GENERAL INFORMATION REQUIREMENTS

Paragraph 2.983(a)

Name of Applicant:	Samson Technologies
Address of Applicant:	575 Underhill Blvd. Syosset, NY 11791

Name of Manufacturer: Samson Technologies

Paragraph 2.983(b)

Equipment		
Identification:	FCC ID:	CCRAF1M

Paragraph 2.02(c)(1)

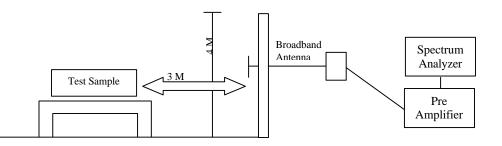
Necessary Bandwidth Determination:

The necessary bandwidth was calculated utilizing the following formula:

 $B_n = 2M + 2D \qquad \qquad M = 15 \text{ kHz} \\ D = 32.8 \text{ kHz}$

 $B_n = 2(15) + 2(32.8) = 95.6 \text{ kHz}$

Paragraph 2.1046


Power Output, Effective Radiated Power

POWER OUTPUT, EFFECTIVE RADIATED POWER (Para. 2.1046)

A. Measurement Procedure:

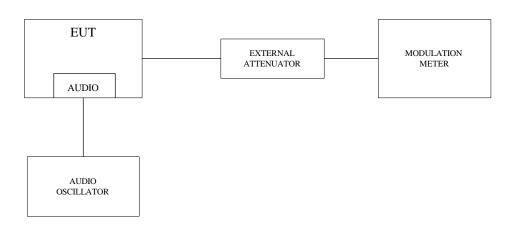
The transmitter under test was placed on an 80 cm. high non metallic table on the Open Air Test Site with its antenna polarized vertically. A receive dipole antenna was placed three meters away from the transmitter. The turntable was rotated 360 degrees and the receive antenna was raised and lowered from 1 to 4 meters until a maximum reading was obtained. This reading was recorded. The transmitter under test was replaced with a dipole and signal generator. The signal generator was set to the frequency of the transmitter under test. The level of the signal generator was increased until the level was equal to that previously measured. The required input level from the signal generator in dBm was recorded and converted into milliwatts. This was the Effective Radiated Power of the transmitter.

Setup of the test is shown below:

B. Test Results:

The results for the above test are submitted as a separate attachment named ERP.pdf.

Paragraph 2.1047


Modulation Characteristics

MODULATION CHARACTERISTICS (2.1047)

A. Measurement Procedure:

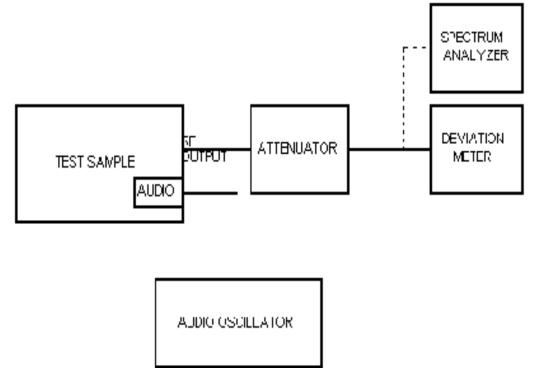
An Audio Oscillator was directly coupled to the audio input of the transmitter under test. The RF Output at the antenna terminals was loosely coupled to a modulation meter as shown below. The audio level applied to the input was adjusted from -50dBm to +10dBm at each frequency listed herein. At each test frequency and level, the FM modulation was recorded.

Setup of the above test is shown below:

B. Test Results:

The test data for this method are being submitted as a separate attachment, named modchar.pdf.

Paragraph 2.1049


Occupied Bandwidth

OCCUPIED BANDWIDTH (PARA.2.1049)

A. Measurement Procedure:

An audio signal was directly coupled to the audio input of the test sample. The RF output was monitored using a deviation meter. The audio input level was increased to produce a 50% deviation +16dB. The RF output was then loosely coupled through external attenuators to a spectrum analyzer. The occupied bandwidth of the RF carrier, modulated at 50% deviation +16dB, was then measured. The above procedure was performed with the audio input frequencies of 1000, 2500, and 15000 Hz. The modulated signal must be within the template as specified by the applicable paragraph in Part 74. The above procedure was then repeated with the Audio Input acoustically coupled to the microphone at a level of 100dBspl.

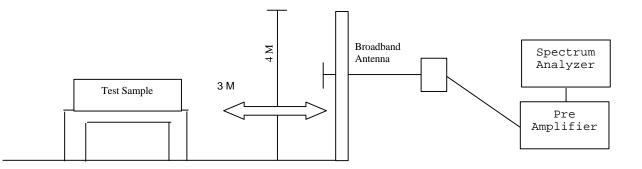
Setup of the test is shown below:

B. Test Results:

The results for the above test are submitted as a separate attachment named occbw.pdf.

