

FCC CFR47 PART 15 SUBPART C ISED CANADA RSS-210 ISSUE 10

CERTIFICATION TEST REPORT

FOR

CO DETECTOR

MODEL NUMBER: 5800COV

FCC ID: CFS8DL-5800COV IC: 573F-5800COV

REPORT NUMBER: R13860638-E1

ISSUE DATE: 2021-09-21

Prepared for ADEMCO INC. 2 CORPORATE CENTER DR MELVILLE NY, 11747, USA

Prepared by
UL LLC
12 LABORATORY DR.
RESEARCH TRIANGLE PARK, NC 27709 USA
TEL: (919) 549-1400

REVISION HISTORY

Rev.	Issue Date	Revisions	Revised By
1	2021-08-06	Initial Issue	Brian T. Kiewra
2	2021-09-21	Updated with new 99% Occupied Bandwidth & 20dB Bandwidth data	Mike Antola

TABLE OF CONTENTS

REVISI	ION HISTORY	2
1. AT	TESTATION OF TEST RESULTS	4
2. TE	ST METHODOLOGY	5
3. FA	CILITIES AND ACCREDITATION	5
4. DE	ECISION RULES AND MEASUREMENT UNCERTAINTY	5
4.1.	METROLOGICAL TRACEABILITY	5
4.2.	DECISION RULES	5
4.3.	MEASUREMENT UNCERTAINTY	6
4.4.	SAMPLE CALCULATION	6
5. EC	QUIPMENT UNDER TEST	7
5.1.	DESCRIPTION OF EUT	7
5.2.	DESCRIPTION OF AVAILABLE ANTENNAS	7
5.3.	SOFTWARE AND FIRMWARE	7
5.4.	WORST-CASE CONFIGURATION AND MODE	7
5.5.	MODIFICATIONS	7
5.6.	DESCRIPTION OF TEST SETUP	8
6. TE	ST AND MEASUREMENT EQUIPMENT	9
7. AN	ITENNA PORT TEST RESULTS	10
7.1.	20 dB AND 99% BW	10
7.2.	DUTY CYCLE	12
7.3.	TRANSMISSION TIME	15
7.4.	SUPERVISION TRANSMISSIONS	16
8. RA	ADIATED EMISSION TEST RESULTS	17
8.1.	TX RADIATED SPURIOUS EMISSION	17
9. SE	TUP PHOTOS	24
END O	F TEST REPORT	28

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: Ademco, Inc.

> 2 Corporate Center Melville, NY 11747, USA

EUT DESCRIPTION: CO Detector

MODEL: 5800COV

SERIAL NUMBER: A019-5261

SAMPLE RECEIPT DATE: 2021-06-21

DATE TESTED: 2021-07-13 to 2021-09-21

APPLICABLE STANDARDS

STANDARD TEST RESULTS FCC PART 15 SUBPART C Complies ISED CANADA RSS-210 Issue 10, Annex A Complies ISED CANADA RSS-GEN Issue 5 + A2 Complies

UL LLC tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL LLC and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL LLC will constitute fraud and shall nullify the document.

Approved & Released For UL LLC By:

Prepared By:

Michael Antola Staff Engineer

Consumer Technology Division

Mirled 12

UL LLC

Brian T. Kiewra **Project Engineer**

Consumer Technology Division

Ful. K

UL LLC

Page 4 of 28

UL LLC 12 Laboratory Dr., RTP, NC 27709 FORM NO: 03-EM-F00858 TEL: (919) 549-1400

DATE: 2021-09-21

IC: 573F-5800COV

This report shall not be reproduced except in full, without the written approval of UL LLC.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2013, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 5+A2, and RSS-210 Issue 10.

3. FACILITIES AND ACCREDITATION

UL LLC is accredited by A2LA, certification # 0751.06, for all testing performed within the scope of this report. Testing was performed at the locations noted below.

	Address	ISED CABID	ISED Company Number	FCC Registration
	Building: 12 Laboratory Dr RTP, NC 27709, U.S.A	US0067	2180C	703469
\boxtimes	Building: 2800 Perimeter Park Dr. Suite B Morrisville, NC 27560, U.S.A	030007	27265	703469

4. DECISION RULES AND MEASUREMENT UNCERTAINTY

4.1. METROLOGICAL TRACEABILITY

All test and measuring equipment utilized to perform the tests documented in this report are calibrated on a regular basis, with a maximum time between calibrations of one year or the manufacturers' recommendation, whichever is less, and where applicable is traceable to recognized national standards.

