 1000 M	1Hz (Peak d	etector va	alues sł	nown),
Plot of the em EUT Horizonta	nissions in the	e range 30 -	– 1000 M	1Hz (Peak d	etector va	_	nown),
Plot of the em EUT Horizonta Receiver St Ref Level 82.00 df	hissions in the al, 2402 MHz	e RBW 100 k	Hz			alues sł	nown),]
Ref Level 82.00 dE Att PS PA TDF	hissions in the al, 2402 MHz		Hz	1Hz (Peak d		_	nown),]
Plot of the em EUT Horizonta Ref Level 82.00 de Att PS PA TDF 1Pk View	hissions in the al, 2402 MHz	● RBW 100 k µs ● VBW 300 k	:Hz :Hz Mode A	Auto FFT Input	1 AC		nown),]
Plot of the em EUT Horizonta Ref Level 82.00 de Att PS PA TDF IPK View Limit Greck Line FSC Part 1	hissions in the al, 2402 MHz Dectrum ® DU/V/m 10 dB SWT 948.1	e RBW 100 k	Hz Hz Mode A M2[1	Auto FFT Input	1 AC 40.8 11	€ dBµV/m 0.560 MHz	nown),]
Plot of the em EUT Horizonta Ref Level 82.00 de Att PS PA TDF IPk View Limit Greck Line FCC Part 1 70 dBµV/m	hissions in the al, 2402 MHz Dectrum ® DU/V/m 10 dB SWT 948.1	● RBW 100 k µs ● VBW 300 k ₽Å <mark>\$</mark> \$:Hz :Hz Mode A	Auto FFT Input	1 AC 40.8 11 36.7	(₩ ▼ 6 dBµV/m	nown),]
Plot of the em EUT Horizonta Ref Level 82.00 de Att PS PA TDF IPk View Limit Greck Line FCC Part 1 70 dBµV/m	hissions in the al, 2402 MHz Dectrum ® DU/V/m 10 dB SWT 948.1	● RBW 100 k µs ● VBW 300 k ₽Å <mark>\$</mark> \$	Hz Hz Mode A M2[1	Auto FFT Input	1 AC 40.8 11 36.7	€ dBµV/m 0.560 MHz 0 dBµV/m	nown),]
Plot of the em EUT Horizonta Ref Level 82.00 de Att PS PA TDF IPK View Line FCC Part 13 70 dBµV/m 50 dBµV/m	hissions in the al, 2402 MHz Dectrum ® DU/V/m 10 dB SWT 948.1	● RBW 100 k µs ● VBW 300 k ₽Å <mark>\$</mark> \$	Hz Hz Mode A M2[1	Auto FFT Input	1 AC 40.8 11 36.7	€ dBµV/m 0.560 MHz 0 dBµV/m	nown),]
Plot of the em EUT Horizonta Ref Level 82.00 db Att PS PA TDF IPk View Line FC Part 1. 70 dBµV/m 50 dBµV/m 50 dBµV/m	hissions in the al, 2402 MHz Dectrum (X) 10 dB SWT 948.1	● RBW 100 k µs ● VBW 300 k PASS PASS	Hz Mode A 	Auto FFT Input	40.8 11 36.7 6	6 dBµV/m 0.560 MHz 0 dBµV/m 1.750 MHz	nown),]
Plot of the em EUT Horizonta Ref Level 82.00 db Att PS PA TDF IPk View Line FC Part 1. 70 dBµV/m 50 dBµV/m 50 dBµV/m	hissions in the al, 2402 MHz Dectrum (X) 10 dB SWT 948.1	● RBW 100 k µs ● VBW 300 k PASS PASS	Hz Mode A 	Auto FFT Input	40.8 11 36.7 6	6 dBµV/m 0.560 MHz 0 dBµV/m 1.750 MHz	nown),]
Plot of the em EUT Horizonta Ref Level 82.00 db Att PS PA TDF IPk View Line FC Part 1. 70 dBµV/m 50 dBµV/m 50 dBµV/m	hissions in the al, 2402 MHz Dectrum (X) 10 dB SWT 948.1	● RBW 100 k µs ● VBW 300 k PASS PASS	Hz Mode A 	Auto FFT Input	40.8 11 36.7 6	6 dBµV/m 0.560 MHz 0 dBµV/m 1.750 MHz	nown),
Plot of the em EUT Horizonta Ref Level 82.00 db Att PS PA TDF 1Pk View Line F C Part 1. 70 dBµV/m 60 dBµV/m 50 dBµV/m	hissions in the al, 2402 MHz pectrum (x) 10 dB SWT 948.1	● RBW 100 k µs ● VBW 300 k PASS PASS	Hz Mode A 	Auto FFT Input	40.8 11 36.7 6	6 dBµV/m 0.560 MHz 0 dBµV/m 1.750 MHz	nown),
