

(10 MHz BW, MID channel, QPSK, 3530-3720 MHz

Section 8Testing dataTest nameFCC §96.41(e)(1) Emissions intensitySpecificationFCC Part 96

Report reference ID: REP0023530-2R1TRFWL

Page 40 of 60

(10 MHz BW, MID channel, 64QAM, 3530-3720 MHz

eni

Ref Level 0

Frequency Sweep	and an and a second	10 US 01	1 1Pm Mail
Limit Chebic	PASS		M1[1] -67.11 dBm
The received of the	11000		954.250 MHz
10 d0m/			
20 10/0			
30 dBm			
an alian W. At(a)			
50 dbm			
10 dBm			
10 ann mar an Alana an Alana an Alan Anna an	when the second and many horizon	and an in the second	which as an address of the second
60 dbm		and the second s	
ad qpm			
80.0 MHz	1940 ots	97.0 MHz/	1.0.6Hz

(10 MHz BW, HIGH channel, QPSK, 15000 - 37500 MHz)

(10 MHz BW, MID channel, 64QAM, 2800 - 4400 MHz)

Ref Level 40.0 Att	40 dB SWT	16.00 dB 140 µs (~7.7 ms)	RBW 30	kHz kHz Mode Auto FFT			SGL Count 10/10
DF 'TEST"	and the second states of the s		1000 C 200 C 200 C 200 C 20	The MARY CONSIGN			110000500500500
Frequency St	weep		2013	10.0	114		1Rm Max
Limit Ghe	SC ALCON	L'OWN /	110			MILLI	20.49 dBr
Line FCC	Part 96 di(e)	HIGH	De				3 622 9740 GH
dBm							-
			641				
(Pm)			I.				
	Sector March	manman	College Mark	an an an an an an an an	Marsh Marsh Marsh	and a superior and	
	1 6	15 X					
dam							
						1	
the set	1						
	1						8
	1						
diam'r	1.7114					800 Ba	The attack which
Page 201 (1997)	HUNT					100.17	And aller - ruga
							1
1 dbm-							1
and the							R.M.
1 diffe							
AVA.							and the
							1
0 dbm							-
1 40 m							
o dam-							

(10 MHz BW, MID channel, 64QAM, 3619 - 3631 MHz)

Frequency Sy	veep								• 1Rm Max
Limit Cheb Line FCC P	k art 95_41(e) art 95_41(e)	Low	PA	96 55 48				M1[1]	*66.78 dBr 2.455.250 GH
10 dlim	roc Parries	12(#2 - HR5H							-
a dêm-									
ia dam					-				
Part 96_41(e)	10W								
a dam									
0 dbin-	i								
adates Hard	-	handituring	and the second second		والمرافق والم	فالرز وحرب والجر	identities of	and the state of the	
iū dītm			20		3				
kā dām									
0.GHz			28000 p			1647/			15.0 GH

(10 MHz BW, HIGH channel, QPSK, 2800 - 4400 MHz)

(10 MHz BW, HIGH channel, 64QAM, 3530-3720 MHz

(10 MHz BW, HIGH channel, 64QAM, 3689 - 3701 MHz)

Section 8 Testing data Test name FCC §96.41(e)(1) Emissions intensity Specification FCC Part 96

Report reference ID: REP0023530-2R1TRFWL

Page 44 of 60

(20 MHz BW, LOW channel, 64QAM, 2800 - 4400 MHz)

25 GHz/

(20 MHz BW, LOW channel, 64QAM, 15000 - 37500 MHz)

Report reference ID: REP0023530-2R1TRFWL

Section 8 Testing data Test name FCC §96.41(e)(1) Emissions intensity Specification FCC Part 96

(20 MHz BW, MID channel, 64QAM, 30 - 1000 MHz)

(20 MHz BW, MID channel, 64QAM, 1000 – 15000 MHz)

(20 MHz BW, HIGH channel, 16QAM, 3530-3720 MHz

15.0 GHz

nt 10/10

4.4 GHz

670

Section 8Testing dataTest nameFCC §96.41(e)(1) Emissions intensitySpecificationFCC Part 96

(20 MHz BW, HIGH channel, 64QAM, 3530-3720 MHz

(20 MHz BW, HIGH channel, 64QAM, 3679 - 3701 MHz)

Radiated spurious emissions:

30 – 1000 MHz

All operating modes were investigated and observed to have similar emissions characteristics. Data for the worst case operating mode (all 4 transmitters operating at full power, MID channel, 20 MHz operating bandwidth, GFSK modulation) is presented below. Preliminary scans to were performed with a peak detector to identify suspect frequencies. Identified suspect frequencies were maximized with respect to azimuth, measurement antenna height and polarization and measured with an RMS detector with a 1 MHz resolution bandwidth.