Para. 2.1053

Field Strength of Spurious Radiation


FIELD STRENGTH OF SPURIOUS RADIATION (PARA 2.1053)

A. Measurement Procedure:

The test sample was then placed on an 80cm high wooden test stand, which was located three meters from the test antenna on an FCC listed test site. The frequency range scanned was from the lowest frequency generated by the test sample to its tenth harmonic. In order to maximize the level of each emission observed from the test sample, the broadband antenna was tuned to the frequency of each emission and the test sample was rotated 360 degrees. To further maximize the each emission observed, the test antenna was both horizontally and vertically polarized, and then was raised and lowered from one to four meters from the ground plane. The limits for all of the spurious emissions was calculated utilizing the measured output power and the following equation:

Limit $\langle dB\mu V/M \rangle = 20 \log [\{(49.2 \text{ x } P_T)^{\frac{1}{2}}/3\} \text{ x } 10^6] - (43 + 10 \log P_T)$

The above procedure was performed at the lower, middle and upper frequencies of the device's range.

Setup of the test is shown below:

B. Test Results:

The results for the above test are submitted as a separate attachment named spurious case.doc.

Paragraph 2.1055

Frequency Stability

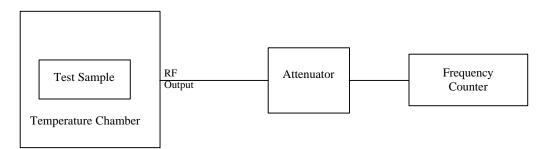
FREQUENCY STABILITY MEASUREMENTS

A. Measurement Procedure (Frequency vs. Voltage):

The RF output of the test sample was coupled to a frequency counter through external attenuation. Using a Variable power supply and voltmeter, the input voltage was varied. Measurements were taken with the device being supplied with 85, 100, and 115 percent of its rated input voltage and set to transmit the unmodulated carrier frequency.

Setup of the test is shown below:

B. Test Results:


The results for the above test are submitted as a separate attachment named freq voltage.pdf.

FREQUENCY STABILITY MEASUREMENTS (PARA 2.995)

A. Measurement Procedure (Frequency vs. Temperature)

The RF output of the test sample was coupled to a frequency counter through external attenuators.
With the counter connected, the test sample was activated and placed into a temperature chamber.
The temperature was then programmed to start at -30 degrees Celsius and reach +50 degrees
Celsius in 10 degrees increments. Each increment was held for 30 minutes in order to let the test sample stabilize at that temperature.

Setup of the test is shown below:

B. Test Results:

The results for the above test are submitted as a separate attachment named freq temp.pdf.

EQUIPMENT LISTS Effective Radiated Power

EN	Туре	Manufacturer	Description	Model No.	Cal Date	Due Date
067	Open Area Test Site	Retlif	3 Meter	RNY	10/15/2000	10/15/2003
141	Spectrum Analyzer	Hewlett Packard	100 Hz - 40 GHz	8566B	08/03/2000	02/03/2001
141B	Quasi-Peak Adaptor	Hewlett Packard	100 Hz - 1 GHz	85650A	08/02/2000	02/02/2001
451C	Tuned Dipole Antenna	Empire Devices	400 - 1000 MHz	DM-105-T3	08/08/2000	08/08/2001
523	Biconilog	Electro-Mechanics	26 - 2000 MHz	3142B	06/08/2000	06/08/2001
574	Signal Generator	Marconi Instru.	9 kHz - 2.4 GHz	2024	05/01/2000	05/01/2001

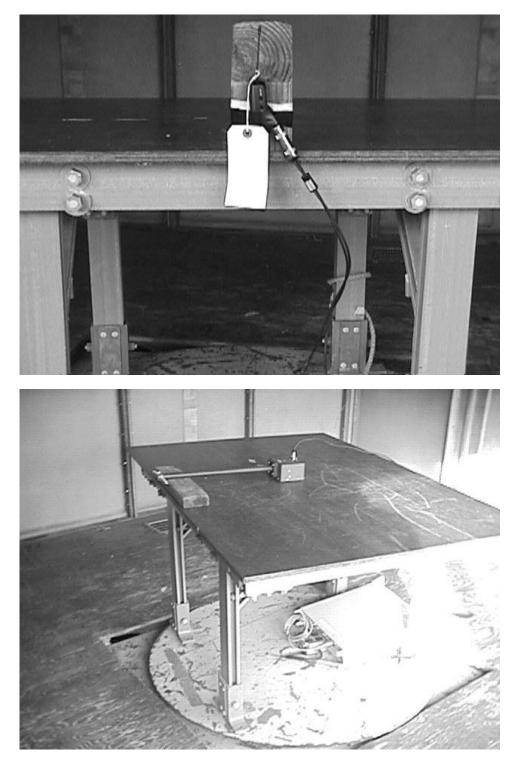
FCC 74.861(e)(3) Frequency Response and Modulation Characteristics

EN	Туре	Manufacturer	Description.	Model No.	Cal Date Due Date
091	Shielded Enclosure	Retlif	10 kHz - 1 GHz	Room 6	07/14/1999 07/14/2000
159	Frequency Counter	Leader	10 Hz - 1 GHz	LDC-825	09/15/1999 09/15/2000
419	Modulation Meter	Boonton Electronics	.01 - 1.2 GHz	82AD	05/03/2000 05/03/2001
488	HP Test Oscillator	Hewlett Packard	10 Hz - 10 MHz	654A	05/02/2000 05/02/2001

Frequency Stability versus Input Voltage (85% to 115%) Manufacturer Description Model No Cal Date Due Date

	Type	Manufacturer	Description.	Model No.	Cal Dale	Due Dale
091	Shielded Enclosure	Retlif	10 kHz - 1 GHz	Room 6	07/14/1999	07/14/2000
159	Frequency Counter	Leader	10 Hz - 1 GHz	LDC-825	09/15/1999	09/15/2000
520F	Digital Multimeter	Wavetek	N/A	DM25XT	01/06/2000	07/06/2000
696	DC Power Supply	BK Precision	30V/3A	1730	08/20/1999	08/20/2000

Tune


Frequency Stability versus Temperature (-30 degrees C. to 50 degrees C.)

