

---

• P.O. Box 489 • 1350 Tolland Road • Rollinsville, CO 80474 • Phone: (303) 258-0100 • FAX: (303) 258-0775 •  
• [www.criterionshield.com](http://www.criterionshield.com) •

---

## EMC QUALIFICATION TEST REPORT

**FISHER-PRICE, INC  
STAR STATION, H6723**

TESTED TO CONFORM WITH:

**Emissions Standards**

for

**INFORMATION TECHNOLOGY EQUIPMENT (ITE)**

**TEST REPORT NUMBER:** 050429-893

**DATE OF ISSUE:** MAY 17, 2005

**DATE OF TEST COMPLETION:** APRIL 30, 2005

**MANUFACTURER'S ADDRESS:** 636 GIRARD AVENUE

EAST AURORA, NEW YORK 14052

**PHONE:** (716)687-3835

Approved by:



Laboratory Director

**DISCLAIMERS**

This report is the confidential property of the client. For the protection of our clients and ourselves, extracts from this test report cannot be produced without prior written approval from Criterion Technology. Reproduction of the complete report can be performed at the client's discretion.

The client is aware that Criterion Technology has performed testing in accordance with the applicable standard(s). Test data is accurate within ANSI parameters for Emissions testing, unless a specific level of accuracy has been defined in writing prior to testing, by Criterion Technology and the client.

Criterion Technology reports apply only to the specific Equipment Under Test (EUT) sample(s) tested under the test conditions described in this report. If the manufacturer intends to use this report as a document demonstrating compliance of this model, additional models of this product must have electrical and mechanical characteristics identical to the device tested for this report. Criterion Technology shall have no liability for any deductions, inferences, or generalizations drawn by the client or others from Criterion Technology issued reports.

Total liability is limited to the amount invoiced for the testing of this EUT and the contents of this report are not warranted.

Compliance with the appropriate governmental standards is the responsibility of the manufacturer.

Any questions regarding this report should be directed to:

Laboratory Director  
Criterion Technology Corp.  
P.O. Box 489  
1350 Tolland Road  
Rollinsville, Colorado 80474  
Phone: (303) 258-0100  
Fax: (303) 258-0775  
mailto:laboratory\_director@criteriontech.com

**NVLAP Note:** Criterion Technology is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP) for the specific scope of accreditation under Lab Code 100396-0. Test methods included in Lab Code 100396-0 are:

12/CIS22 - IEC/CISPR22 (1997) and En 55022 (1998)  
12/CIS22a - IEC/CISPR22 (1993), Amendment 1:1995 & Amendment 2: 1996  
12/CIS22b - CNS13438 (1997)  
12/EM02a – IEC 61000-3-2, Edition 2.1 (2001-10) and EN 61000-3-2 (2000)  
12/EM03 – EN 61000-3-3 (1995) and IEC 61000-3-3 (1995)  
12/F01 – ANSI C63.4 (2001) – cited in FCC Method - 47 CFR Part 15 - Digital Devices  
12/F01a - Conducted Emissions, Power Lines, 150 kHz to 30 MHz  
12/F01b - Radiated Emissions  
12/T51 - AS/NZS 3548  
12/I01 – IEC 61000-4-2 (1995) and Amendment 1 (1998)  
12/I02 – IEC 61000-4-3 (1995) and Amendment 1 (1998)  
12/I03 – IEC 61000-4-4 (1995)  
12/I04 – IEC 61000-4-5 (1995)  
12/I05 – IEC 61000-4-6 (1996)  
12/I06- - IEC 61000-4-8 (1993)  
12/I07 – IEC 61000-4-11 (1994)

The NVLAP Logo on the front cover of this report applies only to data taken for the above test methods.

**This report may contain data which is not covered by the NVLAP accreditation.**

This report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

Criterion Technology has been accredited by the following groups: NVLAP, BSMI, NMi (EU Competent Body Accreditation) and Industry Canada. The National Institute for Standards and Technology (NIST) has designated Criterion Technology a Conformity Assessment Body (CAB) for Taiwan (BSMI # SL2-IN-E-007R).

