

FCC PART 15C & RSS 247 TEST REPORT No. I19N01349-BT

For

Ademco Inc

Quicksilver wireless tablet

Model Name: PROWLTOUCH/PROWLTOUCHC

With

Hardware Version: Q1982_MB_V2

Software Version: GMTS700_Wireless_01.01.006.0010

FCC ID: CFS8DLPROWLTOUCH

IC: 573F-PROWLTOUCH

Issued Date: 2019-07-26

Designation Number: CN1210 ISED Assigned Code: 23289

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of SAICT.

Test Laboratory:

Shenzhen Academy of Information and Communications Technology

Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China 518026.

Tel: +86(0)755-33322000, Fax: +86(0)755-33322001 Email: <u>yewu@caict.ac.cn</u>, website: <u>www.cszit.com</u>

REPORT HISTORY

Report Number	Report Number Revision		Issue Date
I19N01349-BT	Rev.0	1st edition	2019-07-26

CONTENTS

1. TF	EST LABORATORY	4
1.1.	TESTING LOCATION	4
1.2.	TESTING ENVIRONMENT	4
1.3.	Project data	4
1.4.	SIGNATURE	4
2. CI	LIENT INFORMATION	5
2.1.	APPLICANT INFORMATION	5
2.2.	MANUFACTURER INFORMATION	5
3. E(QUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	6
3.1.	ABOUT EUT	6
3.3.	INTERNAL IDENTIFICATION OF EUT	6
3.4.	INTERNAL IDENTIFICATION OF AE	6
3.5.	GENERAL DESCRIPTION	6
4. RI	EFERENCE DOCUMENTS	7
4.1.	DOCUMENTS SUPPLIED BY APPLICANT	7
4.2.	REFERENCE DOCUMENTS FOR TESTING	7
5. TH	EST RESULTS	8
5.1.	SUMMARY OF TEST RESULTS	8
5.2.	STATEMENTS	8
5.3.	TERMS USED IN THE RESULT TABLE	8
5.4.	LABORATORY ENVIRONMENT	9
6. TI	EST FACILITIES UTILIZED	10
7. M	EASUREMENT UNCERTAINTY	11
ANNE	X A: DETAILED TEST RESULTS	12
A.0 A	Antenna requirement	12
A.17	TEST CONFIGURATION	13
A.2 N	MAXIMUM PEAK OUTPUT POWER	14
A.3 E	BAND EDGES COMPLIANCE	15
A.4 (Conducted Emission	22
	Radiated Emission	
A.62	20dB Bandwidth	51
	TIME OF OCCUPANCY (DWELL TIME)	
	NUMBER OF HOPPING CHANNELS	
	CARRIER FREQUENCY SEPARATION	
	AC Power line Conducted Emission	
A.11	OCCUPIED BANDWIDTH	72

1. Test Laboratory

1.1. Testing Location

Location: Shenzhen Academy of Information and Communications Technology
Address: Building G, Shenzhen International Innovation Center, No.1006

Shennan Road, Futian District, Shenzhen, Guangdong Province, China

Postal Code: 518026

Telephone: +86(0)755-33322000 Fax: +86(0)755-33322001

1.2. Testing Environment

Normal Temperature: $15-35^{\circ}$ C Relative Humidity: 20-75%

1.3. Project data

Testing Start Date: 2019-07-02 Testing End Date: 2019-07-19

1.4. Signature

Lin Kanfeng

(Prepared this test report)

Tang Weisheng

(Reviewed this test report)

Zhang Bojun

(Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name: Ademco Inc

Address: 2 Corporate Center Drive Suite 100P.O. Box 9040, Melville, NY 11747

Contact: Andy Roussin

andrew.roussin@honeywell.com (for FCC)

/andrew.roussin@resideo.com (for IC)

Tel.: 516-577-5820

2.2. Manufacturer Information

Company Name: Huaqin Telecom Technology Co., Ltd.

No.1 Building, No.9 Building, No.399, Keyuan Road, Zhangjiang Address:

Hi-tech Park, Shanghai, P.R.China

Contact: Daisy Wu

Email: wulihua@huaqin.com

Tel.: 18088882767

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description Quicksilver wireless tablet

Model Name PROWLTOUCH/PROWLTOUCHC

Brand Name Honeywell home / Resideo Frequency Band 2400MHz~2483.5MHz

Type of Modulation GFSK/ π /4 DQPSK/8DPSK

Number of Channels 79

Antenna Type Integrated
Antenna Gain 0.15dBi

Power Supply 3.85V DC by Battery
FCC ID CFS8DLPROWLTOUCH
IC 573F-PROWLTOUCH

Condition of EUT as received No abnormality in appearance

Note: Components list, please refer to documents of the manufacturer.

3.2.Internal Identification of EUT

EUT ID*	IMEI	HW Version	SW Version	Receive Date
EUT1	HK52400332	Q1982_MB_V2	GMTS700_Wireless_01.01.006.0010	2019-07-02

^{*}EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE

AE ID*	Description	Mode	Manufacturer
AE1	Battery	P-504478	Dongguan Amperex Technology Limited
AE2	Charger	TPA-97050150U01	SHENZHEN TIANYIN ELECTRONICS CO., LTD

^{*}AE ID: is used to identify the test sample in the lab internally.

3.4. General Description

The Equipment under Test (EUT) is a model of Quicksilver wireless tablet with integrated antenna and battery.

It consists of normal options: travel charger, USB cable and Phone.

Manual and specifications of the EUT were provided to fulfil the test.

Samples undergoing test were selected by the client.

The Bluetooth module has been tested by a Bluetooth Qualification Lab, and we confirm the following:

- 1) The hopping sequence is pseudorandom
- 2) All channels are used equally on average
- 3) The receiver input bandwidth equals the transmit bandwidth
- 4) The receiver hops in sequence with the transmit signal

In accordance with the Bluetooth Industry Standard, the system does not coordinate its channels selection / hopping sequence with other frequency hopping systems for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

4. Reference Documents

4.1. Documents supplied by applicant

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
FCC Part 15	FCC CFR 47, Part 15, Subpart C:	2017
	15.205 Restricted bands of operation;	
	15.209 Radiated emission limits, general requirements;	
	15.247 Operation within the bands 902-928MHz,	
	2400-2483.5 MHz, and 5725-5850 MHz	
ANSI C63.10	American National Standard of Procedures for Compliance	2013
	Testing of Unlicensed Wireless Devices	
RSS-247	Spectrum Management and Telecommunications Radio	Issue 2
	Standards Specification	February,
	Digital Transmission Systems (DTSs), Frequency Hopping	2017
	Systems (FHSs) and License-Exempt Local Area Network	
	(LE-LAN) Devices	
RSS-Gen	Spectrum Management and Telecommunications Radio	Issue 5
	Standards Specification	April,
	General Requirements for Compliance of Radio Apparatus	2018

