

4740 Discovery Drive | Lincoln, NE 68521 tel- 402.323.6233 | tel -888.657.6860 | fax - 402.323.6238 info@nceelabs.com | http://nceelabs.com

FCC/ISED Test Report

Prepared for: Digital Monitoring Products

Address: 2500 North Partnership Blvd.

Springfield, MO 6582

Product: 1132 Recessed contact

Test Report No: R20220711-21-E1A

Approved by:

Nic Sohnson, NCE

Technical Manager

iNARTE Certified EMC Engineer #EMC-003337-NE

DATE: December 28, 2022

Total Pages: 37

The Nebraska Center for Excellence in Electronics (NCEE) authorizes the above named company to reproduce this report provided it is reproduced in its entirety for use by the company's employees only. Any use that a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. NCEE accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

Report Number: R20201019-20-E1 Rev Α

Prepared for:

Digital Monitoring Product

REVISION PAGE

Rev. No.	Date	Description
0	18 August 2022	Original – NJohnson Prepared by GLarsen/FLane
Α	28 December 2022	Updated EUT name -NJ

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 2 of 37

Report Number:

R20220711-21-E1A

Rev

Α

Prepared for:

Digital Monitoring Product

CONTENTS

Rev	ision Pa	nge	2
1.0	Su	nmary of test results	4
2.0	EU	T Description	5
	2.1	Equipment under test	5
	2.2	Description of test modes	6
	2.3	Description of support units	6
3.0	Lal	oratory description	7
	3.1	Laboratory description	7
	3.2	Test personnel	7
	3.3	Test equipment	8
4.0	De	ailed results	9
	4.1	Duty Cycle	10
	4.2	Radiated emissions	11
	4.3	Peak Output Power	18
	4.4	Bandwidth	21
	4.5	Bandedges	24
	4.6	Carrier Frequency Seperation, Number of Hopping Channels, Time of occupancy	29
Арр	endix	A: Sample Calculation	34
App	endix	3 - Measurement Uncertainty	36
RFF	ORT F	ND	37

Report Number: R20220711-21-E1A Rev A

Prepared for: Digital Monitoring Product

1.0 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

- (1) US Code of Federal Regulations, Title 47, Part 15
- (2) ISED RSS-Gen, Issue 5
- (3) ISED RSS-247, Issue 2

ANSI C63.10-2013 was used as a test method, with guidance from KBD 558074 D01 v05

SUMMARY					
Standard Section	Test Type and Limit	Result	Remark		
FCC 15.203	Unique Antenna Requirement	Pass	PCB antenna		
FCC 15.35 RSS-Gen, 6.10	Duty cycle of pulsed emissions	Informative only	Duty cycle was applied		
FCC 15.209 RSS-Gen, 7.1	Receiver Radiated Emissions	Pass	Meets the requirement of the limit.		
FCC 15.247(a)(1)(i) RSS-247, 5.1(c)	Maximum Bandwidth, Limit: Max. 250kHz	Pass	Meets the requirement of the limit.		
FCC 15.247(b)(1) RSS-247, 5.1	Maximum Peak Output Power, Limit: Max. 24 dBm	Pass	Meets the requirement of the limit.		
FCC 15.209 RSS-Gen, 8.9 RSS-247, 5.5	Transmitter Radiated Emissions	Pass	Meets the requirement of the limit.		
FCC 15.247(a) (1) (i) RSS-247, 5.1(c)	Frequency hopping system, Limit: Max. 0.4 Seconds in 20 Second Period	Pass	Meets the requirement of the limit.		
FCC 15.209, 15.205 RSS-Gen, 8.9 RSS-247, 5.5	Band Edge Measurement, Limit: 20dB less than the peak value of fundamental frequency	Pass	Meets the requirement of the limit.		
FCC 15.207 RSS-Gen. 8.8	Conducted AC Emissions	NA	NA		

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 4 of 37

2.0 EUT DESCRIPTION

2.1 EQUIPMENT UNDER TEST

Summary

The Equipment Under Test (EUT) was 1132 a Wireless transmitter manufactured by DMP wireless devices. It operates in the 902 to 928 MHz ISM band and has transmit and receive capabilities.

EUT	1132 Recessed contact
FCC ID	CCKPC0241
EUT Received	7/12/2022
EUT Tested	7/13/2022 - 8/10/2022
Serial No.	010269 (Assigned by test lab)
Operating Band	902 – 928 MHz
Device Type	FHSS
Power Supply	Internal Battery, 3VDC
Antenna	PCB Trace Antenna

NOTE: For more detailed features description, please refer to the manufacturer's specifications or user's manual.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

 Report Number:
 R20220711-21-E1A
 Rev
 A

 Prepared for:
 Digital Monitoring Product

2.2 DESCRIPTION OF TEST MODES

The EUT operates on, and was tested at the frequencies below:

Channel	Frequency
Low	903.3
Middle	915.0
High	926.6

These are the only three representative channels tested in the frequency range according to FCC Part 15.31 and RSS-Gen Table A1. See the operational description for a list of all channel frequency and designations.

This EUT was set to transmit in a worse-case scenario with modulation on. The manufacturer modified the unit to transmit continuously on the lowest, highest and one channel in the middle.