4.2. DECISION RULES

The Decision Rule is based on Simple Acceptance in accordance with ISO Guide 98-4:2012 Clause 8.2. (Measurement uncertainty is not taken into account when stating conformity with a specified requirement.)

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	U _{Lab}
Worst Case Radiated Disturbance, 9 kHz to 30 MHz	2.84 dB
Worst Case Radiated Disturbance, 30 to 1000 MHz	6.01 dB
Worst Case Radiated Disturbance, 1000 to 18000 MHz	4.73 dB
Worst Case Occupied Bandwidth	2.75%

Uncertainty figures are valid to a confidence level of 95%.

4.4. SAMPLE CALCULATION

RADIATED EMISSIONS

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB)

36.5 dBuV + 18.7 dB/m + 0.6 dB - 26.9 dB = 28.9 dBuV/m

MAINS CONDUCTED EMISSIONS

Where relevant, the following sample calculation is provided:

Final Voltage (dBuV) = Measured Voltage (dBuV) + Cable Loss (dB) + Limiter Factor (dB) + LISN Insertion Loss.

 $36.5 \, dBuV + 0 \, dB + 10.1 \, dB + 0 \, dB = 46.6 \, dBuV$

DATE: 2021-09-21 IC: 573F-5800COV

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a 344.94MHz periodic operated transmitter intended for operation in a wireless smoke detector unit. The device is powered from one (1) CR123A-type battery.

5.2. DESCRIPTION OF AVAILABLE ANTENNAS

The antenna(s) gain and type, as provided by the manufacturer' are as follows:

The radio utilizes an PCB trace antenna, with a maximum gain of -7 dBi.

5.3. SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was v1.1.8.

5.4. WORST-CASE CONFIGURATION AND MODE

The EUT operates only at a single channel. As such, all testing performed at this channel while operating at its highest intended power setting.

The fundamental of the EUT was investigated in three orthogonal orientations X,Y,Z, it was determined that X orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in X orientation.

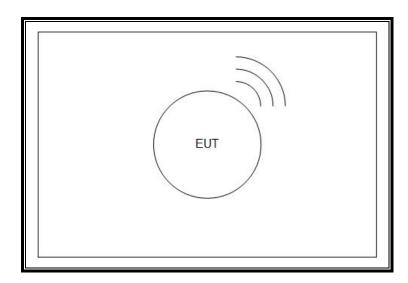
5.5. MODIFICATIONS

No modifications were made during testing.

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List								
Description	Description Manufacturer Model Serial Number FCC ID							
None								


I/O CABLES

I/O Cable List								
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length (m)	Remarks		
None								

TEST SETUP

The EUT is configured and tested as a standalone device.

SETUP DIAGRAM FOR TESTS

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment Used - Radiated Disturbance Emissions Test Equipment (Morrisville - Chamber 4)

Equipment ID	Description	Manufacturer/Brand	Model Number	Last Cal.	Next Cal.	
0.009-30MHz						
AT0059	Active Loop Antenna	EMCO	6502	2020-08-06	2021-08-06	
30-1000 MHz						
206210	Hybrid Broadband Antenna	Sunol Sciences Corp.	JB3	2021-03-11	2022-03-11	
1-18 GHz						
206211	Double-Ridged Waveguide Horn Antenna, 1 to 18 GHz	ETS Lindgren	3117	2021-03-11	2022-03-11	
Gain-Loss Chains	Gain-Loss Chains					
C4-SAC01	Gain-loss string: 0.009-30MHz	Various	Various	2021-05-07	2022-05-07	
C4-SAC02	Gain-loss string: 25-1000MHz	Various	Various	2021-05-07	2022-05-07	
C4-SAC03	Gain-loss string: 1- 18GHz	Various	Various	2021-05-07	2022-05-07	
Receiver & Softw	are					
206496	Spectrum Analyzer	Rohde & Schwarz	ESW44	2021-03-09	2022-03-09	
SOFTEMI	EMI Software	UL	Version	9.5 (28 Jun 20	21)	
Additional Equip	ment used					
s/n 200037635	Environmental Meter	Fisher Scientific	06-662-4	2020-01-21	2022-01-21	
207639	10dB, DC-18GHz, 5W	Mini-Circuits	BW-N10W5	2021-05-06	2022-05-06	
HPF012	1GHz high-pass filter, 2W, F _{high} =18GHz	Micro-Tronics	HPM18129	2021-02-15	2022-02-15	

7. ANTENNA PORT TEST RESULTS

7.1. 20 dB AND 99% BW

LIMITS

FCC §15.231 (c)

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

RSS-210 A1.3

For the purpose of Section A1.1, the 99% Bandwidth shall be no wider than 0.25% of the center frequency for devices operating between 70-900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency.