Plot of the em EUT Horizonta Receiver Sp Ref Level 82.00 de Att PS PA TDF 1Pk View Line F C Part 1. 70 dBµV/m 60 dBµV/m 50 dBµV/m 50 dBµV/m 20 dBµV/m 31 dBµV/m 32 dBµV/m	hissions in the al, 2402 MHz Dectrum (X) 10 dB SWT 948.1	● RBW 100 k µs ● VBW 300 k PASS PASS	Hz Mode A 	Auto FFT Input	40.8 11 36.7 6	6 dBµV/m 0.560 MHz 0 dBµV/m 1.750 MHz	nown),
Plot of the em EUT Horizonta Refevel 82.00 de Att PS PA TDF IPK View Line FPC Part 1 70 dBµV/m 60 dBµV/m 50 dBµV/m 50 dBµV/m 20 dBµV/m 10 dBµV/m	hissions in the al, 2402 MHz Dectrum (X) 10 dB SWT 948.1	● RBW 100 k µs ● VBW 300 k PASS PASS	Hz Mode A 	Auto FFT Input	40.8 11 36.7 6	6 dBµV/m 0.560 MHz 0 dBµV/m 1.750 MHz	nown),
Plot of the em EUT Horizonta Refevel 82.00 de Att PS PA TDF IPK View Line FPC Part 1 70 dBµV/m 60 dBµV/m 50 dBµV/m 50 dBµV/m 20 dBµV/m 10 dBµV/m	hissions in the al, 2402 MHz Dectrum (X) 10 dB SWT 948.1	● RBW 100 k µs ● VBW 300 k PASS PASS	Hz Mode A 	Auto FFT Input	40.8 11 36.7 6	6 dBµV/m 0.560 MHz 0 dBµV/m 1.750 MHz	nown),
Plot of the em EUT Horizonta Ref Level 82.00 db Att PS PA TDF IPk View Line FC Part 1. 70 dBµV/m 50 dBµV/m 50 dBµV/m	hissions in the al, 2402 MHz Dectrum (X) 10 dB SWT 948.1	● RBW 100 k µs ● VBW 300 k PASS PASS	Hz Mode A 	Auto FFT Input	40.8 11 36.7 6	6 dBµV/m 0.560 MHz 0 dBµV/m 1.750 MHz	nown),
Plot of the em EUT Horizonta Ref Level 82.00 de Att PS PA TDF IPk View Line FDC Part 1 70 dBµV/m 60 dBµV/m 50 dBµV/m 20 dBµV/m 10 dBµV/m -10 dBµV/m	hissions in the al, 2402 MHz Dectrum (X) 10 dB SWT 948.1	● RBW 100 k µs ● VBW 300 k PASS PASS	Hz Mode A 	Auto FFT Input	1 AC 40.8 11 36.7 6	€ dBµV/m 3.560 MHz 0 dBµV/m 1.750 MHz 	nown),
Plot of the em EUT Horizonta Receiver Sp Ref Level 82.00 de Att PS PA TDF 1Pk View Line FOC Part 1. 70 dBµV/m 50 dBµV/m 50 dBµV/m 30 dBµV/m 10 dBµV/m 0 dBµV/m	hissions in the al, 2402 MHz Dectrum (X) 10 dB SWT 948.1	● RBW 100 k µs ● VBW 300 k PASS PASS	Hz Mode A 	Auto FFT Input	1 AC 40.8 11 36.7 6	6 dBµV/m 0.560 MHz 0 dBµV/m 1.750 MHz	nown),
Plot of the em EUT Horizonta Ref Level 82.00 de Att PS PA TDF 1Pk View Limit direck Line FOC Part 1 70 dBµV/m 50 dBµV/m 50 dBµV/m 10 dBµV/m 10 dBµV/m 10 dBµV/m 10 dBµV/m 10 dBµV/m 10 dBµV/m 10 dBµV/m 10 dBµV/m 10 dBµV/m	A ulindia walk	RBW 100 k VBW 300 k PASS PASS ASS	Hz Mode A M2[1 M1]]	Auto FFT Input	1 AC 40.8 11 36.7 6	€ dBµV/m 3.560 MHz 0 dBµV/m 1.750 MHz 	nown),
Plot of the em EUT Horizonta Receiver Sp Ref Level 82.00 de Att PS PA TDF 1Pk View Line FDC Part 1. 70 dBµV/m 50 dBµV/m 50 dBµV/m 20 dBµV/m 0 dBµV/m 0 dBµV/m 10 dBµV/m 51 dBµV/m 52 dBµV/m 53 dBµV/m 54 dBµV/m 55 dBµV/m 56 dBµV/m 57 dBµV/m 58 dBµV/m 50 dBµV/	hissions in the al, 2402 MHz pectrum (*) pectrum (*)	 ■ RBW 100 k µs ■ VBW 300 k PASS PASS	Hz Mode A M2[1 M2[1 M1[1 M1[1 M1[1 M1[1 M1[1 M1[1 M1[1 M1[1 M1[1 M1[1 M1[1 M1[1 M1[1 M1[1 M1[1 M1[1 M1]]	Auto FFT Input	1 AC 40.8 11 36.7 6 	€ dBµV/m 3.560 MHz 0 dBµV/m 1.750 MHz 	nown),

