

FCC PART 15C & RSS 247 TEST REPORT No. I19N01349-WLAN

For

Ademco Inc

Quicksilver wireless tablet

Model Name: PROWLTOUCH/PROWLTOUCHC

With

Hardware Version: Q1982_MB_V2

Software Version: GMTS700_Wireless_01.01.006.0010

FCC ID: CFS8DLPROWLTOUCH

IC: 573F-PROWLTOUCH

Issued Date: 2019-07-26

Designation Number: CN1210 ISED Assigned Code: 23289

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of SAICT.

Test Laboratory:

Shenzhen Academy of Information and Communications Technology

Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China 518026.

Tel: +86(0)755-33322000, Fax: +86(0)755-33322001 Email: <u>yewu@caict.ac.cn</u>, website: <u>www.cszit.com</u>

REPORT HISTORY

Report Number Revision		Description	Issue Date
I19N01349-WLAN	Rev.0	1st edition	2019-07-26

CONTENTS

1. T	EST LABORATORY	4
1.1.	TESTING LOCATION	4
1.2.	TESTING ENVIRONMENT	4
1.3.	Project data	4
1.4.	Signature	4
2. C	CLIENT INFORMATION	5
2.1.	APPLICANT INFORMATION	5
2.2.	MANUFACTURER INFORMATION	5
3. E	QUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	6
3.1.	ABOUT EUT	6
3.2.	INTERNAL IDENTIFICATION OF EUT	6
3.3.	INTERNAL IDENTIFICATION OF AE	6
3.4.	GENERAL DESCRIPTION	6
4. R	REFERENCE DOCUMENTS	7
4.1.	DOCUMENTS SUPPLIED BY APPLICANT	7
4.2.	REFERENCE DOCUMENTS FOR TESTING	7
5. T	EST RESULTS	8
5.1.	SUMMARY OF TEST RESULTS	8
5.2.	STATEMENTS	8
5.3.	TERMS USED IN THE RESULT TABLE	8
5.4.	LABORATORY ENVIRONMENT	9
6. T	EST FACILITIES UTILIZED	10
7. M	TEASUREMENT UNCERTAINTY	11
ANNE	EX A: DETAILED TEST RESULTS	12
A.0	Antenna requirement	12
A.1	TEST CONFIGURATION	13
A.2	MAXIMUM OUTPUT POWER	14
A.3	PEAK POWER SPECTRAL DENSITY	15
A.4	6DB BANDWIDTH	20
A.5	BAND EDGES COMPLIANCE	25
	CONDUCTED EMISSION	
	RADIATED EMISSION	
	AC Power line Conducted Emission	
A.9	99% OCCUPIED BANDWIDTH	53

1. Test Laboratory

1.1. Testing Location

Location: Shenzhen Academy of Information and Communications Technology
Address: Building G, Shenzhen International Innovation Center, No.1006

Shennan Road, Futian District, Shenzhen, Guangdong

Province, China

Postal Code: 518026

Telephone: +86(0)755-33322000 Fax: +86(0)755-33322001

1.2. Testing Environment

Normal Temperature: $15-35^{\circ}$ C Relative Humidity: 20-75%

1.3. Project data

Testing Start Date: 2019-07-02 Testing End Date: 2019-07-19

1.4. Signature

Lin Kanfeng

林侃丰

(Prepared this test report)

Tang Weisheng

(Reviewed this test report)

Zhang Bojun

(Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name: Ademco Inc

Address: 2 Corporate Center Drive Suite 100P.O. Box 9040, Melville, NY 11747

Contact: Andy Roussin

andrew.roussin@honeywell.com (for FCC)

/andrew.roussin@resideo.com (for IC)

Tel.: 516-577-5820

2.2. Manufacturer Information

Company Name: Huaqin Telecom Technology Co., Ltd.

No.1 Building, No.9 Building, No.399, Keyuan Road, Zhangjiang Address:

Hi-tech Park, Shanghai, P.R.China

Contact: Daisy Wu

Email: wulihua@huaqin.com

Tel.: 18088882767

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. <u>About EUT</u>

Description Quicksilver wireless tablet

PROWLTOUCH/PROWLTOUCHC Model Name

Brand Name Honeywell home / Resideo IEEE 802.11 b/g/n-HT20 **RF Protocol** 2412MHz~2462MHz

Operating Frequency

Number of Channels 11

Antenna Type Integrated Antenna Gain 0.15dBi

Power Supply 3.85V DC by Battery FCC ID CFS8DLPROWLTOUCH IC 573F-PROWLTOUCH

Condition of EUT as received No abnormality in appearance

Note: Components list, please refer to documents of the manufacturer.

3.2.Internal Identification of EUT

EUT ID*	IMEI	HW Version	SW Version	Receive Date
EUT1	HK52400332	Q1982_MB_V2	GMTS700_Wireless_01.01.006.0010	2019-07-02

^{*}EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE

AE ID*	Description	Mode	Manufacturer
AE1	Battery	P-504478	Dongguan Amperex Technology Limited
AE2	Charger	TPA-97050150U01	SHENZHEN TIANYIN ELECTRONICS CO., LTD

^{*}AE ID: is used to identify the test sample in the lab internally.

3.4. General Description

The Equipment under Test (EUT) is a model of Quicksilver wireless tablet with integrated antenna and battery.

It consists of normal options: travel charger, USB cable and Phone. Manual and specifications of the EUT were provided to fulfil the test.

Samples undergoing test were selected by the client.

4. Reference Documents

4.1. Documents supplied by applicant

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version		
FCC Part15	FCC CFR 47, Part 15, Subpart C:			
	15.205 Restricted bands of operation;			
	15.209 Radiated emission limits, general requirements;			
	15.247 Operation within the bands 902-928MHz, 2400-2483.5			
	MHz, and 5725-5850 MHz			
ANSI C63.10	American National Standard of Procedures for Compliance	2013		
	Testing of Unlicensed Wireless Devices			
RSS-247	Spectrum Management and Telecommunications Radio	Issue 2		
	Standards Specification	February,		
	Digital Transmission Systems (DTSs), Frequency Hopping	2017		
	Systems (FHSs) and License-Exempt Local Area Network			
	(LE-LAN) Devices			
RSS-Gen	Spectrum Management and Telecommunications Radio	Issue 5		
	Standards Specification	April,		
	General Requirements for Compliance of Radio Apparatus	2018		

5. Test Results

5.1. Summary of Test Results

No	Test cases	Sub-clause of Part 15C	Sub-clause of IC	Verdict	
0	Antenna Requirement	15.203	/	Р	
1	Maximum Output Power	15.247 (b)	RSS-247 section 5.4	Р	
2	Peak Power Spectral Density	15.247 (e)	RSS-247 section 5.2	Р	
3	6dB Bandwidth	15.247 (a)	RSS-247 section 5.2	Р	
4	Band Edges Compliance	15.247 (d)	RSS-247 section 5.5	Р	
5	Conducted Emission	15.247 (d)	RSS-247 section 5.5/	Р	
J	Conducted Emission	13.247 (u)	RSS-Gen section 6.13	r	
6	Radiated Emission	15.247, 15.205, 15.209	RSS-247 section 5.5/	P	
0	Radiated Effilssion	15.247, 15.205, 15.209	RSS-Gen section 6.13	F	
7	AC Power line Conducted	15.107, 15.207	RSS-Gen section 8.8	Р	
8	Occupied Bandwidth	1	RSS-Gen section 6.7	P	

See ANNEX A for details.

5.2. Statements

SAICT has evaluated the test cases requested by the applicant/manufacturer as listed in section 5.1 of this report, for the EUT specified in section 3, according to the standards or reference documents listed in section 4.2.

5.3. Terms used in the result table

Terms used in Verdict column

Р	Pass
NA	Not Available
F	Fail

Abbreviations

AC	Alternating Current	
AFH	Adaptive Frequency Hopping	
BW	Band Width	
E.I.R.P.	equivalent isotropic radiated power	
ISM	Industrial, Scientific and Medical	
R&TTE	Radio and Telecommunications Terminal Equipment	
RF	Radio Frequency	
Tx	Transmitter	

5.4. <u>Laboratory Environment</u>

Semi-anechoic chamber

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 20 %, Max. = 75 %
Shielding offertiveness	0.014 MHz - 1 MHz, > 60 dB;
Shielding effectiveness	1 MHz - 1000 MHz, > 90 dB.
Electrical insulation	> 2 MΩ
Ground system resistance	< 4 Ω
Normalised site attenuation (NSA)	< ±4 dB, 3m/10m distance, from 30 to 1000 MHz
Uniformity of field strength	Between 0 and 6 dB, from 80 to 3000 MHz

Shielded room

Temperature	Min. = 15 °C, Max. = 35 °C	
Relative humidity	Min. = 20 %, Max. = 75 %	
Shielding effectiveness	0.014 MHz - 1 MHz, > 60 dB;	
	1 MHz - 1000 MHz, > 90 dB.	
Electrical insulation	> 2 MΩ	
Ground system resistance	<4 Ω	

Fully-anechoic chamber

Temperature	Min. = 15 °C, Max. = 35 °C		
Relative humidity	Min. = 20 %, Max. = 75 %		
Chielding offestiveness	0.014 MHz - 1MHz, > 60dB;		
Shielding effectiveness	1 MHz - 1000 MHz, > 90dB.		
Electrical insulation	> 2 MΩ		
Ground system resistance	< 4 Ω		
Voltage Standing Wave Ratio (VSWR)	≤ 6 dB, from 1 to 18 GHz, 3m distance		

6. Test Facilities Utilized

Conducted test system

No.	Equipment	Model	Serial Number	Manufacturer	Calibration Date	Calibration Period
1	Vector Signal Analyzer	FSV40	100903	Rohde & Schwarz	2020-01-16	1 year
2	Power Sensor	U2021XA	MY55430013	Agilent	2020-01-16	1 year
3	Data Acquisiton	U2531A	TW55443507	Agilent	/	/

Radiated emission test system

No.	Equipment	Model	Serial Number	Manufacturer	Calibration Date	Calibration Period
1	LISN	ESH2-Z5	100196	R&S	2020-01-03	1 year
2	Test Receiver	ESCI	100701	R&S	2019-08-07	1 year
3	Loop Antenna	HLA6120	35779	TESEQ	2022-05-01	3 year
4	BiLog Antenna	VULB9163	9163 329	Schwarzbeck	2020-02-17	3 year
5	Horn Antenna	3117	00066585	ETS-Lindgren	2022-03-04	3 year
6	Test Receiver	ESR7	101675	R&S	2020-07-18	1 year
7	Spectrum Analyzer	FSP 40	100378	R&S	2019-12-13	1 year
8	Chamber	FACT5-2.0	4166	ETS-Lindgren	2021-05-12	3 year
9	Antenna	QSH-SL-1 8-26-S-20	17013	Q-par	2020-01-15	3 year
10	Antenna	QSH-SL-2 6-40-K-20	17014	Q-par	2020-01-11	3 year

Test software

No. Equipment		Manufacturer	Version	
1	TechMgr Software	CAICT	2.1.1	
2	EMC32	Rohde & Schwarz	8.53.0	
3	EMC32	Rohde & Schwarz	10.01.00	

EUT is engineering software provided by the customer to control the transmitting signal.