5. Test Results

5.1. Summary of Test Results

No	Test cases	Sub-clause of Part 15C	Sub-clause of IC	Verdict	
0	Antenna Requirement	15.203	/	Р	
1	Maximum Peak Output Power	15.247 (b)	RSS-247 section 5.4	Р	
2	Band Edges Compliance	15.247 (d)	RSS-247 section 5.1	Р	
3	Conducted Spurious Emission	1E 247 (d)	RSS-247 section 5.5/	n	
3	Conducted Spurious Emission	15.247 (d)	RSS-Gen section 6.13	Р	
4	Padiated Spurious Emission	15.247,15.205,15.209	RSS-247 section 5.5/	Р	
4	Radiated Spurious Emission	15.247, 15.205, 15.209	RSS-Gen section 6.13	Г	
5	Occupied 20dB bandwidth	15.247(a)	RSS-247 section 5.1	Р	
6	Time of Occupancy	Time of Occupancy 15.247(a)	RSS-247 section 5.1	P	
0	(Dwell Time)	15.247 (a)	K33-247 Section 3.1	F	
7	Number of Hopping Channel	15.247(a)	RSS-247 section 5.1	Р	
8	Carrier Frequency Separation	15.247(a)	RSS-247 section 5.1	Р	
9	AC Power line Conducted	AC Power line Conducted	RSS-Gen section 8.8	Р	
9	Emission	15.107,15.207	Koo-Gen Section 6.8	6	
10	Occupied Bandwidth	/	RSS-Gen section 6.7	Р	

See ANNEX A for details.

5.2. Statements

SAICT has evaluated the test cases requested by the applicant/manufacturer as listed in section 5.1 of this report, for the EUT specified in section 3, according to the standards or reference documents listed in section 4.2.

5.3. Terms used in the result table

Terms used in Verdict column

Р	Pass	
NA	Not Available	
F	Fail	

Abbreviations

AC	Alternating Current		
AFH	Adaptive Frequency Hopping		
BW	Band Width		
E.I.R.P.	equivalent isotropic radiated power		
ISM	Industrial, Scientific and Medical		
R&TTE	Radio and Telecommunications Terminal Equipment		
RF	Radio Frequency		
Tx	Transmitter		

5.4. <u>Laboratory Environment</u>

Semi-anechoic chamber

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 20 %, Max. = 75 %
Chielding offertiveness	0.014 MHz - 1 MHz, > 60 dB;
Shielding effectiveness	1 MHz - 1000 MHz, > 90 dB.
Electrical insulation	> 2 MΩ
Ground system resistance	< 4 Ω
Normalised site attenuation (NSA)	< ±4 dB, 3m/10m distance, from 30 to 1000 MHz
Uniformity of field strength	Between 0 and 6 dB, from 80 to 3000 MHz

Shielded room

Temperature	Min. = 15 °C, Max. = 35 °C	
Relative humidity	Min. = 20 %, Max. = 75 %	
Shielding effectiveness	0.014 MHz - 1 MHz, > 60 dB;	
	1 MHz - 1000 MHz, > 90 dB.	
Electrical insulation	> 2 MΩ	
Ground system resistance	< 4 Ω	

Fully-anechoic chamber

Temperature	Min. = 15 °C, Max. = 35 °C	
Relative humidity	Min. = 20 %, Max. = 75 %	
Chielding offertiveness	0.014 MHz - 1MHz, > 60dB;	
Shielding effectiveness	1 MHz - 1000 MHz, > 90dB.	
Electrical insulation	> 2 MΩ	
Ground system resistance	< 4 Ω	
Voltage Standing Wave Ratio (VSWR)	≤ 6 dB, from 1 to 18 GHz, 3m distance	

6. Test Facilities Utilized

Conducted test system

No.	Equipment	Model	Serial Number	Manufacturer	Calibration Due date	Calibration Period
1	Vector Signal Analyzer	FSV40	100903	Rohde & Schwarz	2020-01-16	1 year
2	Bluetooth Tester	CBT32	100584	Rohde & Schwarz	2020-01-02	1 year
3	Power Sensor	U2021XA	MY55430013	Agilent	2020-01-16	1 year
4	Data Acquisiton	U2531A	TW55443507	Agilent	/	1

Radiated emission test system

No.	Equipment Model Serial Manufacturer		Manufacturer	Calibration	Calibration	
			Number		Due date	Period
1	LISN	ESH2-Z5	100196	R&S	2020-01-03	1 year
2	Test Receiver	ESCI	100701	R&S	2019-08-07	1 year
3	Loop Antenna	HLA6120	35779	TESEQ	2022-05-01	3 year
4	BiLog Antenna	VULB9163	9163 329	Schwarzbeck	2020-02-17	3 year
5	Horn Antenna	3117	00066585	ETS-Lindgren	2022-03-04	3 year
6	Test Receiver	ESR7	101675	R&S	2020-07-18	1 year
7	Spectrum	FSP 40	100378	R&S	2019-12-13	1 year
/	Analyzer	F3F 40	100376	RαS	2019-12-13	1 year
8	Chamber	FACT5-2.0	4166	ETS-Lindgren	2021-05-12	3 year
9	Antonno	QSH-SL-1	17012	0 505	2020 04 45	2 400"
9	Antenna	8-26-S-20	17013	17013 Q-par	2020-01-15	3 year
10	Antonno	QSH-SL-2	17014	0.000	0000 04 44	0
10	Antenna	6-40-K-20	17014	Q-par	2020-01-11	3 year

Test software

No.	Equipment	Manufacturer	Version
1	TechMgr Software	CAICT	2.1.1
2	EMC32	Rohde & Schwarz	8.53.0
3	EMC32	Rohde & Schwarz	10.01.00

EUT is engineering software provided by the customer to control the transmitting signal.

The EUT was programmed to be in continuously transmitting mode.

Anechoic chamber

Fully anechoic chamber by ETS-Lindgren

7. Measurement Uncertainty

Test Name	Uncertainty	
RF Output Power - Conducted	±1.32dB	
2. Time of Occupancy - Conducted		
3.Occupied channel bandwidth - Conducted	±66	SHz
	30MHz≤f≤1GHz	±1.41dB
4 Transmitter Spurious Emission Conducted	1GHz≤f≤7GHz	±1.92dB
4. Transmitter Spurious Emission - Conducted	7GHz≤f≤13GHz	±2.31dB
	13GHz≤f≤26GHz	±2.61dB
	9kHz≤f≤30MHz	±1.84dB
F. Transmitter Spurious Emission - Radiated	30MHz≤f≤1GHz	±4.90dB
5. Transmitter Spurious Emission - Radiated	1GHz≤f≤18GHz	±5.12dB
	18GHz≤f≤40GHz	±4.66dB
6. AC Power line Conducted Emission	150kHz≤f≤30MHz	±3.10dB

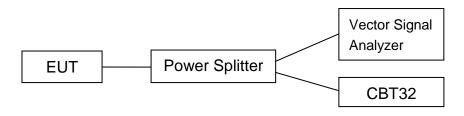
ANNEX A: Detailed Test Results

A.0 Antenna requirement

Measurement Limit:

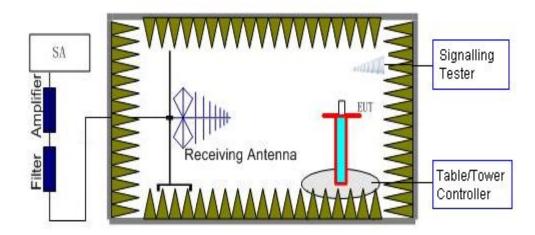
Standard	Requirement
FCC CRF Part 15.203	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

Conclusion: The Directional gains of antenna used for transmitting is 0.15dBi. The RF transmitter uses an integrate antenna without connector.