**ALL CRITERION TECHNOLOGY INSTRUMENTATION AND ACCESSORIES USED TO TEST PRODUCTS  
FOR COMPLIANCE TO THE INDICATED STANDARDS ARE CALIBRATED REGULARLY IN  
ACCORDANCE WITH ISO 9001, ISO GUIDE 25, ANSI/NCSL Z540-1-1994 AND ARE TRACEABLE TO  
NATIONAL STANDARDS.**

## TABLE OF CONTENTS

|            |                                                                  |           |
|------------|------------------------------------------------------------------|-----------|
| <b>1.0</b> | <b>EXECUTIVE SUMMARY.....</b>                                    | <b>4</b>  |
| 1.1        | PURPOSE.....                                                     | 4         |
| 1.2        | CONFORMITY .....                                                 | 4         |
| 1.3        | EQUIPMENT UNDER TEST (EUT) .....                                 | 4         |
| <b>2.0</b> | <b>EMISSIONS TEST STANDARDS.....</b>                             | <b>5</b>  |
| 2.1        | UNINTENTIONAL RADIATED EMISSIONS – 30 MHZ TO 1000 MHZ .....      | 5         |
| 2.2        | INTENTIONAL RADIATOR.....                                        | 6         |
| <b>3.0</b> | <b>APPENDIX A: EUT PHOTOGRAPHS .....</b>                         | <b>7</b>  |
| 3.1        | UNINTENTIONAL RADIATED EMISSIONS .....                           | 7         |
| 3.2        | INTENTIONAL RADIATOR.....                                        | 8         |
| 3.3        | INTENTIONAL RADIATOR.....                                        | 9         |
| <b>4.0</b> | <b>APPENDIX B: DATA SHEETS .....</b>                             | <b>10</b> |
| 4.1        | EMISSIONS PLOT – UNINTENTIONAL RADIATOR - 30 MHZ TO 1 GHZ .....  | 10        |
| 4.2        | EMISSIONS TABLE – UNINTENTIONAL RADIATOR - 30 MHZ TO 1 GHZ ..... | 11        |
| 4.3        | INTENTIONAL RADIATOR.....                                        | 14        |
| <b>5.0</b> | <b>APPENDIX C: PRODUCT INFORMATION FORM.....</b>                 | <b>15</b> |
| <b>6.0</b> | <b>APPENDIX D: TEST EQUIPMENT AND CALIBRATION STATUS .....</b>   | <b>17</b> |
| <b>7.0</b> | <b>APPENDIX E: TEST DIRECTIVES, STANDARDS AND METHODS .....</b>  | <b>18</b> |

# EMC QUALIFICATION TEST REPORT

## STAR STATION, H6723

### 1.0 EXECUTIVE SUMMARY

#### 1.1 PURPOSE

The purpose of this report is to present EMC test data and demonstrate conformity to the requirements of the prescribed standards for Emissions and/or Immunity.

#### 1.2 CONFORMITY

The test article was tested to the standards listed in Table I with the indicated conformity status. All test methods were performed in accordance to with the standards listed.

TABLE I. EMISSIONS CONFORMITY SUMMARY

| TEST TYPE | COMPLIANCE STANDARD    | TESTING TECHNIQUE                                | TEST DESCRIPTION                 | PRODUCT CLASSIFICATION | CONFORMITY STATUS |
|-----------|------------------------|--------------------------------------------------|----------------------------------|------------------------|-------------------|
| EMISSIONS | <u>FCC Part 15.109</u> | <input checked="" type="checkbox"/> IEC/EN 55022 | Unintentional Radiated Emissions | Class B                | <b>PASSED</b>     |
| EMISSIONS | <u>FCC Part 15.249</u> | <input checked="" type="checkbox"/> IEC/EN 55022 | Intentional Radiated Emissions   |                        | <b>PASSED</b>     |

#### 1.3 EQUIPMENT UNDER TEST (EUT)

EUT NAME: START STATION

EUT MODEL/PART NUMBER(S): H6723

EUT SERIAL NUMBER(S): NONE

## 2.0 EMISSIONS TEST STANDARDS

FCC Part 15, Subpart B

Class B

### 2.1 UNINTENTIONAL RADIATED EMISSIONS – 30 MHZ TO 1000 MHZ

Measurements for *Radiated Emissions* were performed over the frequency range of 30 MHz to 1000 MHz in the horizontal and vertical antenna polarities to the requirements of:

FCC Part 15

Class B

#### Testing Conditions

Date of Test: April 30, 2005  
Temperature: 17°C  
Relative Humidity: 23%  
Test Voltage: 3 volts (batteries)  
Test Operator: lws

#### Test Location

Criterion Technology Open Area Test Site

#### Test Distance

Antenna Distance: 3 **meter(s)**      **Final Measurement(s)**

#### Test Equipment

|                                                                                 |                                                                                   |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| <input checked="" type="checkbox"/> Hewlett-Packard Spectrum Analyzer, HP 8566B | <input checked="" type="checkbox"/> Hewlett-Packard Quasi-Peak Adapter, HP 85650A |
| <input type="checkbox"/> Hewlett-Packard Tracking Generator, HP 85645A          |                                                                                   |
| <input type="checkbox"/> Rohde and Schwarz Receiver, ESHS-30                    | <input checked="" type="checkbox"/> Rohde and Schwarz Receiver, ESVS-30           |
| <input checked="" type="checkbox"/> Mini Circuits Pre-Amp #2                    | <input type="checkbox"/> Veratech Pre-Amp #3                                      |
| <input checked="" type="checkbox"/> Chase BiLog Antenna, Model 1121             | <input type="checkbox"/> Antenna Research, Horn Antenna, Model DRG118/A           |
| <input type="checkbox"/> EMCO BiConical Antenna, Model 3108                     | <input type="checkbox"/> EMCO Log Periodic Antenna, Model 3146                    |