TEST PROCEDURE

ANSI C63.10

The transmitter output is connected to the spectrum analyzer.

20dB Bandwidth: The RBW is set to 10 KHz. The VBW is set to 30 KHz. The sweep time is coupled. Bandwidth is determined at the points 20 dB down from the modulated carrier.

99% Bandwidth: The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

Note: Because the measured signal is CW or CW-like adjusting the RBW per C63.10 would not be practical since the measured bandwidth will always follow the RBW and the result will be approximately twice the RBW.

RESULTS

No non-compliance noted:

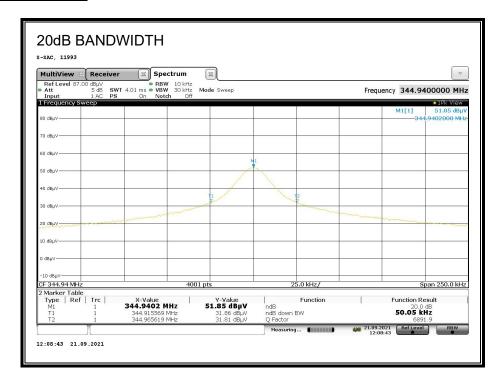
20dB Bandwidth

Frequency	20dB Bandwidth	Limit	Margin
(MHz)	(kHz)	(kHz)	(kHz)
344.94	50.05	862.35	-812.3

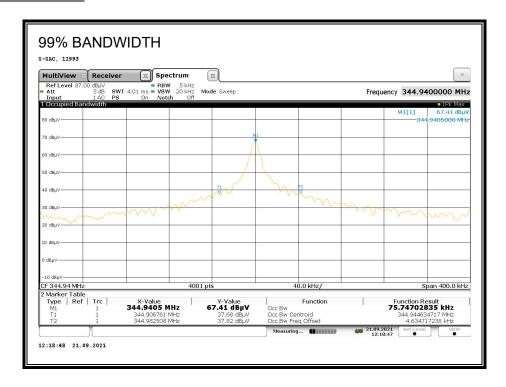
99% Bandwidth

Frequency	99% Bandwidth	Limit	Margin
(MHz)	(kHz)	(kHz)	(kHz)
344.94	75.75	862.35	-786.6

Page 10 of 28


TEL: (919) 549-1400

FORM NO: 03-EM-F00858


DATE: 2021-09-21

IC: 573F-5800COV

20dB BANDWIDTH

99% BANDWIDTH

Page 11 of 28

DATE: 2021-09-21 IC: 573F-5800COV

7.2. DUTY CYCLE

LIMITS

FCC §15.35 (c)

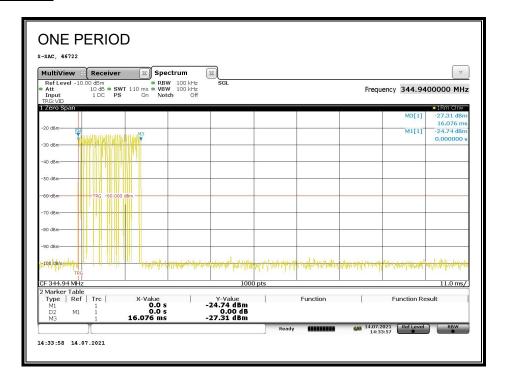
The measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted with any application for certification or shall be retained in the measurement data file for equipment subject to notification or verification.

