

TEST REPORT CONCERNING THE COMPLIANCE OF AN INDUCTIVE PROXIMITY CARD READER, OPERATING ON 13.56 MHz BRAND NEDAP, MODEL INVEXS MDK170B, WITH 47 CFR PART 15 (10-1-09 EDITION) AND THE REQUIREMENTS OF INDUSTRY CANADA: RSS-GEN AND RSS-210 (ISSUE 8, DECEMBER 2010)

> 12050901.fcc01 July 05, 2012

> > FCC listed :90828 Industry Canada :2932G-2 VCCI Registered :R-1518, C-1598 R&TTE, LVD, EMC Notified Body :1856

TÜV Rheinland EPS B.V. P.O. Box 37 9350 AA Leek (NL) Eiberkamp 10 9351 VT Leek (NL)

Telephone: +31 594 505005 Telefax: +31 594 504804

Internet: www.tuv-eps.com E-mail: info@tuv-eps.com

Project number: 12050901.fcc01

MEASUREMENT/TECHNICAL REPORT

N.V. Nederlandsche Apparatenfabriek "Nedap"

Brand: Nedap Model: INVEXS MDK170B FCC ID: CGDINVEXS170 IC: 1444A-INVEXS170

This report concerns:	Original grant/certification Class 2 Permissive Change Verification					
Equipment type:	Inductive Proximity Card Reader					
Report prepared by:	Name Company name Address Postal code/city Mailing address Postal code/city Country Telephone number Telefax number E-mail	: O.H. Hoekstra : TÜV Rheinland EPS B.V. : Eiberkamp 10 : 9351 VT Leek : P.O. Box 37 : 9350 AA Leek : The Netherlands : + 31 594 505 005 : + 31 594 504 804 : info@tuv-eps.com				

The data taken for this test and report herein was done in accordance with 47 CFR Part 15 (10-1-09 Edition), RSS-GEN AND RSS-210 and the measurement procedures of ANSI C63.4-2009. TÜV Rheinland EPS B.V. at Leek, The Netherlands, certifies that the data is accurate and contains a true representation of the emission profile of the Equipment Under Test (EUT) on the date of the test as noted in the test report. I have reviewed the test report and find it to be an accurate description of the test(s) performed and the EUT so tested.

Date: July 05, 2012

Signature:

R. van der Meer Engineer Telecom TÜV Rheinland EPS B.V.

Summary

The device under test does:

- fulfill the general approval requirements as identified in this test report
- o not fulfill the general approval requirements as identified in this test report

Description of test item

Test item (EUT) : Inductive Proximity Card Reader Manufacturer : N.V. Nederlandsche Apparatenfabriek "Nedap" Brand : Nedap Model(s) : **INVEXS MDK170B** Serial number(s) : C303 A 0873 FCC ID CGDINVEXS170 : 1444A-INVEXS170 IC : Receipt date : May 25, 2012

Applicant information

Applicant's representative :	Mr. J. Hulshof
Company :	N.V. Nederlandsche Apparatenfabriek "Nedap"
Address :	Parallelweg 2
Postal code :	7141 DC
City :	Groenlo
Country :	The Netherlands
Telephone number :	+31 544 471 162
Telefax number :	+31 544 466 475

Test(s) performed

Location Test(s) started Test(s) completed Purpose of test(s)	:	Leek June 4, 2012 June 22, 2012 Equipment Authoriz	ation (Original grant/certification)
Test specification(s)	:	47 CFR Part 15 (10-	-1-09 Edition) and RSS-GEN AND RSS-210
Compliance statement	:	The test has demon	strated that this unit complies with stipulated standards.
Test engineer(s)	:	O.H. Hoekstra	(M. Hubbe
Report written by	:	O.H. Hoekstra	(M blockshi

Report date

: July 05, 2012

This report shall not be reproduced, except in full, without the written permission of TÜV Rheinland EPS B.V. The test results relate only to the item(s) tested.

