KTL Test Report:	9L0235R1US
Applicant:	Fujitsu 2801 Telecom Parkway Richardson, Texas 75082
Equipment Under Test: (E.U.T.)	EC 2500
FCC ID:	CFD825FBCP-201
In Accordance With:	FCC Part 22, Subpart H 800 MHz Cellular Subscriber Units
Tested By:	KTL Dallas Inc. 802 N. Kealy Lewisville, TX 75057-3136
Authorized By:	
	Tom Tidwell, RF Group Manager
Date:	November, 1999
Total Number of Pages:	48
	Not for Use or Disclosure Outside of Fujitsu Network Communications, Inc. or

Fujitsu Network Communications, Inc. or KTL Dallas, Inc.

Table of Contents

Section 1.	Summary of Test Results	.3
Section 2.	General Equipment Specification	.5
Section 3.	RF Power Output	.9
Section 4.	Modulation Characteristics1	13
Section 5.	Occupied Bandwidth1	17
Section 6.	Spurious Emissions at Antenna Terminals2	22
Section 7.	Field Strength of Spurious2	<u>29</u>
Section 8.	Frequency Stability	32
Section 9.	Test Equipment List	34
ANNEX A -	TEST DETAILS	35
ANNEX B -	TEST DIAGRAMS	15

EQUIPMENT: EC 2500 FCC ID: CFD825FBCP-201

Section 1. **Summary of Test Results**

Manufacturer:	Fujitsu
---------------	---------

Model No.: EC 2500

Serial No.: 0008

General: All measurements are traceable to national standards.

These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with FCC Part 22, Subpart H.

\square	New Submission		Production Unit
	Class II Permissive Change	\square	Pre-Production Unit

THIS TEST REPORT RELATES ONLY TO THE ITEM(S) TESTED.

THE FOLLOWING DEVIATIONS FROM, ADDITIONS TO, OR EXCLUSIONS FROM THE TEST SPECIFICATIONS HAVE BEEN MADE.

See " Summary of Test Data".

NVLAP LAB CODE: 100426-0

TESTED BY:

David Light

DATE: 10/29/99 – 11/2/99

KTL Dallas Inc. authorizes the above named company to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. KTL Dallas Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

•

FCC PART 22, SUBPART H 800 MHz CELLULAR SUBSCRIBER UNITS

EQUIPMENT: EC 2500 FCC ID: CFD825FBCP-201

PROJECT NO. 9L0235R1US

Summary Of Test Data

NAME OF TEST	PARA.	SPEC.	MEAS.	RESULT
	NO.			
RF Power Output	2.1046	7W ERP	372 mW	Complies
Audio Frequency Response	2.1047	6dB/Octave	N/A	N/A
Audio Low Pass Filter Response	2.1047	Graph	N/A	N/A
Modulation Limiting	2.1047	Graph	N/A	N/A
Occupied Bandwidth (Voice & SAT)	2.1049	Mask	N/A	N/A
Occupies Bandwidth (WB Data & SAT)	2.1049	Mask	N/A	N/A
Occupied Bandwidth (ST)	2.1049	Mask	N/A	N/A
Occupied Bandwidth (SAT)	2.1049	Mask	N/A	N/A
Occupied Bandwidth (SAT)	2.1049	Not Specified	1.28 MHz	Complies
Spurious Emissions at Antenna Terminals	2.1051	-13 dBm	-14.5 dBm	Complies
Field Strength of Spurious Emissions	2.1053	82.3 dBµV/m	54.3 dBµV/m	Complies
Frequency Stability	2.1055	2.5 ppm	.056 ppm	Complies

Footnotes: (1) This device is CDMA only, therefore no analogue related testing was performed.

PROJECT NO. 9L0235R1US

Section 2. General Equipment Specification

Frequency Range:	824-849 MHz (Tx) 869-894 MHz (Rx)
Necessary Bandwidth:	1.23 MHz
Type of Modulation and Designator:	IS-95 CDMA, 1M23G7W
Output Impedance:	50 ohms
RF Power Output (rated):	+27 dBm maximum
Number of Channels:	788
Duty Cycle:	Continuous
Channel Spacing:	30 kHz
Operator Selection of Frequency:	Software Controlled
Power Output Adjustment Capability:	Software Controlled

EQUIPMENT: EC 2500 FCC ID: CFD825FBCP-201

PROJECT NO. 9L0235R1US

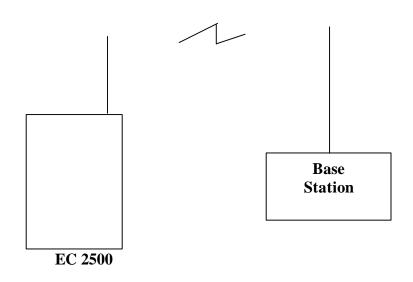
Description of ModificationsFor Class II Permissive Change

Not Applicable

EQUIPMENT: EC 2500 FCC ID: CFD825FBCP-201

PROJECT NO. 9L0235R1US

Modifications Made During Testing


EQUIPMENT: EC 2500 FCC ID: CFD825FBCP-201

PROJECT NO. 9L0235R1US

Operational Description

The device is a Class III CDMA mobile telephone operating in the U.S. cellular band.