#### Test Results of Radiated Emissions

Test Status: PASSED

Frequency Range: 30 MHz to 1000 MHz

Minimum Margin to Limit: -6.18 dB at 905.8779 MHz

#### Remarks

See: **APPENDIX A** for EUT Photographs      **APPENDIX B** for Data Sheets  
**APPENDIX D** for Test Equipment Calibration Status

**2.2  INTENTIONAL RADIATOR**

Measurements for *Intentional Radiated Emissions* were performed over the frequency range of 900 MHz to 9.5 GHz and horizontal and vertical antenna polarities to the requirements of:

**FCC Part 15.249**Testing Conditions

Date of Test: April 30, 2005  
Temperature: 17°C  
Relative Humidity: 23%  
Test Voltage: 3 volts DC (batteries)  
Test Operator: Iws

Test LocationCriterion Technology Open Area Test SiteTest Distance

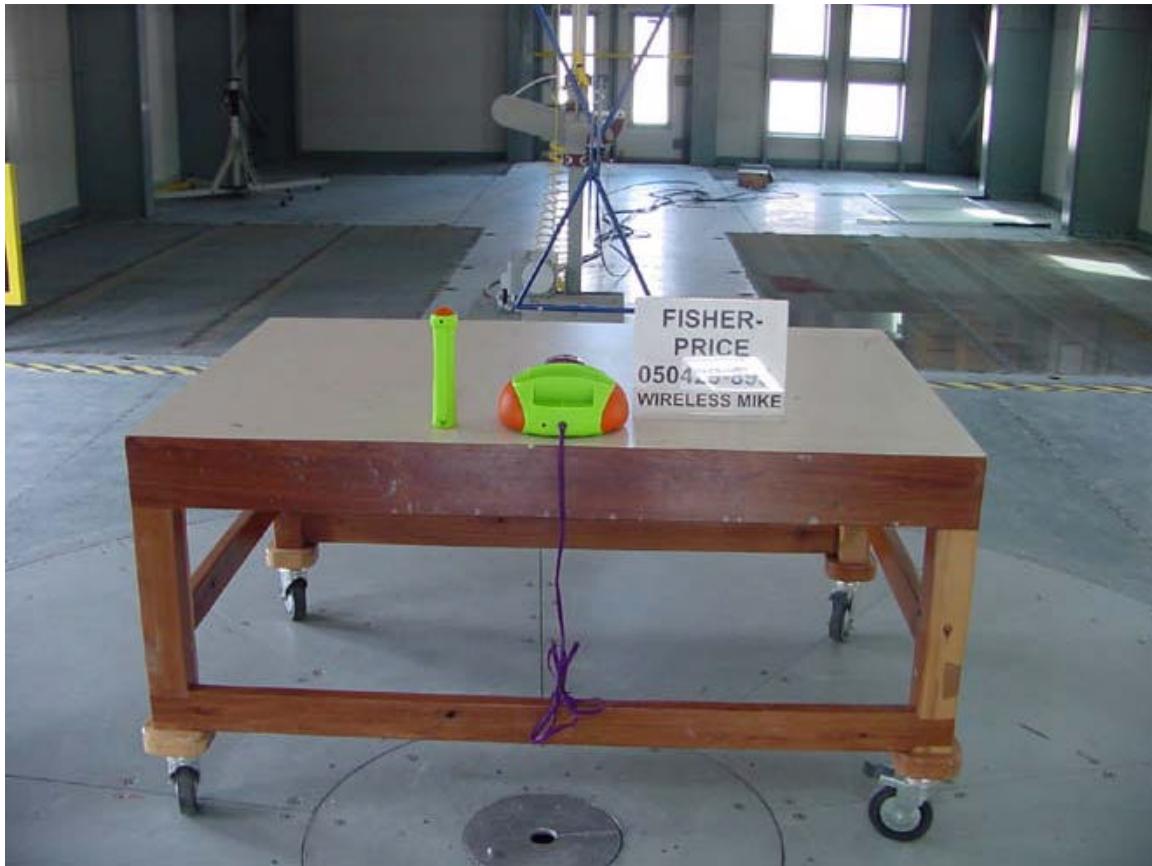
Antenna Distance: 3 meter(s)      Final Measurement(s)