Test specification(s): Description of EUT: Manufacturer: Brand mark: Model: FCC ID: IC:

FCC Part 15, RSS-GEN, RSS-210 Inductive Proximity Card Reader N.V. Nederlandsche Apparatenfabriek Nedap Nedap INVEXS MDK170B CGDINVEXS170 1444A-INVEXS170

Table of contents

1	General information	5
	1.1 Product description	5
	1.1.1 Introduction.	5
	1.2 Related submittal(s) and/or Grant(s).	5
	1.2.1 General.	5
	1.3 Tested system details	5
	1.3.1 Description of input and output ports.	6
	1.4 Test Summary	6
	1.5 Test methodology	7
	1.6 Test facility.	7
	1.7 Test conditions.	
2	System test configuration.	8
	2.1 Justification	
	2.2 EUT mode of operation.	
	2.3 Special accessories	
	2.4 Equipment modifications.	
	2.5 Product Labeling	
	2.6 Block diagram of the EUT.	
	2.7 Schematics of the EUT	
	2.8 Part list of the EUT.	
3		
	3.1 Radiated field strength measurements (30 MHz – 1 GHz, E-field)	
	3.1.1 Test equipment used (for reference see test equipment listing)	
	3.2 Radiated field strength measurements (frequency range of 0.009-30 MHz, H-field)	
	3.2.1 Test equipment used (for reference see test equipment listing)	
4		11
	4.1 Conducted emission data of the EUT (full configuration)	11
	4.1.1 Test equipment used (for reference see test equipment listing)	
5		12
	5.1 Frequency stability (on 13.56 MHz) in accordance with 47 CFR Part 15, section 15.225 (e) & RSS-Ge	
	section 4.7 and 7.2.4 and RSS-210 section A2.6:	
	5.1.1 At 85% and 115% of rated voltage supply level	
	5.2 Bandwidth of the emission on 13.56 MHz in accordance with RSS-Gen section 4.7 and 7.2.4 and RSS	
	210 section A2.6	
_	5.2.1 Test equipment used (for reference see test equipment listing)	
6		
_	6.1 Bandwidth of the emission	
7	List of utilized test equipment.	16

1 General information.

1.1 **Product description.**

1.1.1 Introduction.

The Inductive Proximity Card Reader, brand Nedap, model INVEXS MDK170W, hereafter referred to as EUT is an inductive proximity card reader intended to be used for access control. It is capable of reading 13.56 MHz inductive tags.

The content of this report and measurement results have not been changed other than the way of presenting the data.

1.2 Related submittal(s) and/or Grant(s).

1.2.1 General.

This test report supports the original grant/certification in equipment authorization files under registration number. FCC ID: CGDINVEXS170 and IC: 1444A-INVEXS170.

1.3 Tested system details.

Details and an overview of the system and all of its components, as it has been tested, may be found below.

EUT Manufacturer Brand Model Serial number Voltage input rating Voltage output rating Current input rating Antenna Operating frequency Remarks		Inductive Proximity Card Reader N.V. Nederlandsche Apparatenfabriek "Nedap" Nedap INVEXS MDK170B 120 Vac Integral 13.56 MHz
Remarks	:	n.a.

Photo 1a: EUT (front)

Photo 1b: EUT (back)

1.3.1 Description of input and output ports.

EUT has no specific input and output ports.

1.4 Test Summary

The EUT was tested in accordance with the specifications given in Table 1 below.

Test Standard				
47 CFR Part 15.225 (10-1-09 Edition)	RSS-210 Issue 8, December 2010	Description	Pass / Fail	
15.207(a)	RSS-Gen(7.2.4)	Conducted emissions	Pass	
15.225(a)	RSS-210(A2.6(a))	Emissions in the band 13.553-13.567 MHz	Pass	
15.225(d), 15.209	RSS-210(A2.6)	Emissions outside the band 13.110-14.010 MHz	Pass	
15.225(e)	RSS-210(A2.6)	Frequency stability	Pass	
15.215(c)	RSS-Gen(4.6.1)	Occupied bandwidth	Pass	

Table 1: Test specifications

Test methods: ANSI C63:2009 and RSS-Gen Issue 3, December 2010

1.5 Test methodology.

The test methodology used is based on the requirements of 47 CFR Part 15 (10-1-09 Edition), sections 15.31, 15.35, 15.205, 15.209, 15.209 and 15.225 and RSS-GEN AND RSS-210 (ISSUE 8, DECEMBER 2010).