Plot of the emissions in the range 30 - 1000 MHz (Peak detector values shown). EUT Vertical,2480 MHz

19111401A.r02

Page 32 of 49

Radiated Emissions, 1 - 25GHz, 2402 MHz.

Frequency [MHz]	EUT Orientation	Antenna Orientation	Detector	Level [dBµV/m]	Limit [dBµV/m]	Result
1198* ^R	Horizontal	Vertical	Pk	49.2	74 Pk 54 Av	Pass
1800	Horizontal	Vertical	Pk	46.5	74 Pk 54 Av	Pass
1994	Horizontal	Vertical	Pk	48.6	74 Pk 54 Av	Pass
6000	Side	Vertical	Pk	49.7	74 Pk 54 Av	Pass
7206* ^H	Side	Vertical	Pk	56.0 Pk 50.9 Av	74 Pk 54 Av	Pass
9609*H	Side	Vertical	Pk	55.3 Pk 50.5 Av	74 Pk 54 Av	Pass
13.57	Horizontal	Vertical	Pk	59.0 Pk 47.6 Av	74 Pk 54 Av	Pass

Radiated Emissions, 1 - 25GHz, 2440 MHz.

Frequency [MHz]	EUT Orientation	Antenna Orientation	Detector	Level [dBµV/m]	Limit [dBµV/m]	Result
1195	Horizontal	Vertical	Pk	51.5	74 Pk 54 Av	Pass
1994	Horizontal	Vertical	Pk	47.6	74 Pk 54 Av	Pass
6000	Horizontal	Vertical	Pk	51.5	74 Pk 54 Av	Pass
7321* ^{HR}	Horizontal	Vertical	Pk	55.9 Pk 50.1 Av	74 Pk 54 Av	Pass
9759* ^H	Horizontal	Vertical	Pk	53.8 Pk 48.8 Av	74 Pk 54 Av	Pass
12201* ^R	Side	Vertical	Pk	57.7 Pk 50.0 Av	74 Pk 54 Av	Pass

19111401A.r02

Page 33 of 49

Radiated Emissions, 1 - 25GHz, 2480 MHz.

Frequency [MHz]	EUT Orientation	Antenna Orientation	Detector	Level [dBµV/m]	Limit [dBµV/m]	Result
1199* ^R	Vertical	Horizontal	Pk	51.5	74 Pk 54 Av	Pass
6000	Side	Vertical	Pk	52.8	74 Pk 54 Av	Pass
7440* ^{H*R}	Side	Vertical	Pk	55.0 Pk 51.5 Av	74 Pk 54 Av	Pass
11500 -12400* ^R	Side	Vertical	Pk	56.8 Pk 52.5 Av	74 Pk 54 Av	Pass

Radiated Emissions, 1 - 25GHz, Normal Mode.

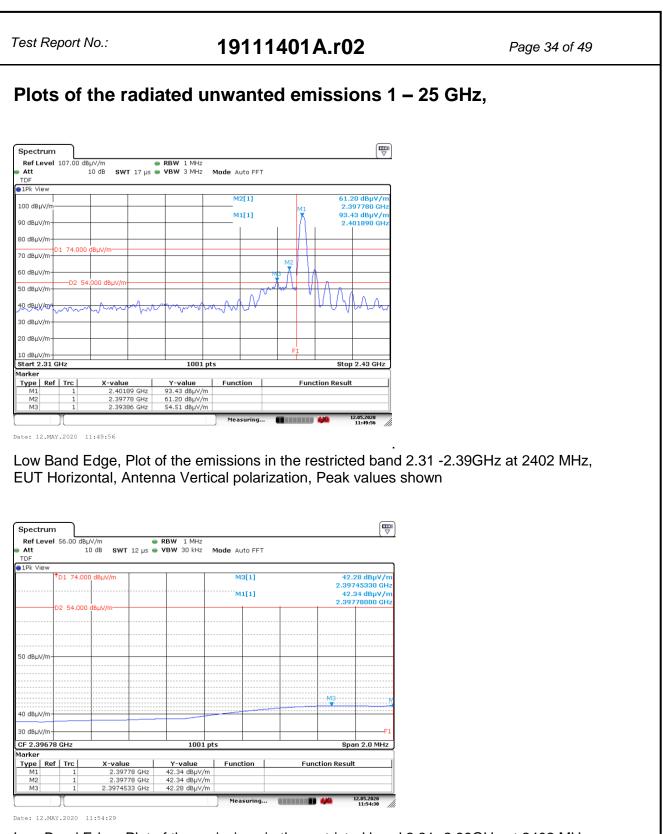
Frequency [MHz]	EUT Orientation	Antenna Orientation	Detector	Level [dBµV/m]	Limit [dBµV/m]	Result
1195* ^R	Horizontal	Vertical	Pk	51.6	74 Pk 54 Av	Pass
7859* ^{H*R}	Vertical	Horizontal	Pk	52.3	74 Pk 54 Av	Pass
9920* ^{H*R}	Vertical	Horizontal	Pk	53.5	74 Pk 54 Av	Pass
11000 -12000*R noise	-	Vertical	Pk	60.2 Pk 52.9 Av	74 Pk 54 Av	Pass

Emissions in restricted bands (Band Edges, radiated-worst case)

Frequency [MHz]	EUT Frequency [MHz} &Orientation	Antenna Orientation	Detector	Level [dBµV/m]	Limit [dBµV/m]	Result
2397.8	2402 Horizontal	Horizontal	Pk	61.2 Pk 42.3 Av	74 Pk 54 Av	Pass
2483.7	2480 Horizontal	Vertical	Pk	55.2 Pk 33.8 Av	74 Pk 54 Av	Pass