A.1 Test Configuration

A.1.1 Conducted Measurements


The measurement is made according to ANSI C63.10.

- 1). Connect the EUT to the test system correctly.
- 2). Set the EUT to the required work mode.
- 3). Set the EUT to the required channel.
- 4). Set the EUT hopping mode (hopping on or hopping off).
- 5). Set the spectrum analyzer to start measurement.
- 6). Record the values.

A.1.2 Radiated Measurements

Test setup: EUT was placed on a 1.5 meter high non-conductive table at a 3 meter test distance from the receive antenna. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT and adjusting the receiving antenna polarization.

A.2 Maximum Peak Output Power

Method of Measurement: See ANSI C63.10-clause 7.8.5.

A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.

Measurement Limit:

Standard	Limit (dBm)	E.I.R.P Limit (dBm)
FCC CRF Part 15.247 (b) & RSS-247 Section 5.4	< 30	< 36

Measurement Results:

Conducted transmitter power

Mode	Peak Conducted Output Power (dBm)			
Mode	2402MHz (Ch0)	2441MHz (Ch39)	2480MHz (Ch78)	
GFSK	7.85	8.16	8.18	
π /4 DQPSK	5.85	5.88	5.91	
8DPSK	5.83	5.86	5.90	

E.I.R.P

Mode	Peak Conducted Output Power (dBm)			
Wode	2402MHz (Ch0)	2441MHz (Ch39)	2480MHz (Ch78)	
GFSK	8.00	8.31	8.33	
π /4 DQPSK	6.00	6.03	6.06	
8DPSK	5.98	6.01	6.05	

Note: E.I.R.P value = Conducted values (with conducted samples) + Antenna Gain.

Conclusion: Pass

A.3 Band Edges Compliance

Measurement Limit:

Standard	Limit (dBc)	
FCC 47 CFR Part 15.247 (d) & RSS-247 Section 5.1	≤ -20	

Measurement Result:

Mode	Channel	Hopping	Test Results	Conclusion
GFSK	0	ON	Fig.1	Р
GFSK	78	ON	Fig.2	Р
- /4 DODOK	0	ON	Fig.3	Р
π /4 DQPSK	78	ON	Fig.4	Р
8DPSK	0	ON	Fig.5	Р
ODPSK	78	ON	Fig.6	Р

Mode	Channel	Hopping	Test Results	Conclusion
GFSK	0	OFF	Fig.7	Р
GFSK	78	OFF	Fig.8	Р
π /4 DQPSK	0	OFF	Fig.9	Р
II /4 DQPSK	78	OFF	Fig.10	Р
8DPSK	0	OFF	Fig.11	Р
ODPSK	78	OFF	Fig.12	Р

See below for test graphs.

Conclusion: Pass

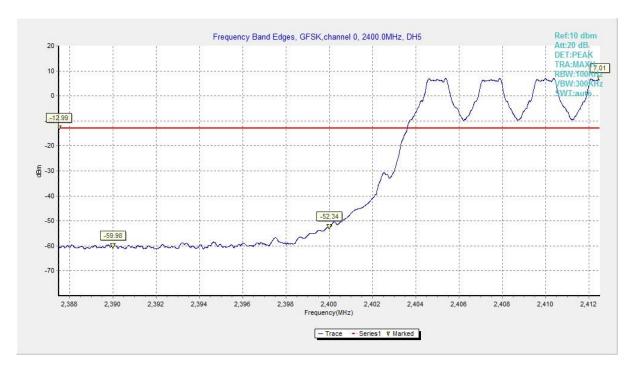


Fig. 1 Band Edges (GFSK, Ch 0, Hopping ON)

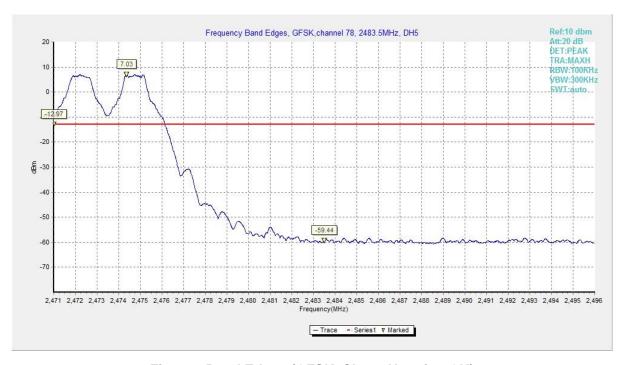


Fig. 2 Band Edges (GFSK, Ch 78, Hopping ON)

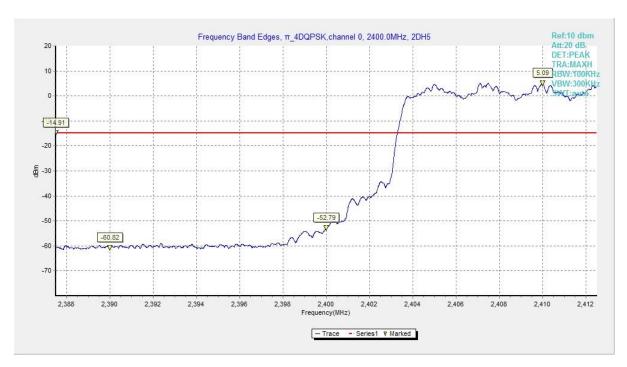


Fig. 3 Band Edges (π /4 DQPSK, Ch 0, Hopping ON)

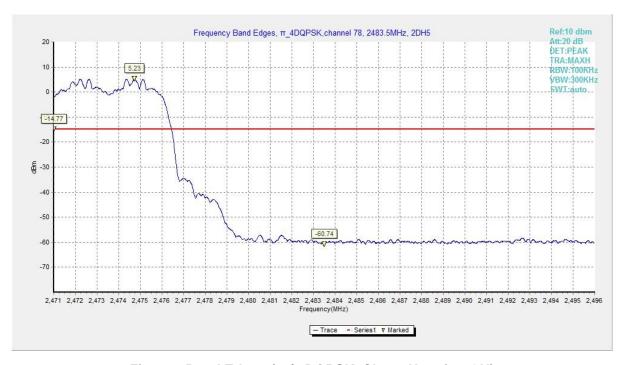


Fig. 4 Band Edges (π /4 DQPSK, Ch 78, Hopping ON)