System Diagram

PROJECT NO. 9L0235R1US

Section 3. RF Power Output

NAME OF TEST: RF Power Output

TESTED BY: David Light

PARA. NO.: 2.1046

DATE: 10/29/99

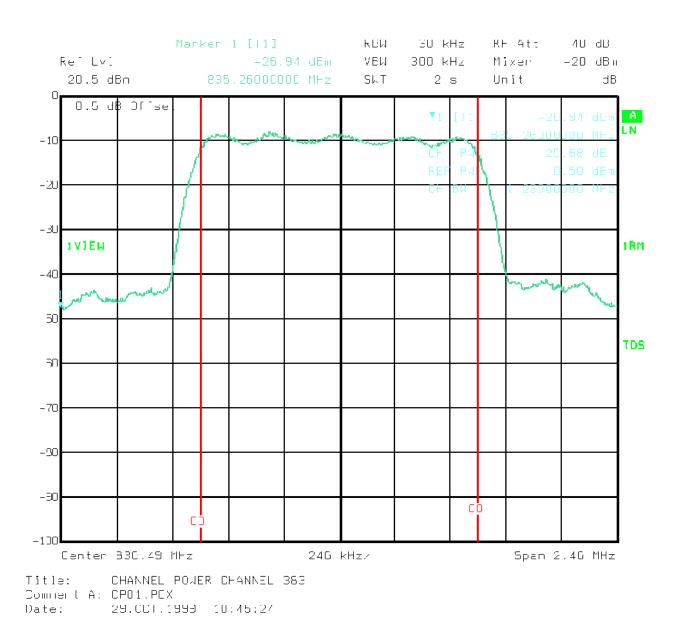
Test Results: Complies.

Measurement Data: See pages 10-12.

Channel	Output Power (dBm)	Rated Power (dBm)	Measured / Rated (dBm)
1013	25.57	27	-1.43
383	25.68	27	-1.32
777	24.96	27	-2.04

Equipment Used: 1,2,7,8

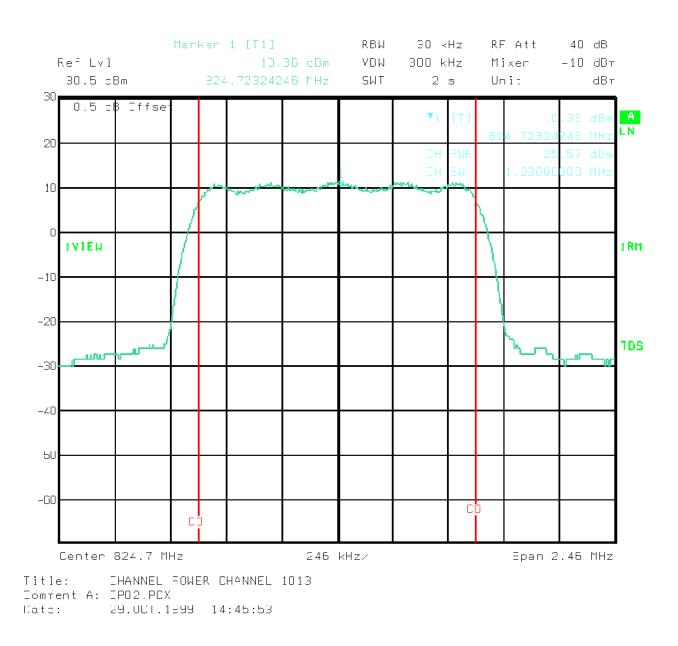
Measurement Uncertainty: +/- 1.6 dB


Temperature: 25 °C

Relative Humidity: 50 %

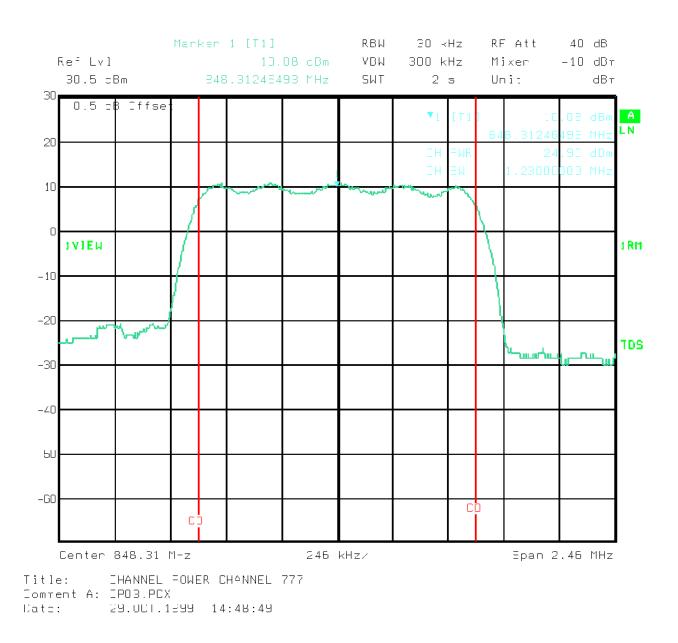
FCC PART 22, SUBPART H 800 MHz CELLULAR SUBSCRIBER UNITS

EQUIPMENT: EC 2500 FCC ID: CFD825FBCP-201


PROJECT NO. 9L0235R1US

FCC PART 22, SUBPART H 800 MHz CELLULAR SUBSCRIBER UNITS

EQUIPMENT: EC 2500 FCC ID: CFD825FBCP-201


PROJECT NO. 9L0235R1US

FCC PART 22, SUBPART H 800 MHz CELLULAR SUBSCRIBER UNITS

EQUIPMENT: EC 2500 FCC ID: CFD825FBCP-201

PROJECT NO. 9L0235R1US

EQUIPMENT: EC 2500 FCC ID: CFD825FBCP-201

PROJECT NO. 9L0235R1US

Section 4. Modulation Characteristics

NAME OF TEST: Modulation Characteristics	PARA. NO.: 2.1047
Audio Frequency Response	
TESTED BY:	DATE:

Test Results:

Complies.

Measurement Data:

See attached graph Not Applicable

Equipment Used:

Measurement Uncertainty:

dB

Temperature: °C

%

Relative Humidity:

EQUIPMENT: EC 2500 FCC ID: CFD825FBCP-201

NAME OF TEST: Modulation Characteristics

PROJECT NO. 9L0235R1US

PARA. NO.: 2.1047

Audio	Low-Pass Filter Response
TESTED BY:	DATE:
Test Results:	Complies.
Measurement Data:	See attached graph
Equipment Used: Measurement Uncertain	ty: dB
Temperature:	°C
Relative Humidity:	%

EQUIPMENT: EC 2500 FCC ID: CFD825FBCP-201

PROJECT NO. 9L0235R1US

NAME OF TEST: Modulation Characteristics	PARA. NO.: 2.1047
Modulation Limiting	
TESTED BY:	DATE:

Test Results:

See attached graph **Measurement Data:**

Equipment Used:

Not Applicable Measurement Uncertainty:

%

Complies.