TEST PROCEDURE

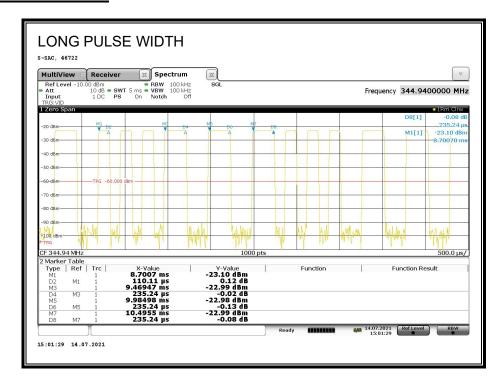
The transmitter output is connected to a spectrum analyzer or radiated field strength. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The sweep time is coupled and the span is set to 0 Hz. The number of pulses is measured and calculated in a 110ms scan.

CALCULATION

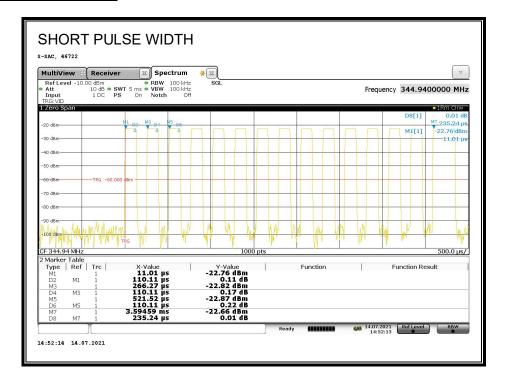
Average Reading = Peak Reading (dBuV/m) + 20log (Duty Cycle), Where Duty Cycle is (# of long pulses * long pulse width) + (# of short pulses * short pulse width) / 100 or T

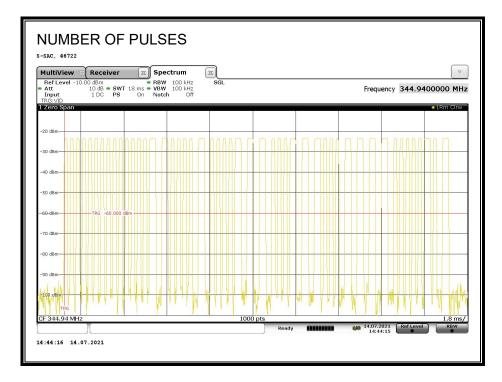

RESULTS

No non-compliance noted:


One	Long Pulse	# of	Short	# of	Duty	20*Log
Period	Width	Long	Width	Short	Cycle	Duty Cycle
(ms)	(ms)	Pulses	(ms)	Pulses		(dB)

TEL: (919) 549-1400


ONE PERIOD


LONG PULSE WIDTH

SHORT PULSE WIDTH

NUMBER OF PULSES

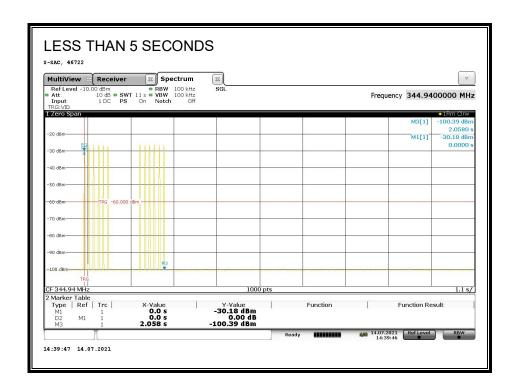
Page 14 of 28

7.3. TRANSMISSION TIME

LIMITS

FCC §15.231 (a) (2)

RSS-210 A1.1 (b)


A transmitter activated automatically shall cease transmission within 5 seconds after activation.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer or radiated field strength. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The sweep time is set to 11 seconds and the span is set to 0 Hz.

RESULTS

No non-compliance noted:

7.4. SUPERVISION TRANSMISSIONS

LIMITS

FCC §15.231 (a) (3)

Periodic transmissions at regular predetermined intervals are not permitted. However, polling or supervision transmissions, including data, to determine system integrity of transmitters used in security or safety applications are allowed if the total duration of transmissions does not exceed more than two seconds per hour for each transmitter. There is no limit on the number of individual transmissions, provided the total transmission time does not exceed two seconds per hour

RESULTS

Tester:	37903
Date:	2021-07-29

1. According to manufacturer manual, the interval of supervisory signal transmission is once every 60-70 minutes.

2. Total transmission time:

Short Pulse Width (ms)	Number of Short Pulse	Long Pulse Width (ms)	Number of Long Pulse	One Pulse Stream (ms)	Total Pulse Streams per hour	Total Transmission Time per hour (ms)
0.11	34	0.24	15	7.340	1.00	7.34