The test methods, which have been used, are based on ANSI C63.4: 2009.

Radiated emission tests above 30 MHz were performed at a measurement distance of 3 meters. Radiated emission tests below 30 MHz were performed at a measurement distance of 3 meters. To calculate the field strength level from these results to the appropriate distance at which the limit is specified, the appropriate extrapolation factor is used.

The receivers are switching automatically to the right bandwidth in accordance with CISPR 16. This is implemented in the receiver. The antenna factors are programmed in the test receiver. The receiver automatically calculates the appropriate correction factor for the utilized antenna and also the appropriate antenna factor for the cable loss. The total correction is automatically added to the measured value.

1.6 Test facility.

The Federal Communications Commission and Industry Canada has reviewed the technical characteristics of the test facilities at TÜV Rheinland EPS B.V., located at Eiberkamp 10, 9351 VT Leek, The Netherlands, and has found these test facilities to be in compliance with the requirements of 47 CFR Part 15, section 2.948(10-1-06 edition).

The description of the test facilities has been filed at the Office of the Federal Communications Commission under registration number 90828. The facility has been added to the list of laboratories performing these test services for the public on a fee basis.

The description of the test facilities has been filed to Industry Canada under registration number 2932G-2. The facility has been added to the list of laboratories performing these test services for the public on a fee basis.

1.7 Test conditions.

Normal test conditions:

When it was impracticable to carry out the tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests are stated separately.

2 System test configuration.

2.1 Justification.

The system was configured for testing in a typical situation as a customer would normally use it. The test sample was configured by the applicant to enable continuous transmit.

The justification and manipulation of cables and equipment in order to simulate a worst-case behavior of the test setup has been carried out as prescribed in ANSI C63.4: 2009.

2.2 EUT mode of operation.

The EUT has been tested in active mode, i.e. the EUT is ready to detect a card. To assess the behavior of the EUT while reading the card, the EUT is tested with a card presented such that it continuously reads the card. The intentional radiator tests have been performed with a complete functioning EUT.

2.3 Special accessories.

No special accessories are used and/or needed to achieve compliance.

2.4 Equipment modifications.

No modifications have been made to the equipment.

2.5 Product Labeling

The product labeling information is available in the technical documentation package.

2.6 Block diagram of the EUT.

The block diagram is available in the technical documentation package.

2.7 Schematics of the EUT.

The schematics are available in the technical documentation package.

2.8 Part list of the EUT.

The part list is available in the technical documentation package.

3 Radiated emission data.

3.1 Radiated field strength measurements (30 MHz – 1 GHz, E-field)

Frequency (MHz)	Measurement results @3m Vertical (dBµV)	Measurement results @3m Horizontal (dBµV)	Correction factor (dB)	Results after correction Vertical (dBµV/m)	Results after correction Horizontal (dBµV/m)	Limits @3m (dBµV/m)	Pass/Fail
40.68	23.1	13.3	13.4	36.5	26.7	40.0	Pass
46.07	22.3	10.6	10.2	32.5	20.8	40.0	Pass
51.15	29.2	13.1	8.2	37.4	21.3	40.0	Pass
67.80	23.0	16.4	5.7	28.7	22.1	40.0	Pass
76.80	24.0	19.8	6.9	30.9	26.7	40.0	Pass
114.6	22.1	17.8	11.6	33.7	29.4	43.5	Pass
153.6	21.7	29.1	11.0	32.7	40.1	43.5	Pass
173.4	24.6	23.5	10.1	34.7	33.6	43.5	Pass
184.3	30.5	24.0	9.6	40.1	33.6	43.5	Pass
202.9	24.5	20.4	10.4	34.9	30.8	43.5	Pass
215.0	26.1	24.3	11.3	37.4	35.6	43.5	Pass
216.9	26.8	23.4	11.4	38.2	34.8	46.0	Pass

Table 2 Radiated emissions of the EUT

The results of the radiated emission tests, carried out in accordance with 47 CFR Part 15 section 15.205, 15.209 and 15.225 and RSS-210 and RSS-Gen, section 2.2 and 2.6 are depicted in Table 2.