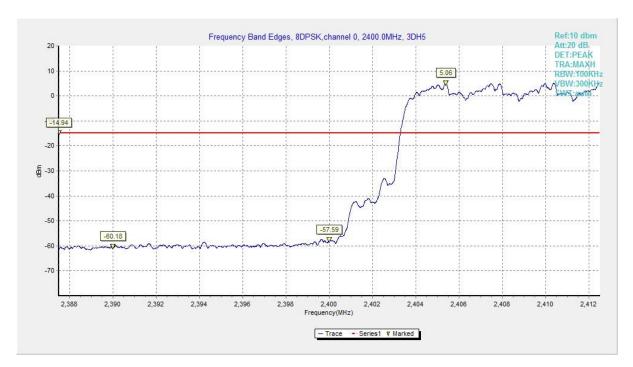


Fig. 5 Band Edges (8DPSK, Ch 0, Hopping ON)

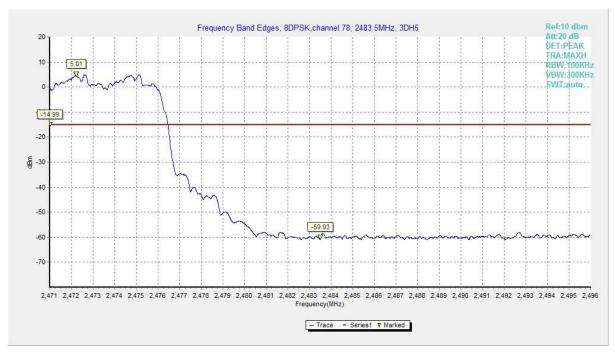


Fig. 6 Band Edges (8DPSK, Ch 78, Hopping ON)

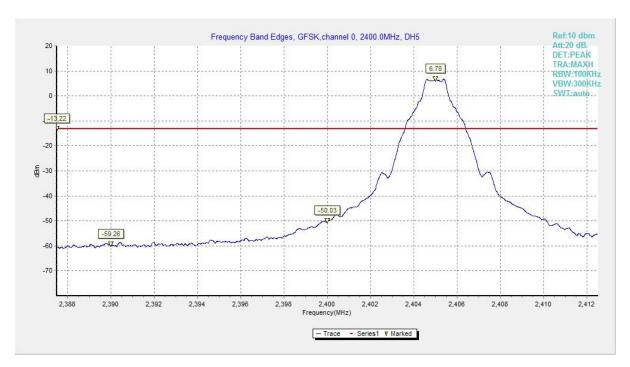


Fig. 7 Band Edges (GFSK, Ch 0, Hopping OFF)

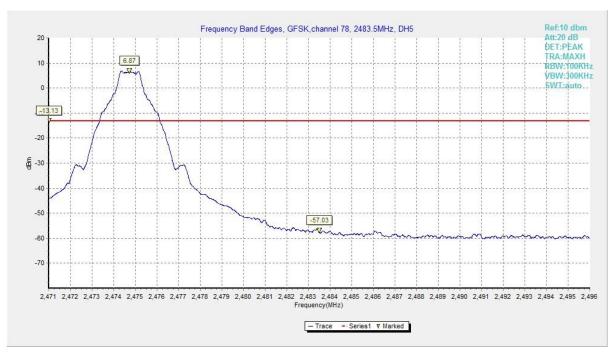


Fig. 8 Band Edges (GFSK, Ch 78, Hopping OFF)

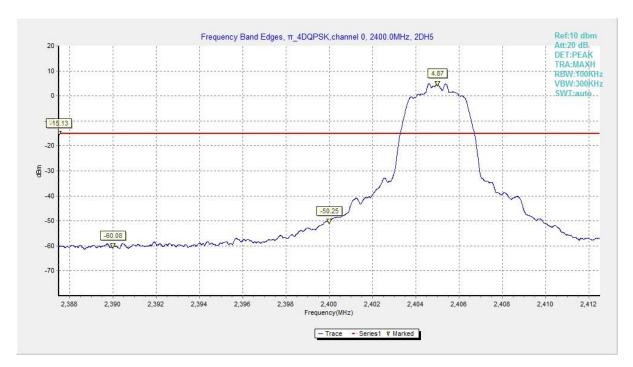


Fig. 9 Band Edges (π /4 DQPSK, Ch 0, Hopping OFF)

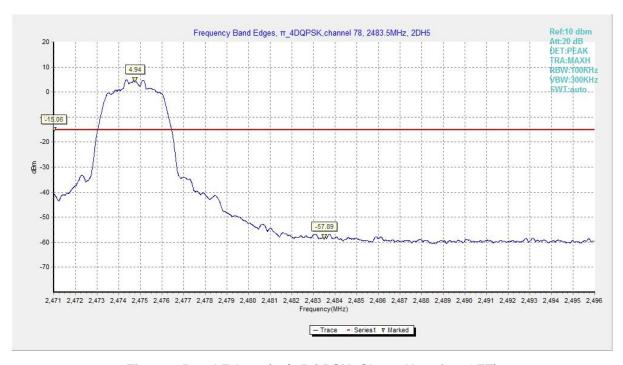


Fig. 10 Band Edges (π /4 DQPSK, Ch 78, Hopping OFF)

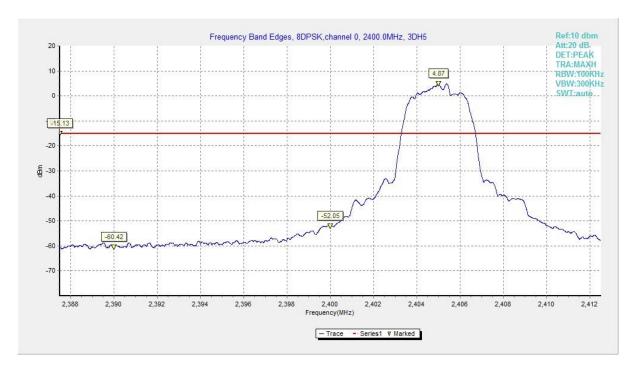


Fig. 11 Band Edges (8DPSK, Ch 0, Hopping OFF)