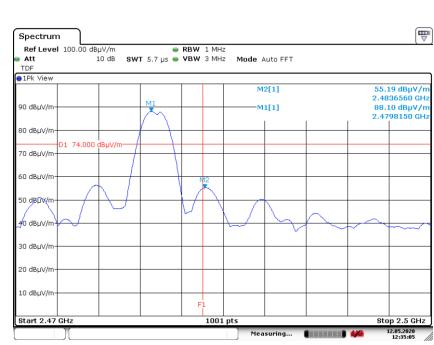
Notes: - *R refers to a frequency in a restricted band,

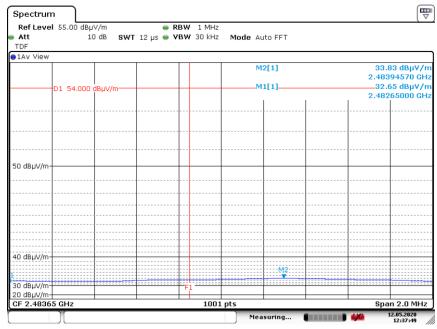
- *H refers to a frequency which is a harmonic of the fundamental.


- 1 MHz residual bandwidth filter setting used.

- Field strength values of radiated emissions not listed in the tables above are
- more than 20 dB below the applicable limit.
- Measurement uncertainty is +/- 5.5 dB
- No emissions within 20dB of the applicable limit were observed above $18 \mbox{GHz}$

- a selection of plots are provided on the next pages.

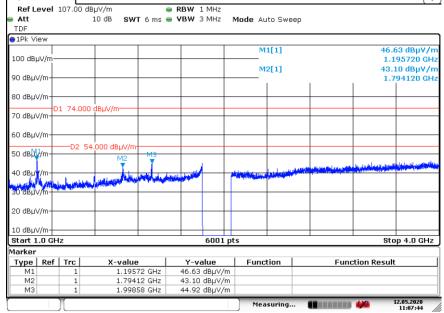

Low Band Edge, Plot of the emissions in the restricted band 2.31 -2.39GHz at 2402 MHz, EUT Horizontal, Antenna Vertical polarization, Average value shown


19111401A.r02

Page 35 of 49

Date: 12.MAY.2020 12:35:05

High Band Edge, Plot of the emissions in the restricted band 2.4835-2.5GHz at 2480 MHz, EUT Horizontal, Antenna Vertical polarization, Peak values shown

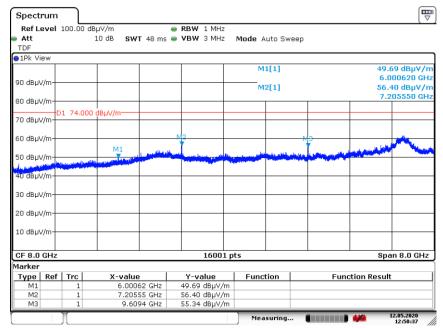

Date: 12.MAY.2020 12:37:49

High Band Edge, Plot of the emissions in the restricted band 2.4835-2.5GHz at 2480 MHz, EUT Horizontal, Antenna Vertical polarization, Average value shown

Test Report No .: 19111401A.r02 Page 36 of 49 **T** Spectrum Ref Level 107.00 dBuV/m RBW 1 MHz 10 dB SWT 6 ms 👄 VBW 3 MHz Att Mode Auto Sweep TDF ⊖1Pk View M1[1] 49.19 dBµV/r 1.198220 GHz 46.46 dBµ∀/m 100 dBuV/r M2[1] 90 dBµV/m 1.800620 GH 80 dBµV/m D1 74.000 dBµV/m 70 dBµV/m 60 dBµV/m D2 54.000 dBuV/n 50 dBµ**y**/m 40 dBiy Vm 30 dBuV/m 20 dBµV/m 10 dBµV/m Start 1.0 GHz 6001 pts Stop 4.0 GHz larker Type | Ref | Trc Y-value Function Function Result X-value 1.19822 GHz 1.80062 GHz 49.19 dBµV/m 46.46 dBµV/m M1 M2 МЗ 1.994084 GHz 48.62 dBµV/m 12.05.2020 11:16:23 Measuring... 2 Date: 12.MAY.2020 11:16:23 Plot Radiated unwanted emissions in the range 1 – 4 GHz in at 2402 MHz, EUT Horizontal (Peak values, Antenna Vertical position shown- gap is by the 2.4G Notch filter). **T** Spectrum Ref Level 107.00 dBµV/m RBW 1 MHz

Date: 12.MAY.2020 11:07:45

Plot Radiated unwanted emissions in the range 1 – 4 GHz in at 2402 MHz, EUT Vertical (Peak values, Antenna Vertical position shown- gap is by the 2.4G Notch filter)