DATE: 2021-09-21

IC: 573F-5800COV

8. RADIATED EMISSION TEST RESULTS

8.1. TX RADIATED SPURIOUS EMISSION

LIMITS

FCC §15.231 (b) RSS-210 A 1.2

In addition to the provisions of § 15.205, the field strength of emissions from Intentional radiators operated under this section shall not exceed the following:

Fundamental	Field Strength of	Field Strength of
Frequency	Fundamental Frequency	Spurious Emissions
(MHz)	(microvolts/meter)	(microvolts/meter)
40.66 - 40.70	2,250	225
70 - 130	1,250	125
130 - 174	1,250 to 3,750 ¹	125 to 375 ¹
174 - 260	3,750	375
260 - 470	3,750 to 12,500 ¹	375 to 1,250 ¹
Above 470	12,500	1,250

¹ Linear interpolation

§15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	(2)
13.36 – 13.41	322 - 335.4		·

Page 17 of 28

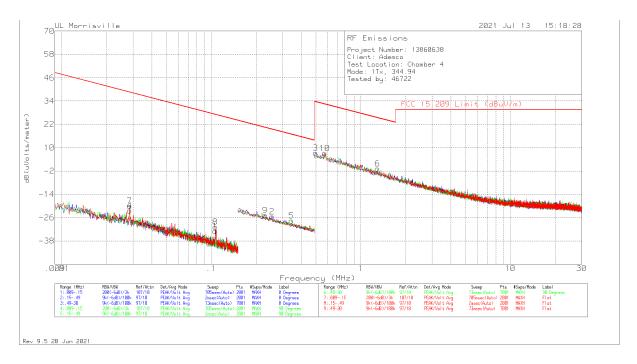
DATE: 2021-09-21 IC: 573F-5800COV

1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6

§15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

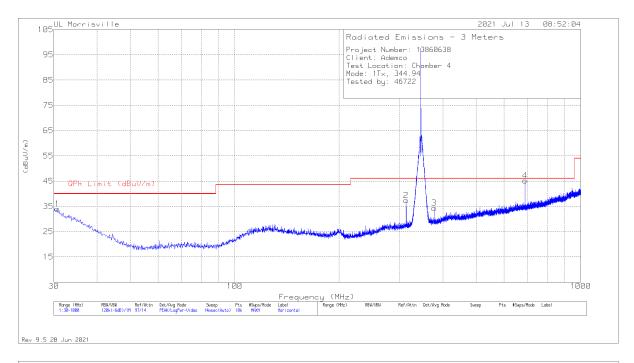
Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
30 88	100 **	3
88 216	150 **	3
216 960	200 **	3
Above 960	500	3

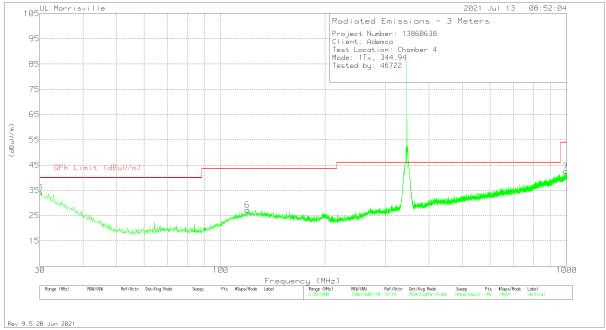

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54 72 MHz, 76 88 MHz, 174 216 MHz or 470 806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

Note: The limits in CFR 47, Part 15, Subpart C, paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as report in the table) using free space impedance of 377 Ohms. For example, the measurement at frequency 107.76 kHz resulted in a level of 26.96 dBuV/m, which is equivalent to -32.25 - 51.5 = -83.75 dBuA/m, which has the same margin, -59.21 dB to the corresponding RSS-Gen Table 6 limit as it has to 15.209(a) limit.