The EUT was programmed to be in continuously transmitting mode.

Anechoic chamber

Fully anechoic chamber by ETS-Lindgren

7. Measurement Uncertainty

Test Name	Uncertainty		
RF Output Power - Conducted	±1.32dB		
2.Power Spectral Density - Conducted	±2.5	32dB	
3.Occupied channel bandwidth - Conducted	±6	6Hz	
	30MHz≤f≤1GHz	±1.41dB	
4 Transmitter Spurious Emission Conducted	1GHz≤f≤7GHz	±1.92dB	
4 Transmitter Spurious Emission - Conducted	7GHz≤f≤13GHz	±2.31dB	
	13GHz≤f≤26GHz	±2.61dB	
	9kHz≶f≤30MHz	±1.84dB	
5. Transmitter Spurious Emission - Radiated	30MHz≤f≤1GHz	±4.90dB	
5. Transmitter Spunous Emission - Radiated	1GHz≤f≤18GHz	±5.12dB	
	18GHz≤f≤40GHz	±4.66dB	
6. AC Power line Conducted Emission	150kHz≤f≤30MHz	±3.10dB	

ANNEX A: Detailed Test Results

A.0 Antenna requirement

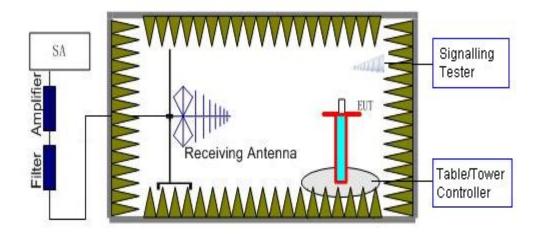
Measurement Limit:

Standard	Requirement				
FCC CRF Part 15.203	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.				

Conclusion: The Directional gains of antenna used for transmitting is 0.15dBi. The RF transmitter uses an integrate antenna without connector.

A.1 Test Configuration

A.1.1 Conducted Measurements


The measurement is made according to ANSI C63.10.

- 1). Connect the EUT to the test system correctly.
- 2). Set the EUT to the required work mode.
- 3). Set the EUT to the required channel.
- 4). Set the spectrum analyzer to start measurement.
- 5). Record the values.

A.1.2 Radiated Measurements

Test setup: EUT was placed on a 1.5 meter high non-conductive table at a 3 meter test distance from the receive antenna. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT and adjusting the receiving antenna polarization.

A.2 Maximum Output Power

Measurement of method :See ANSI C63.10-Clause 11.9.2.3.2

Method AVGPM-G is a measurement using a gated RF average power meter.

Alternatively, measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Because the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

Measurement Limit:

Standard	Limit (dBm)	E.I.R.P Limit (dBm)
FCC CRF Part 15.247(b) & RSS-247 section 5.4	< 30	< 36

Measurement Results:

Mode	Channel	Frequency (MHz)	Average Conducted Power (dBm)	E.I.R.P (dBm)	Conclusion
	CH 1	2412	15.71	15.86	Р
802.11b	CH 6	2437	15.52	15.67	Р
	CH 11	2462	15.35	15.50	Р
	CH 1	2412	13.87	14.02	Р
802.11g	CH 6	2437	13.74	13.89	Р
	CH 11	2462	13.51	13.66	Р
802.11n	CH 1	2412	12.01	12.16	Р
HT20	CH 6	2437	11.85	12.00	Р
П120	CH 11	2462	11.63	11.78	Р

Note: E.I.R.P value = Conducted values (with conducted samples) + Antenna Gain.

Note: Worst-case data rates as provided by the client were: 1Mbps (802.11b), 6Mbps (802.11g), MCS0 (802.11n). The following cases and test graphs are performed with this condition. The EUT was programmed to be in continuously transmitting mode and the transmit duty cycle is not less than 98%.

A.3 Peak Power Spectral Density

Measurement Limit:

Standard	Limit	
FCC CRF Part 15.247(e) & RSS-247 section 5.2	< 8 dBm/3 kHz	

Measurement Results:

Mode	Channel	Frequency (MHz)	Test Results (dBm)		Conclusion
	CH 1	2412	Fig.1	-9.90	Р
802.11b	CH 6	2437	Fig.2	-9.25	Р
	CH 11	2462	Fig.3	-9.62	Р
	CH 1	2412	Fig.4	-13.25	Р
802.11g	CH 6	2437	Fig.5	-12.95	Р
	CH 11	2462	Fig.6	-13.25	Р
002 11n	CH 1	2412	Fig.7	-15.51	Р
802.11n HT20	CH 6	2437	Fig.8	-14.99	Р
H120	CH 11	2462	Fig.9	-15.51	Р

See below for test graphs.



Fig.1 Power Spectral Density (802.11b, CH 1)

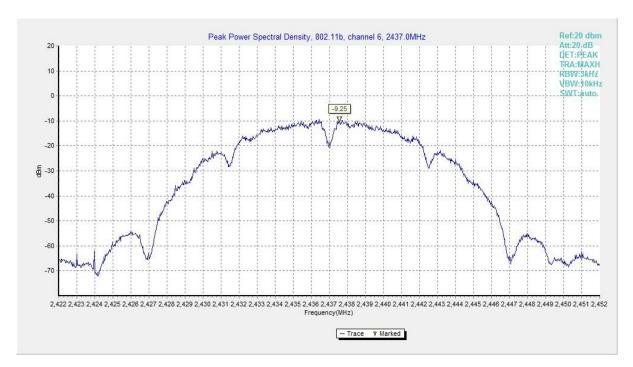


Fig.2 Power Spectral Density (802.11b, CH 6)

Fig.3 Power Spectral Density (802.11b, CH 11)

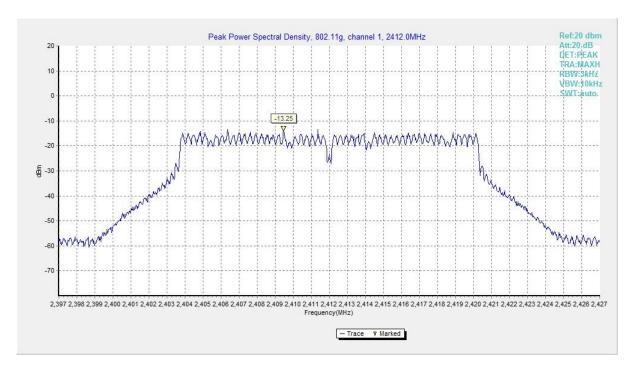


Fig.4 Power Spectral Density (802.11g, CH 1)

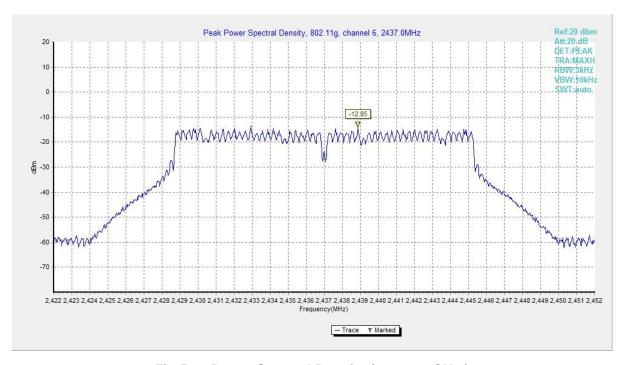


Fig.5 Power Spectral Density (802.11g, CH 6)

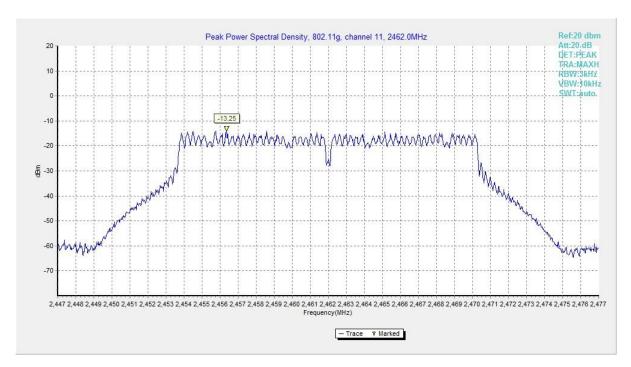


Fig.6 Power Spectral Density (802.11g, CH 11)