EN	Туре	Manufacturer	Description.	Model No.	Cal Date Due Date
159	Frequency Counter	Leader	10 Hz - 1 GHz	LDC-825	09/15/1999 09/15/2000
520F	Digital Multimeter	Wavetek	N/A	DM25XT	01/06/2000 07/06/2000
612	Temperature Chamber	Thermotron Corp.	N/A	SE-1000L	01/18/2000 01/18/2001
696	DC Power Supply	BK Precision	30V/3A	1730	08/20/1999 08/20/2000

FCC 74.861(e)(5) Occupied Bandwidth Manufacturer **Description.** Model No. EN Cal Date Due Date Type 10 kHz - 1 GHz 091 Shielded Enclosure Retlif Room 6 07/14/1999 07/14/2000 Graphics Plotter 7470A 141A Hewlett Packard 03/08/2000 03/08/2001 N/A HP Test Oscillator 488 Hewlett Packard 10 Hz - 10 MHz 654A 05/02/2000 05/02/2001 8591EM 544 **EMC** Analyzer Hewlett Packard 9.0 kHz - 1.8 GHz 08/25/1999 08/25/2000

FCC2.1053 Spurious Radiated Emissions, 30MHz-9GHz EN Manufacturer Model No. Type Description Cal Date Due Date 067 **Open Area Test Site** Retlif 3 Meter RNY 10/15/2000 10/15/2003 128C Double Ridge Guide Eaton Corporation 1 GHz - 18 GHz 96001 09/18/2000 09/18/2001 133 **Broadband Pre-Amplifier Electro-Metrics** 10 kHz - 1 GHz, 26dB BPA-1000 06/13/2000 06/13/2001 100 Hz - 40 GHz 141 Spectrum Analyzer Hewlett Packard 8566B 08/03/2000 02/03/2001 141A **Graphics Plotter** Hewlett Packard N/A 7470A 03/08/2000 03/08/2001 141B Quasi-Peak Adaptor Hewlett Packard 100 Hz - 1 GHz 85650A 08/02/2000 02/02/2001 6.0 dB Attenuator 0 - 1.0 GHz FP-50 - 6 dB 206B Texscan 06/13/2000 06/13/2001 Biconilog **Electro-Mechanics** 26 - 2000 MHz 3142B 523 06/08/2000 06/08/2001 Preamplifier Hewlett Packard 1.0 GHz - 26.5 GHz 8449B 543 06/16/1999 06/16/2001 617 Interference Analyzer **Electro-Metrics** 10 kHz - 1 GHz EMC-30 01/17/2000 01/17/2001

TEST SETUP PHOTOGRAPHS

AF1/AG1 Explanation of Spurious Limitation

- 1 Not use lower frequency than the transmission frequency 800MHz Direct Oscillation.
- 2 Emitter coupling which has less spurious is used for between oscillation stage and buffer.
- 3 Ouput side of the final stage is tuning type which has proper matching. It limits higher harmonic factor.
- 4 Low pass filter located at the final stage eliminates higher harmonic factor.

Utilizing SAW Resor VCO etc. process.

Pai type 2 stages.

nator.