RESULTS


HARMONICS AND TX SPURIOUS EMISSION (0.009 - 30 MHz)



Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	AT0059 (dB/m)	Cbl (dB)	Dist. Corr. Factor (dB)	Corrected Reading dB(uVolts/meter)	FCC 15.209 Limit (dBuV/m)	_	Azimuth (Degs)	Loop Angle
1	.10634	36.54	Pk	10.5	.1	-80	-32.86	27.07	-59.93	0-360	0 degs
2	.25557	44.2	Pk	10.2	.1	-80	-25.5	19.45	-44.95	0-360	0 degs
3	.49843	36.74	Pk	10.4	.2	-40	7.34	33.65	-26.31	0-360	0 degs
4	.02853	43.99	Pk	13.5	.1	-80	-22.41	38.5	-60.91	0-360	90 degs
5	.34465	42.11	Pk	10.2	.1	-80	-27.59	16.86	-44.45	0-360	90 degs
6	1.29526	28.34	Pk	10.6	.2	-40	86	25.36	-26.22	0-360	90 degs
7	.02845	46.34	Pk	13.5	.1	-80	-20.06	38.52	-58.58	0-360	Flat
8	.10655	38.57	Pk	10.5	.1	-80	-30.83	27.05	-57.88	0-360	Flat
9	.22973	44.73	Pk	10.3	.1	-80	-24.87	20.38	-45.25	0-360	Flat
10	.57432	36.55	Pk	10.4	.2	-40	7.15	32.42	-25.27	0-360	Flat

Pk - Peak detector

FUNDAMENTAL, HARMONICS AND TX SPURIOUS EMISSION (30 - 1000 MHz)

Project Number: 13860638

Client: Ademco Test Location: S-SAC Mode: Fundamental Tested by: 46722

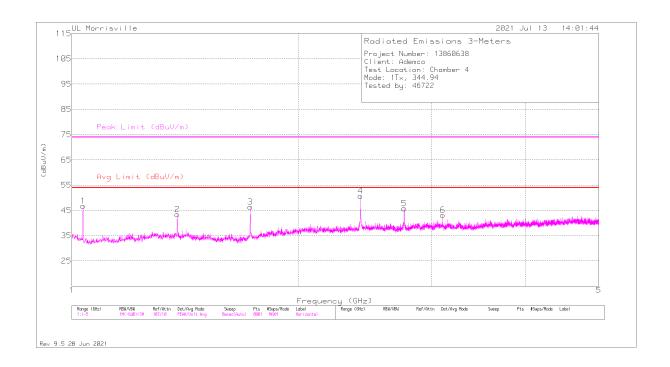
Date Tested: 2021-07-12

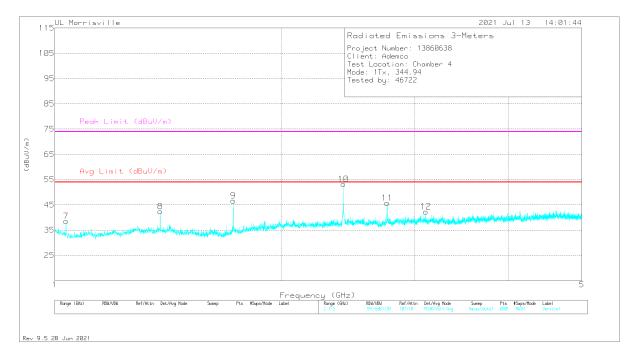
Frequency (MHz)	Meter Reading (dBuV)	Det	AT0075 AF (dB/m)	Amp/Cbl (dB)	Corrected Reading (dBuV/m)	FCC 15.231 Peak Limit [dBuV/m]	Peak Margin [dB]	DCCF (dB)	Average Field Strength [dBuV/m]	FCC 15.231 Average Limit [dBuV/m]	Average Margin [dB]	Azimuth (Degs)	Height (cm)	Polarity
344.94075	72.35	Pk	20.3	3.8	96.45	97.25	-0.80	-22.76	73.69	77.25	-3.56	198	102	Н
344.941	60.58	Pk	20.3	3.8	84.68	97.25	-12.57	-22.76	61.92	77.25	-15.33	263	305	V