Temperature: °C

Relative **Humidity:**

EQUIPMENT: EC 2500 FCC ID: CFD825FBCP-201

PROJECT NO. 9L0235R1US

NAME OF TEST: Modulation Characteristics	PARA. NO.: 2.1047
Digital Modulation	
TESTED BY: David Light	DATE: 11/1/99

Test Results: Complies.

Measurement Data: See data table in Section 8.

Equipment Used: Rohde & Schwarz CMD 80, s/n. 1050.9008.85, cal. date 12/11/98

Measurement Uncertainty	+/- 30 Hz +/-0.0003	Frequency rho error
Temperature: 2	25°C	
Relative 5 Humidity:	50%	

PROJECT NO. 9L0235R1US

Section 5. **Occupied Bandwidth**

NAME OF TEST:	Occupied Bandwidth	PARA. NO.: 2.1047
	(Voice + SAT)	
TESTED BY:		DATE:

Test Results:

Complies.

Measurement Data:

Not Applicable See attached graph.

Equipment Used:

Measurement Uncertainty:

dB

Temperature: °C

%

Relative Humidity:

EQUIPMENT: EC 2500 FCC ID: CFD825FBCP-201

PROJECT NO. 9L0235R1US

NAME OF TEST: Occupied Bandwidth (ST)	PARA. NO.: 2.1047
TESTED BY:	DATE:

Test Results:

Complies.

Measurement Data: See attached graph.

Equipment Used:

				2002
Measurement Unce	rtainty:	A Sto	Plan.	
Temperature:	°C			
Relative Humidity:	%			

EQUIPMENT: EC 2500 FCC ID: CFD825FBCP-201

PROJECT NO. 9L0235R1US

NAME OF TEST: Occupied Bandwidth PARA. NO.: 2.1047 (Wideband Data) **TESTED BY:** DATE:

Test Results: Complies.

See attached graph. **Measurement Data:**

%

Equipment Used:

Not Applicable **Measurement Uncertainty:**

Temperature:

Relative Humidity:

EQUIPMENT: EC 2500 FCC ID: CFD825FBCP-201

PROJECT NO. 9L0235R1US

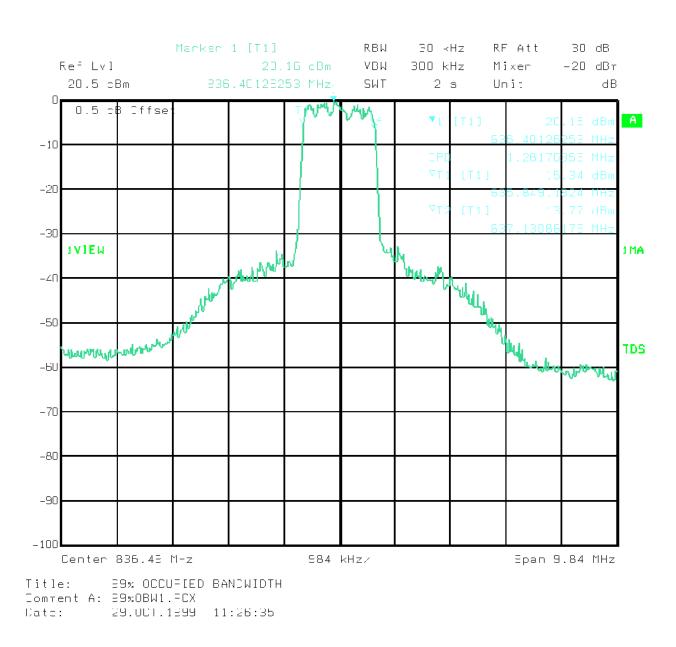
NAME OF TEST: Occupied Bandwidth
(Digital Modulation)PARA. NO.: 2.1047TESTED BY: David LightDATE:10/29/99

Test Results: Complies.

Measurement Data: See attached graph.

Equipment Used: 1,2,7,8

Measurement Uncertainty: +/- 1.6 dB


Temperature: 25 °C

Relative Humidity: 50 %

FCC PART 22, SUBPART H 800 MHz CELLULAR SUBSCRIBER UNITS

EQUIPMENT: EC 2500 FCC ID: CFD825FBCP-201

PROJECT NO. 9L0235R1US

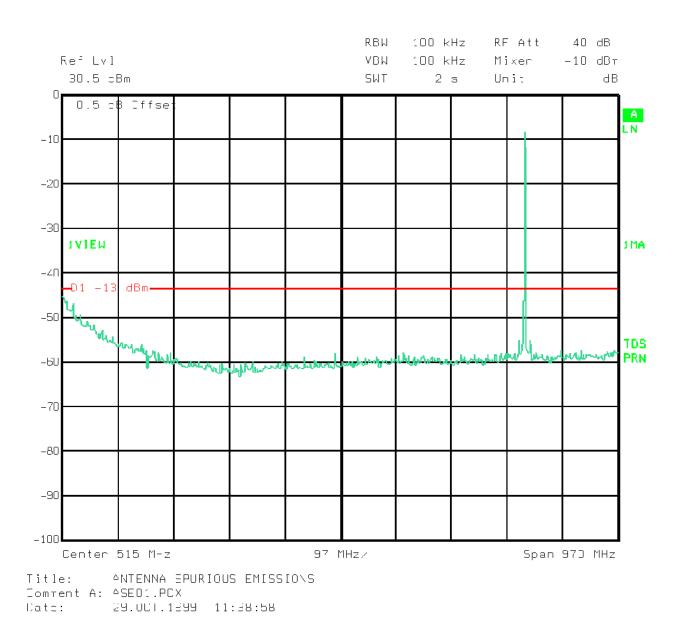
Section 6. Spurious Emissions at Antenna Terminals

NAME OF TEST: Spurious Emissions At Antenna Terminals	PARA. NO.: 2.1051
TESTED BY: David Light	DATE:11/02/99

Test Results: Complies.