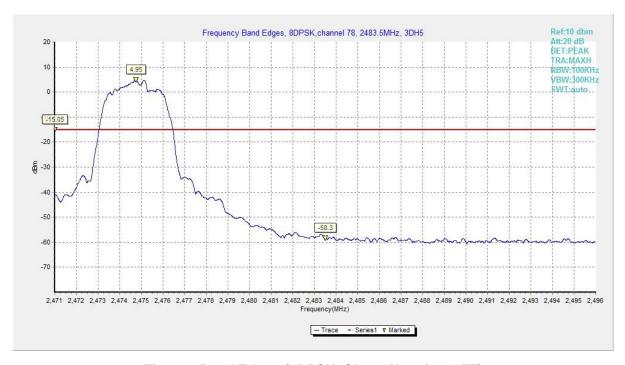


Fig. 12 Band Edges (8DPSK, Ch 78, Hopping OFF)

A.4 Conducted Emission

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247 (d) & RSS-247 section 5.5/	20dB below peak output power in
RSS-Gen section 6.13	100 kHz bandwidth

Measurement Results:

MODE	Channel	Frequency Range	Test Results	Conclusion
		2.402 GHz	Fig.13	Р
	0	1GHz-3GHz	Fig.14	Р
		3GHz-10GHz	Fig.15	Р
		2.441 GHz	Fig.16	Р
GFSK	39	1GHz-3GHz	Fig.17	Р
		3GHz-10GHz	Fig.18	Р
		2.480 GHz	Fig.19	Р
	78	1GHz-3GHz	Fig.20	Р
		3GHz-10GHz	Fig.21	Р
		2.402 GHz	Fig.22	Р
	0	1GHz-3GHz	Fig.23	Р
		3GHz-10GHz	Fig.24	Р
	39	2.441 GHz	Fig.25	Р
π /4 DQPSK		1GHz-3Ghz	Fig.26	Р
		3GHz-10GHz	Fig.27	Р
	78	2.480 GHz	Fig.28	Р
		1GHz-3Ghz	Fig.29	Р
		3GHz-10GHz	Fig.30	Р
		2.402 GHz	Fig.31	Р
	0	1GHz-3GHz	Fig.32	Р
		3GHz-10GHz	Fig.33	Р
		2.441 GHz	Fig.34	Р
8DPSK	39	1GHz-3GHz	Fig.35	Р
		3GHz-10GHz	Fig.36	Р
		2.480 GHz	Fig.37	Р
	78	1GHz-3GHz	Fig.38	Р
	_	3GHz-10GHz	Fig.39	Р
/	All channels	30 MHz-1GHz	Fig.40	Р
/	All Glaffiels	10GHz-26GHz	Fig.41	Р

See below for test graphs.

Conclusion: Pass

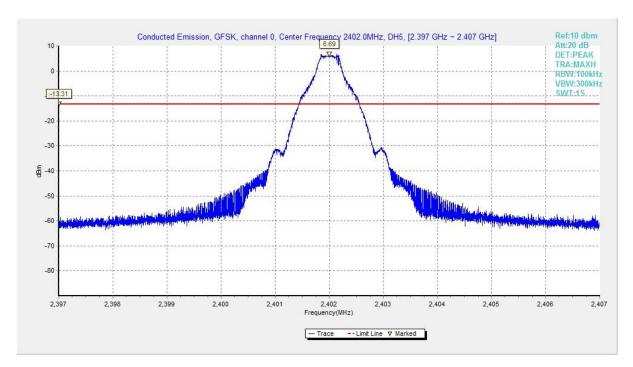


Fig. 13 Conducted Spurious Emission (GFSK, Ch0, 2.402GHz)

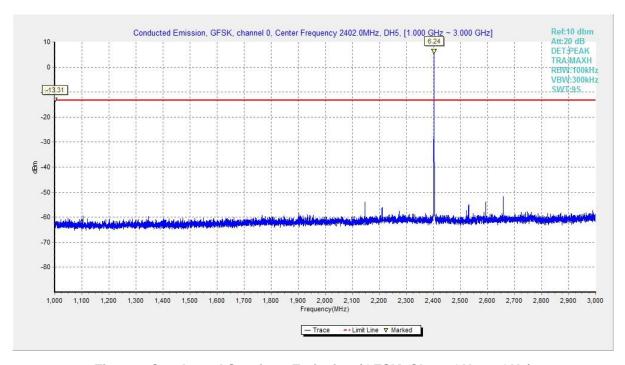


Fig. 14 Conducted Spurious Emission (GFSK, Ch0, 1GHz - 3GHz)

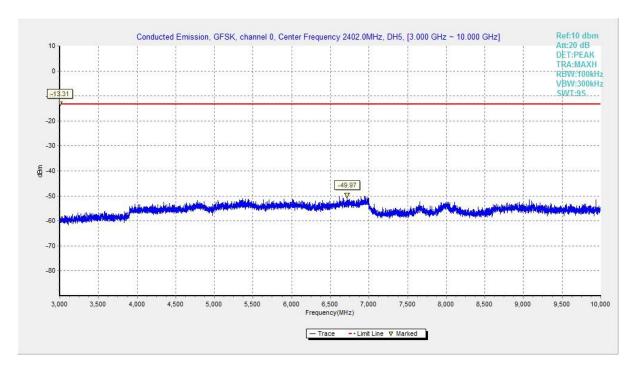


Fig. 15 Conducted Spurious Emission (GFSK, Ch0, 3GHz - 10GHz)

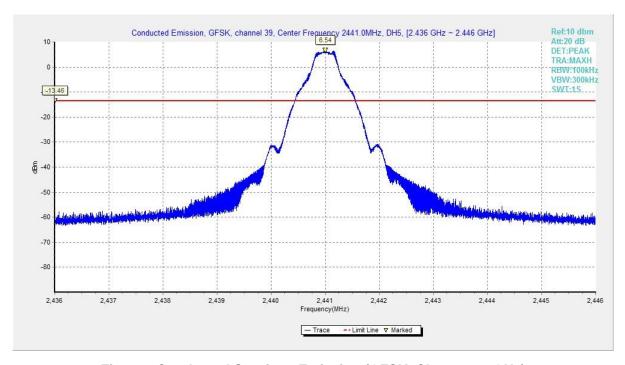


Fig. 16 Conducted Spurious Emission (GFSK, Ch39, 2.441GHz)

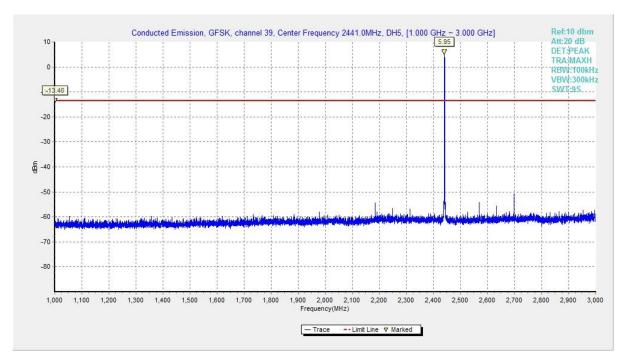


Fig. 17 Conducted Spurious Emission (GFSK, Ch39, 1GHz - 3GHz)