Test Equipment

|                                                                                 |                                                                                    |
|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| <input checked="" type="checkbox"/> Hewlett-Packard Spectrum Analyzer, HP 8566B | <input checked="" type="checkbox"/> Hewlett-Packard Quasi-Peak Adapter, HP 85650A  |
| <input type="checkbox"/> Hewlett-Packard Tracking Generator, HP 85645A          |                                                                                    |
| <input type="checkbox"/> Rohde and Schwarz Receiver, ESHS-30                    | <input checked="" type="checkbox"/> Rohde and Schwarz Receiver, ESVS-30            |
| <input checked="" type="checkbox"/> Mini Circuits Pre-Amp #2                    | <input checked="" type="checkbox"/> Veratech Pre-Amp #3                            |
| <input checked="" type="checkbox"/> Chase BiLog Antenna, Model 1121             | <input checked="" type="checkbox"/> Antenna Research, Horn Antenna, Model DRG118/A |
| <input checked="" type="checkbox"/> EMCO BiConnical Antenna, Model 3108         | <input type="checkbox"/> EMCO Log Periodic Antenna, Model 3146                     |
| <input type="checkbox"/> EMCO Active Loop, 6502                                 | <input type="checkbox"/> EMCO Horn, 3160-08                                        |

Test Results of Radiated Emissions

Test Status: PASSED      Frequency Range: 1 GHz to 10 GHz


Minimum Margin to Limit: -1.86 dB at 1832.9119 MHz

Remarks

See: **APPENDIX A** for EUT Photographs      **APPENDIX B** for Data Sheets  
**APPENDIX D** for Test Equipment Calibration Status

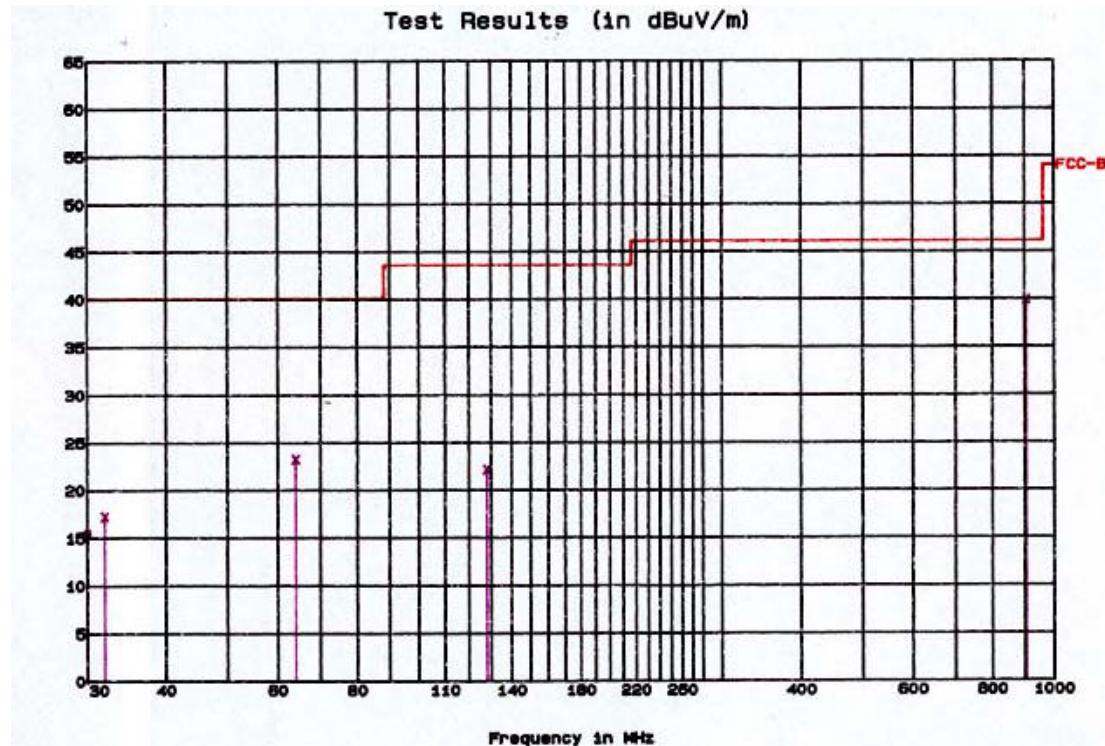
### 3.0 APPENDIX A: EUT PHOTOGRAPHS

#### 3.1 UNINTENTIONAL RADIATED EMISSIONS



## 3.2 INTENTIONAL RADIATOR




## 3.3 INTENTIONAL RADIATOR



## 4.0 APPENDIX B: DATA SHEETS

#### 4.1 EMISSIONS PLOT – UNINTENTIONAL RADIATOR - 30 MHZ TO 1 GHZ

**Criterion Technology** Date: April 30, 2005  
**EUT: Star Station, H6723** S/N: None  
**Manufacturer: Fisher-Price, Inc.**  
**Tester: lws** SpiD: 050429-893  
**EUT Information: Battery Powered**  
**Test Information: 3m, FCC Part 15 Class B**  
**Test Cond: Temp: 17°C** Humidity: 23%