Test Method: Spurious Case Radiated Emissions, 30 MHz to 9 GHz, Paragraph 2:1053 Customer: Samson Technologies Job No. R-8512-5 Test Sample: UHF Wireless Transmitter FCC IDI CCRAF1M Model No.: AF1 FCC Part 2, Paragraph 2:1053, Tield Strength of Spurious Radiation FCC Part 2, Paragraph 2:1053, Tield Strength of Spurious Radiation Test Specification FCC Part 2, Paragraph 2:1053, Field Strength of Spurious Radiation Date: December 13, 2000 Notes: Test Distance: D=3 M; Limit in dBuV= 20 log([(49.2 x P) ^{1/2} /D) x 10 ⁵) - (43+10 log P); P=Power in Watts Detector: Peak Test Freq. Antenna Orientation Reading Pairtor Reading Reading Converted Reading Limit Infit MHz (V/H) / Meters Degrees dBuv dB dBu/m u/m u/m 1	Taat Matha	-l-	0					L 0 1050	
Test Sample: UHF Wireless Transmitter FCC ID: CCRAF1M Model No.: AF1 FCC ID: CCRAF1M Operating Mode Continuously transmitting at 803.7 MHz Test Specification FCC Part 2, Paragraph 2.1053, Field Strength of Spurious Radiation Test Specification FCC Part 2, Paragraph 2.1053, Field Strength of Spurious Radiation Date: December 13, 2000 Notes: Test Distance: D=3 M; Limit in dBuV= 20 log[{(49.2 x P) ¹⁷² /D] x 10 ⁶) - (43+10 log P); P=Power in Watts Detector: Peak Corraction Carraction Reading Corraction Reading Limit finit MHz (V/H) / Meters Degrees dBuv dB dBuv/m uv/m uv/m 30.00		a:			d Emissions, 3	30 MHz to 9			
Model No.: AF1 FCC ID: CCRAF1M Operating Mode Continuously transmitting at 803.7 MHz Test Specification FCC Part 2, Paragraph 2.1053, Field Strength of Spurious Radiaton Test Specification FCC Part 2, Paragraph 2.1053, Field Strength of Spurious Radiaton Date: December 13, 2000 Notes: Test Distance: D=3 M; Limit in dBuV= 20 log[[(49.2 x P) ¹² /D] x 10 ⁶) - (43+10 log P); P=Power in Watts Detector: Peak Date: Corrected Reading Corrected Reading Converted Reading Limit MHz (V/H) / Meters Degrees dBuv dB dBuv/m uv/m uv/m 30.00							JOD NO.	R-8512-5	
Operating Mode Continuously transmitting at 803.7 MHz Test Specification FCC Part 2, Paragraph 2.1053, Field Strength of Spurious Radiation Technician: Peter Lanana Date: December 13, 2000 Notes: Test Distance: D=3 M; Limit in dBuV= 20 log([(49.2 x P) ^{1/2} /D] x 10 ⁶) - (43+10 log P); P=Power in Watts Detector: Peak Correction Corrected Reading Converted Reading Limit mit MHZ (V/H) / Meters Degrees dBuv dB dBuv/m uv/m uv/m 30.00		le:		reless I ransmi	tter				
Test Specification FCC Part 2, Paragraph 2.1053, Field Strength of Spurious Radiation Peter Lananna Date: December 13, 2000 Notes: Test Distance: D=3 M; Limit in dBuV= 20 log{[(49.2 x P) ^{1/2} /D] x 10 ⁶) - (43+10 log P); P=Power in Watts Detector: Peak Test Freq. Antenna P01./Height EUT Orientation Meter Reading Corrected Reading Converted Reading Limit MHz (V/H) / Meters Degrees dBuv dB dBuv/m uv/m u/m 30.00							FCC ID:	CCRAF1M	
Technician: Peter Lanana Date: December 13, 2000 Note: Test Distance: D= 3 M; Limit in dBUV= 20 log(((49.2 x P) ^{11/2} /) × 10 ⁶) - (43+1) Uo P); P=Power In Wats Detector: Test Distance: D=3 M; Limit in dBUV= 20 log(((49.2 x P) ^{11/2} /) × 10 ⁶) - (43+1) Uo P); P=Power In Wats Detector: Test Freq. Pol./Height Orientation Reading Correction Correction Reading Limit MIte no Pol./Height Orientation Meter Correction Correction Reading Limit MIte Pol./Height Orientation Meter Correction Correction Reading Limit MIte Pol./Height Degrees dBuv dB dBuv/m uv/m uv/m 30.00					-				
Notes: Test Distance: D=3 M; Limit in dBuV= 20 log[[(49.2 x P) ^{1/2} /D] x 10 ⁶] - (43+10 log P); P=Power in Watts Detector: Peak Test Freq. Antenna Pol./Height EUT Orientation Meter Reading Correction Corrected Reading Converted Reading Limit MHz (V/H) / Meters Degrees dBuv dB dBuv/m uv/m uv/m 30.00 16,596 1 16,596 1 1 16,596 1 1 1 1 1 1 1 1 1 1 1 1 2411.2 V/1.3 158 61.1 3.8 64.9 1757.9 1 1 1 1 3215.1 V/1.0 135 54.2 1.7 55.9 623.7 1 <			FCC Pa	rt 2, Paragraph	2.1053, Field	Strength of			
Test Distance: D=3 M; Limit in dBUV= 20 log([(49.2 × P) */D] X l0*] - (43+10 log P); P=Power in Watts Detector: Peak Test Freq. Antenna Pol./Height EUT Orientation Reading Correction Factor Converted Reading Converted Reading Limit 30.00 Image: Converted Number of Converted Number of Converted Reading Virial Science Converted Reading Limit 30.00 Image: Converted Reading Converted Reading Image: Converted Reading Limit 30.00 Image: Converted Reading Converted Reading Image: Converted Reading Limit 30.00 Image: Converted Reading Converted Reading Image: Converted Reading		:	Peter La	ananna			Date:	December 13, 2	000
Test Freq. Pol./Height Orientation Reading Factor Reading Reading Limit MHz (V/H) / Meters Degrees dBuv dB dBuv/m uv/m uv/m 30.00 Image: Construction of the second of the	Notes:	Detector	: Peak						er in Watts
30.00 1 2 1 16,596 1 1 1 1 1 1 1607.5 V/1.3 270 62.5 0.9 63.4 1479.1 1 1 1 1 1 1 1 1 1 1 1 2411.2 V/1.3 158 61.1 3.8 64.9 1757.9 1 1	Test Freq.		Height Orientation Reading Factor				Limit		
Image: second	MHz	(V/H) /	Meters	Degrees	dBuv	dB	dBuv/m	uv/m	uv/m
Image: second									