Measurement Data: See attached graphs.

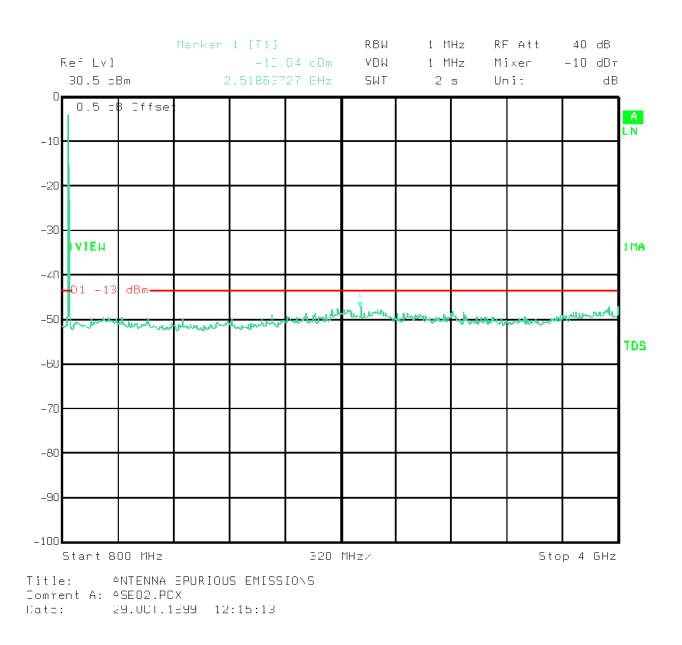
Equipment Used: 1,2,7,8, 9, 10, 12


Measurement Uncertainty: +/- 1.6 dB

Temperature: 24°C

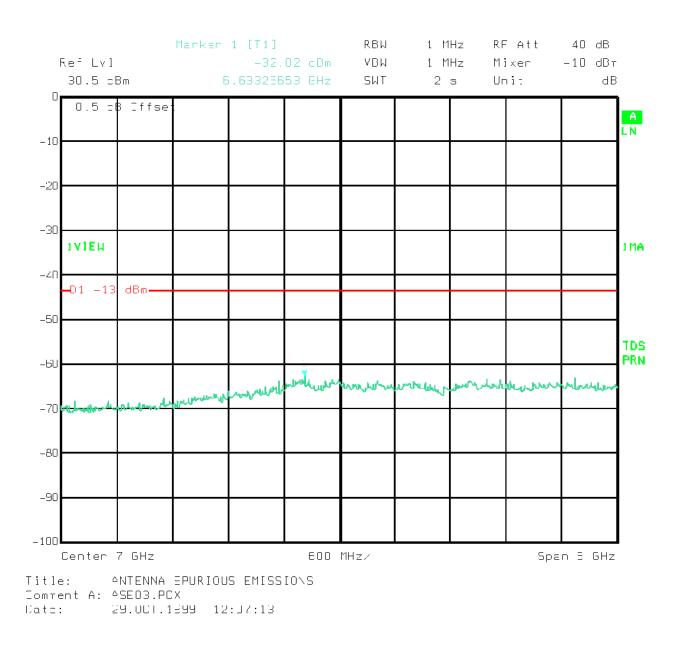
Relative 50% Humidity:

EQUIPMENT: EC 2500 FCC ID: CFD825FBCP-201


PROJECT NO. 9L0235R1US

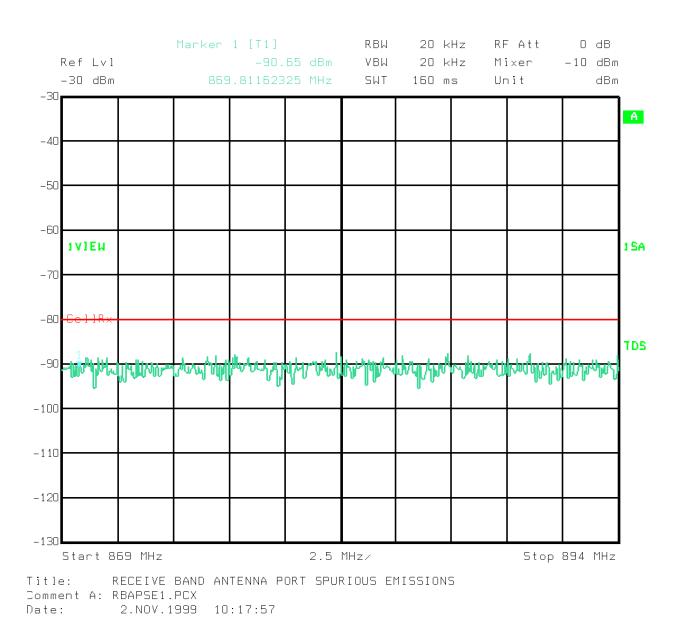
FCC PART 22, SUBPART H 800 MHz CELLULAR SUBSCRIBER UNITS

EQUIPMENT: EC 2500 FCC ID: CFD825FBCP-201


PROJECT NO. 9L0235R1US

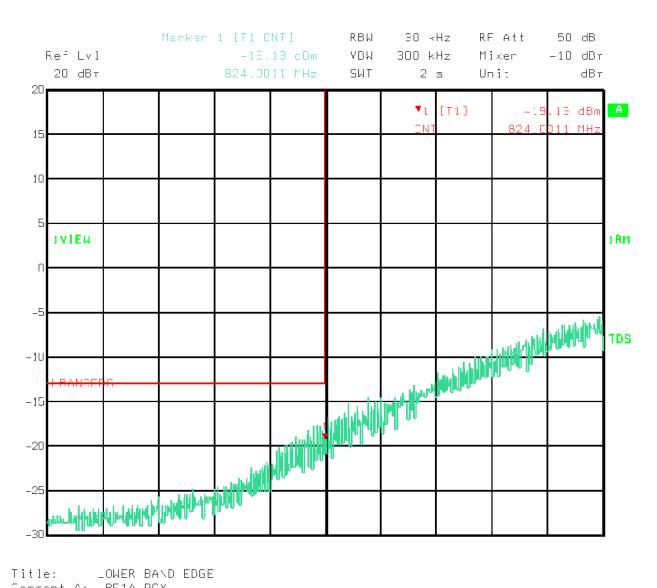
FCC PART 22, SUBPART H 800 MHz CELLULAR SUBSCRIBER UNITS

EQUIPMENT: EC 2500 FCC ID: CFD825FBCP-201


PROJECT NO. 9L0235R1US

FCC PART 22, SUBPART H 800 MHz CELLULAR SUBSCRIBER UNITS

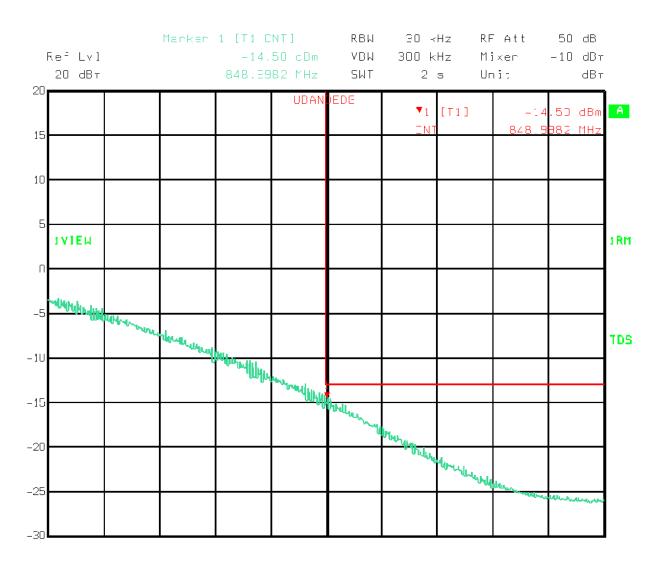
EQUIPMENT: EC 2500 FCC ID: CFD825FBCP-201


PROJECT NO. 9L0235R1US

FCC PART 22, SUBPART H 800 MHz CELLULAR SUBSCRIBER UNITS

EQUIPMENT: EC 2500 FCC ID: CFD825FBCP-201

PROJECT NO. 9L0235R1US



Title:	LOWER BAND E	DGE
Comrent A:	_BE1A.PCX	
Date:	2.NOV.1899	12:J5:30

FCC PART 22, SUBPART H 800 MHz CELLULAR SUBSCRIBER UNITS

EQUIPMENT: EC 2500 FCC ID: CFD825FBCP-201

PROJECT NO. 9L0235R1US

Title:		_PPER BAND EDGE
Iomrent	A:	_BE1A.PCX
Date:		2.NOV.1899 12:22:30

Section 7. Field Strength of Spurious

NAME OF TEST: Field Strength of Spurious	PARA. NO.: 2.1053
TESTED BY: David Light	DATE: 11/01/99

Test Results: Complies.

Measurement Data: See attached table.

Equipment Used: 677, CF24, CF46

Measurement Uncertainty: +/- 4.0 dB

Temperature: 21°C

Relative 48% Humidity:

EQUIPMENT: EC 2500 FCC ID: CFD825FBCP-201

PROJECT NO. 9L0235R1US

Test Data - Radiated Emissions

Microwave Radiated Emissions Data										
Complete	Complete X Preliminary Page 1 of 1									
Client: Fu	itsu					Test #:I	MW-2		W.O.#:	9L0235R
EUT: <u>EC</u>	2500					S/N:	8000		Photo ID:	9L235R MW-2
Taskaisis				On a sifi	antion. or				C4 D	14/04/00
rechnicial	1. <u>D. Ligi</u>	<u>nt</u>		Specin	cation: <u>CF</u>	R 47 Part 2.1053	. L	ab: <u>An</u>	<u>u</u> Da	ate: <u>11/01/99</u>
Equipmen	t Used:	677-CF24	-CF46							
Configurat	tion: <u>Tra</u>	ansmit Cha	innel 383							
Bandwidth	n: <u>1 M</u> ⊢	<u>Iz</u> Vid	leo Bandw	/idth: <u>1</u>	MHz	Antenna Dist	ance	3	m De	etector:
	ure: lumidity:	<u>21</u> <u>48</u> re: <u>1010</u>	%	EUT Pow	23	5 V.A.C. 8 V.A.C. 0 V.A.C. ner <u>3.6 VDC</u>				Peak _X_ Average
Aunosphe	110 1 10350	ie. <u>1010</u>	mbai		<u></u> Ou	lei <u>3.0 vDC</u>	-		1430	5 FildSe
Freq.	Meter Reading	Antenna Factor	Cable Loss	RF Gain	Conver. Factor	Corrected Reading	ERP	ERP	Pol.	Comments:
(MHz)	(dBuV)	(dB)	(dB)	(dB)		(dBuV/m)	(mW)	(dBm)		-
832.0	65	24.1	2.2	0	0	91.3		-3.929		Fundamental
1664	17	25.1	2.25	0	0	44.35		-50.88	V	Noise Floor
2496	16	29	3.6	0	0	48.6		-46.63	V	Noise Floor
3328	24	30.8	4.2	0	0	59		-36.23	V	Noise Floor
4160	18	31.6	4.7	0	0	54.3	8E-05	-40.93	V	Noise Floor
000.0		04.4					0.500	0.000		
832.0	66	24.1	2.2	0	0	92.3 44.35		-2.929		Fundamental
1664 2496	17	25.1	2.25	0	0			-50.88 -46.63	<u>н</u>	Noise Floor
3328	16 24	<u>29</u> 30.8	3.6 4.2	0	0	<u>48.6</u> 59		-46.63	<u>п</u> Н	Noise Floor Noise Floor
<u>3328</u> 4160	<u>4</u> 18	<u>30.8</u> 31.6	<u>4.2</u> 4.7	0	0	59 54.3		-36.23	<u>п</u> Н	Noise Floor
4100	10	51.0	4.1		0	04.0	02-00	-40.93		110136 1 1001
										Scanned
							1			800 MHz-9 GHz