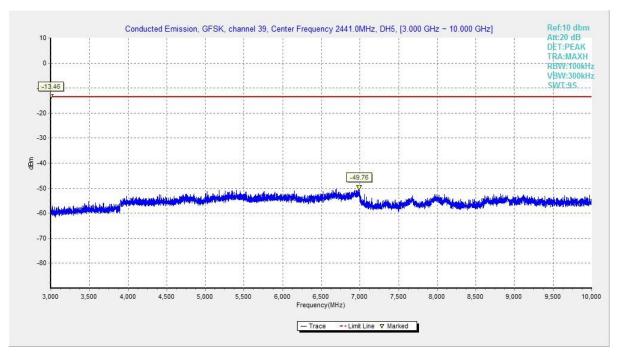


Fig. 18 Conducted Spurious Emission (GFSK, Ch39, 3GHz - 10GHz)



Fig. 19 Conducted Spurious Emission (GFSK, Ch78, 2.480GHz)

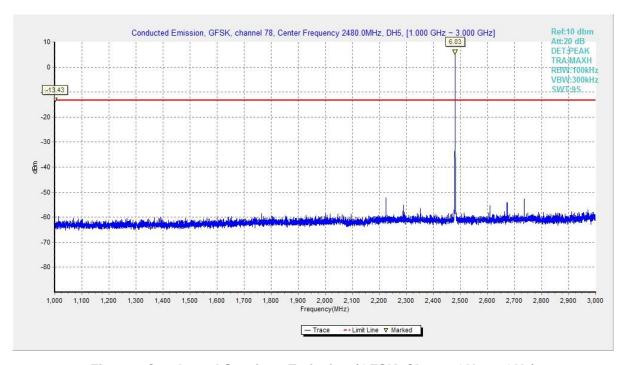


Fig. 20 Conducted Spurious Emission (GFSK, Ch78, 1GHz - 3GHz)

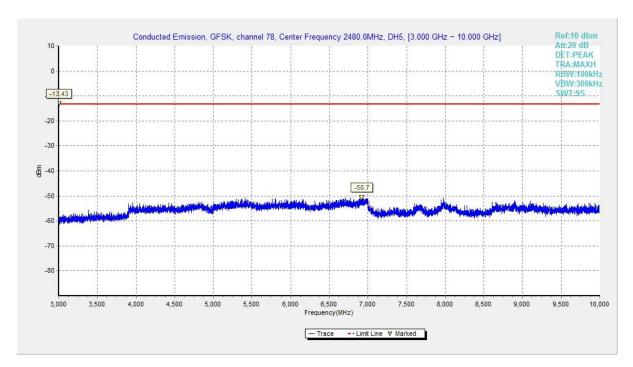


Fig. 21 Conducted Spurious Emission (GFSK, Ch78, 3GHz - 10GHz)

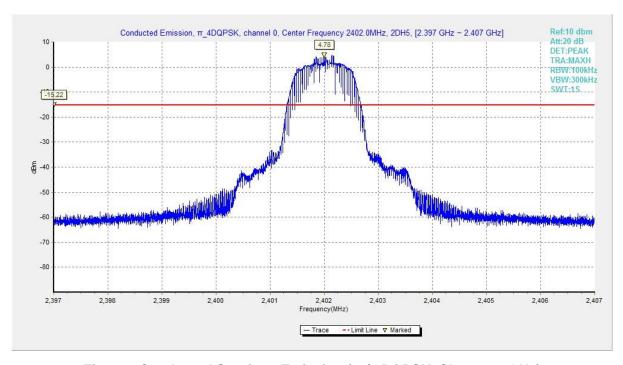


Fig. 22 Conducted Spurious Emission (π /4 DQPSK, Ch0, 2.402GHz)

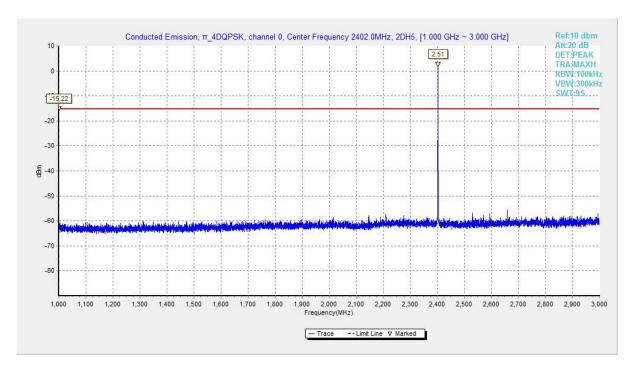


Fig. 23 Conducted Spurious Emission (π /4 DQPSK, Ch0, 1GHz - 3GHz)

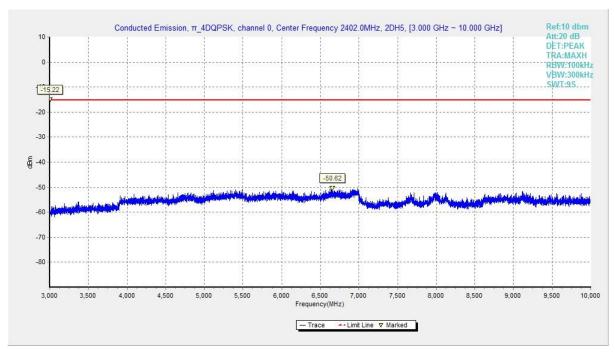


Fig. 24 Conducted Spurious Emission (π /4 DQPSK, Ch0, 3GHz - 10GHz)

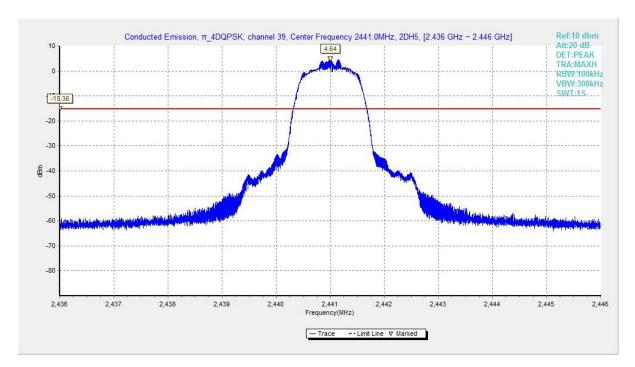


Fig. 25 Conducted Spurious Emission (π /4 DQPSK, Ch39, 2.441GHz)