## 4.2 EMISSIONS TABLE – UNINTENTIONAL RADIATOR - 30 MHZ TO 1 GHZ

**Notes:**

The third column below contains alpha characters which pertain to the type of measurements made. The following are the definitions for those characters: q = Quasi Peak, m = Maximized (cable, rotation and antenna height), s = scanned but no data taken, and a = average. For the first character in column four, a ‘-’ indicates that value is below the limit while an ‘\*’ indicates that value is above the limit

If the list is sorted using “l-sort”, then quasi-peak and average levels are weighted higher than peak levels and are moved to the front of the scan list.

The following keys help to better understand the data:

TT: Turntable position in degrees

Hght: Height of antenna in centimeters

Az: Azimuth, V = Vertical, H= Horizontal

Minimum Margin to Limit: -6.18 dB at 905.8779 MHz

Criterion Technology Sat April 30 2005

EUT: Star Station, H6723

Manufacturer: Fisher-Price, Inc.

Tester: lws Special ID: 050429-893

EUT Information: Battery Powered

Test information: 3m, FCC Part 15, Class B

**Table 1: Scan List, sorted by margin to limit FCC-B, -25.0dB filter**

| Freq. MHz | Value | Sts | FCC-B  | TT  | Hght | Az | Comment  |
|-----------|-------|-----|--------|-----|------|----|----------|
| 905.8779  | 39.84 | m   | -6.18  | 0   | 113  | V  | .        |
| 64.0020   | 23.20 | m   | -16.80 | 136 | 164  | V  | 32 M clk |
| 128.0040  | 22.10 | m   | -21.42 | 147 | 164  | V  | 32 M clk |
| 32.0010   | 17.21 | m   | -22.79 | 122 | 113  | V  | 32 M clk |
| 30.0034   | 15.43 | q   | -24.57 | 0   | 113  | V  | .        |

Table 2: Scan List for FCC-B, sorted by Frequency, -25.0dB filter

| <u>Freq. MHz</u> | <u>Value</u> | <u>Sts</u> | <u>FCC-B</u> | <u>TT</u> | <u>Hght</u> | <u>Az</u> | <u>Comment</u> |
|------------------|--------------|------------|--------------|-----------|-------------|-----------|----------------|
| 30.0034          | 15.43        | q          | -24.57       | 0         | 113         | V         | .              |
| 32.0010          | 17.21        | m          | -22.79       | 122       | 113         | V         | 32 M clk       |
| 64.0020          | 23.20        | m          | -16.80       | 136       | 164         | V         | 32 M clk       |
| 128.0040         | 22.10        | m          | -21.42       | 147       | 164         | V         | 32 M clk       |
| 905.8779         | 39.84        | m          | -6.18        | 0         | 113         | V         | .              |

**Table 3: Complete Scan List Sorted by Frequency**

| Freq, MHz | I-val | Final | Sts | TT  | Hght | Az | Time                     | Comment  |
|-----------|-------|-------|-----|-----|------|----|--------------------------|----------|
| 30.0034   | 20.24 | 15.43 | q   | 0   | 113  | V  | Sat Apr 30 10:27:15 2005 | .        |
| 32.0010   | 22.89 | 17.21 | m   | 122 | 113  | V  | Sat Apr 30 10:31:10 2005 | 32 M clk |
| 64.0020   | 39.72 | 23.20 | m   | 136 | 164  | V  | Sat Apr 30 10:33:18 2005 | 32 M clk |
| 128.0040  | 32.25 | 22.10 | m   | 147 | 164  | V  | Sat Apr 30 10:39:45 2005 | 32 M clk |
| 160.0050  | 18.86 | 7.35  | q   | 0   | 113  | V  | Sat Apr 30 10:24:18 2005 | 32 M clk |
| 192.0060  | 19.66 | 6.90  | q   | 169 | 164  | V  | Sat Apr 30 10:41:59 2005 | 32 M clk |
| 224.0070  | 18.59 | 7.51  | q   | 1   | 150  | V  | Sat Apr 30 19:58:27 2005 | 32 M clk |
| 256.0080  | 18.60 | 10.20 | q   | 1   | 150  | V  | Sat Apr 30 19:58:40 2005 | 32 M clk |
| 288.0090  | 18.77 | 10.54 | q   | 181 | 150  | V  | Sat Apr 30 20:01:04 2005 | 32 M clk |