Image: second constraints Image: second constraints Image: second constraints Image: second constraints 1 Image: second constraints Image: second constraints Image: second constraints Image: second constraints 2411.2 V/1.3 158 61.1 3.8 64.9 1757.9 Image: second constraints 1 Image: second constraints 3215.1 V/1.0 135 54.2 1.7 55.9 623.7 Image: second constraints 1 Image: second constraints 1 Image: second constraints 1 Image: second constraints 1 Image: second constraints	30.00								16,596
Image: second constraints Image: second constraints Image: second constraints Image: second constraints 1 Image: second constraints Image: second constraints Image: second constraints Image: second constraints 2411.2 V/1.3 158 61.1 3.8 64.9 1757.9 Image: second constraints 1 Image: second constraints 3215.1 V/1.0 135 54.2 1.7 55.9 623.7 Image: second constraints 1 Image: second constraints 1 Image: second constraints 1 Image: second constraints 1 Image: second constraints	<u> </u>								
Image: second constraints Image: second constraints Image: second constraints Image: second constraints 1 Image: second constraints Image: second constraints Image: second constraints Image: second constraints 2411.2 V/1.3 158 61.1 3.8 64.9 1757.9 Image: second constraints 1 Image: second constraints 3215.1 V/1.0 135 54.2 1.7 55.9 623.7 Image: second constraints 1 Image: second constraints 1 Image: second constraints 1 Image: second constraints 1 Image: second constraints	4007 -		4.0	070	<u> </u>				
Image: second	1607.5	V/	1.3	270	62.5	0.9	63.4	1479.1	
Image: second									
Image: second	0414.0		4.0	450	C4 4	2.0	64.0	4757.0	
I I I I I I I 4018.5 V/1.0 180 30.5 10.2 40.7 108.4* I I I I I I I I I I I I I I I I I I I I I I I I I 4822.4 V/1.0 180 28.3 11.9 40.2 102.3* I I I I I I I I I I 1 I I I I I I I I I 1 I		V/	1.3	158	01.1	3.8	64.9	1/5/.9	
I I I I I I I 4018.5 V/1.0 180 30.5 10.2 40.7 108.4* I I I I I I I I I I I I I I I I I I I I I I I I I 4822.4 V/1.0 180 28.3 11.9 40.2 102.3* I I I I I I I I I I 1 I I I I I I I I I 1 I									
I I I I I I I 4018.5 V/1.0 180 30.5 10.2 40.7 108.4* I I I I I I I I I I I I I I I I I I I I I I I I I 4822.4 V/1.0 180 28.3 11.9 40.2 102.3* I I I I I I I I I I 1 I I I I I I I I I 1 I	2215.1		1 0	125	54.2	17	55.0	622.7	
I I I I I 4822.4 V/1.0 180 28.3 11.9 40.2 102.3* I I I I I I I I I 5626.0 V/1.0 180 28.6 5.8 34.4 52.5* I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I V V I I I I I I V V I I I I I I I V I I I I I I I I V I I I I I I I I I I I I I I I I	3215.1	V/	1.0	155	J4.Z	1.7	55.9	023.7	
I I I I I 4822.4 V/1.0 180 28.3 11.9 40.2 102.3* I I I I I I I I I 5626.0 V/1.0 180 28.6 5.8 34.4 52.5* I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I V V I I I I I I V V I I I I I I I V I I I I I I I I V I I I I I I I I I I I I I I I I									
I I I I I 4822.4 V/1.0 180 28.3 11.9 40.2 102.3* I I I I I I I I I 5626.0 V/1.0 180 28.6 5.8 34.4 52.5* I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I V V I I I I I I V V I I I I I I I V I I I I I I I I V I I I I I I I I I I I I I I I I	4018.5	V/	1 0	180	30.5	10.2	40.7	108./*	
I I I I I I I 5626.0 V/1.0 180 28.6 5.8 34.4 52.5* I I I I I I I I I I I I I I I I I V I I I I I I I V I I I I I I I V I I I I I I I I V I I I I I I I I V I I I I I I I I V I I I I I I I I I I V I	4010.0	V/	1.0	100	50.5	10.2	40.7	100.4	
I I I I I I I 5626.0 V/1.0 180 28.6 5.8 34.4 52.5* I I I I I I I I I I I I I I I I I V I I I I I I I V I I I I I I I V I I I I I I I I V I I I I I I I I V I I I I I I I I V I I I I I I I I I I V I									
I I I I I I I 5626.0 V/1.0 180 28.6 5.8 34.4 52.5* I I I I I I I I I I I I I I I I I V I I I I I I I V I I I I I I I V I I I I I I I I V I I I I I I I I V I I I I I I I I V I I I I I I I I I I V I	1922.4		1 0	190	20.2	11.0	40.2	102.2*	
I I	4022.4	V/	1.0	100	20.3	11.9	40.2	102.3	
I I	I								
I I	5626.0	V//	1 0	180	28.6	5.8	34.4	52 5*	
8037.00 16,596 8037.00 16,596 Image: Second seco	1	• /	1.0	100	20.0	0.0	0111	02.0	1
8037.00 16,596 8037.00 16,596 Image: Second seco									
8037.00 16,596 8037.00 16,596 Image: Second seco		1							
Image: Second	V								V
Image: Constraint of the specified limits. All emissions not recorded were more than 20dB below the specified limit.	8037.00								16,596
The emissions observed from the EUT do not exceed the specified limits. All emissions not recorded were more than 20dB below the specified limit.									
The emissions observed from the EUT do not exceed the specified limits. All emissions not recorded were more than 20dB below the specified limit.									
The emissions observed from the EUT do not exceed the specified limits. All emissions not recorded were more than 20dB below the specified limit.									
The emissions observed from the EUT do not exceed the specified limits. All emissions not recorded were more than 20dB below the specified limit.									
The emissions observed from the EUT do not exceed the specified limits. All emissions not recorded were more than 20dB below the specified limit.									
All emissions not recorded were more than 20dB below the specified limit.		The EU	T was sc	anned from 30 l	MHz to 9 GHz				
* Denotes minimum system sensitivity.						dB below the	e specified limit		
	ļ	* Denot	es minim	um system sen	sitivity.				