Pk - Peak detector

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	AT0075 AF (dB/m)	Amp/Cbl (dB)	Pad (dB)	Corrected Reading (dBuV/m)	QP Limit (dBuV/m)	QP Margin (dB)	FCC 15.231 Peak Limit [dBuV/m]	Peak Margin [dB]	DCCF (dB)	Average Field Strength [dBuV/m]	FCC 15.231 Average Limit [dBuV/m]	Average Margin [dB]	Azimuth (Degs)	Height (cm)	Polarity
1	30.7481	22.8	Qp	25.4	-31.3	9.9	26.8	40	-13.2	-	-	1	-	-	-	195	382	Н
2	312.95	37.12	Pk	18.40	-28.20	10	37.3	46.02	-8.7	-	-	-	-	-	-	0-360	100	Н
3	376.969	32.33	Pk	19.7	-27.7	10	34.33	46.02	-11.69	-	-	,	-	-	-	0-360	100	Н
4	689.8814	37.98	Pk	24.5	-25.8	10	46.68	-	-	77.25	-30.6	-22.76	23.9	57.3	-33.3	75	102	Н
5	30.1232	22.9	Qp	25.9	-31.3	9.9	27.4	40	-12.6	-	-	-	-	-	-	208	253	V
6	* 119.434	29.42	Pk	17.9	-29.9	9.9	27.32	43.52	-16.2	-	-		-	-	-	0-360	200	V
7	* 993.21	27.41	Pk	27.7	-22.5	10	42.61	53.97	-11.36	-	-	-	-	-	-	0-360	100	V

^{* -} indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

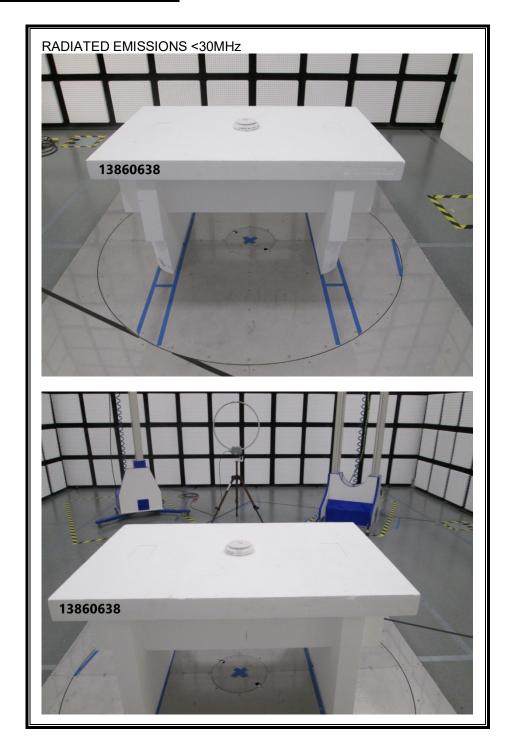

Pk - Peak detector


Qp - Quasi-Peak detector

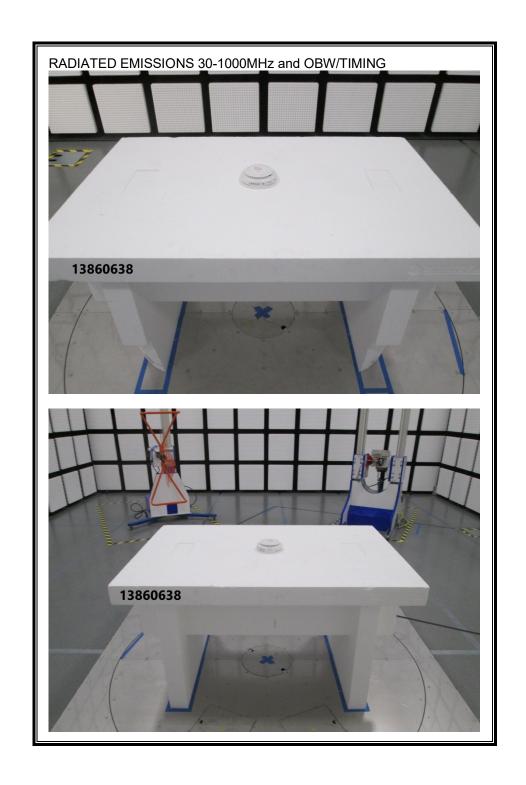
NOTE: Av = Pk + DC Corr (Duty Cycle Correction Factor)