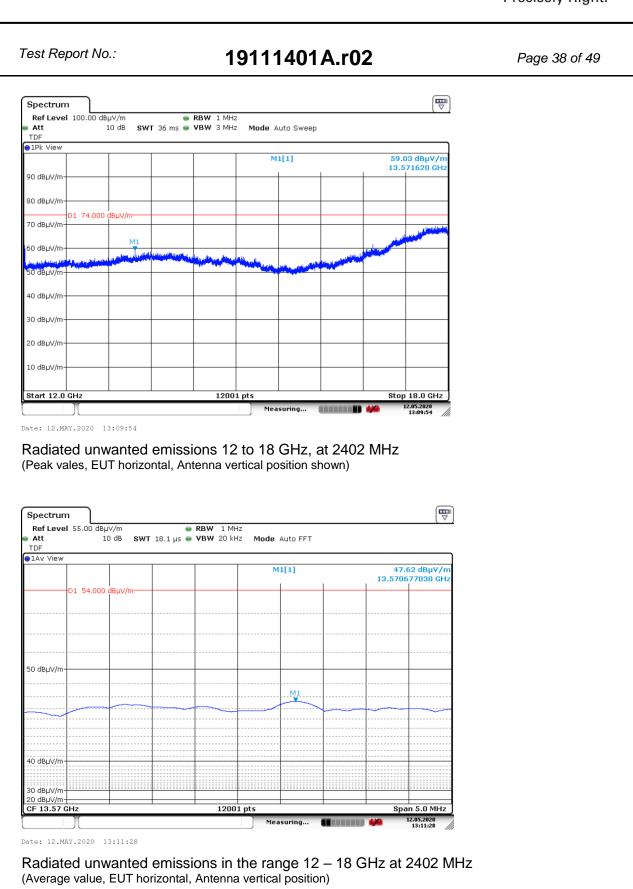

19111401A.r02

Page 37 of 49

Att TDF		IdBµV/m		RBW						
		10 dB SW	T6ms(● VBW:	3 MHz	Mode Au	ito Swee	эp		
⊜1Pk View										
100 40 4/4						М	1[1]			29 dBµV∕
100 dBµV/m-						5.4	2[1]			l98220 GF 50 dBµV∕I
90 dBµV/m							2[1]			798120 GF
									1	
80 dBµV/m+				_					-	
70 dBuV/m	01 74.0	100 dBµV/m		_						
Т										
60 dBµV/m				_						
N41	D2	54.000 dBµV/m	M3	_						
50 dBµ//m+			₩13 ▼							
40 dBµ		<u>k</u>					فالجو بالرياك والسال	and the state of the	-	And the second second
	فالسالي	want wanter a frame	Same reading							
30 dBµV/m-				_						
20 dBµV/m+										
10 dBµV/m-									_	
Start 1.0 G	Ηz		1		6001 p	ts			Sto	p 4.0 GH
Marker										
Type Ref		X-valu		Y-V		Func	tion	Fu	nction Result	:
M1	1		22 GHz		dBµV/m					
M2 M3	1		12 GHz		dBµV/m dBµV/m					

Date: 12.MAY.2020 11:17:55

Radiated unwanted emissions in the range 1 – 4 GHz at 2402 MHz (Peak values, EUT Sideways, Antenna vertical position shown, gap is by the 2.4G Notch filter).



Date: 12.MAY.2020 12:50:37

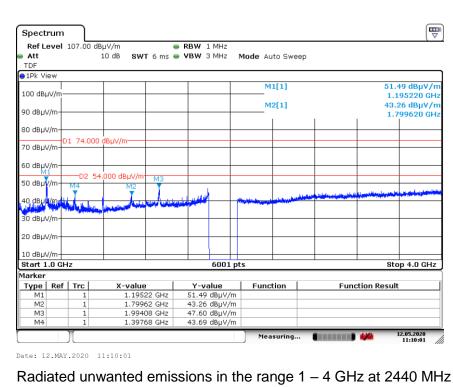
Radiated unwanted emissions in the range 4 – 12 GHz at 2402 MHz (Peak values, EUT side ways, Antenna vertical position shown)

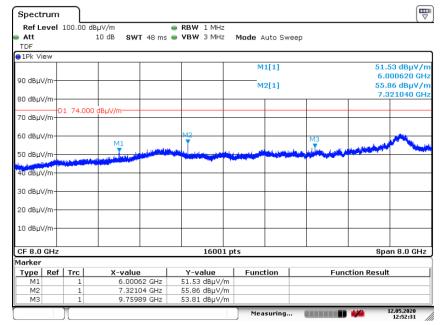
19111401A.r02

Page 39 of 49

Ref Level	100.00 dB	μV/m		RBW 1 M	Hz				
Att		10 dB SW	T 280 ms 🖷	VBW 50 k	Hz Mode	Auto Swee	р		
TDF 1Pk View									
JIK HOM					M	1[1]		48.:	20 dBµV/n
									77600 GH
90 dBµV/m-									
80 dBµV/m-									
70 dBµV/m-	D1 74.000	dBµV/m							
50 dBµV/m-									
		 .000 dBµV/m							
50 dBµV/m-				المتريس والمستعمل					
									-
40 dBµV/m-								a second second second second	a di kali kati kati ya di kati ya di k
30 dBµV/m-									
20 dBµV/m-									
10 dBµV/m-									
CF 21.5 GH	17			1400	l 1 nts			l Sna	in 7.0 GHz

Date: 13.MAY.2020 09:13:26


Radiated unwanted emissions in the range 18 - 25 GHz at 2402 MHz (Peak values, EUT horizontal, Antenna vertical position shown)