Full Spectrum

Figure 8.8-1: Radiated emissions spectral plot (30 MHz - 1 GHz), MID channel, 20 MHz bandwidth, GFSK modulation

Table 8.8-1: Radiated emissions results.	MID channel, 20 MHz handwidt	, GESK modulation
	wind channel, 20 winz banawiat	, or sk mouulation

Frequency (MHz)	RMS (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
54.268000	35.04	55.23	20.19	5000.0	1000.000	114.0	V	275.0	14.2
164.183000	30.05	55.23	25.18	5000.0	1000.000	100.0	V	145.0	18.5
320.681000	28.59	55.23	26.64	5000.0	1000.000	292.0	н	146.0	22.6
425.127000	29.22	55.23	26.01	5000.0	1000.000	133.0	V	223.0	26.2
733.216000	36.21	55.23	19.02	5000.0	1000.000	219.0	Н	208.0	31.4
995.502000	39.58	55.23	15.65	5000.0	1000.000	281.0	V	120.0	34.7

Notes: ¹ Field strength (dB V/m) = receiver/spectrum analyzer value (dB V) + correction factor (dB)

² Correction factors = antenna factor ACF (dB) + cable loss (dB)

Section 8Testing dataTest nameFCC §96.41(e)(1) Emissions intensitySpecificationFCC Part 96

1 – 18 GHz:

All operating modes were investigated and observed to have similar emissions characteristics. Data for the worst case operating modes (all 4 transmitters operating at full power, LOW, MID and HIGH channel, 10 and 20 MHz operating bandwidth, GFSK modulation) is presented below. Three channels (LOW, MID and HIGH) are presented to verify performance in the vicinity of the operating band. Preliminary scans to were performed with a peak detector to identify suspect frequencies. Identified suspect frequencies were maximized with respect to azimuth, measurement antenna height and polarization and measured with an RMS detector with a 1 MHz resolution bandwidth.

Full Spectrum

Figure 8.8-2: Radiated emissions spectral plot (1 GHz - 18 GHz), LOW channel, 10 MHz bandwidth, GFSK modulation

Table 8.8-2: Radiated emissions result	s. I OW channel.	10 MHz handwidth	GESK modulation
	<i>5, LOVV Chamiler,</i>	10 WINE bundwidth,	or six mouulation

Frequency (MHz)	RMS (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1993.777778	28.09	55.23	27.14	5000.0	1000.000	144.0	V	82.0	-10.8
5239.755556	31.07	55.23	24.16	5000.0	1000.000	382.0	V	341.0	-2.2
7154.833333	32.17	55.23	23.06	5000.0	1000.000	339.0	V	356.0	0.8
9713.477778	32.72	55.23	22.51	5000.0	1000.000	282.0	V	10.0	3.6
12317.422222	34.08	55.23	21.15	5000.0	1000.000	343.0	Н	171.0	7.2
17081.933333	37.55	55.23	17.68	5000.0	1000.000	126.0	Н	226.0	13.1

Notes:

¹ Field strength (dB V/m) = receiver/spectrum analyzer value (dB V) + correction factor (dB) ² Correction factors = antenna factor ACF (dB) + cable loss (dB)

Figure 8.8-3: Radiated emissions spectral plot (1 GHz - 18 GHz), MID channel, 10 MHz bandwidth, GFSK modulation

able 8.8-3: Radiated emissions	results, MID channel,	10 MHz bandwidth,	GFSK modulation
--------------------------------	-----------------------	-------------------	-----------------