Notes:

- 1. Field strength values of radiated emissions at frequencies not listed in the table above are more than 20 dB below the applicable limit.
- 2. Measurement uncertainty is ± 5.0 dB.
- 3. The EUT was varied in three positions, the measuring antenna was varied in horizontal and vertical orientations and also around its axis. The reported value is the worst case found at the reported frequency.
- 4. The EUT was tested in both normal mode (i.e. without a label in its proximity) and in activated mode (i.e. with a label in its proximity). Worst case noted.
- 5. A Quasi-peak detector was used with a bandwidth of 120 kHz.

3.1.1 Test equipment used (for reference see test equipment listing).

15633	99580	99609	99857	99699	99733	
<u>Test engineer</u> Signature	(y) i	leelvhi				
Name Date	: O.H. Hoekstr : June 22, 201					

3.2 Radiated field strength measurements (frequency range of 0.009-30 MHz, H-field).

Frequency (MHz)	Measurement results	Detector	Antenna factor	Cable loss	Extrapolation factor	Measurement results (calculated)	Limits	Pass/Fail
	dBµV @3m		dB	dB	dB	dBµV/m@30m (unless otherwise stated)	dBµV/m@30m (unless otherwise stated)	
13.058	-4.4	Qp	19.7	1	40	-23.7	29.5	Pass
13.349	6.3	Qp	19.7	1	40	-13.0	40.5	Pass
13.482	9.2	Qp	19.7	1	40	-10.1	50.5	Pass
13.560	43.4	Qp	19.7	1	40	24.1	84.0	Pass
13.639	9.4	Qp	19.7	1	40	-9.9	50.5	Pass
13.772	6.8	Qp	19.7	1	40	-12.5	40.5	Pass
14.063	-2.9	Qp	19.7	1	40	-22.2	29.5	Pass
27.120	-7.7	Qp	19.7	1	40	-27.0	29.5	Pass

Table 3 Radiated emissions of the EUT, in the frequency range 0.009 – 30 MHz

The results of the radiated emission tests in the frequency range 0.009 – 30 MHz, carried out in accordance with 47 CFR Part 15 section 15.209, 15.225 and RSS-210 and RSS-Gen are depicted in Table 3.

Notes:

- Calculated measurement results are obtained by using the 40dB/decade factor (antenna factor and cable loss is included). i.e at 13.562 MHz: 43.4 dBµV + 19.7 dB + 1dB - 40dB= 24.1 dBµV/m.
- 2. A resolution bandwidth of 9 kHz was used during testing
- 3. Field strength values of radiated emissions at frequencies not listed in Table 3 are more than 20 dB below the applicable limit
- 4. The loop antenna was varied in horizontal and vertical orientations and also around it's axis. The reported value is the worst case found at the reported frequency.
- 5. The EUT was tested in horizontal and vertical orientations. Worst case values noted.
- 6. Measurement uncertainty is ± 5.0 dB

3.2.1 Test equipment used (for reference see test equipment listing).

15453 99413 99699	99733	99857		
-------------------	-------	-------	--	--

Test engineer

Hubb

Name Date

Signature

: O.H. Hoekstra : June 22, 2012

4 Conducted emission data.

4.1 Conducted emission data of the EUT (full configuration).

Frequency (MHz)	Measurement results dB(μV) Neutral		Measurement results dB(μV) Line 1		Limits dB(µV)		Pass/Fail
	QP	AV	QP	AV	QP	AV	
0.18	34.4	21.2	35.0	24.2	64.5	54.5	Pass
0.20	31.3	15.8	31.0	19.6	63.6	53.6	Pass
0.35	22.0	16.3	31.7	22.6	59.0	49.0	Pass
0.50	20.0	15.5	28.5	21.3	56.0	46.0	Pass
0.69	34.4	32.3	43.6	38.7	56.0	46.0	Pass
9.85	33.4	25.3	37.7	34.2	60.0	50.0	Pass
13.56	25.1	18.8	28.3	24.9	60.0	50.0	Pass
15.46	28.5	21.5	33.0	29.0	60.0	50.0	Pass
17.28	22.0	15.5	32.2	26.6	60.0	50.0	Pass
27.12	25.3	19.6	27.6	23.6	60.0	50.0	Pass