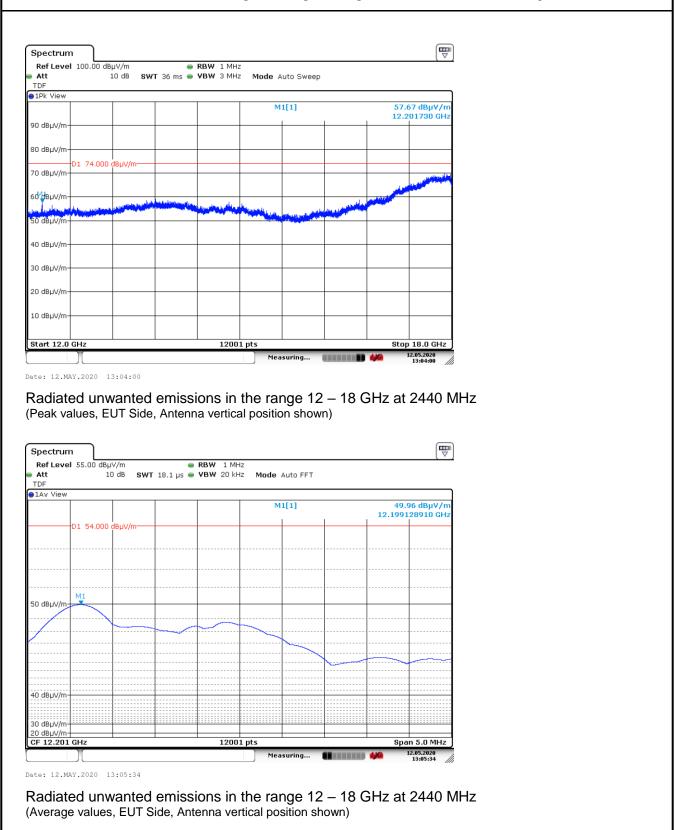


19111401A.r02

Page 40 of 49

(Peak values, EUT horizontal, Antenna vertical position shown, gap is by the 2.4G Notch filter)

Date: 12.MAY.2020 12:52:31


Radiated unwanted emissions in the range 4 – 12 GHz at 2440 MHz (Peak values, EUT side ways, Antenna vertical position shown)

19111401A.r02

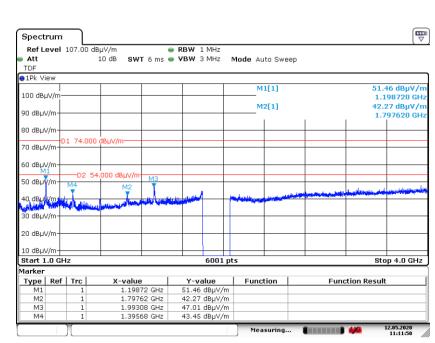
Page 41 of 49

19111401A.r02

Page 42 of 49

Ref Level			-	RBW 1 №						
Att TDF		10 dB SW	' T 280 ms 🖷	• VBW 50 k	Hz Mode	Auto Swee	0			
1Pk View										
					м	1[1]			8.08 dBµV/r).626630 GH	
90 dBµV/m+								19.0		
30 dBµV/m+										
	01 74.000	dBµV/m								
70 dBµV/m+										
50 dBµV/m+										
		 .000 dBµV/m M1								
50 dBµV/m+	a at the detroit	M1								
					Construction of Sectors			and constant on the l	desta de calencia de	
40 dBµV/m+										
30 dBµV/m+										
20 dBµV/m+										
10 dBµV/m+										

Date: 13.MAY.2020 09:17:18


Radiated unwanted emissions in the range 18 – 25 GHz at 2440 MHz (Peak values, EUT horizontal ways, Antenna vertical position shown)

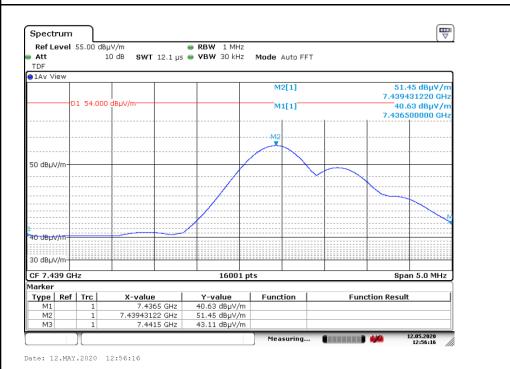
19111401A.r02

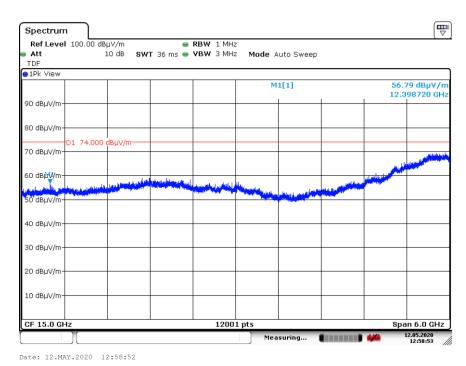
Page 43 of 49

Date: 12.MAY.2020 11:11:50

Radiated unwanted emissions in the range 1 – 4 GHz at 2480 MHz (Peak values, EUT Vertical, Antenna horizontal position shown, gap is by the 2.4G Notch filter)