Frequency (MHz)	RMS (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
5222.033333	31.29	55.23	23.94	5000.0	1000.000	158.0	Н	253.0	-2.3
7250.077778	38.76	55.23	16.47	5000.0	1000.000	297.0	н	114.0	0.4
9733.377778	32.57	55.23	22.66	5000.0	1000.000	117.0	V	54.0	3.6
12233.988889	35.76	55.23	19.47	5000.0	1000.000	283.0	V	160.0	6.9
13705.133333	35.81	55.23	19.42	5000.0	1000.000	160.0	V	42.0	9.4
16322.633333	38.64	55.23	16.59	5000.0	1000.000	377.0	V	129.0	13.3

Notes:

¹ Field strength (dB V/m) = receiver/spectrum analyzer value (dB V) + correction factor (dB)
 ² Correction factors = antenna factor ACF (dB) + cable loss (dB)

Figure 8.8-4: Radiated emissions spectral plot (1 GHz - 18 GHz), HIGH channel, 10 MHz bandwidth, GFSK modulation

 Frequency (MHz)	RMS (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2552.855556	28.23	55.23	27.00	5000.0	1000.000	290.0	V	65.0	-9.6
7393.055556	43.52	55.23	11.71	5000.0	1000.000	308.0	Н	187.0	0.9
11083.144444	42.28	55.23	12.95	5000.0	1000.000	316.0	н	180.0	4.0
14778.133333	37.72	55.23	17.51	5000.0	1000.000	302.0	Н	121.0	9.8
16320.377778	38.68	55.23	16.55	5000.0	1000.000	327.0	V	238.0	13.3
 17110.077778	38.39	55.23	16.84	5000.0	1000.000	253.0	Н	0.0	13.6

Notes:

 1 Field strength (dB V/m) = receiver/spectrum analyzer value (dB V) + correction factor (dB) 2 Correction factors = antenna factor ACF (dB) + cable loss (dB)

Figure 8.8-5: Radiated emissions spectral plot (1 GHz - 18 GHz), LOW channel, 20 MHz bandwidth, GFSK modulation

Frequency (MHz)	RMS (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1993.777778	28.09	55.23	27.14	5000.0	1000.000	144.0	V	82.0	-10.8
5239.755556	31.07	55.23	24.16	5000.0	1000.000	382.0	V	341.0	-2.2
7154.833333	32.17	55.23	23.06	5000.0	1000.000	339.0	V	356.0	0.8
9713.477778	32.72	55.23	22.51	5000.0	1000.000	282.0	V	10.0	3.6
12317.422222	34.08	55.23	21.15	5000.0	1000.000	343.0	Н	171.0	7.2
17081.933333	37.55	55.23	17.68	5000.0	1000.000	126.0	Н	226.0	13.1

Notes:

¹ Field strength (dB V/m) = receiver/spectrum analyzer value (dB V) + correction factor (dB) ² Correction factors = antenna factor ACF (dB) + cable loss (dB)

Figure 8.8-6: Radiated emissions spectral plot (1 GHz - 18 GHz), MID channel, 20 MHz bandwidth, GFSK modulation

Table 8.8-6: Radiated emissions	results, MID channel,	20 MHz bandwidth,	GFSK modulation
---------------------------------	-----------------------	-------------------	-----------------

Frequency (MHz)	RMS (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2625.066667	28.11	55.23	27.12	5000.0	1000.000	127.0	V	123.0	-9.2
4745.155556	30.19	55.23	25.04	5000.0	1000.000	353.0	V	127.0	-2.1
7106.088889	31.91	55.23	23.32	5000.0	1000.000	372.0	н	264.0	0.7
9689.733333	32.75	55.23	22.48	5000.0	1000.000	188.0	V	172.0	3.6
12302.533333	35.31	55.23	19.92	5000.0	1000.000	177.0	V	24.0	7.1
16795.833333	38.05	55.23	17.18	5000.0	1000.000	346.0	V	212.0	14.5

Notes:

¹ Field strength (dB V/m) = receiver/spectrum analyzer value (dB V) + correction factor (dB)
 ² Correction factors = antenna factor ACF (dB) + cable loss (dB)

Testing data FCC §96.41(e)(1) Emissions intensity FCC Part 96

Full Spectrum

Figure 8.8-7: Radiated emissions spectral plot (1 GHz - 18 GHz), HIGH channel, 20 MHz bandwidth, GFSK modulation