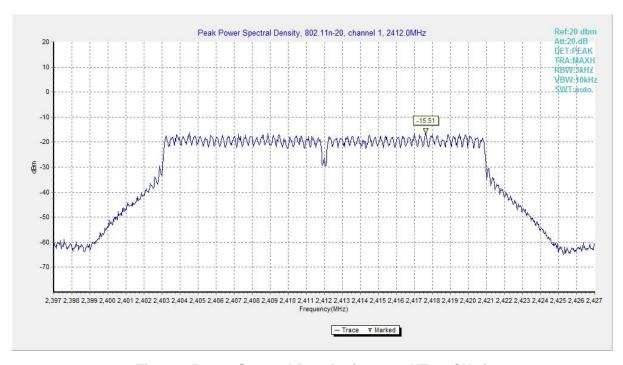


Fig.7 Power Spectral Density (802.11n HT20, CH 1)

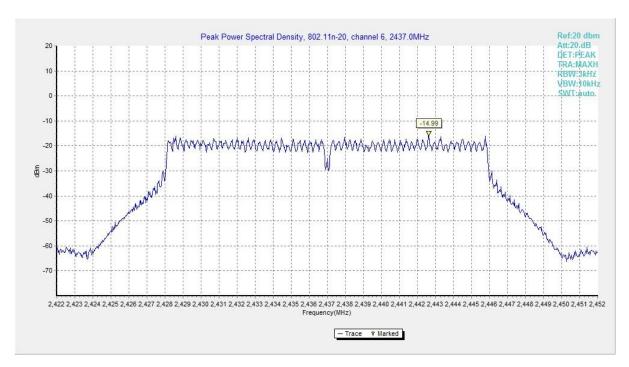


Fig.8 Power Spectral Density (802.11n HT20, CH 6)

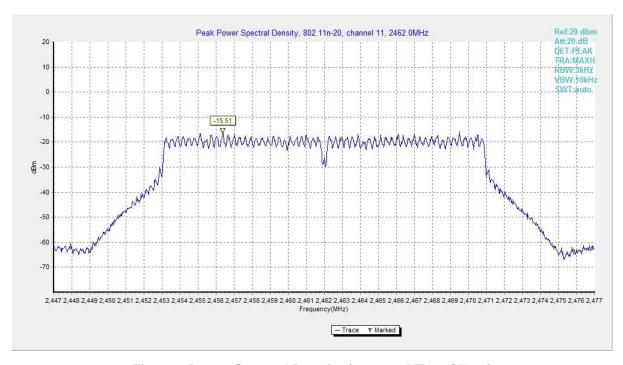


Fig.9 Power Spectral Density (802.11n HT20, CH 11)

A.4 6dB Bandwidth

Measurement Limit:

Standard	Limit (kHz)	
FCC 47 CFR Part 15.247 (a) & RSS-247 section 5.2	≥ 500	

Measurement Result:

Mode	Channel	Frequency (MHz)	Test Results (kHz)		Conclusion
	CH 1	2412	Fig.10	8550	Р
802.11b	CH 6	2437	Fig.11	8550	Р
	CH 11	2462	Fig.12	8550	Р
	CH 1	2412	Fig.13	16350	Р
802.11g	CH 6	2437	Fig.14	16300	Р
	CH 11	2462	Fig.15	16350	Р
000 44 =	CH 1	2412	Fig.16	17550	Р
802.11n HT20	CH 6	2437	Fig.17	17600	Р
пі20	CH 11	2462	Fig.18	17600	Р

See below for test graphs.

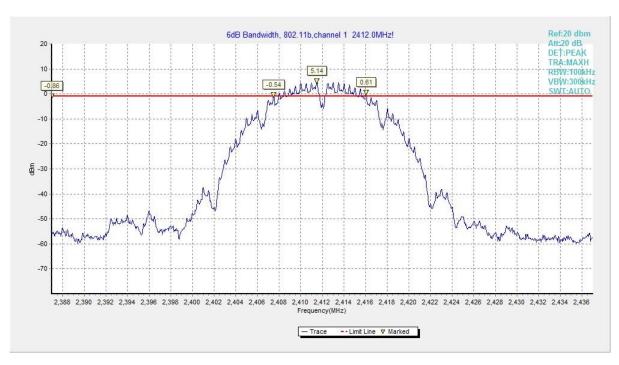


Fig.10 6dB Bandwidth (802.11b, CH 1)

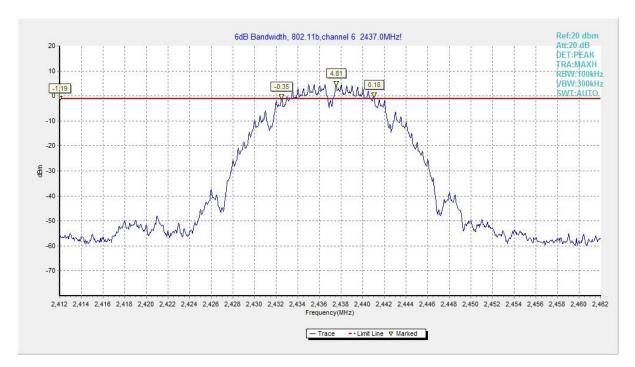


Fig.11 6dB Bandwidth (802.11b, CH 6)

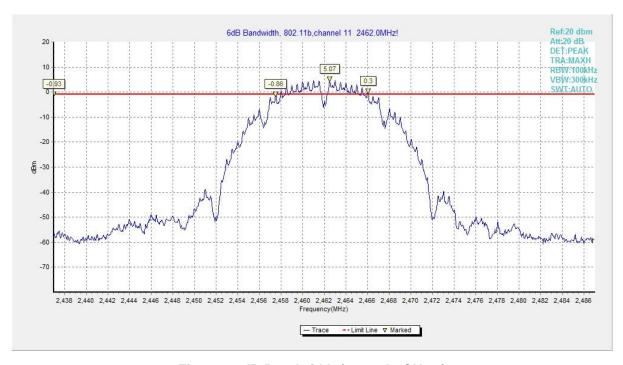


Fig.12 6dB Bandwidth (802.11b, CH 11)

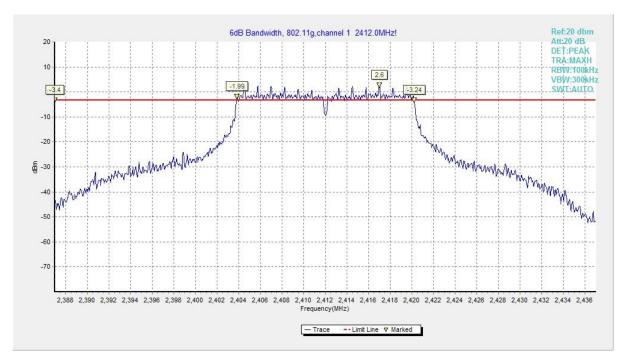


Fig.13 6dB Bandwidth (802.11g, CH 1)

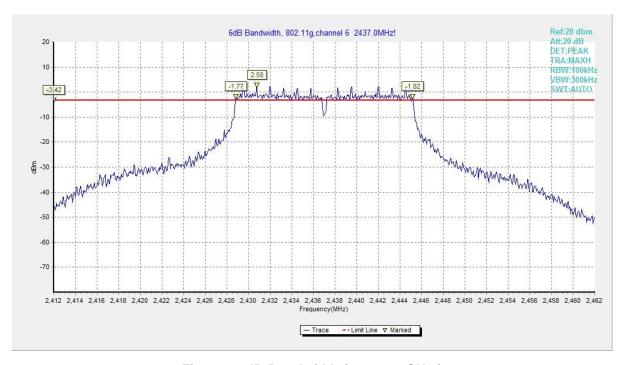


Fig.14 6dB Bandwidth (802.11g, CH 6)

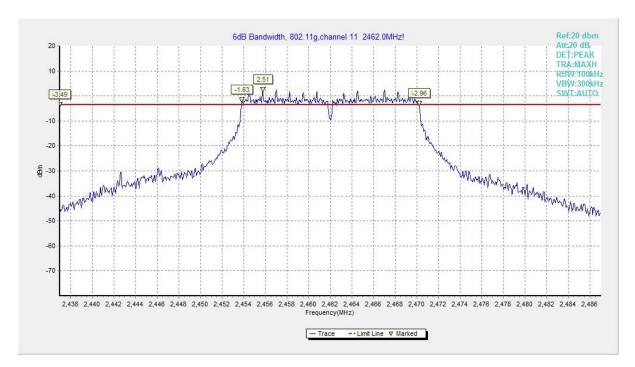


Fig.15 6dB Bandwidth (802.11g, CH 11)

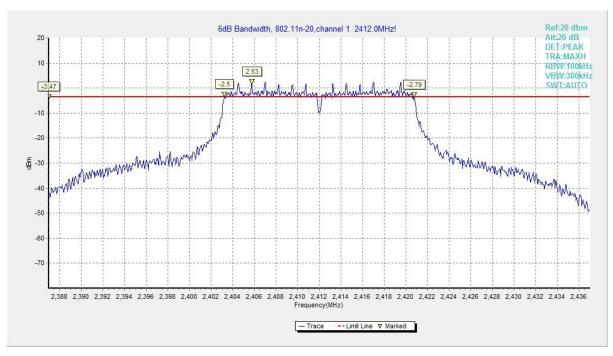


Fig.16 6dB Bandwidth (802.11n HT20, CH 1)

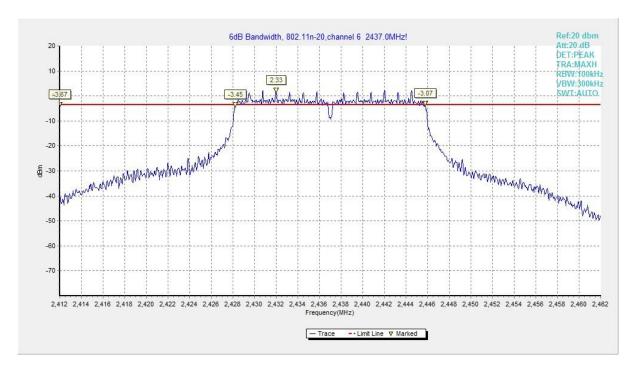


Fig.17 6dB Bandwidth (802.11n HT20, CH 6)