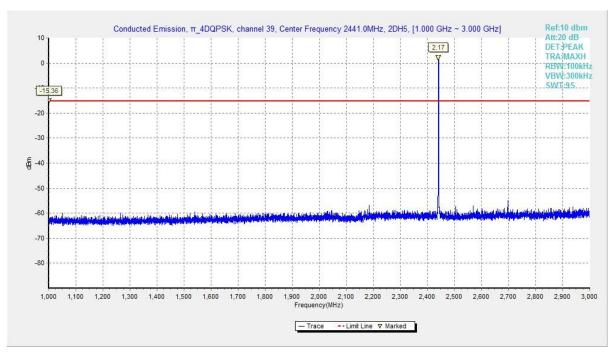


Fig. 26 Conducted Spurious Emission (π/4 DQPSK, Ch39, 1GHz - 3GHz)

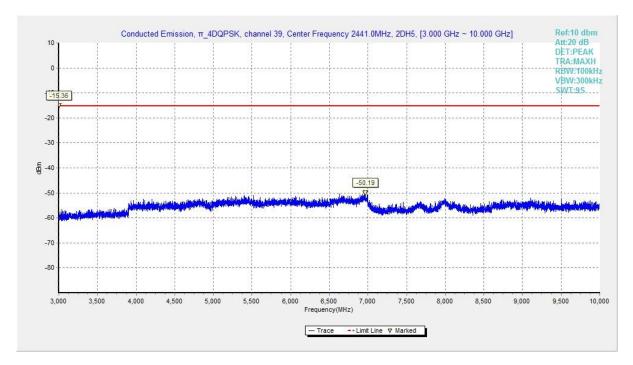


Fig. 27 Conducted Spurious Emission (π /4 DQPSK, Ch39, 3GHz - 10GHz)

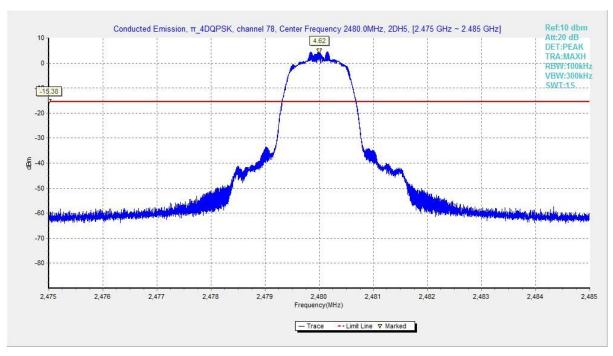


Fig. 28 Conducted Spurious Emission (π /4 DQPSK, Ch78, 2.480GHz)

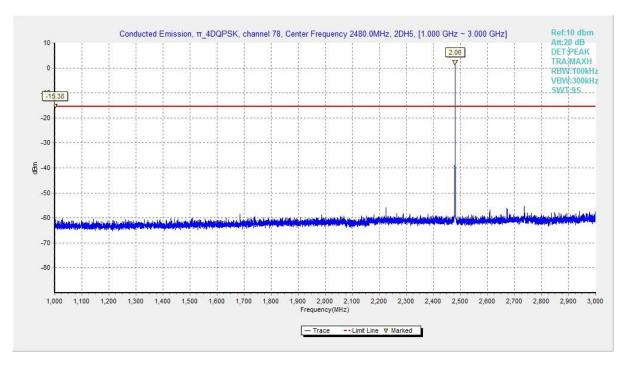


Fig. 29 Conducted Spurious Emission (π /4 DQPSK, Ch78, 1GHz - 3GHz)

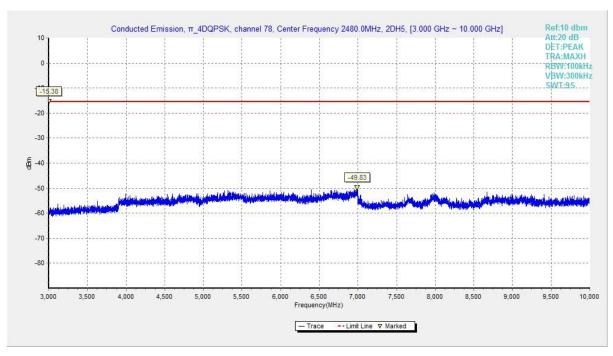


Fig. 30 Conducted Spurious Emission (π /4 DQPSK, Ch78, 3GHz - 10GHz)

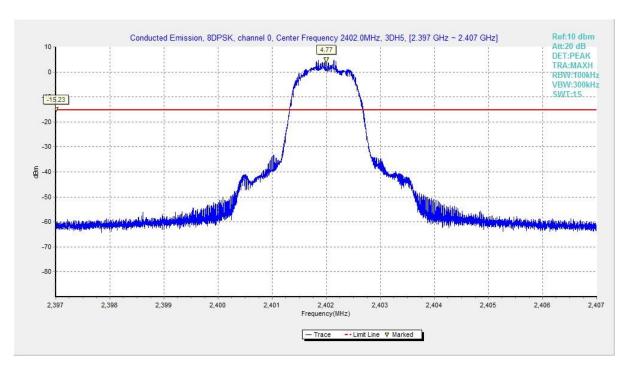


Fig. 31 Conducted Spurious Emission (8DPSK, Ch0, 2.402GHz)

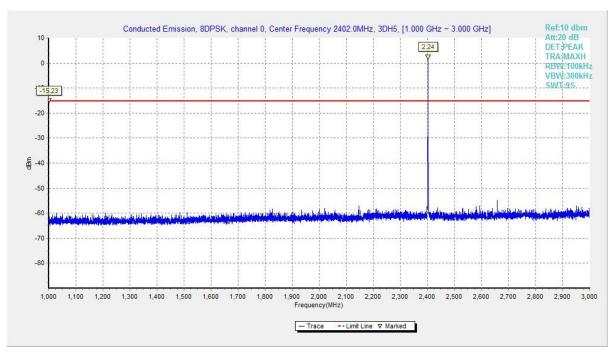


Fig. 32 Conducted Spurious Emission (8DPSK, Ch0, 1GHz - 3GHz)

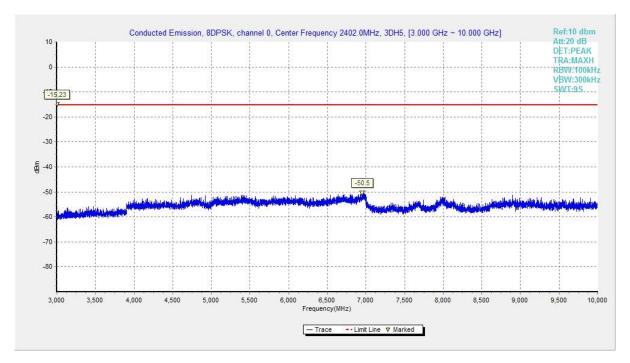


Fig. 33 Conducted Spurious Emission (8DPSK, Ch0, 3GHz - 10GHz)