Table 4 Conducted emission measurements

The results of the conducted emission tests, carried out in accordance with 47 CFR Part 15 section 15.207 & RSS-Gen, section 7.2.4, at the 120 Volts AC mains connection terminals of the AC/DC power supply which was connected to the EUT, are depicted in Table 4.

Notes:

- 1. The test unit was modified to add a resistive termination in lieu of the antenna as per KDB 174176.
- 2. The test data shown above is of the worst case EUT. Maximum values recorded.
- 3. The values of conducted emissions at frequencies not listed in the table above are more than 20 dB below the applicable limit.
- 4. Measurement uncertainty is ±3.5dB

4.1.1 Test equipment used (for reference see test equipment listing).

12512 99161 99852 99699

Test engineer

M Hectohi

Name Date

Signature

: O.H. Hoekstra : June 22, 2012

5 Carrier stability under special conditions.

5.1 Frequency stability (on 13.56 MHz) in accordance with 47 CFR Part 15, section 15.225 (e) & RSS-Gen section 4.7 and 7.2.4 and RSS-210 section A2.6:

1) The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% of the operating frequency over a temperature variation of -20 °C to +50 °C at normal supply voltage (see Table 5).

Stability under special conditions	Supply Voltage	Measured frequency (MHz)	Frequency deviation (limit <u>+</u> 0.01%) (%)	PASS/FAIL	
Temperature (°C)	(Vac)		(70)		
21.0	120.0	13.560346 (reference)	N.A.	N.A.	
-20.0	120.0	13.560466	< 0.01	PASS	
50.0	120.0	13.560301	< 0.01	PASS	

Table 5 The frequency tolerance of the carrier signal

5.1.1 At 85% and 115% of rated voltage supply level

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% of the operating frequency at 85% and at 115% of the rated power supply voltage (+120.0 Vac) at 20 °C environmental temperature. The results are stated in Table 6.

Stability under special conditions % variation U	Measured frequency (MHz)	Frequency deviation (limit <u>+</u> 0.01%) (%)	PASS/FAIL	
100.0 (120.0 Vac)	13.560346 (reference)	N.A.	N.A.	
	(reference)			
85.0 (102.0 Vac)	13.560345	< 0.01	PASS	
115.0 (138.0 Vac)	13.560345	< 0.01	PASS	

Table 6 The frequency tolerance of the carrier signal

5.2 Bandwidth of the emission on 13.56 MHz in accordance with RSS-Gen section 4.7 and 7.2.4 and RSS-210 section A2.6.

Limit: 20 dB of the bandwidth of the emission shall be within the specified frequency band. Bandwidth of the emission is determined at 99% Occupied Bandwidth. Specified frequency band: 13553 kHz - 13567 kHz.

Temperature (°C)	Minimum frequency (kHz)	Maximum frequency (kHz)
+20.0	13559.131	13561.563
-20.0	13559.247	13561.679
+50.0	13559.102	13561.505
Bandwidth	13559.102	13561.679

Table 7 Bandwidth of the emission (99% power bandwidth)

The measured minimum frequency of 13.559102 MHz and maximum frequency of 13.561679 MHz are well within the specified frequency bandwidth.

5.2.1 Test equipment used (for reference see test equipment listing).

Test engineer

Signature

(M Hulsh.