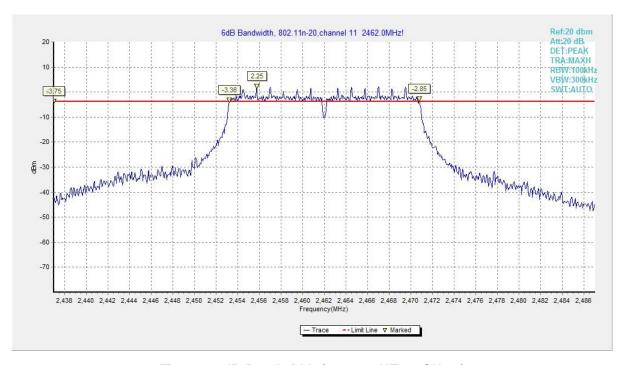


Fig.18 6dB Bandwidth (802.11n HT20, CH 11)

A.5 Band Edges Compliance

Measurement Limit:

Standard	Limit (dB)
FCC 47 CFR Part 15.247 (d) & RSS-247 section 5.5	> 20

Measurement Result:

Mode	Channel	Frequency (MHz)	Test Results (dB)		Conclusion
902 11h	CH1	2412	Fig.19	52.00	Р
802.11b	CH11	2462	Fig.20	61.68	Р
000 11 ~	CH1	2412	Fig.21	29.78	Р
802.11g	CH11	2462	Fig.22	43.28	Р
802.11n	CH1	2412	Fig.23	30.05	Р
HT20	CH11	2462	Fig.24	43.56	Р

See below for test graphs.

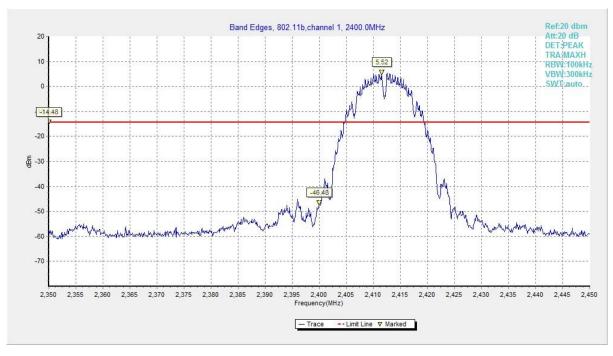


Fig.19 Band Edges (802.11b, CH 1)

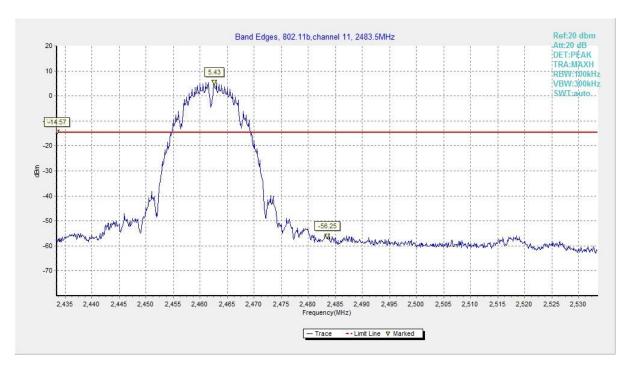


Fig.20 Band Edges (802.11b, CH 11)

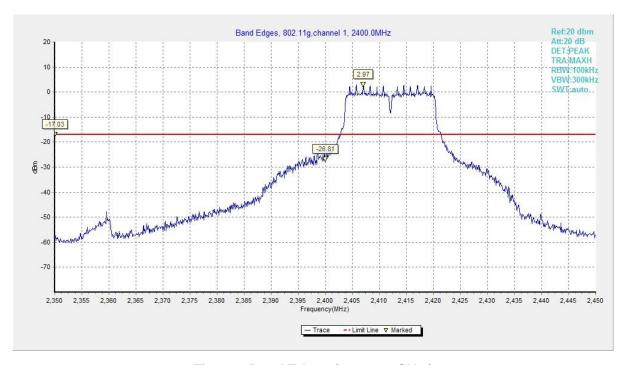


Fig.21 Band Edges (802.11g, CH 1)

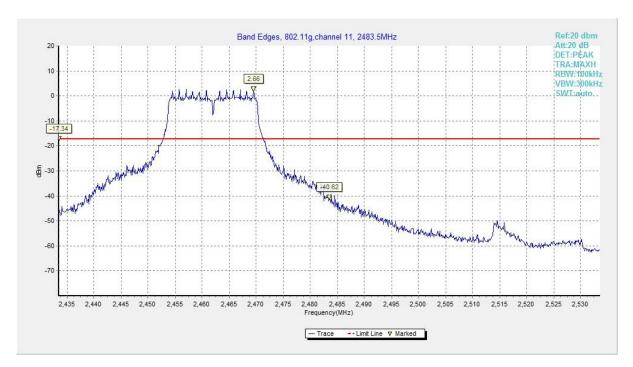


Fig.22 Band Edges (802.11g, CH 11)

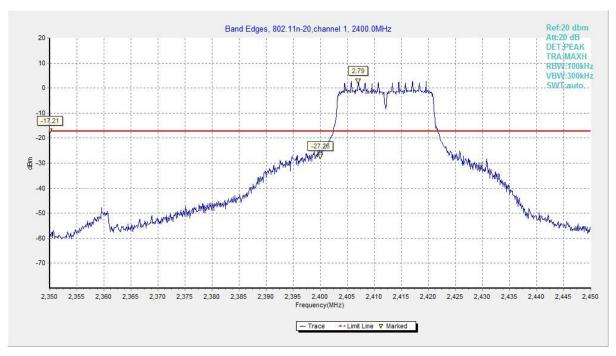


Fig.23 Band Edges (802.11n HT20, CH 1)



Fig.24 Band Edges (802.11n HT20, CH 11)

A.6 Conducted Emission

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247 (d) & RSS-247 section 5.5/	30dB below peak output power in
RSS-Gen section 6.13	100kHz bandwidth

Measurement Results:

Mode	Channel	Frequency (MHz)	Frequency Range	Test Results	Conclusion
	CH 1	2412	30MHz-26GHz	Fig.25	Р
802.11b	CH 6	2437	30MHz-26GHz	Fig.26	Р
	CH 11	2462	30MHz-26GHz	Fig.27	Р
	CH 1	2412	30MHz-26GHz	Fig.28	Р
802.11g	CH 6	2437	30MHz-26GHz	Fig.29	Р
	CH 11	2462	30MHz-26GHz	Fig.30	Р
000 115	CH 1	2412	30MHz-26GHz	Fig.31	Р
802.11n	CH 6	2437	30MHz-26GHz	Fig.32	Р
HT20	CH 11	2462	30MHz-26GHz	Fig.33	Р

See below for test graphs.

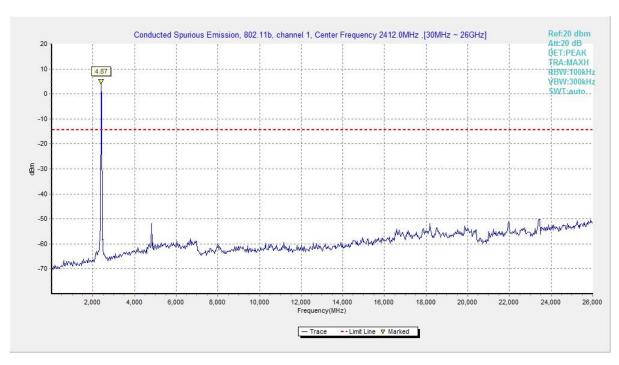


Fig.25 Conducted Spurious Emission (802.11b, CH1)

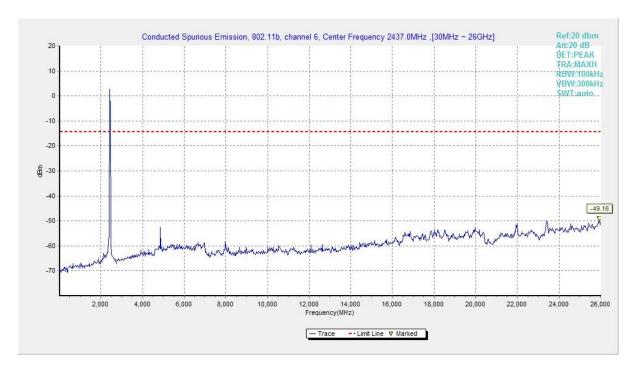


Fig.26 Conducted Spurious Emission (802.11b, CH6)

Fig.27 Conducted Spurious Emission (802.11b, CH11)

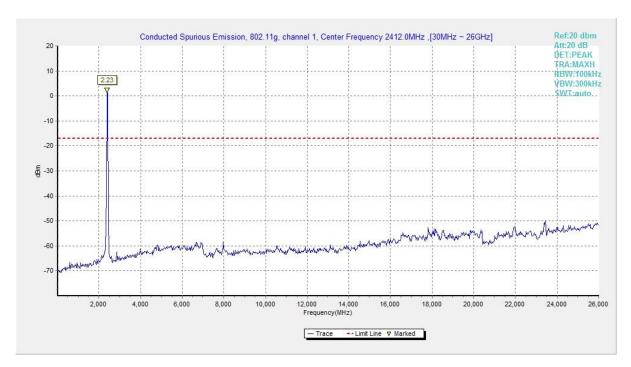


Fig.28 Conducted Spurious Emission (802.11g, CH1)