## 4.3 INTENTIONAL RADIATOR

| Harmonic #  | Frequency<br>(MHz) | F val<br>(dbuV/m)pad | F val<br>including | FCC part<br>15.249 | Margin to<br>(dbuV/m) Limit (db) | Elev | Pol | Comments    |
|-------------|--------------------|----------------------|--------------------|--------------------|----------------------------------|------|-----|-------------|
|             |                    |                      | 9.89 db            | limit              |                                  |      |     |             |
| Fundamental | 916.4709           | 70.23                | --                 | 74                 | -3.77                            | 109  | V   |             |
| 2 Fo        | 1832.9119          | 42.25                | 52.14              | 54                 | -1.86                            | 134  | V   |             |
| 3 Fo        | 2749.3580          | 31.60                | 41.49              | 54                 | -12.51                           | 135  | V   |             |
| 4 Fo        | 3665.8091          | 33.19                | 43.08              | 54                 | -10.92                           | 136  | V   |             |
| 5 Fo        | 4582.2553          | 33.01                | 42.90              | 54                 | -11.1                            | 117  | V   | Noise floor |
| 6 Fo        | 5498.7204          | 34.89                | 44.78              | 54                 | -9.22                            | 180  | V   | Noise floor |
| 7 Fo        | 6415.1654          | 51.78                | ***                | 54                 | -2.22                            | 105  | V   |             |
| 8 Fo        | 7331.6344          | 48.61                | ***                | 54                 | -5.39                            | 107  | V   | Noise floor |
| 9 Fo        | 8248.0957          | 45.52                | ***                | 54                 | -8.48                            | 100  | V   | Noise floor |
| 10 Fo       | 9164.5620          | 47.77                | ***                | 54                 | -6.23                            | 100  | V   | Noise Floor |

\*\*\* Note: High Pass filter used – included in transducer factor used to derive F val

**5.0 APPENDIX C: PRODUCT INFORMATION FORM****CRITERION TECHNOLOGY PRODUCT INFORMATION FORM****General Information****Date: 05/10/05**Company Name: Fisher-Price IncCompany Address: 636 Girard Avenue, East Aurora, New York, 14052**Contacts:**

Compliance Engineer: Augusto Silva Phone: 716-687-3382 Email: Augusto.Silva@fisher-Price.com  
Design Engineer: Peter vom Scheidt Phone: 716-687-3380 Email: Peter.Vomscheidt@fisherPrice.com

**Test Description**De-Bug \_\_\_\_\_ Formal (Initial) X \_\_\_\_\_ Formal (Re-Verification) \_\_\_\_\_**Market Information (Check all that Apply)**USA X Canada X Euro. Union \_\_\_\_\_ Taiwan \_\_\_\_\_ Japan \_\_\_\_\_ New Zealand \_\_\_\_\_ Australia \_\_\_\_\_  
Other \_\_\_\_\_**Product Information**Name: Star Station Model Number: H6723 Serial Number: NoneProduct Dimensions: See SampleWeight: See Sample**Product Power Source:****Battery**Type TX 3XAAA, RX 6XC**AC Supply**

Input Voltage Range(s)

Phases \_\_\_\_\_ Delta \_\_\_\_\_ Wye \_\_\_\_\_

Current \_\_\_\_\_

Frequency \_\_\_\_\_

Manufacturer \_\_\_\_\_

Model Number \_\_\_\_\_

**Topology**Linear X \_\_\_\_\_ Switching Mode \_\_\_\_\_ Switching Frequency \_\_\_\_\_**Support Equipment (if used):**

## CPU:

Manufacturer \_\_\_\_\_

Model No. \_\_\_\_\_

Serial No. \_\_\_\_\_

## Monitor:

Manufacturer \_\_\_\_\_

Model No. \_\_\_\_\_

Serial No. \_\_\_\_\_

## Keyboard:

Manufacturer \_\_\_\_\_

Model No. \_\_\_\_\_

Serial No. \_\_\_\_\_

## Mouse:

Manufacturer \_\_\_\_\_

Model No. \_\_\_\_\_

Serial No. \_\_\_\_\_

## I/O Cables – Manufacturer, P/N, Length :

Serial Port \_\_\_\_\_

Parallel Port \_\_\_\_\_

SCSI Port \_\_\_\_\_  
Other video cables permanently attached \_\_\_\_\_

**Operation Software:**

Name \_\_\_\_\_ Version Number \_\_\_\_\_

**Operating Modes: (Please Include Cycle Time)**

Continuous Transmission \_\_\_\_\_

Time necessary for EUT to be exercised and able to fully respond: \_\_\_\_\_ seconds.