EQUIPMENT: EC 2500 FCC ID: CFD825FBCP-201

PROJECT NO. 9L0235R1US

Photographs of Test Setup

FRONT VIEW

SIDE VIEW

Not for Use or Disclosure Outside of Fujitsu Network Communications, Inc. or KTL Dallas, Inc.

PROJECT NO. 9L0235R1US

Section 8. Frequency Stability

NAME OF TEST: Frequency Stability

TESTED BY: David Light

PARA. NO.: 2.1055

DATE: 11/01/99

Test Results: Complies.

Measurement Data: See attached table.

Standard Test Frequency:	836.79	MHz
Standard Test Voltage:	3.6	Vdc

Equipment Used: Rohde & Schwarz CMD 80, s/n. 1050.9008.85, cal. date 12/11/98

Measurement Uncertainty	+/- 30 Hz	Frequency
	+/-0.0003	rho error

Lab Conditions	
Temperature:	25°C

Relative 50% Humidity:

EQUIPMENT: EC 2500 FCC ID: CFD825FBCP-201

PROJECT NO. 9L0235R1US

Frequency Stability							
Client:	nt: <u>Fujitsu</u> W.O.# <u>9L0235R</u>						
EUT:	EC2500			S/N: 0008			
Date:	te: <u>11/1/99</u> Tech: <u>D. Light</u>						
Equipment used: Rohde & Schwarz CMD80, s/n 1050.9008.85 Cal date 12/11/98 G5006 - G3873							
	Temperature	Voltage (DC)	Rho	Frequency Error (Hz)			
	20 °C	3.6	0.983	-24			
	20 °C	3.06	0.985	-15			
	20 °C	4.14	0.983	-33			
	10 °C	3.6	0.986	-14			
	0 °C	3.6	0.983	14			
	-10 °C	3.6	0.985	-27			
	-20 °C	3.6	0.985	-29			
	-30 °C	3.6	0.975	-47			
	30 °C	3.6	0.987	23			
	40 °C	3.6	0.986	-14			
	50 °C	3.6	0.988	14			

EQUIPMENT: EC 2500
FCC ID: CFD825FBCP-201

PROJECT NO. 9L0235R1US

Section 9. Test Equipment List

-						
	<u>KTL ID</u>	Description	<u>Manufacturer</u> Model Number	<u>Serial Number</u>	<u>Calibration</u> <u>Date</u>	
1	CF24	CABLE, 3.6m	KTL Semi-Flex, Workhorse	N/A	11/17/98	
2	CF39	CABLE 2m	Astrolab 32027-2-29094-72TC	N/A	08/31/99	
3	CF46	CABLE, 4M	STORM PR90-010-144	N/A	10/15/99	
4	660	SPECTRUM ANALYZER	HEWLETT PACKARD 8567A	2541A00109	08/18/99	
5	677	RECEIVER, 1-18 GHz	ELECTRO METRICS EMC 50	185	08/31/99	
6	G2228	AMPLIFIER, RF	RF CONSULTANTS LNA14	NONE	02/09/99	
7	G2632	SPECTRUM ANALYZER	ROHDE & SCHWARZ FSEK30	830844/006	06/14/99	
8	G3725	DUAL DIRECTIONAL COUPLER	NARDA 3020A	34366	05/19/99	
9	G3726	DUAL DIRECTIONAL COUPLER	NARDA 3022	73393	05/19/99	
10	G3727	DUAL DIRECTIONAL COUPLER	HEWLETT PACKARD 11692D	1212A03366	05/07/99	
11	AC4		Anechoic Chamber #4			
12	G1712	TUNABLE NOTCH FILTER	K&L 3TNF-500/1000-N/N	162	CBU	

Calibration interval on all items is typically 12 months from the calibration date shown. Where relevant, measuring equipment is subjected to in-service checks between testing. Should nay measurement equipment be utilized beyond its scheduled calibration date, the measuring equipment is subjected to in-service checks prior to use. KTL shall notify clients promptly, in writing, of identification of defective measuring equipment that casts doubt on the validity of results given in this report.

LEGEND:

CNR Calibration not required

- N/A Not Applicable
- CBU Calibrated before use.

EQUIPMENT: EC 2500 FCC ID: CFD825FBCP-201

PROJECT NO. 9L0235R1US

ANNEX A - TEST DETAILS

PROJECT NO. 9L0235R1US

NAME OF TEST: RF Power Output PARA. NO.: 1.1046

Minimum Standard: Para. No. 22.913(a). The E.R.P. of mobile transmitter and auxiliary test transmitter must not exceed 7 watts.

EIA IS-19B Para. No. 3.2.1.3. The transmitter shall be compiled of 8 distinct power levels.

The output power shown above shall be maintained within the range of +2 dB, -4 dB of nominal dBW value

PL	Ι	II	III
0	+6	+2	-2
1	+2	+2	-2
2	-2	-2	-2
3	-6	-6	-6
4	-10	-10	-10
5	-14	-14	-14
6	-18	-18	-18
7	-22	-22	-22

Method Of Measurement:

Detachable Antenna:

The power at antenna terminals is measured using an in-line power meter.