Name : O.H. Hoekstra

:

Date : June 22, 2012

FCC Part 15, RSS-GEN, RSS-210
 Inductive Proximity Card Reader
 N.V. Nederlandsche Apparatenfabriek Nedap
 Nedap
 INVEXS MDK170B
 CGDINVEXS170
 1444A-INVEXS170

6 Plots of measurement data

6.1 Bandwidth of the emission

	ib 😑 SWT	1 s	🔵 VBW 3	kHz Mode	9 FFT			
●1Pk View					4541			0.16 dp
				INI	1[1]		13.55	3.16 dBµ 90450 MH
30 dBµV				м	2[1]			4.15 dBµ
				L .	1	I	13.56	16210 MH
20 dBµV				$\left \right\rangle$				
10 dBµV			м	M12				
D1 4.100 d	вµ∨		17					
0 dBµV								
			\downarrow		<u> </u>			
-10 dBµV								
00 00 00								
-28 dBµV								
-30 dBµV								
-40 dBµV								
-50 dBµV								
CF 13.560347 MHz			601	pts				 n 20.0 kHz
			0,71		asuring			22.06.2012

Plot1 Emission Bandwidth (-20 dB down points) of the emission at 13.56 MHz (Fundamental Carrier). As measured with a Spectrum Analyzer

Test specification(s):
Description of EUT:
Manufacturer:
Brand mark:
Model:
FCC ID:
IC:

FCC Part 15, RSS-GEN, RSS-210 Inductive Proximity Card Reader N.V. Nederlandsche Apparatenfabriek Nedap Nedap INVEXS MDK170B CGDINVEXS170 1444A-INVEXS170