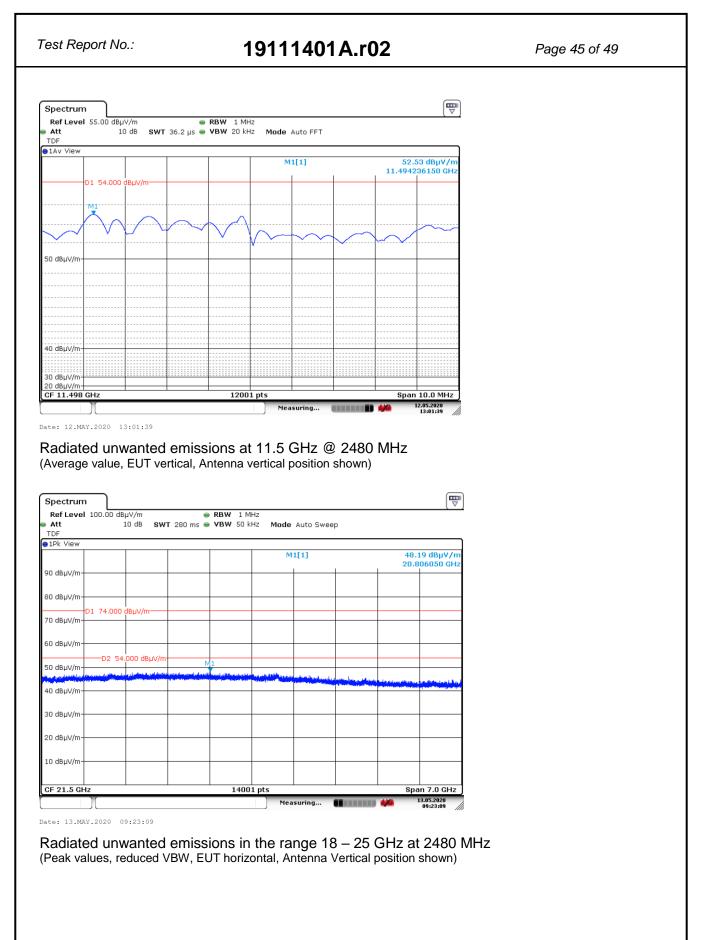
Date: 12.MAY.2020 12:54:05


Radiated unwanted emissions in the range 4 – 12 GHz at 2480 MHz (Peak values, EUT Sideways, Antenna vertical position shown)



19111401A.r02

Page 44 of 49


Radiated unwanted emissions at 7.4 GHz, harmonic of 2480 MHz (Average value, EUT Side ways, Antenna vertical position shown)

Radiated unwanted emissions in the range 12 – 18 GHz at 2480 MHz (Peak values reduced VBW, EUT Side ways, Antenna vertical position shown)

Test Report No .: 19111401A.r02 Page 46 of 49 **P** Spectrum Ref Level 107.00 dBµV/m 🔵 RBW 1 MHz Att 10 dB SWT 6 ms 👄 VBW 3 MHz Mode Auto Sweep TDF ⊖1Pk View 51.64 dBµV/n 1.195220 GHa M1[1] 100 dBµV/r M2[1] 45.69 dBµV/r 90 dBµV/m 1.792620 GH 80 dBµV/m 1 74.000 3µV/m 70 dBuV/m 60 dBµV/n MB -D2 54)00 dBµV/ 50 dBuV/m 40 dBµ<mark>k/m</mark> 30 dBµV/m 20 dBµV/m 10 dBµV/m Span 3.0 GHz CF 2.5 GHz 6001 pts Marker Type Ref Trc M1 1 M2 1 X-value Y-value Function Function Result 1.19522 GHz 1.79262 GHz 51.64 dBµV/m 45.69 dBµV/m ΜЗ 1.99658 GHz 49.93 dBµV/m M4 1 1.39568 GHz 41.48 dBµV/m Measuring... 12.05.2020 11:14:39 Date: 12.MAY.2020 11:14:39 Radiated unwanted emissions in the range 1 – 4 GHz, Normal Mode (Peak values, EUT horizontal, Antenna vertical position shown, gap is by the 2.4G Notch filter) [₩ Spectrum Ref Level 100.00 dBuV/m RBW 1 MHz SWT 48 ms 👄 VBW 3 MHz 10 dB Att Mode Auto Sweep TDF ⊖1Pk View M1[1] 47.87 dBuV/r 4.807700 GH 90 dBµV/m 52.25 dBµV/n 7.858510 GH M2[1] 80 dBµV/m 74.000 lBµV/m 70 dBµV/m 60 dBµV/m M2 50 dBµV/m 40 dBuV/m 30 dBuV/m 20 dBµV/m 10 dBµV/m Span 8.0 GHz CF 8.0 GHz 16001 pts Marker Type Ref Trc X-value 4.8077 GHz Function Y-value Function Result 47.87 dBµV/m 52.25 dBµV/m 53.50 dBµV/m 7.85851 GHz 9.92038 GHz M2 МЗ 12.05.2020 12:46:18 Measuring... **(**....) **(**() Date: 12.MAY.2020 12:46:18 Radiated unwanted emissions in the range 4 - 12 GHz Normal mode (Peak values, EUT Vertical, Antenna horizontal position shown)

19111401A.r02

Page 47 of 49

4.2 AC Power Line Conducted Measurements

RESULT: Pass.