**Operation Pass/Fail Criteria:****Test Type – Emissions (Please check all that apply):****Information Technology Equipment**

Class A \_\_\_\_\_

Class B \_\_\_\_\_

Oscillator/Clock Frequencies (MHz) \_\_\_\_\_

**Industrial, Scientific, Medical Equipment**

Class A \_\_\_\_\_

Class B \_\_\_\_\_

Oscillator/Clock Frequencies (MHz) \_\_\_\_\_

**Unintentional Radiator**

Class A \_\_\_\_\_

Class B \_\_\_\_\_

Oscillator/Clock Frequencies (MHz) \_\_\_\_\_

**Receiver**

Type (Regen., Superhet., Direct Conv., Homodyne) Superhet \_\_\_\_\_

Local Oscillator Frequencies 905.8Mhz \_\_\_\_\_

Frequency Range 916.5Mhz +- 100Khz \_\_\_\_\_

**Intentional Radiator**

Fundamental Frequency Range 916.5 Mhz fundamental SAW oscillator \_\_\_\_\_

Local Oscillator Frequencies \_\_\_\_\_

Power Output (to antenna) 0 dBm \_\_\_\_\_

Integral Antenna (Yes/No) Yes \_\_\_\_\_

Modulation Type (AM, CM, Pulse, Spread Spectrum) FM +-25kHz \_\_\_\_\_

Control Circuits (Microprocessor/Micro-controller) \_\_\_\_\_

Oscillator/Clock Frequencies (MHz) \_\_\_\_\_

**IEC 61000-3-2, Harmonics**

Max. Steady State Power Consumed by Product: 100mW Watts

**IEC 61000-3-3, Flicker Meter**

**6.0 APPENDIX D: TEST EQUIPMENT AND CALIBRATION STATUS**

| Manufacturer           | Name/Description         | Model Number   | Serial Number | Cal. Due Date |
|------------------------|--------------------------|----------------|---------------|---------------|
| Hewlett Packard        | Spectrum Analyzer        | HP 8566B       | 2421A00527    | 6/1/2005      |
| Chase                  | Bilog 30 - 1000 MHz      | CB6111         | 1121          | 5/5/2005      |
| Rohde/ Schwarz         | VHF/UHF Receiver         | ESVS-30        | 8634221014    | 6/19/2005     |
| FCC                    | CDN                      | FCC-801-M3-25  | 9714          | 7/10/2005     |
| FCC                    | EM Clamp                 | F2031          | 309           | 7/19/2005     |
| Tegam                  | Current Probe            | 925236-1       | 12588         | 5/20/2005     |
| Veratech               | Preamp (AMP2)            |                | N/A           | 5/20/2005     |
| Hewlett Packard        | Signal Generator         | HP 8648D       | 3642000145    | 8/13/2005     |
| Dickson                | Temperature/ RH Recorder | THDX           | 5300245       | 8/15/2005     |
| Rohde/ Schwarz         | LISN                     | ESH2-Z5        | 828739-001    | 6/18/2005     |
| Amplifier Research     | Power Amplifier          | 150A100A       | 20183         | 6/25/2005     |
| Amplifier Research     | Power Amplifier          | 100W1000M1     | 20214         | 6/25/2005     |
| Rohde/ Schwarz         | HF Receiver              | ESHS-30        | 826003/011    | 6/29/2005     |
| Amplifier Research     | Directional Coupler      | DC2600         | 302981        | 7/22/2005     |
| Haefely Trench         | EFT Tester               | PEFT Junior    | 583-333-51    | 10/12/2005    |
| Hewlett Packard        | Tracking Generator       | HP85645A       | 3210A00124    | 11/9/2005     |
| Heise                  | Barometer                | 710A           | S7-15256      | 2/6/2006      |
| Hewlett Packard        | Pulse Generator          | HP 8116A       | 2901G09493    | 2/13/2006     |
| Amplifier Research     | E-Field Probe            | FP2000         | 19682         | 4/12/2006     |
| Antenna Research       | 1-18 GHz Horn            | DRG118/A       | 1057          | 4/13/2006     |
| EMCO                   | Active Loop              | 6502           | 2626          | 4/14/2006     |
| Amplifier Research     | E-Field Probe            | FP2080         | 20236         | 4/16/2006     |
| California Instruments | AC Power Source Pacs-1   | 5001iX-CTS-411 | 55637/ 72242  | 2/11/2007     |
| EMCO                   | Horn                     | 3160-08        | 1147          | 5/9/2007      |

## 7.0 APPENDIX E: TEST DIRECTIVES, STANDARDS AND METHODS

### 7.1 EUROPEAN DIRECTIVES, STANDARDS AND METHODS

89/336/EEC: Council Directive of 03 May 1989 on the Approximation of the Laws of the Member States Relating to Electromagnetic Compatibility, OJEC No. L 139/19-26, Aug 1993.