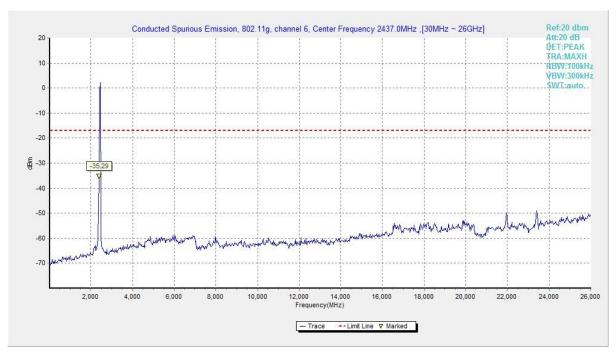


Fig.29 Conducted Spurious Emission (802.11g, CH6)

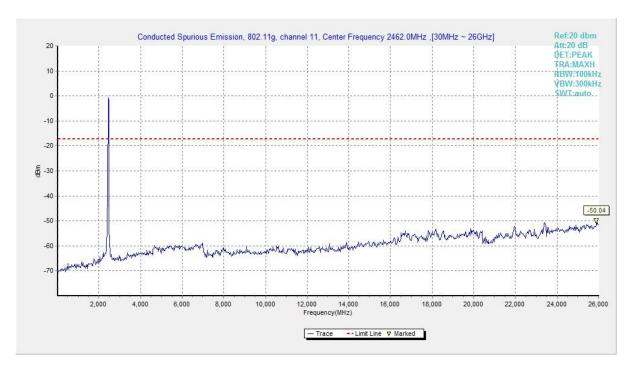


Fig.30 Conducted Spurious Emission (802.11g, CH11)

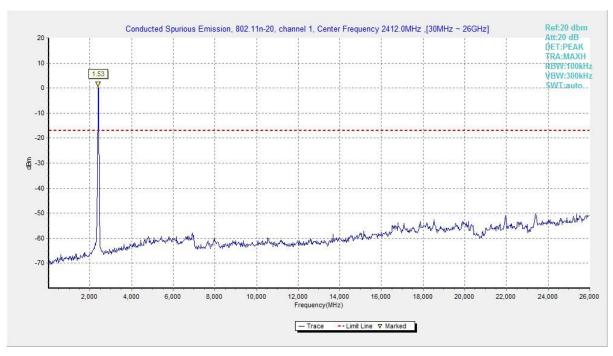


Fig.31 Conducted Spurious Emission (802.11n HT20, CH1)

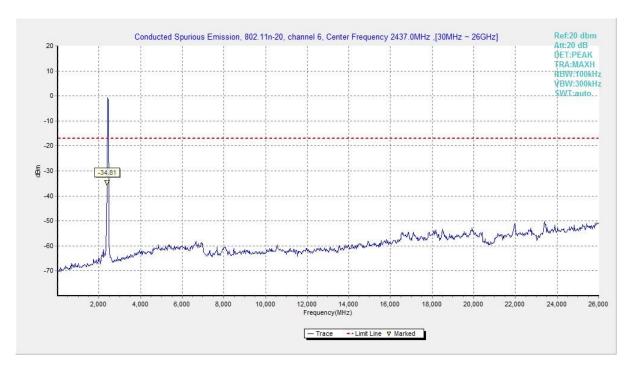


Fig.32 Conducted Spurious Emission (802.11n HT20, CH6)

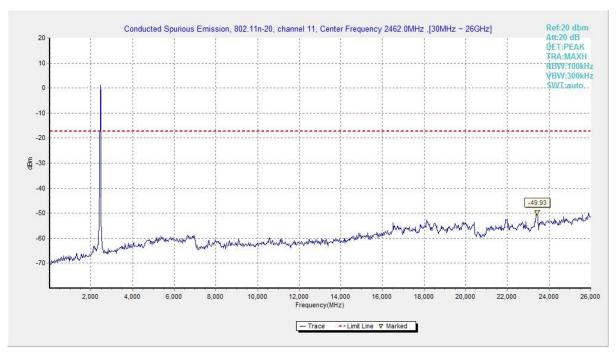


Fig.33 Conducted Spurious Emission (802.11n HT20, CH11)

A.7 Radiated Emission

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247, 15.205, 15.209 &	20dP holow pook output power
RSS-247 section 5.5/RSS-Gen section 6.13	20dB below peak output power

In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Limit in restricted band:

Frequency of emission (MHz)	Field strength (μV/m)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Test Condition:

The EUT was placed on a non-conductive table. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

Frequency of emission (MHz)	RBW/VBW	Sweep Time (s)
30-1000	120kHz/300kHz	5
1000-4000	1MHz/3MHz	15
4000-18000	1MHz/3MHz	40
18000-26500	1MHz/3MHz	20

Note: According to the performance evaluation, the radiated emission margin of EUT is over 20dB in the band from 9kHz to 30MHz. Therefore, the measurement starts from 30MHz to tenth harmonic. The measurement results include the horizontal polarization and vertical polarization measurements.

Measurement Results:

Mode	Channel	Frequency Range	Test Results	Conclusion
	CH 1	1 GHz ~ 18 GHz	Fig.34	Р
	CH 6	1 GHz ~ 18 GHz	Fig.35	Р
802.11b	CH 11	1 GHz ~ 18 GHz	Fig.36	Р
	Restricted Band (CH1)	2.38 GHz ~ 2.45 GHz	Fig.37	Р
	Restricted Band (CH11)	2.45 GHz ~ 2.5 GHz	Fig.38	Р
	CH 1	1 GHz ~ 18 GHz	Fig.39	Р
	CH 6	1 GHz ~ 18 GHz	Fig.40	Р
802.11g	CH 11	1 GHz ~ 18 GHz	Fig.41	Р
	Restricted Band (CH1)	2.38 GHz ~ 2.45 GHz	Fig.42	Р
	Restricted Band (CH11)	2.45 GHz ~ 2.5 GHz	Fig.43	Р
	CH 1	1 GHz ~ 18 GHz	Fig.44	Р
000 115	CH 6	1 GHz ~ 18 GHz	Fig.45	Р
802.11n HT20	CH 11	1 GHz ~ 18 GHz	Fig.46	Р
П120	Restricted Band (CH1)	2.38 GHz ~ 2.45 GHz	Fig.47	Р
	Restricted Band (CH11)	2.45 GHz ~ 2.5 GHz	Fig.48	Р
		9 kHz ~ 30 MHz	Fig.49	Р
/	All Channels	30 MHz ~ 1 GHz	Fig.50	Р
,		18 GHz ~ 26.5 GHz	Fig.51	Р

Worst-Case Result: 802.11b CH1 (1-18GHz)

Frequency (MHz)	MaxPeak (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pol	Corr. (dB)
13760.000000	53.63	74.00	20.37	Н	16.9
14526.000000	54.32	74.00	19.68	Н	17.9
15111.500000	55.87	74.00	18.13	Н	18.3
16277.500000	57.10	74.00	16.90	V	20.8
16634.000000	58.12	74.00	15.88	V	22.0
17707.500000	58.47	74.00	15.53	Н	23.1

Frequency (MHz)	Average (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pol	Corr. (dB)
13950.000000	41.74	54.00	12.26	Н	17.2
14546.500000	42.42	54.00	11.58	V	17.9
15572.500000	43.86	54.00	10.14	V	19.6
15650.000000	45.09	54.00	8.91	V	20.0
16645.500000	45.76	54.00	8.24	V	21.9
17697.000000	45.57	54.00	8.43	Н	23.1

802.11g CH1 (1GHz-18GHz)

Frequency (MHz)	MaxPeak (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pol	Corr. (dB)
13395.500000	53.52	74.00	20.48	V	17.0
13896.500000	53.60	74.00	20.40	V	17.4
14683.500000	54.29	74.00	19.71	V	17.8
15662.000000	56.78	74.00	17.22	Н	20.1
16596.000000	59.13	74.00	14.87	V	22.3
17707.000000	57.39	74.00	16.61	V	23.1

Frequency (MHz)	Average (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pol	Corr. (dB)
12902.500000	41.59	54.00	12.41	V	17.0
13967.500000	41.60	54.00	12.40	V	17.1
14559.500000	42.31	54.00	11.69	Н	17.9
15647.000000	45.12	54.00	8.88	V	20.0
16594.500000	45.62	54.00	8.38	Н	22.3
17700.000000	45.32	54.00	8.68	Н	23.2

802.11n HT20 CH1 (1GHz-18GHz)

Frequency (MHz)	MaxPeak (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pol	Corr. (dB)
13251.000000	53.39	74.00	20.61	V	17.3
13894.500000	54.02	74.00	19.98	V	17.4
14545.500000	54.63	74.00	19.37	V	17.9
15643.000000	56.77	74.00	17.23	V	20.0
16638.500000	58.01	74.00	15.99	Н	21.9
17889.000000	57.17	74.00	16.83	Н	24.1

Frequency (MHz)	Average (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pol	Corr. (dB)
13395.500000	41.42	54.00	12.58	Н	17.0
13952.000000	41.81	54.00	12.19	V	17.2
14545.500000	42.41	54.00	11.59	V	17.9
15650.500000	45.08	54.00	8.92	Н	20.0
16645.500000	45.70	54.00	8.30	V	21.9
17699.500000	45.33	54.00	8.67	V	23.1

Note:

A "reference path loss" is established and the A_{Rpl} is the attenuation of "reference path loss", and Antenna Factor, the gain of the preamplifier, the cable loss. P_{Mea} is the field strength recorded from the instrument.

The measurement results are obtained as described below:

Result = P_{Mea} + Cable Loss + Antenna Factor - Gain of the preamplifier

See below for test graphs.

