


APPENDIX A

Derivation Of Limit For Field Strength Of Spurious Radiation For A 3 Meter Test Range, §2.1053

Assume the test sample has the gain of a Dipole Antenna, G_D , as provided by §2.1053(a).

Then the Effective Radiated Power (E.R.P) from the test sample is:

$$\text{E.R.P.} = G_D * P_T \text{ (Watts)} \quad \text{where : } P_T = \text{RF power into the Dipole Antenna} \\ (\text{RF Peak Power Output} = 5 \text{Watts}) \\ G_D = \text{Gain of Dipole Antenna (1.64)}$$

Let the 7720PLUS be a Radiator having the gain of a dipole at the center of a sphere that has a radius of 3 meters (test range distance).

$$\text{The Surface Area of a Sphere} = 4\pi R^2 \quad [\text{m}^2]$$

$$\text{The Power Density at the Receiving Isotropic Antenna} = P_{DRX} = (G_D * P_T) / 4\pi R^2 \quad [\text{W/ m}^2]$$

$$\text{The Field Strength at the Receiving Isotropic Antenna} = F.S._{RX} = (120\pi * P_{DRX})^{1/2} \quad [\text{V/m}] \\ \text{where } 120\pi = \text{Impedance of Free Space}$$

$$F.S._{RX} \text{ in dBuV} = 20 * \log_{10} (((120\pi * (G_D * P_T) / 4\pi R^2)^{1/2}) / 1\mu\text{V}) \quad [\text{dBuV/m}]$$

$$\text{This reduces to: } F.S._{RX} \text{ in dBuV} = 20 * \log_{10} ((30 * G_D * P_T)^{1/2} / 3) / 1\mu\text{V}$$

$$\text{As per §101.113(6)(iii), Spurious Emissions shall be } < -(43 + 10 * \log_{10}(P_T)) = -50 \text{ dBc}$$

$$\text{then: Limit @ 3 Meters of Spurious Emission} = F.S._{\text{Max SPUR. EMISSION}} \quad [\text{dBuV/m}] \\ F.S._{\text{Max SPUR. EMISSION}} = 20 * \log_{10} ((30 * G_D * P_T)^{1/2} / 3) / 1\mu\text{V} - 50 \text{ dB} \quad [\text{dBuV/m}] \\ \text{where: } P_T = 5 \text{ Watts and } G_D = 1.64$$

$$F.S._{\text{Max SPUR. EMISSION}} = 20 * \log_{10} ((30 * 1.64 * 5)^{1/2} / 3) / 1\mu\text{V} - 50 \text{ dB} \quad [\text{dBuV/m}]$$

$$\text{Field Strength of Spurious Radiation Limit} = F.S._{\text{Max SPUR. EMISSION}} = 84.4 \text{ dBuV/m}$$