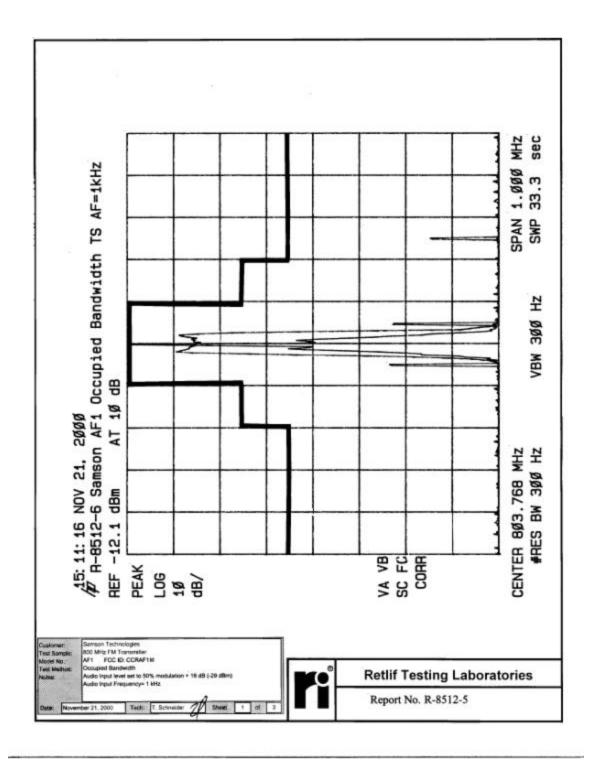
Retlif Testing Laboratories

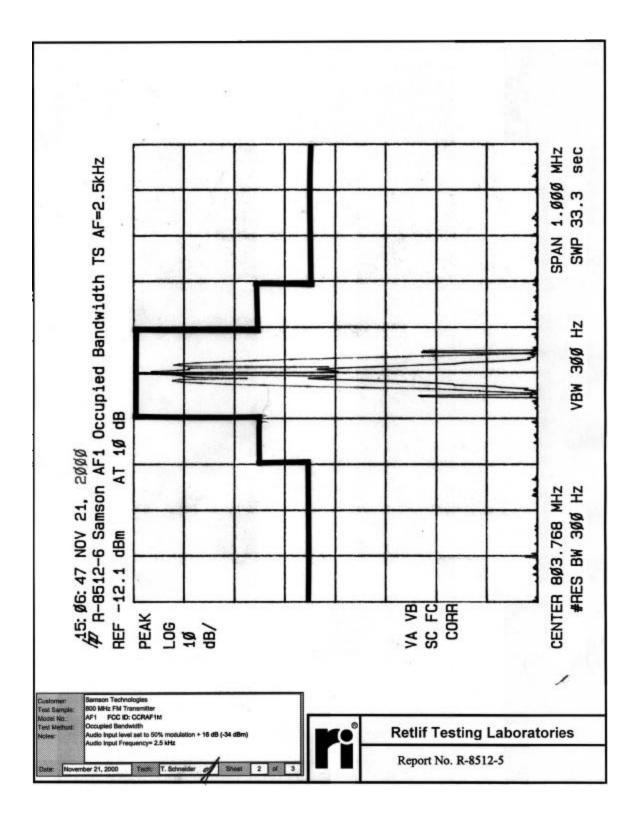
Retlif Job Number R-8512-5

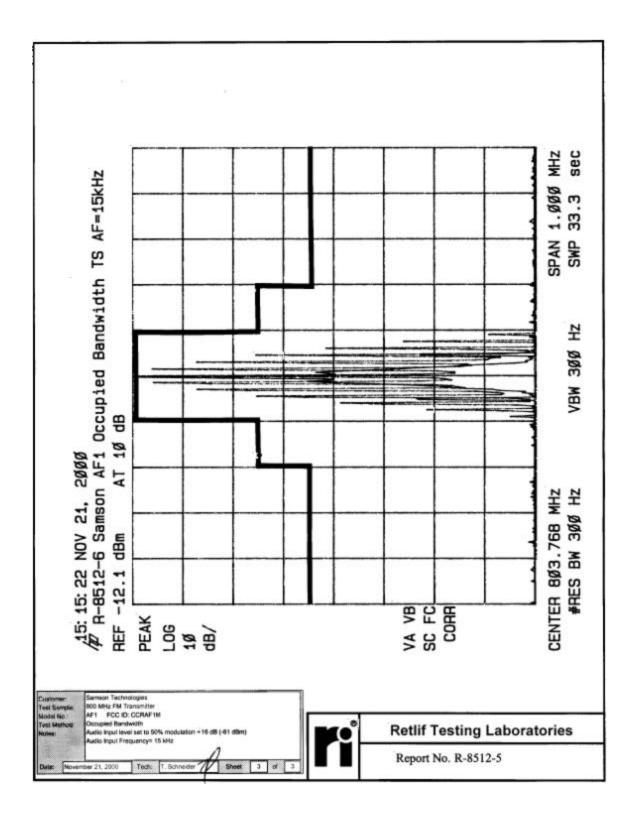
				TABUL	AR DATA	SHE	ET						
TEST METHOD:		POWER OUTPUT, EFFECTIVE RADIATED POWER METHOD, PARAGRAPH 2.1046											
CUSTOMER:		Samson Teo	chnologies		JOB	No.:	R-8512-5						
TEST SAMPLE:		800MHz Wi FCC ID:CCI	reless Transmitter RAF1M										
MODEL No.:		AF1			SERI	L No.:	N/A						
TEST		FCC PART	2										
SPECIFICATION:							PARAGRAF						
OPERATING MODE:		CONTINUOUSLY TRANSMITTING A CW SIGNAL AT CENTER FREQUENCY/CHANNEL SHOWN BELOW.											
TECHNICIAN:		Peter Lananr	na		DATE	:	December ?	13, 2000					
NOTES:													
CENTER FREQUENCY	СН	ANNEL	Antenna Orientation	METER READING				Signal Gen. Output Level	CONVERTED READING	LIMIT			
MHz				dBuV				dBm	mWatts	mWatts			
										250			
803.7		U4	1.3	73.8		+		1.9	1.5	I			
003.1			1.0	13.0				1.3	1.0	!			
										V			
										250			
						_							
						_							
	The E	UT was	placed on a ta	bletop, and the r	adiated output	level v	was measur	ed with a dipole	e antenna. After				
				EUT was replaced		-	-	-					
	genera output		raised until it	matched the level	recorded fro	m the	EUT and	this was conside	ered to be the				

RETLIF TESTING LABORATORIES TABULAR DATA SHEET TEST METHOD: Frequency Stability (-30°C to +50°C) JOB No.: CUSTOMER: Samson Technologies R-8512-5 TEST UHF Wireless Transmitter SAMPLE: AF1 MODEL No.: SERIAL No.: N/A FCC ID: CCRAF1M TEST FCC Part 74, Subpart H; Experimental Radio, Auxiliary Special Broadcast, & other Program Distributional SPECIFICATION: Services, Subpart H; Low Power Auxiliary Stations. PARAGRAPH: 