Frequency (MHz)	RMS (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2144.155556	26.94	55.23	28.29	5000.0	1000.000	384.0	Н	18.0	-11.1
2582.244444	27.92	55.23	27.31	5000.0	1000.000	144.0	Н	290.0	-9.6
7584.811111	31.67	55.23	23.56	5000.0	1000.000	299.0	V	266.0	1.1
9815.255556	31.83	55.23	23.40	5000.0	1000.000	311.0	V	57.0	3.6
12269.988889	35.38	55.23	19.85	5000.0	1000.000	388.0	н	344.0	7.1
17222.077778	37.21	55.23	18.02	5000.0	1000.000	366.0	Н	315.0	15.1

Notes:

¹ Field strength (dB V/m) = receiver/spectrum analyzer value (dB V) + correction factor (dB) ² Correction factors = antenna factor ACF (dB) + cable loss (dB)

18 – 26.5 GHz

All operating modes were investigated and observed to no significant emissions. Data from a representative operating mode (all 4 transmitters operating at full power, MID channel, 20 MHz operating bandwidth, GFSK modulation) is presented below. Preliminary scans to were performed with a peak detector to identify suspect frequencies. Identified suspect frequencies were maximized with respect to azimuth, measurement antenna height and polarization and measured with an RMS detector with a 1 MHz resolution bandwidth.

Full Spectrum

Figure 8.8-8: Radiated emissions spectral plot (18 GHz - 26.5 GHz), MID channel, 20 MHz bandwidth, GFSK modulation

Table 8.8-8: Radiated emissions results, MID channel, 20 MHz bandwidth, GFSK modulation

Frequency (MHz)	RMS (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
20715.181250	21.37	55.23	33.86	5000.0	1000.000	368.0	V	58.0	18.5
22381.818750	20.85	55.23	34.38	5000.0	1000.000	246.0	н	202.0	17.4
23557.700000	27.10	55.23	28.13	5000.0	1000.000	107.0	н	283.0	23.7
24174.643750	31.26	55.23	23.97	5000.0	1000.000	366.0	V	331.0	27.2
25441.431250	26.84	55.23	28.39	5000.0	1000.000	250.0	н	0.0	21.7
26493.831250	28.24	55.23	26.99	5000.0	1000.000	400.0	V	151.0	23.4

Notes:

¹ Field strength (dB V/m) = receiver/spectrum analyzer value (dB V) + correction factor (dB)

² Correction factors = antenna factor ACF (dB) + cable loss (dB)

26.5 – 40 GHz

All operating modes were investigated and observed to no significant emissions. Data from a representative operating mode (all 4 transmitters operating at full power, MID channel, 20 MHz operating bandwidth, GFSK modulation) is presented below. Preliminary scans to were performed with a peak detector to identify suspect frequencies. Identified suspect frequencies were maximized with respect to azimuth, measurement antenna height and polarization and measured with an RMS detector with a 1 MHz resolution bandwidth.

Figure 8.8-9: Radiated emissions spectral plot (26.5 GHz - 40 GHz), MID channel, 20 MHz bandwidth, GFSK modulation

Table 8.8-9: Radiated emissions results, MID channel, 20 MHz bandwidth, GFSK modulation

Frequency (MHz)	RMS (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
27759.293750	33.65	55.23	21.58	5000.0	1000.000	123.0	Н	192.0	9.6
30196.668750	34.62	55.23	20.61	5000.0	1000.000	106.0	н	90.0	11.8
35523.881250	41.04	55.23	14.19	5000.0	1000.000	225.0	н	164.0	19.6
35911.162500	41.85	55.23	13.38	5000.0	1000.000	204.0	н	22.0	20.8
36939.612500	37.48	55.23	17.75	5000.0	1000.000	125.0	н	85.0	16.4
37969.556250	35.55	55.23	19.68	5000.0	1000.000	225.0	V	293.0	15.6

Notes:

¹ Field strength (dB V/m) = receiver/spectrum analyzer value (dB V) + correction factor (dB)

² Correction factors = antenna factor ACF (dB) + cable loss (dB) ³ Emissions that were continuously present for a minimum of 1 second and occurred more than once for a

Section 9. Block diagrams of test setups

9.1 Radiated emissions set-up

Figure 9.1-1: Below 1 GHz setup

Figure 9.1-2: Above 1GHz setup