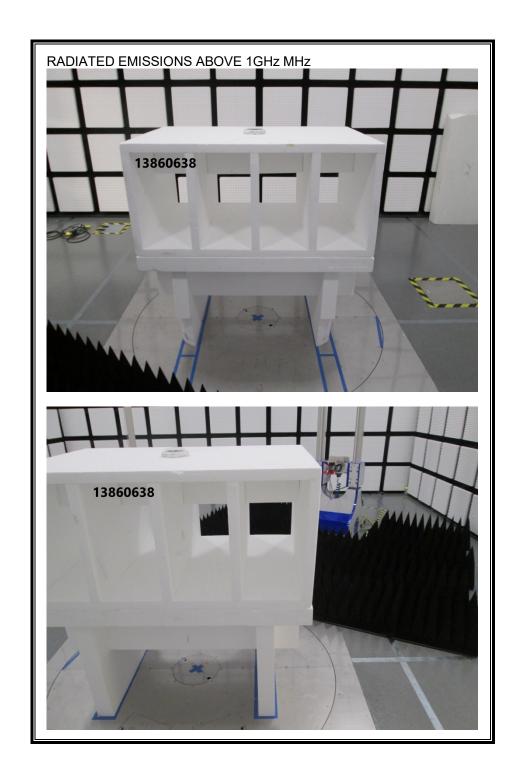
^{** -} indicates frequency in Taiwan NCC LP0002 Restricted Band

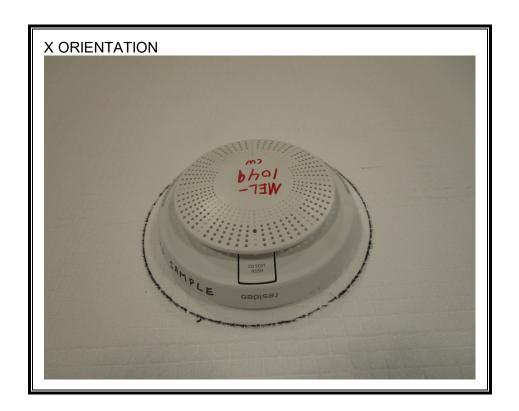
HARMONICS AND TX SPURIOUS EMISSIONS ABOVE 1GHz


Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	206211 (dB/m)	Amp/Cbl/Fltr/Pad (dB)		Corrected Reading (dBuV/m)	Limit	Peak Margin [dB]	DCCF (dB)	Average Field Strength [dBuV/m]	[dBul//m]	Average Margin [dB]	Azimuth (Degs)	Height (cm)	Polarity
1	* 1.0345	54.49	Pk	26.8	-35.9	1.4	46.79	74.0	-27.21	-22.76	24.03	54.0	-29.97	0-360	100	Н
2	* 1.3795	49.92	Pk	28.9	-36.5	1.1	43.42	74.0	-30.58	-22.76	20.66	54.0	-33.34	0-360	100	Н
5	* 2.7595	49.7	Pk	32	-36.5	.5	45.7	74.0	-28.30	-22.76	22.94	54.0	-31.06	0-360	300	Н
7	* 1.0345	46.29	Pk	26.8	-35.9	1.4	38.59	74.0	-35.41	-22.76	15.83	54.0	-38.17	0-360	300	V
8	* 1.3795	48.91	Pk	28.9	-36.5	1.1	42.41	74.0	-31.59	-22.76	19.65	54.0	-34.35	0-360	400	V
11	* 2.7595	49.81	Pk	32	-36.5	.5	45.81	74.0	-28.19	-22.76	23.05	54.0	-30.95	0-360	400	V
3	1.7245	53.55	Pk	28.9	-36.6	.5	46.35	77.3	-30.90	-22.76	23.59	57.3	-33.66	0-360	300	Н
9	1.7245	53.81	Pk	28.9	-36.6	.5	46.61	77.3	-30.64	-22.76	23.85	57.3	-33.40	0-360	400	V
4	2.41459	56.39	Pk	32.2	-36.6	.5	52.49	77.3	-24.76	-22.76	29.73	57.3	-27.52	289	100	Н
10	2.41461	58.16	Pk	32.2	-36.6	.5	54.26	77.3	-22.99	-22.76	31.50	57.3	-25.75	260	336	V
6	3.1045	45.68	Pk	32.9	-36	.6	43.18	77.3	-34.07	-22.76	20.42	57.3	-36.83	0-360	300	Н
12	3.1045	44.84	Pk	32.9	-36	.6	42.34	77.3	-34.91	-22.76	19.58	57.3	-37.67	0-360	400	V

^{* -} indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector


NOTE: Av = Pk + DC Corr (Duty Cycle Correction Factor)


9. SETUP PHOTOS


RADIATED EMISSIONS SETUP

Page 24 of 28

Page 27 of 28

END OF TEST REPORT