Date of testing: Tested by: 2019-12-09 Willem Brouwer

Requirements: for equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the band edges.

Frequency of Emission (MHz)	Conducted Limit (dBµV) Quasi-Peak	Conducted Limit (dBµV) Average
0.15 – 0.5	66 to 56*	56 to 46*
0.5 – 5	56	46
5 - 30	46	50

*Decreases with the logarithm of the frequency.

Test procedure:

ANSI C63.10-2013.

Each phase and neutral of the AC power line were measured with respect to ground. Measurements were performed using a 50 μ H / 50 Ω LISN. The frequency range from 150kHz to 30MHz was searched. The six highest EUT emissions relative to the limit were noted. The EUT was positioned at least 80cm from the LISN. The power cable was routed over the non-conductive plate to the LISN.

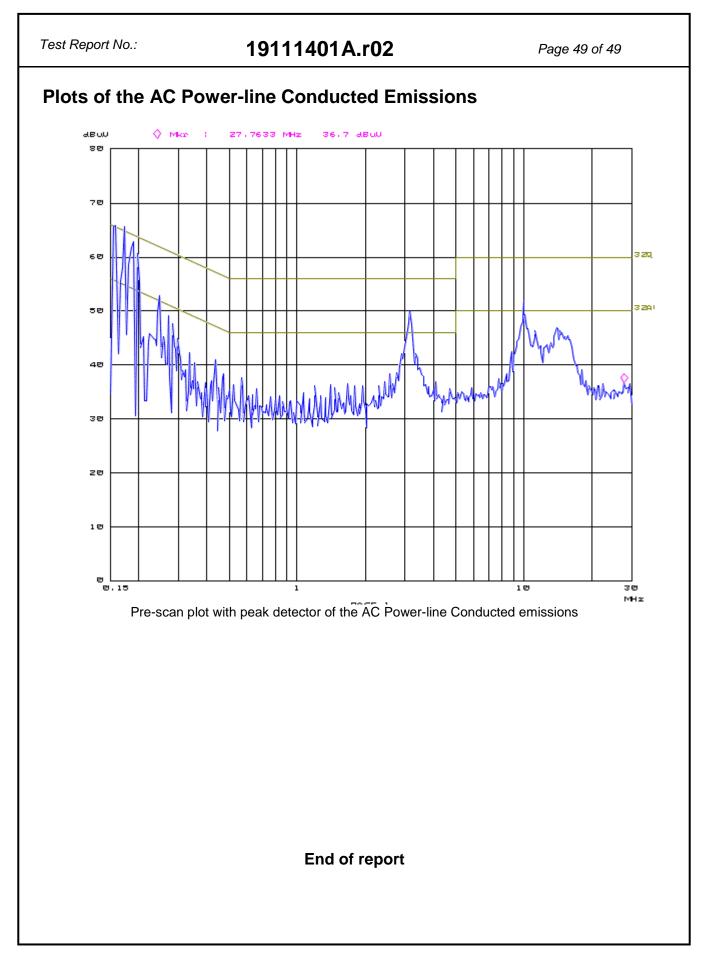
19111401A.r02

Page 48 of 49

4.2.1 AC Power Line Conducted Emission of Transmitter

Results and limits L1								
Frequency	Qua	si peak dete	ector	Average detector				
(MHz)	Result	Limit	Margin	Result	Limit	Margin		
0.16	61.3	65.5	4.1	40.0	55.5	15.5		
0.17	62.2	65.0	2.7	45.5	55.0	9.5		
0.19	58.0	64.0	6.1	39.9	54.0	14.1		
0.20	58.3	63.6	5.3	38.4	53.6	15.3		
0.25	47.9	61.8	13.8	30.0	51.8	21.7		
3.13	48.4	56.0	7.6	36.4	46.0	9.6		
9.96	39.6	60.0	20.4	32.2	50.0	17.8		

Results and limits L2								
Frequency	Qua	si peak dete	ector	Average detector				
(MHz)	Result	Limit	Margin	Result	Limit	Margin		
0.16	61.8	65.5	3.7	40.3	55.5	15.1		
0.17	62.7	65.0	2.2	45.8	55.0	9.2		
0.19	58.6	64.0	5.5	40.4	54.0	13.7		
0.20	59.0	63.6	4.6	38.9	53.6	14.7		
0.25	48.9	61.8	12.8	30.8	51.8	20.9		
3.13	48.6	56.0	7.4	36.3	46.0	9.7		
9.96	44.8	60.0	15.2	36.4	50.0	13.6		


The results of the AC power line conducted emission tests, carried out in accordance with 47 CFR Part 15 section 15.207(a) and RSS-Gen section 8.8, at the 120 Volts/ 60 Hz AC mains connection terminals of the EUT, are depicted in the table above.

Notes:

- 1. The resolution bandwidth used was 9 kHz.
- 2. From pre-test the worst case configuration proved to be the normal operation mode Worst case values noted.
- 3. Measurement uncertainty is +/- 3.5 dB.
- 4. Plots are provided on the next pages.