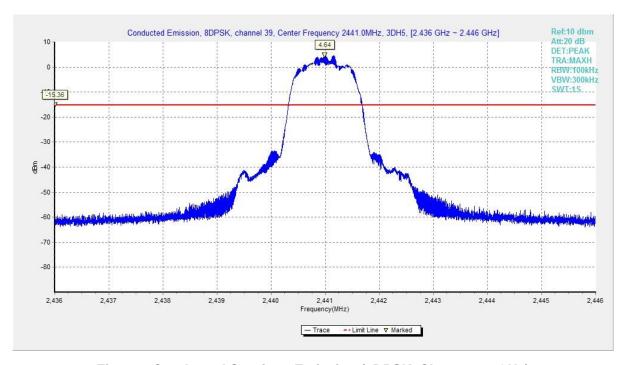


Fig. 34 Conducted Spurious Emission (8DPSK, Ch39, 2.441GHz)

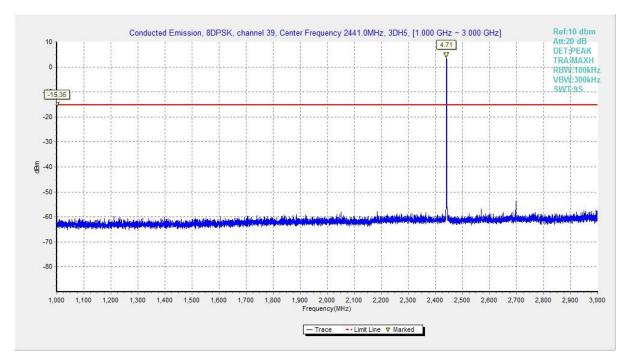


Fig. 35 Conducted Spurious Emission (8DPSK, Ch39, 1GHz - 3GHz)

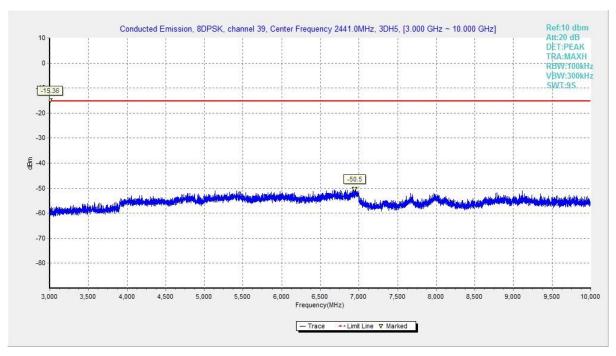


Fig. 36 Conducted Spurious Emission (8DPSK, Ch39, 3GHz - 10GHz)

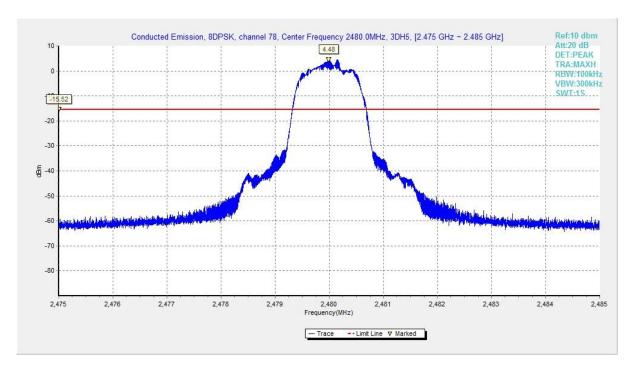


Fig. 37 Conducted Spurious Emission (8DPSK, Ch78, 2.480GHz)

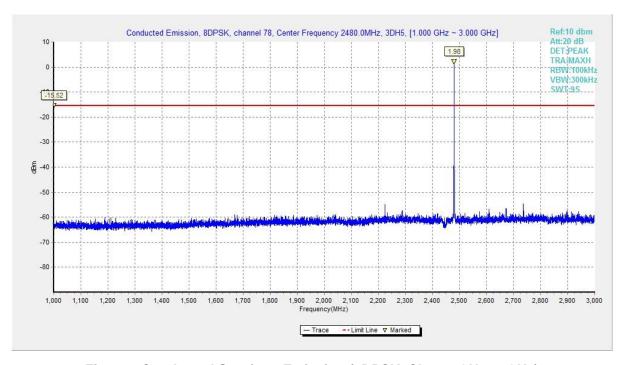


Fig. 38 Conducted Spurious Emission (8DPSK, Ch78, 1GHz - 3GHz)

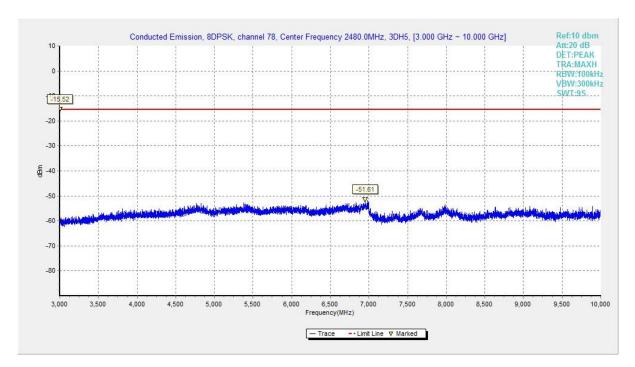


Fig. 39 Conducted Spurious Emission (8DPSK, Ch78, 3GHz - 10GHz)



Fig. 40 Conducted Spurious Emission (All channel, 30MHz - 1GHz)

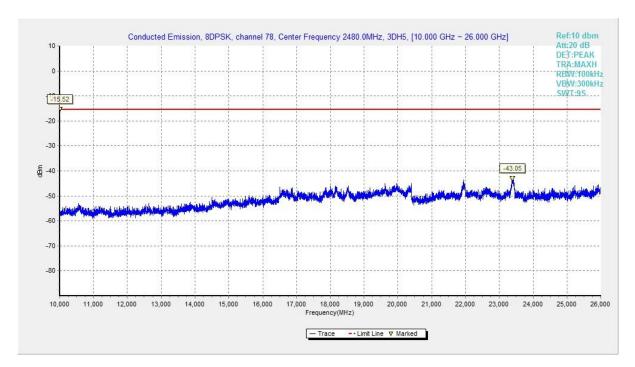


Fig. 41 Conducted Spurious Emission All channel, 10GHz - 26GHz)

A.5 Radiated Emission

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247, 15.205, 15.209 &	20dB below peak output power
RSS-247 section 5.5/RSS-Gen section 6.13	

In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Limit in restricted band:

Frequency of emission (MHz)	Field strength (μV/m)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Test Condition:

The EUT was placed on a non-conductive table. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

Frequency of emission (MHz)	RBW/VBW	Sweep Time (s)
30-1000	120kHz/300kHz	5
1000-4000	1MHz/3MHz	15
4000-18000	1MHz/3MHz	40
18000-26500	1MHz/3MHz	20

Note: According to the performance evaluation, the radiated emission margin of EUT is over 20dB in the band from 9kHz to 30MHz. Therefore, the measurement starts from 30MHz to tenth harmonic.

The measurement results include the horizontal polarization and vertical polarization measurements.