Conclusion: PASS

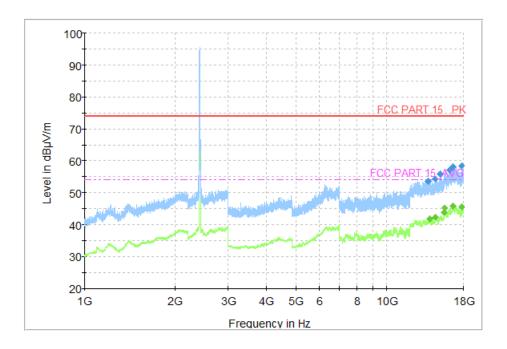


Fig.34 Radiated Spurious Emission (802.11b, CH1, 1GHz-18GHz)

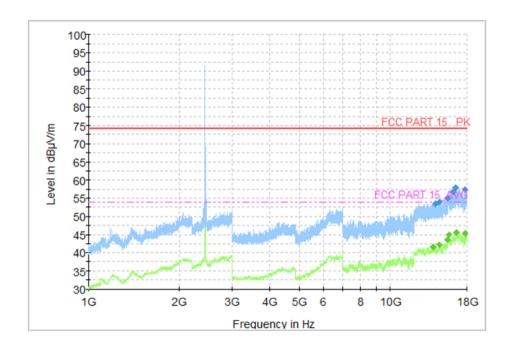


Fig.35 Radiated Spurious Emission (802.11b, CH6, 1GHz-18GHz)

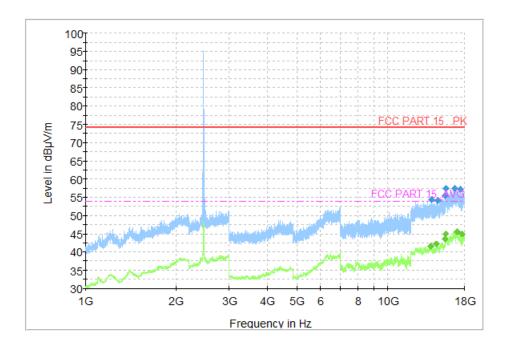


Fig.36 Radiated Spurious Emission (802.11b, CH11, 1GHz-18GHz)

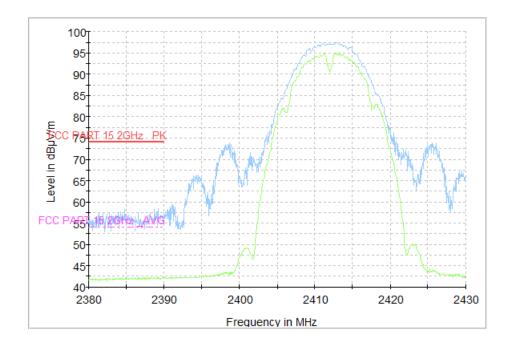


Fig.37 Radiated Restricted Band (802.11b, CH1, 2.38GHz~2.45GHz)

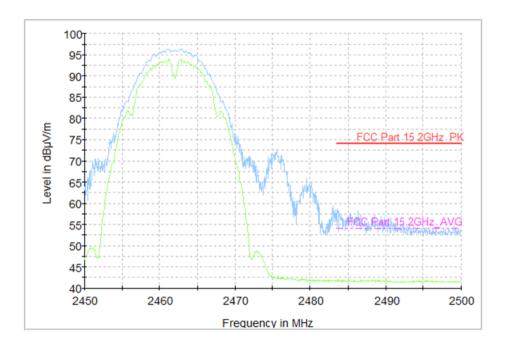


Fig.38 Radiated Restricted Band (802.11b, CH11, 2.45GHz~2.5GHz)

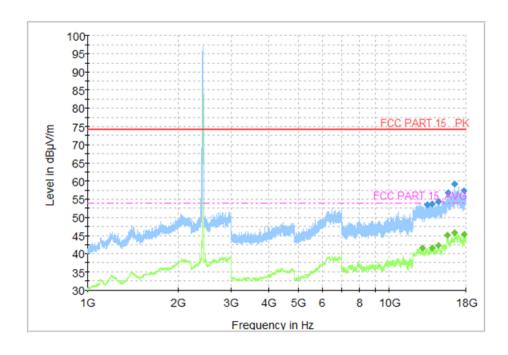


Fig.39 Radiated Spurious Emission (802.11g, CH1, 1GHz-18GHz)

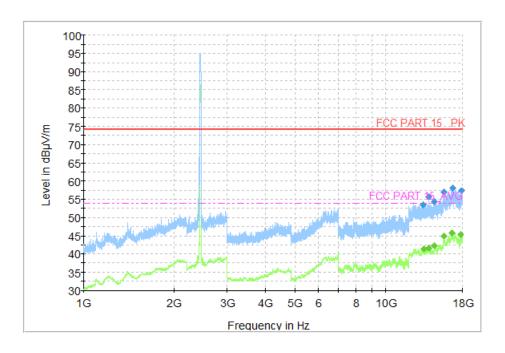


Fig.40 Radiated Spurious Emission (802.11g, CH6, 1GHz-18GHz)

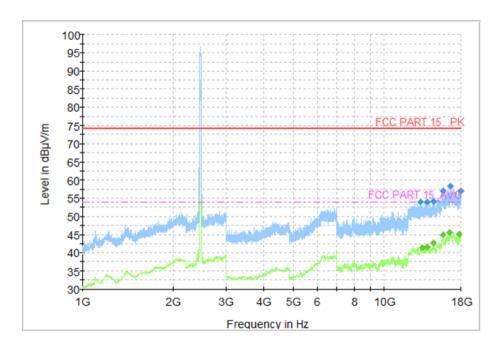


Fig.41 Radiated Spurious Emission (802.11g, CH11, 1GHz-18GHz)

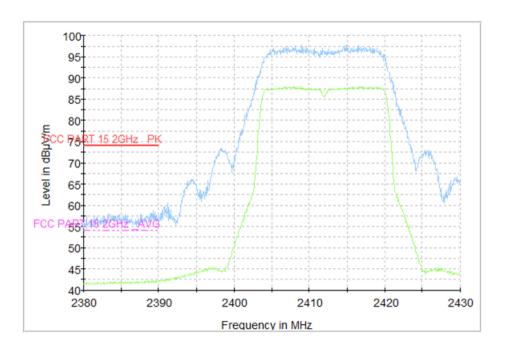


Fig.42 Radiated Restricted Band (802.11g, CH1, 2.38GHz~2.45GHz)

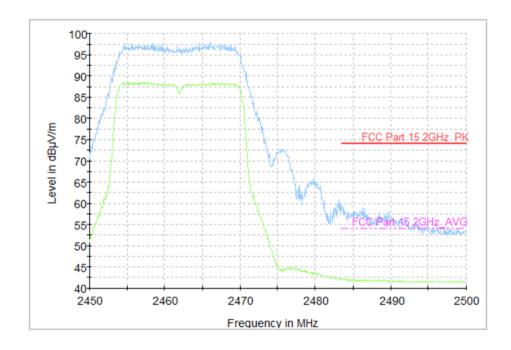


Fig.43 Radiated Restricted Band (802.11g, CH11, 2.45GHz~2.5GHz)

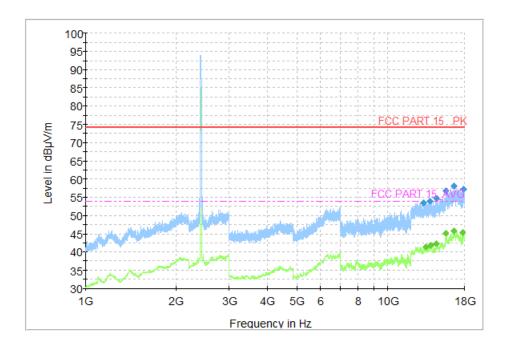


Fig.44 Radiated Spurious Emission (802.11n HT20, CH1, 1GHz-18GHz)

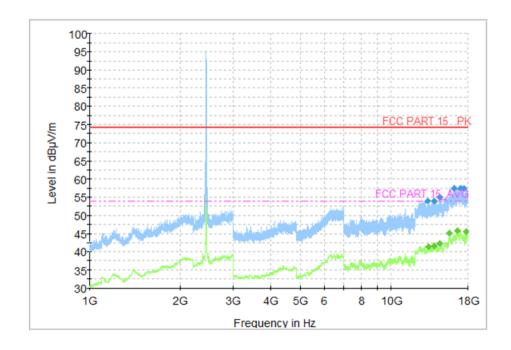


Fig.45 Radiated Spurious Emission (802.11n HT20, CH6, 1GHz-18GHz)

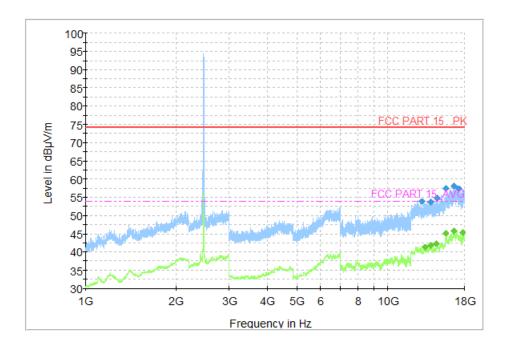


Fig.46 Radiated Spurious Emission (802.11n HT20, CH11, 1GHz-18GHz)

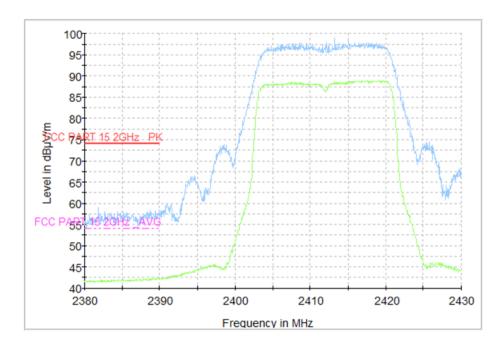


Fig.47 Radiated Restricted Band (802.11n HT20, CH1, 2.38GHz~2.45GHz)