74.861 (e) (4) OPERATING Transmitting on channel U4 (803.75 MHz) MODE: DATE: April 27, 2000 TECHNICIAN: N. Dragotta NOTES: Tolerance: +/- 0.005% (+/- .040188 MHz) Channel Channel Act. Transmit Temperature Lower Limit Meter Reading Upper Limit Pass / Fail Frequency Frequency MHz MHz Degrees C. MHz MHz MHz 04 803.75 803.7737 -30 803.79 803.7211 803.71 Pass -20 803.7394 Pass -10 I 803.7563 Pass 0 803.7679 Pass Pass 10 803.7741 20 803.7736 Pass I room temp 803.7737 Pass I T 30 803.7673 Pass V V V 40 V 803.7546 V Pass 04 803.75 803.7737 50 803.79 803.7362 803.71 Pass The test sample performed within the limits specified by the above listed specification

DATA SHEET 2 OF 2


T


				R DATA S	HEEI			
TEST METHOD:	Frequency		ut Power 85% TO 115%					
CUSTOMER:	Samson Te	echnologies		JOB No.:	R-8512-5			
TEST SAMPLE:	UHF Wirel	ess Transmitter						
MODEL No.:	AF1			SERIAL N	lo.: N/A	FCC ID: CCRAF1		
TEST SPECIFICATION:		74, Subpart H;Experime Subpart H; Low Power A	(4)					
OPERATING MODE:	Transmittir	ng on channel U4 (803.7	5 MHz)					
TECHNICIAN:	N. Dragotta	à		DATE:	April 27, 20	000		
NOTES:	Tolerance: Temperatu	+/- 0.005% (+/0401) re: 23° C. Humidit						
Channel	TRANSMIT FREQUENCY	INPUT VOLTAGE	INPUT VOLTAGE		LOWER LIMIT	METER READING	UPPER LIMIT	Pass / Fail
	MHz	%	VDC		MHz	MHz	MHz	
04	803.75	85	1.28		803.79	803.7735	803.71	Pass
04	803.75	100	1.50		803.79	803.7737	803.71	Pass
04	803.75	115	1.73		803.79	803.7737	803.71	Pass
04	803.75	Battery	**1.15		803.79	803.7735	803.71	Pass
		End Point						
		porformed within the	limite encoified by th	o obovo listad	ocification			
	-		e limits specified by the tery LED on the unit it		Jecification.			
		tellage, the low bal						