Integral Antenna:

If the antenna is not detachable from the circuit then the Power Output is derived from the radiated field strength of the fundamental emission by using the plane wave relation $GP/4\pi R^2 = E^2/120\pi$ and proceeding as follows:

$$P = \frac{E^2 R^2}{30G} = \frac{E^2 3^2}{30G}$$

where,

P = the equivalent radiated power in watts

E = the maximum measured field strength in V/m

R = the measurement range (3 meters)

G = the numeric gain of the transmit antenna in relation to a halfwave dipole antenna

EQUIPMENT: EC 2500 FCC ID: CFD825FBCP-201

PROJECT NO. 9L0235R1US

NAME OF TEST: Audio Frequency Response PARA. NO.: 2.1047

Minimum Standard: Para. No. 15-19-B. From 300 to 3000 Hz the audio frequency response shall not vary more than +1 to -3 dB from a true 6dB octave pre-emphasis characteristic as referred to 1000 Hz level (with the exception of a permissible 6dB per octave roll-off from 2500 to 3000 Hz).

Method Of Measurement:

Operate the transmitter with the compressor disabled, and monitor the output with a frequency deviation meter or standard test receiver without standard 750-microsecond de-emphasis, with expander disabled, and without C-message weighted filter (see 6.6.2). Apply a sine wave audio input to the transmitter external audio input port, vary the modulating frequency from 300 to 3000 Hz and observe the input levels necessary to maintain a constant ± 2.9 kHz system deviation.

NAME OF TEST: Audio Low Pass Filter Response PARA. NO.: 2.1047

Minimum Standard:		Para. No. 22.915 (d). For mobile stations, signals must be attenuated as a function of frequency as follows:	
	i.	In the frequency ranges 3.0 to 5.9 Hz and 6.1 to 15 kHz, 40 $\log (f/3) dB$.	
	ii.	In the frequency range 5.9 to 6.1 kHz, 35 dB	
	iii.	In the frequency range above 15 kHz, 28 dB.	

Method Of Measurement:

Adjust the audio input frequency to 1000 Hz and adjust the input level to 20 dB greater than that required to produce ± 8 kHz deviation. Note the output level on the frequency deviation meter or standard test receiver. Using the output level as reference (0dB), vary the modulating frequency from 3000 Hz to 30,000 Hz and observe the change in output while maintaining a constant audio input level.

NAME OF TEST: Modulation Limiting PARA. NO.: 2.1047

Minimum Standard: Para. No. 22.915(b)

The levels of the modulating signals must be set to the values specified below and must be maintained within $\pm 10\%$ of these values.

Voice: ±12 kHz SAT: ±2 kHz Wideband Data: ±8 kHz ST: ±8 kHz

Method Of Measurement:

Voice: A 1 kHz audio tone is injected at levels between -45 and +20 dBVrms. The peak deviation is noted. This is repeated with a 300 Hz tone and a 3 kHz tone.

SAT:	A SAT tone is generated by the mobile station and the peak deviation is measured.
Wideband Data:	Wideband data is generated by the mobile station and the peak deviation is measured.
ST:	ST data is generated by the mobile station and the peak deviation is measured.

NAME OF TEST: Occupied Bandwidth (Voice & SAT) PARA. NO.: 2.1049

- Minimum Standard: 22.917(b) The mean power of any emission removed from the carrier frequency by a displacement frequency (f_d in kHz) must be attenuated below the mean power of the unmodulated carrier (P) as follows:
- (i) On any frequency removed from the carrier frequency by more than 20 kHz but not more than 45 kHz: at least 26 dB
- (ii) On any frequency removed from the carrier frequency by more than 45 kHz, up to the first multiple of the carrier frequency:

at least 60 dB or $43 + 10 \log (P) dB$, whichever is the lesser attenuation.

Method Of Measurement:

Spectrum Analyzer Settings:

RBW: 300 Hz VBW: ≥ RBW Span: 100 kHz Sweep: Auto Mask: CELLF3E

Input Signal Characteristics (F3E/F3D):

AF1 frequency: 2.5 kHz AF1 level: 16 dB above the level sufficient to produce ± 6 kHz deviation with a 1 kHz tone. SAT: 6000 Hz SAT SAT level: sufficient to produce ± 2 kHz deviation.

PROJECT NO. 9L0235R1US

NAME OF TEST: Occupied Bandwidth (WBD & SAT) PARA. NO.: 2.1049

- Minimum Standard:22.917(d) The mean power of any emission removed from the
carrier frequency by a displacement frequency (f_d in kHz) must be
attenuated below the mean power of the unmodulated carrier (P) as
follows:
- (1) On any frequency removed from the carrier frequency by more than 20 kHz but not more than 45 kHz:

at least 26 dB

(2) On any frequency removed from the carrier frequency by more than 45 kHz but not more than 90 kHz:

at least 45 dB

(3) On any frequency removed from the carrier frequency by more than 90 kHz, up to the first multiple of the carrier frequency:

at least 60 dB or $43 + 10 \log (P) dB$, whichever is the lesser attenuation.

Method Of Measurement:

Spectrum Analyzer Settings: RBW: 300 Hz VBW: ≥ RBW Span: 200 kHz Sweep: Auto Mask: CELLF1D

<u>Input Signal Characteristics:</u> RF level: Maximum recommended by manufacturer 10 kbps WBD + DAT ST

NAME OF TEST: Spurious Emission at Antenna Terminals PARA. NO.: 2.1051

Minimum Standard: Para. No. 22.917(b). The mean power of emissions must be attenuated below the mean power of the unmodulated carrier on any frequency twice or more than twice the fundamental emission by at least 43 + 10 log P. This is equivalent to -13 dBm absolute power.