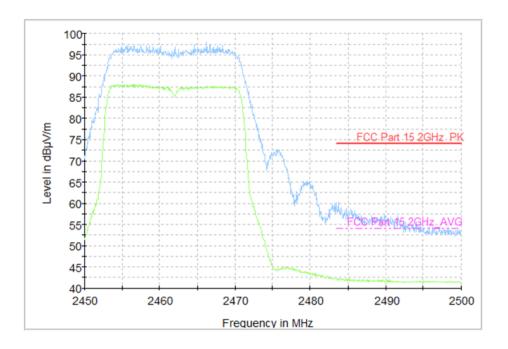


Fig.48 Radiated Restricted Band (802.11n HT20, CH11, 2.45GHz~2.5GHz)

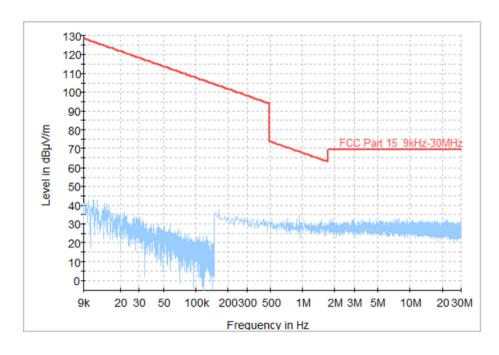


Fig.49 Radiated Spurious Emission (All Channels, 9KHz-30MHz)

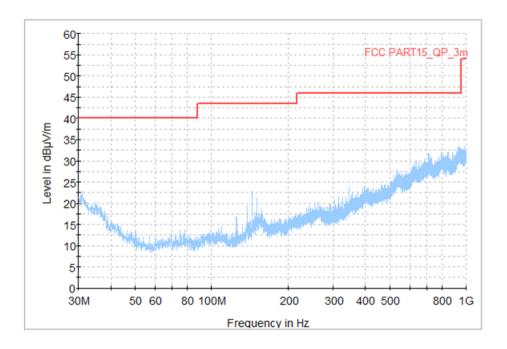


Fig.50 Radiated Spurious Emission (All Channels, 30MHz-1GHz)

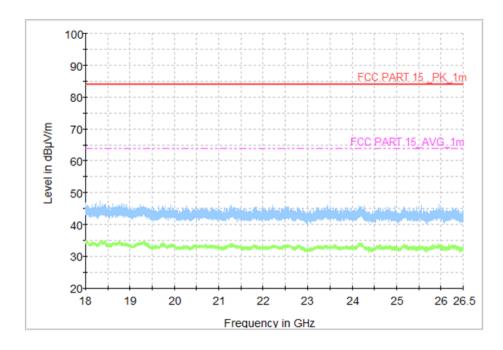


Fig.51 Radiated Spurious Emission (All Channels, 18GHz-26.5GHz)

A.8 AC Power line Conducted Emission

Test Condition:

Voltage (V)	Frequency (Hz)		
120	60		

Measurement Result and limit:

WLAN (Quasi-peak Limit) - AE2

Frequency	Quasi-peak	Result	Result (dBμV)	
range (MHz)	Limit (dBμV)	Traffic	ldle	Conclusion
0.15 to 0.5	66 to 56			
0.5 to 5	56	Fig.52	Fig.53	Р
5 to 30	60			

Note: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

WLAN (Average Limit) - AE2

Frequency	Average-peak	Result (dBμV)		Canalusian
range (MHz)	Limit (dBμV)	Traffic	ldle	Conclusion
0.15 to 0.5	56 to 46			
0.5 to 5	46	Fig.52	Fig.53	Р
5 to 30	50			

Note: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

Test Condition:

Voltage (V)	Frequency (Hz)		
240	60		

Measurement Result and limit:

WLAN (Quasi-peak Limit) - AE2

Frequency	Quasi-peak	Result (dBμV)		Conclusion
range (MHz)	Limit (dBμV)	Traffic	ldle	Conclusion
0.15 to 0.5	66 to 56			
0.5 to 5	56	Fig.54	Fig.55	Р
5 to 30	60			

Note: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

WLAN (Average Limit) - AE2

Frequency	Average-peak	Result (dBμV)		Conclusion
range (MHz)	Limit (dBμV)	Traffic	ldle	Conclusion

0.15 to 0.5	56 to 46			
0.5 to 5	46	Fig.54	Fig.55	Р
5 to 30	50			

Note: The limit decreases linearly with the logarithm of the frequency in the range 0.15~MHz to 0.5~MHz.

Note: The measurement results include the L1 and N measurements.

See below for test graphs.

Conclusion: PASS

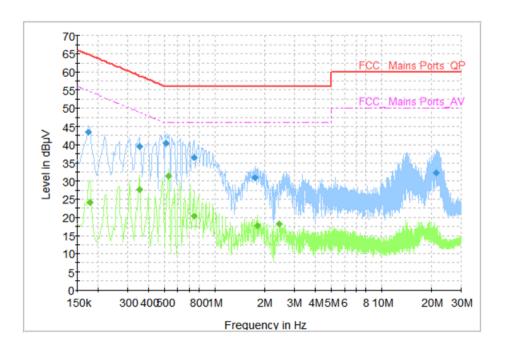


Fig.52 AC Power line Conducted Emission (Traffic, AE2, 120V)

Frequency	Quasi Peak	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBµV)	(dBµV)	(dB)			(dB)
0.174000	43.31	64.77	21.45	N	ON	9.6
0.354000	39.43	58.87	19.44	L1	ON	9.7
0.510000	40.43	56.00	15.57	N	ON	9.7
0.754000	36.54	56.00	19.46	L1	ON	9.7
1.746000	30.85	56.00	25.15	N	ON	9.7
21.170000	32.26	60.00	27.74	N	ON	10.4

Frequency	Average	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBµV)	(dBµV)	(dB)			(dB)
0.178000	24.17	54.58	30.41	N	ON	9.6
0.354000	27.66	48.87	21.21	L1	ON	9.7
0.530000	31.34	46.00	14.66	L1	ON	9.7
0.754000	20.36	46.00	25.64	L1	ON	9.7
1.814000	17.66	46.00	28.34	N	ON	9.7
2.430000	18.08	46.00	27.92	L1	ON	9.7

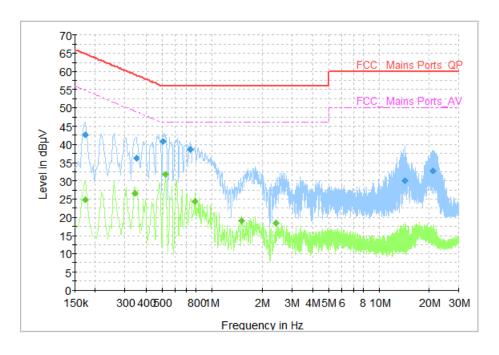


Fig.53 AC Power line Conducted Emission (Idle, AE2, 120V)

Frequency (MHz)	Quasi Peak (dBµV)	Limit (dBµV)	Margin (dB)	Line	Filter	Corr. (dB)
0.174000	42.69	64.77	22.07	N	ON	9.6
0.350000	36.22	58.96	22.74	L1	ON	9.7
0.510000	40.76	56.00	15.24	N	ON	9.7
0.742000	38.53	56.00	17.47	L1	ON	9.7
14.242000	29.97	60.00	30.03	N	ON	9.9
20.962000	32.80	60.00	27.20	N	ON	10.4

Frequency	Average	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBµV)	(dBµV)	(dB)			(dB)
0.174000	24.86	54.77	29.91	N	ON	9.6
0.346000	26.60	49.06	22.46	L1	ON	9.7
0.530000	31.65	46.00	14.35	L1	ON	9.7
0.786000	24.29	46.00	21.71	L1	ON	9.7
1.506000	19.03	46.00	26.97	L1	ON	9.7
2.426000	18.37	46.00	27.63	L1	ON	9.7

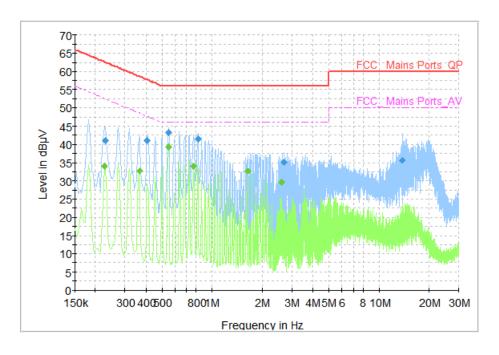


Fig.54 AC Power line Conducted Emission (Traffic, AE2, 240V)

Frequency (MHz)	Quasi Peak (dBµV)	Limit (dBµV)	Margin (dB)	Line	Filter	Corr. (dB)
0.230000	41.13	62.45	21.32	L1	ON	9.7
0.410000	41.00	57.65	16.65	N	ON	9.7
0.546000	43.13	56.00	12.87	L1	ON	9.7
0.822000	41.46	56.00	14.54	N	ON	9.7
2.690000	35.14	56.00	20.86	L1	ON	9.7
13.786000	35.53	60.00	24.47	N	ON	9.9

Frequency	Average	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBµV)	(dBµV)	(dB)			(dB)
0.226000	34.01	52.60	18.59	L1	ON	9.7
0.366000	32.87	48.59	15.72	L1	ON	9.7
0.546000	39.40	46.00	6.60	L1	ON	9.7
0.774000	34.02	46.00	11.98	L1	ON	9.7
1.638000	32.67	46.00	13.33	L1	ON	9.7
2.590000	29.55	46.00	16.45	L1	ON	9.7

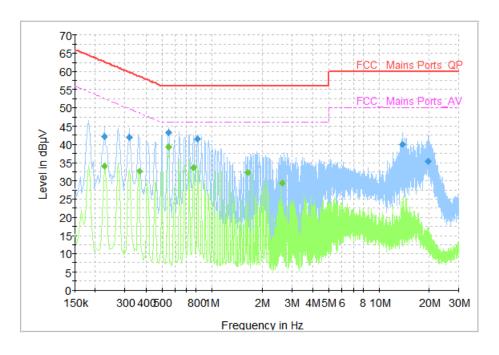


Fig.55 AC Power line Conducted Emission (Idle, AE2, 240V)