TEST METHOD: CUSTOMER: TEST SAMPLE: MODEL No.:	Samson Tec	uency Response	(100 Hz TO 20 Kł	Hz)					
TEST SAMPLE:		hnologies							
SAMPLE:				JOB	No.:	R-8512-5			
MODEL No.:	UHF Wireles	ss Transmitter							
	AF1			SER	AL No.:	N/A	FCC ID: CCRAF	1M	
TEST SPECIFICATION:		4, Subpart H;Experime ubpart H; Low Power A	ntal Radio, Auxiliary Sp Auxiliary Stations.	ecial Broadcast, &	other Progr	ram Distribution PARAGRA		3)	
OPERATING MODE:	Transmitting	on channel U4 (803.7	75 MHz)						
TECHNICIAN:	N. Dragotta			DAT	:	May 5, 200	0		
NOTES:			a 1 kHz signal at a level lency Response = 75 kH		e: 23° C.	Humidity:39%			
Audio Input Frequency	Input Level	FM Deviation							
kHz	dB	kHz							
0.100	-10	20.3							
0.300	-10	20.0							
0.500	-10	26.5							
1.000	-10	29.0							
1.500	-10	29.4							
2.000	-10	29.4							
2.500	-10	29.4							
5.000	-10	29.3							
10.000	-10	30.9							
15.000	-10	16.9							
20.000	-10	12.9							
					_				

			TABUL	AR DATA S	SHEET		
TEST METHOD:	Modulation	Characteristics (100 Hz TO 15 KHz)	Para 2.1047			
CUSTOMER:	Samson Te	chnologies		JOB No	: R-8512-5		
TEST SAMPLE:	UHF Wirele	ss Transmitter					
MODEL No.:	AF1			SERIAL	No.: N/A	FCC ID: CCRAF1M	
TEST SPECIFICATION:		4, Subpart H;Experime subpart H; Low Power A	ntal Radio, Auxiliary Sp Auxiliary Stations.	ecial Broadcast, & oth	er Program Distribution PARAGRA		
OPERATING MODE:	Transmitting	g on channel U4 (803.7	′5 MHz)				
TECHNICIAN:	N. Dragotta			DATE:	May 5, 200	0	
NOTES:	Temperatur	e: 23° C. Humidit	y: 39%				
INPUT LEVEL	Deviation @ 100 Hz AF	Deviation @ 300 Hz AF	Deviation @ 500 Hz AF	Deviation @ 1 kHz AF	Deviation @ 1.5 kHz AF	Deviation @ 2 kHz AF	MAXIMUM DEVIATION
dbm	kHz	kHz	kHz	kHz	kHz	kHz	kHz
-50	9.6	10.2	10.6	11.4	12.4	13.7	75.0
-40	16.4	17.3	18.0	19.1	20.4	21.4	75.0
-30	22.0	21.7	21.7	21.9	23.0	26.6	75.0
-20	21.5	20.5	21.0	28.1	28.8	29.1	75.0
-10	20.3	20.0	26.5	29.0	29.4	29.4	75.0
0	20.3	23.8	28.8	29.5	29.6	29.7	75.0
+10	21.6	22.7	29.6	29.8	29.8	29.7	75.0
						<u> </u>	
	The test sample p	performed within the	e limits specified by	the above listed s	pecification.		

				AR DATA S	SHEET		
TEST METHOD:	Modulation	Characteristics (100 Hz TO 15 KHz)	Para 2.1047			
CUSTOMER:	Samson Te	chnologies		JOB No	: R-8512-5		
TEST SAMPLE:	UHF Wirele	ess Transmitter					
MODEL No.:	AF1			SERIAL	No.: N/A	FCC ID: CCRAF1M	
TEST SPECIFICATION:		4, Subpart H;Experime Subpart H; Low Power		pecial Broadcast, & oth	er Program Distributional PARAGRAPH	: 74.861(e)(3)	
OPERATING MODE:	Transmitting	g on channel U4 (803.	75 MHz)				
TECHNICIAN:	N. Dragotta			DATE:	May 5, 2000		
NOTES:	Temperatur	e: 23° C. Humidi	ty: 39%				
INPUT LEVEL	Deviation @ 2.5 kHz AF	Deviation @ 5 kHz AF	Deviation @ 10 kHz AF	Deviation @ 15 kHz AF	Deviation @ 20 kHz AF		MAXIMUM DEVIATION
dbm	kHz	kHz	kHz	kHz	kHz		kHz
-50	15.3	23.5	30.9	31.8	24.8		75.0
-40	22.3	27.6	31.4	32.5	25.3		75.0
-30	27.8	27.8	31.6	32.8	25.4		75.0
-20	29.2	29.9	31.6	19.5	14.8		75.0
-10	29.4	29.3	30.9	16.9	12.9		75.0
0	29.6	29.2	30.0	16.6	12.8		75.0
+10	29.6	29.2	29.8	16.5	12.7		75.0
					\square		
					<u> </u>		
	The test sample p	performed within th	e limits specified b	y the above listed	specification.		