EN 50081-1 (CENELEC): EMC - Generic Emission Standard, Part 1: Residential, Commercial and Light Industry, Revised 2001.

EN61000-6-4 (CENELEC): EMC - Generic Emission Standard, Part 6-4: Industrial Environment, 23 October 2001.

BS DD ENV 50204 (CENELEC): Testing and Measurement Techniques; Radiated Electromagnetic Field from Digital Radio Telephones - Immunity Test, 1996.

EN 55011 (CENELEC): ISM Radio-Frequency Equipment Radio Disturbance Characteristics - Limits and Methods of Measurement, with Amendments 1 & 2, 2003.

EN 55014-1 (CENELEC): Part 1. Electromagnetic Compatibility Requirements for Household Appliances, Electric Tools and Similar Apparatus - Part 1. Emission - Product Family Standard, 2001.

EN 55022 (CENELEC): ITE - Radio-Frequency Equipment Radio Disturbance Characteristics - Limits and Methods of Measurement, 2003.

EN 55024 (CENELEC): ITE - Immunity Characteristics - Limits and Methods of Measurement, 2003.

EN 60601-1-2 (CENELEC): Medical Electrical Equipment. Part 1. General Requirements for Safety - Section 1.2. Collateral Standard: Electromagnetic Compatibility - Requirements and Tests, 2002.

EN 61000-3-2 (CENELEC): EMC - Part 2. Limits for Harmonic Current Emissions (Equipment Input Current  $\leq$  16 A per phase), with Amendment 14, 2000.

EN 61000-3-3 (CENELEC): EMC - Part 3. Limitation of Voltage Fluctuation and Flicker in Low-Voltage Supply Systems for Equipment with Rated Current  $\leq$  16 A, 1998.

EN 61000-4-7 (CENELEC): EMC – Part 4-7 Testing and measurement techniques – General guide on harmonics and interharmonics measurements and instrumentation, for power supply systems and equipment connected thereto: 2002

EN 61000-4-2 (CENELEC): EMC - Part 4. Testing and Measurement Techniques; Section 2. Electrostatic Discharge Immunity Test, with Amendments 1 & 2, 2001.

EN 61000-4-3 (CENELEC): EMC - Part 4. Testing and Measurement Techniques; Section 3. Radiated, Radio-Frequency, Electromagnetic Field Immunity, with Amendments 1 & 2, 2005.

EN 61000-4-4 (CENELEC): EMC - Part 4. Testing and Measurement Techniques; Section 4. Electrical Fast Transient/Burst Immunity Test, 2005.

EN 61000-4-5 (CENELEC): EMC - Part 4. Testing and Measurement Techniques; Section 5. Surge Immunity Test, with Amendments 1 & 2, 2001.

EN 61000-4-6 (CENELEC): EMC - Part 4. Testing and Measurement Techniques; Section 6. Immunity to Conducted Disturbances, Induced by Radio-Frequency Fields, 2005.

EN 61000-4-8 (CENELEC): EMC - Part 4. Testing and Measurement Techniques; Section 8. Power Frequency Magnetic Field Immunity Test, 1994.

EN 61000-4-11 (CENELEC): EMC - Part 4. Testing and Measurement Techniques; Section 11. Voltage Dips, Short Interruptions and Voltage Variations Immunity Tests, 1999

IEC 61000-6-1: EMC – Part 6-1. Generic standards – Immunity for residential, commercial and light-industrial environments, 9 March 2005.

EN 61000-6-2: EMC- Part 6-2. Generic Standard-Immunity for Industrial Environments, October 2001

EN 61326 (CENELEC): Electrical Equipment for Measurement, Control and Laboratory Use - EMC Requirements, 1998.

7.2 47 CFR FCC PART 15 RADIO FREQUENCY DEVICES: OCT 2003

Subpart A General.

Subpart B Unintentional Radiators.

Subpart C Intentional Radiators.

Subpart D Unlicensed Personal Communications Service Devices.

7.3 47 CFR FCC PART 22 PUBLIC MOBILE SERVICES: OCT 2003

7.4 47 CFR FCC PART 24 PERSONAL COMMUNICATIONS SERVICES: OCT 2003

7.5 JAPAN

VCCI V-3

7.6 CANADA

ICES-001: Interference-Causing Equipment Standard - ISM RF Generators, 1998.

ICES-003: Interference-Causing Equipment Standard - Digital Apparatus, 2004.

7.7 AUSTRALIA/NEW ZEALAND

SAA AS/NZ 3548: Limits and Methods of Measurement of Radio Disturbance Characteristics of ITE, 1997.

7.8 CHINA

CNS13438, 1997.

**THIS PAGE INTENTIONALLY LEFT BLANK**