30 dBµV M1[1] 24.13 dBµV 30 dBµV 13.5603470 MHz 20 dBµV 0 cc Bw 2.431259045 kHz 20 dBµV 10 dBµV 11 cc 10 dBµV 11 cc 10 cc -10 dBµV 10 dBµV 10 cc -20 dBµV 10 dBµV 10 cc -10 dBµV 10 dBµV 10 cc -20 dBµV 10 dBµV 10 cc -20 dBµV 10 dBµV 10 cc -30 dBµV 10 cc 10 cc -30 dBµV 10 cc 10 cc -30 dBµV 10 cc 10 cc -40 dBµV 10 cc 10 cc -50 dBµV 10 cc 10 cc -50 dBµV 10 cc 10 cc	Spectrum						
1AP View M1[1] 24.13 dBµV 30 dBµV 13.5603470 MHz 13.5603470 MHz 20 dBµV 0 cc Bw 2.431259045 kHz 10 dBµV TI 0 0 dBµV TI 0 -10 dBµV TI 0 -20 dBµV -0 0 -30 dBµV -0 0 -50 dBµV -0 -0 -50 dBµV -0 -0 -50 dBµV -0 -0 -10 dBµV -0 -0 -10 dBµV -0 -0 -20 dBµV -0 -0 -20 dBµV -0 -0 -20 dBµV -0 -0 -30 dBµV -0 -0 -50 dBµV -0 -0 -50 dBµV -0 -0 -10 dBµV -0 -0 -10 dBµV -0 -0 -10 dBµV -0 -0 -20 dBµV -0 -0 -10 dBµV -0 -0 -10 dBµV -0 -0 <	Ref Level	39.50 dB	μV Offset -87.5	D dB 🥃 RBW 1 kH	łz		· · · · · · · · · · · · · · · · · · ·
30 dBµV M1[1] 24.13 dBµV 30 dBµV 13.5603470 MHz 13.5603470 MHz 20 dBµV 0 dBµV 2.431259045 kHz 10 dBµV T T 10 dBµV T T -10 dBµV T T -20 dBµV T T -30 dBµV T T -30 dBµV T T -50 dBµV T 691 pts Span 20.0 kHz Marker Type Ref Trc Stimulus Response T1 13.560347 MHz 24.13 dBµV Ccc Bw 2.431259045 kHz 5.97 dBµV Ccc Bw 2.431259045 kHz T1 13.560347 MHz 24.13 dBµV Ccc Bw T1 13.560347 MHz 24.13 dBµV Ccc Bw T2 13.5615626 MHz 5.94 dBµV Ccc Bw T2 13.5615626 MHz 5.94 dBµV Ccc Bw 22.052012	🖷 Att	30	dB 👄 SWT	1 s 👄 VBW 3 kH	Iz Mode FFT		
30 dBμV 13.5603470 MHz 20 dBμV 10 dBμV 10 dBμV 10 dBμV 0 dBμV 10 dBμV -10 dBμV 10 dBμV -20 dBμV 10 dBμV -30 dBμV 10 dBμV -10 dBμV 10 dBμV	●1AP View						
30 dBµV M1 Occ Bw 2.431259045 kHz 20 dBµV 10 dBµV 10 dBµV 10 dBµV 10 dBµV 0 dBµV 10 dBµV 10 dBµV 10 dBµV -10 dBµV -10 dBµV 10 dBµV 10 dBµV -20 dBµV -30 dBµV -30 dBµV -30 dBµV -30 dBµV -30 dBµV -30 dBµV -30 dBµV -40 dBµV -30 dBµV -30 dBµV -30 dBµV -50 dBµV -30 dBµV -30 dBµV -30 dBµV -10 dBµV -30 dBµV -30 dBµV -30 dBµV -40 dBµV -30 dBµV -30 dBµV -30 dBµV -50 dBµV -30 dBµV -30 dBµV -30 dBµV -11 1 13.5501314 MHz 5.87 dBµV -30 dCc Bw -11 1 13.5615626 MHz 5.94 dBµV -30 dCc Bw -11 1 13.5615626 MHz 5.94 dBµV -30 dCc Bw					M1[1]		24.13 dBµV
CCC BW 2.431259045 kHz 20 dBµV 10 dBµV 10 dBµV 11 t 10 dBµV 11 t -10 dBµV 11 t -20 dBµV 10 dBµV -30 dBµV 10 dBµV <td< td=""><td>20 49.07</td><td></td><td></td><td></td><td></td><td></td><td>13.5603470 MHz</td></td<>	20 49.07						13.5603470 MHz
10 dBµV -10 dBµV -10 dBµV -20 dBµV -20 dBµV -30 dBµV -30 dBµV -40 dBµV -50 dBµV -50 dBµV -50 dBµV -50 dBµV -50 dBµV -50 dBµV -10 dBµV -10 dBµV -10 dBµV -20 dB	30 abµv			M1	Occ Bw		2.431259045 kHz
10 dBµV -10 dBµV -10 dBµV -20 dBµV -20 dBµV -30 dBµV -30 dBµV -40 dBµV -50 dBµV -50 dBµV -50 dBµV -50 dBµV -50 dBµV -50 dBµV -10 dBµV -10 dBµV -10 dBµV -20 dB	20 dBuV			-			
0 dBµV -10 dBµV -20 dBµV -20 dBµV -30 dBµV -40 dBµV -50 dBµV	L0 40µ.						
-10 dBμV -20 dBμV -30 dBμV -40 dBμV -50 d	10 dBµV						
-10 dBμV -20 dBμV -30 dBμV -40 dBμV -50 d				Ў	7		
-20 dBµV -30 dBµV -40 dBµV -50 dBµV -50 dBµV -50 dBµV -50 dBµV -1 -50 dBµV -50 dBµV -5	0 dвµV						
-20 dBµV -30 dBµV -40 dBµV -50 dBµV -50 dBµV -50 dBµV -50 dBµV -50 dBµV -1 -50 dBµV -1 -50 dBµV -1 -50 dBµV -50							
-30 dBμV -40 dBμV -50 d	-10 dBµV——						
-30 dBμV -40 dBμV -50 dBμV -50 dBμV -50 dBμV -50 dBμV -50 dBμV -1 -50 dBμV -50 dBμV -							
-40 dBμV -50 dBμV <t< td=""><td>-20 dBµV</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	-20 dBµV						
-40 dBμV -50 dBμV <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
-50 dBμV	-30 dBµV						
-50 dBμV 691 pts 59an 20.0 kHz CF 13.560347 MHz 691 pts 59an 20.0 kHz Marker Type Ref Trc Stimulus Response Function Function Result M1 1 13.560347 MHz 24.13 dBμV T1 1 1 13.5591314 MHz 5.87 dBμV Occ Bw 2.431259045 kHz T2 1 13.5615626 MHz 5.94 dBμV Measuring 22.06.2012							
CF 13.560347 MHz 691 pts Span 20.0 kHz Marker Marker Stimulus Response Function Function Result M1 1 13.560347 MHz 24.13 dBµV 24.13 dBµV <td>-40 uBµV</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-40 uBµV						
CF 13.560347 MHz 691 pts Span 20.0 kHz Marker Marker Stimulus Response Function Function Result M1 1 13.560347 MHz 24.13 dBµV 24.13 dBµV <td>-50 dBuV</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-50 dBuV						
Marker Type Ref Trc Stimulus Response Function Function Result M1 1 13.560347 MHz 24.13 dBµV <	00 dbpv						
Marker Type Ref Trc Stimulus Response Function Function Result M1 1 13.560347 MHz 24.13 dBµV <							
Type Ref Trc Stimulus Response Function Function Result M1 1 13.560347 MHz 24.13 dBµV <td>CF 13.5603</td> <td>47 MHz</td> <td></td> <td>691 p</td> <td>its</td> <td></td> <td>Span 20.0 kHz</td>	CF 13.5603	47 MHz		691 p	its		Span 20.0 kHz
M1 1 13.560347 MHz 24.13 dBμV T1 1 13.5591314 MHz 5.87 dBμV Occ Bw 2.431259045 kHz T2 1 13.5615626 MHz 5.94 dBμV 2	Marker						
T1 1 13.5591314 MHz 5.87 dBμV Occ Bw 2.431259045 kHz T2 1 13.5615626 MHz 5.94 dBμV Occ Bw 22.06.2012						Fun	nction Result
T2 1 13.5615626 MHz 5.94 dBμV Measuring 22.06.2012							
Measuring 22.06.2012							2.431259045 kHz
			13.5015020 MHZ	<u> </u>	<u> </u>		
		Л			Measuring		