Method Of Measurement:

Spectrum Analyzer Settings: RBW: 30 kHz (AMPS). As required for digital modulations. VBW: ≥ RBW Start Frequency: 0 MHz Stop Frequency: 10 GHz Sweep: Auto

NAME OF TEST: Field Strength of Spurious Radiation PARA. NO.: 2.1053

Minimum Standard: Para. No. 22.917(b). The mean power of emissions must be attenuated below the mean power of the unmodulated carrier on any frequency twice or more than twice the fundamental emission by at least 43 + 10 log P. This is equivalent to -13 dBm absolute power.

Calculation Of Field Strength Limit:

An example of attenuation requirement of 43 + 10 Log P is equivalent to $-13 \text{ dBm} (5 \times 10^{-5} \text{ Watts})$ at the antenna terminal. We determine the field strength limit by using the plane wave relation.

 $GP/4\pi R^2 = E^2/120\pi$

For emissions ≤ 1 GHz:

G = 1.64 (Dipole Gain) $P = 10^{-5}$ Watts (Maximum spurious output power) R = 3m (Measurement Distance)

$$E = \frac{\sqrt{30GP}}{R}$$

$$E = \frac{\sqrt{30 \times 1.64 \times 5 \times 10^{-5}}}{3} = 0.016533 \text{ V} / \text{m} = 84.4 \text{ dB}\text{mV} / \text{m}$$

For emissions > 1 GHz:

G = 1 (Isotropic Gain) $P = 1 \times 10^{-5}$ Watts (Maximum spurious output power) R = 3m (Measurement Distance)

 $E = 84.4 - 20 Log \sqrt{1.64} = 82.3 dB \text{ mV} / m@3m$ The spectrum is searched to 10 GHz.

PROJECT NO. 9L0235R1US

NAME OF TEST: Frequency Stability

PARA. NO.: 2.1055

Minimum Standard:

Para. No. 22.355. The transmitter carrier frequency shall remain within the tolerances given in Table C-1.

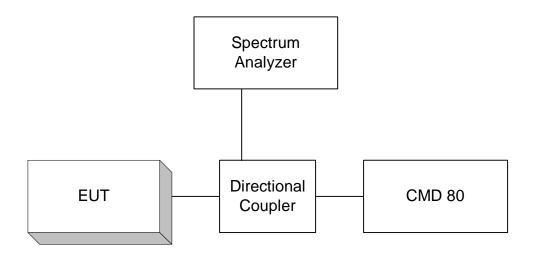
Freq. Range (MHz)	Mobile > 3 W	Mobile £3 W		
821 to 896	2.5	2.5		
Table C-1				

Method Of Measurement:

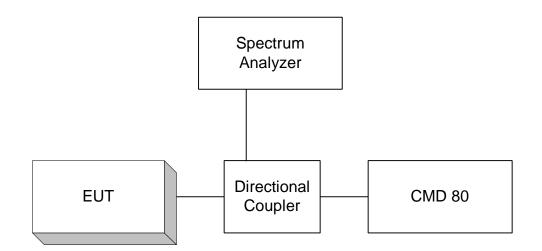
Frequency Stability With Voltage Variation:

The E.U.T. is placed in an environmental chamber and allowed to stabilize at +20 degrees Celsius for at least 15 minutes. The frequency counter and signal generator are phase locked with the same 10 MHz reference frequency by connecting the 10 MHz ref. out of the counter to the 10 MHz ref, in of the signal generator. With the voltage input to the E.U.T. set to 85% S.T.V., the frequency is measured in 30 second intervals for a period of 5 minutes. This procedure is repeated at 100% S.T.V. and 115% S.T.V.

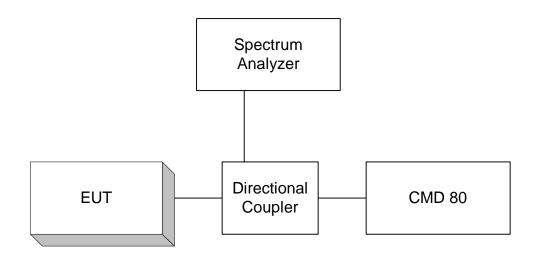
Frequency Stability With Temperature Variation:

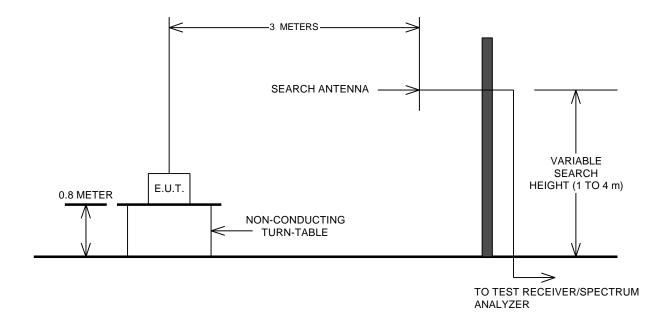

The input voltage to the E.U.T. is set to S.T.V. and the temperature of the environmental chamber is varied in 10 degree steps from -30 degrees C to +50 degrees C. The E.U.T. is allowed to stabilize at each temperature and the frequency is measured in 30 second intervals for a period of 5 minutes.

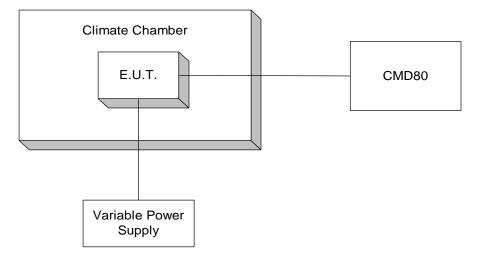
EQUIPMENT: EC 2500 FCC ID: CFD825FBCP-201


PROJECT NO. 9L0235R1US

ANNEX B - TEST DIAGRAMS


Para. No. 2.1046 - R.F. Power Output


Para. No. 2.1049 - Occupied Bandwidth


Para. No. 2.1051 Spurious Emissions at Antenna Terminals

Para. No. 2.1053 - Field Strength of Spurious Radiation

Para. No. 2.1055 - Frequency Stability