Frequency (MHz)	Quasi Peak (dBµV)	Limit (dBµV)	Margin (dB)	Line	Filter	Corr. (dB)
0.226000	42.16	62.60	20.44	L1	ON	9.7
0.318000	42.03	59.76	17.72	N	ON	9.6
0.546000	43.24	56.00	12.76	L1	ON	9.7
0.818000	41.41	56.00	14.59	N	ON	9.7
13.862000	40.09	60.00	19.91	N	ON	9.9
19.698000	35.19	60.00	24.81	N	ON	10.4

Frequency	Average	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBµV)	(dBµV)	(dB)			(dB)
0.226000	34.04	52.60	18.56	L1	ON	9.7
0.366000	32.66	48.59	15.93	L1	ON	9.7
0.546000	39.39	46.00	6.61	L1	ON	9.7
0.774000	33.73	46.00	12.27	L1	ON	9.7
1.638000	32.22	46.00	13.78	L1	ON	9.7
2.634000	29.49	46.00	16.51	L1	ON	9.7

A.9 99% Occupied Bandwidth

Measurement Limit:

Standard	Limit (kHz)		
RSS-Gen section 6.7	1		

Measurement Result:

Mode	Channel	Frequency (MHz)	Test Results (MHz)		Conclusion
	CH 1	2412	Fig.56	13.20	Р
802.11b	CH 6	2437	Fig.57	13.16	Р
	CH 11	2462	Fig.58	13.12	Р
802.11g	CH 1	2412	Fig.59	16.88	Р
	CH 6	2437	Fig.60	16.84	Р
	CH 11	2462	Fig.61	16.76	Р
802.11n HT20	CH 1	2412	Fig.62	17.92	Р
	CH 6	2437	Fig.63	17.92	Р
H120	CH 11	2462	Fig.64	17.84	Р

See below for test graphs.

Conclusion: PASS

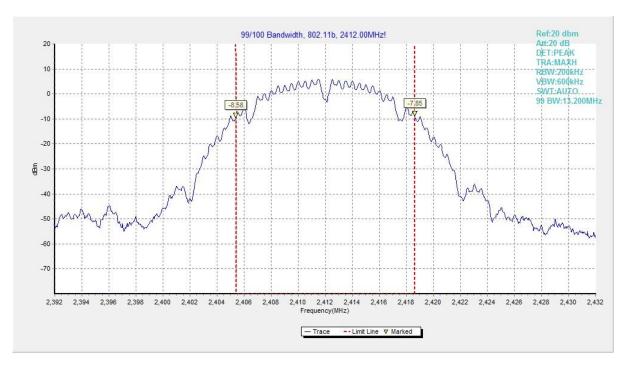


Fig.56 99% Occupied Bandwidth (802.11b, CH 1)

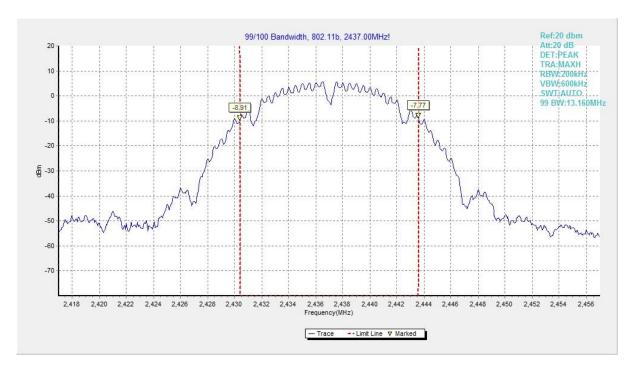


Fig.57 99% Occupied Bandwidth (802.11b, CH 6)

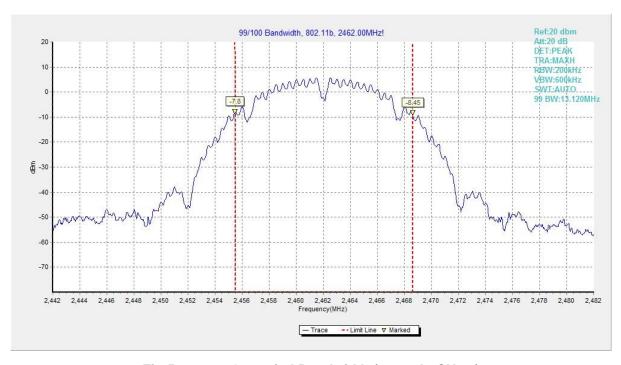


Fig.58 99% Occupied Bandwidth (802.11b, CH 11)

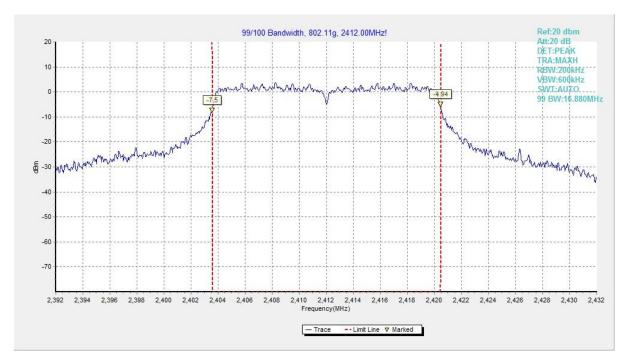


Fig.59 99% Occupied Bandwidth (802.11g, CH 1)

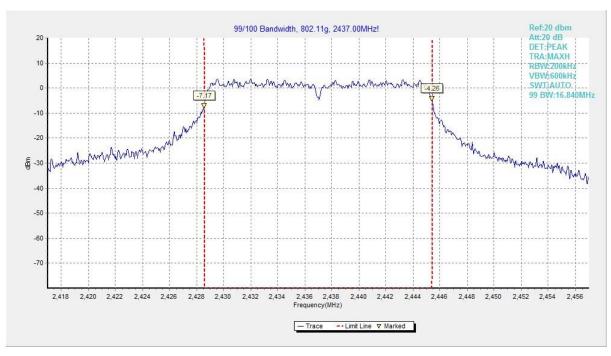


Fig.60 99% Occupied Bandwidth (802.11g, CH 6)

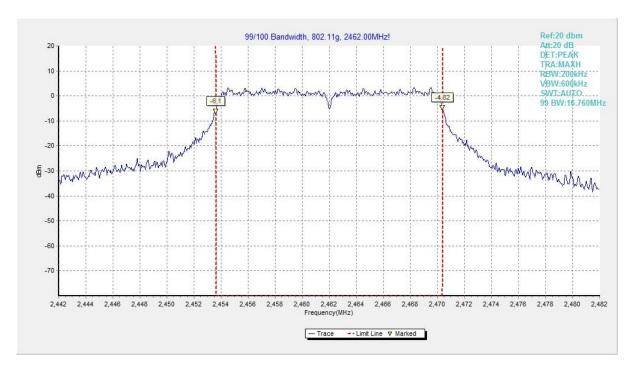


Fig.61 99% Occupied Bandwidth (802.11g, CH 11)

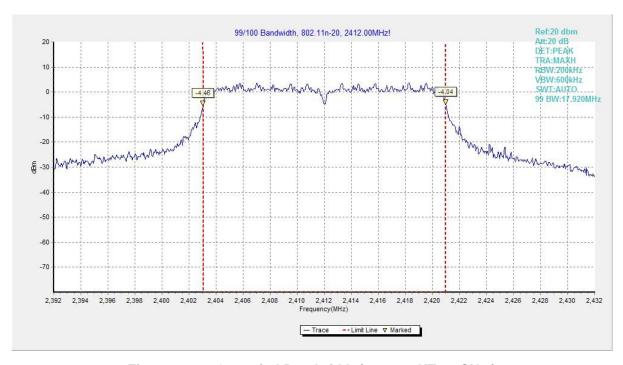


Fig.62 99% Occupied Bandwidth (802.11n HT20, CH 1)

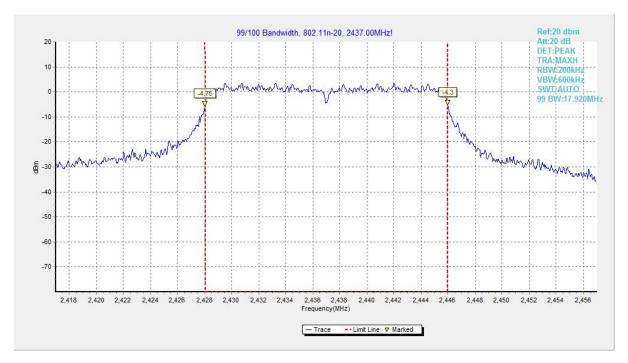


Fig.63 99% Occupied Bandwidth (802.11n HT20, CH 6)

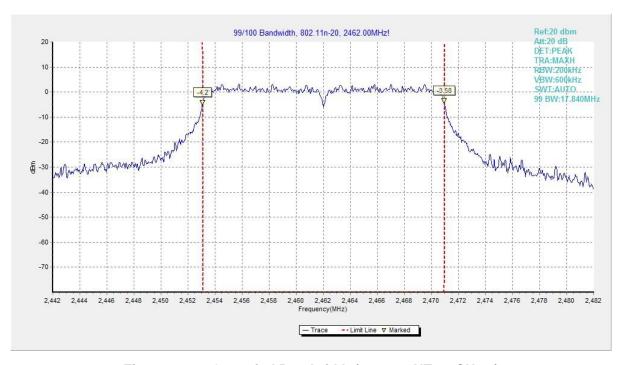


Fig.64 99% Occupied Bandwidth (802.11n HT20, CH 11)

END OF REPORT