Date: 22.JUN.2012 09:47:14

Plot2

Occupied Bandwidth (99% power bandwidth) of the emission at 13.56 MHz (Fundamental Carrier) As measured with a Spectrum Analyzer using it's automatic function.

Test specification(s): Description of EUT: Manufacturer: Brand mark: Model: FCC ID: IC:

FCC Part 15, RSS-GEN, RSS-210 Inductive Proximity Card Reader N.V. Nederlandsche Apparatenfabriek Nedap Nedap INVEXS MDK170B CGDINVEXS170 1444A-INVEXS170

7 List of utilized test equipment.

Inventory number	Description	Brand	Model	Last cal.	Next cal.
12512	LISN FCC 50 uH / 50 ohm	Emco	3725/2	01/2012	01/2014
12640	Temperature chamber	Heraeus	VEM03/500	NA	NA
15453	Active loop antenna 60 cm	Chase	HLA6120	04-2012	04-2013
15633	Biconilog Test antenna	Chase	CBL 6111B	01-2012	01-2013
99161	Variac 250V 6A	RFT	LTS006	NA	NA
99318	Digital multimeter	HP	34401A	10-2011	10-2012
99413	Temperature-Hygrometer	Tempcontrol	P570	01-2012	01-2013
99538	Spectrum Analyzer	R&S	FSP40	11-2011	11-2012
99548	Temperature-Humiditymeter	Europe supplies	WS-7082	10/2011	10/2012
99580	Semi Anechoïc Room	Siepel	FCC listed: 90828	12-2011	12-2014
99609	Antenna mast	EMCS	AP-4702C	NA	NA
99852 / 99857	Temperature-Humiditymeter	Extech	SD500	02-2012	02-2013
99623	Power Supply	EA	PS 2016-050	12-2011	12-2012
99699	Measuring receiver	R&S	ESCI	02-2012	02-2013
99733	Spectrum Analyzer	R&S	FSV30	06-2011	06-2012

NA= Not Applicable