2.3 DESCRIPTION OF SUPPORT UNITS

None

Prepared for: Digital Monitoring Product

3.0 LABORATORY DESCRIPTION

3.1 LABORATORY DESCRIPTION

All testing was performed at the following Facility:

The Nebraska Center for Excellence in Electronics (NCEE Labs) 4740 Discovery Drive Lincoln, NE 68521

A2LA Certificate Number: 1953.01 FCC Accredited Test Site Designation No: US1060 Industry Canada Test Site Registration No: 4294A-1 NCC CAB Identification No: US0177

Environmental conditions varied slightly throughout the tests:

Relative humidity of 35 \pm 4% Temperature of 22 \pm 3° Celsius

3.2 TEST PERSONNEL

No.	PERSONNEL	TITLE	ROLE
1	Nic Johnson	Technical Manager	Review of Results
2	Fox Lane	Test Engineer	Testing and Report
3	Grace Larsen	Test Engineer	Testing and Report

Notes:

All personnel are permanent staff members of NCEE Labs. No testing or review was sub-contracted or performed by sub-contracted personnel.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 7 of 37

Prepared for: **Digital Monitoring Product**

3.3 **TEST EQUIPMENT**

DESCRIPTION AND MANUFACTURER	MODEL NO.	SERIAL NO.	LAST CALIBRATION DATE	CALIBRATION DUE DATE
Keysight MXE Signal Analyzer (44GHz)**	N9038A	MY59050109	July 19, 2022	July 19, 2024
Keysight MXE Signal Analyzer (26.5GHz)**	N9038A	MY56400083	July 19, 2022	July 19, 2024
SunAR RF Motion	JB1	A091418-1	July 26, 2022	July 26, 2023
EMCO Horn Antenna	3115	6416	July 28, 2021	July 28, 2023
Com-Power LISN**	LI-220C	20070017	September 22, 2020	September 22, 2022
Rohde & Schwarz Preamplifier*	TS-PR18	3545700803	March 21, 2022	March 21, 2024
Trilithic High Pass Filter*	6HC330	23042	March 21, 2022	March 21, 2024
MiniCircuits High Pass Filter*	VHF-1320+	15542	March 21, 2022	March 21, 2024
RF Cable (preamplifier to antenna)*	MFR-57500	01-07-002	March 21, 2022	March 21, 2024
RF Cable (antenna to 10m chamber bulkhead)*	FSCM 64639	01E3872	September 24, 2021	September 24, 2023
RF Cable (10m chamber bulkhead to control room bulkhead)*	FSCM 64639	01E3874	September 24, 2021	September 24, 2023
RF Cable (control room bulkhead to test receiver)*	FSCM 64639	01F1206	September 24, 2021	September 24, 2023
N connector bulkhead (10m chamber)*	PE9128	NCEEBH1	September 24, 2021	September 24, 2023
N connector bulkhead (control room)*	PE9128	NCEEBH2	September 24, 2021	September 24, 2023
TDK Emissions Lab Software	V11.25	700307	NA	NA

^{*}Internal Calibration

Notes:

All equipment is owned by NCEE Labs and stored permanently at NCEE Labs facilities.

^{**2} year cal cycle ***3 Year Cal cycle, device was calibrated after testing date and found to be in cal.

Rev

Α

Prepared for: Digital Monitoring Product

4.0 DETAILED RESULTS

Radio Measurements						
CHANNEL	Occupied Bandwidth (kHz)	20 dB Bandwidth (kHz)	EIRP OUTPUT POWER (dBm)	EIRP OUTPUT POWER (mW)	RESULT	
Low	74.238	71.85	11.466	14.015	PASS	
Mid	73.116	71.93	12.749	18.832	PASS	
High	73.058	71.93	12.226	16.696	PASS	
20 dB Bandwidth Limit = 250 kHz Peak Output Power Limit = 30 dBm;						
*If no corrections or uncorrected measurement is reported. Plot already shows corrected data						

	Unrestricted Band-Edge							
CHANNEL	Hopping /Continuous	Band edge /Measurement Frequency (MHz)	Relative Highest out of band level (dBuV)	Relative Fundamental (dBuV)	Measurement Type	Delta (dB)	Min Delta (dB)	Result
Low	Hopping	902.00	45.69	106.27	Peak	60.58	20.00	PASS
Low	Continuous	902.00	44.31	106.52	Peak	62.21	20.00	PASS
High	Hopping	928.00	45.06	107.09	Peak	62.02	20.00	PASS
High	Continuous	928.00	45.68	107.30	Peak	61.62	20.00	PASS

	Peak Vs Quasi-Peak Limit - Restricted Band-Edge						
CHANNEL	Band edge /Measurement Frequency (MHz)	Highest out of band level (dBuV/m @ 3m)	Measurement Type	Limit (dBuV/m @ 3m)*	Margin	Result	
Low	608-614 MHz	31.631	Peak	46.02	14.389	PASS	
High	960-1000MHz	38.083	Peak	53.98	15.897	PASS	

^{*}Limit shown is the Quasi-peak limit taken from FCC Part 15.209; Peak values are compared to Quasi-peak limit to show compliance.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 9 of 37

^{*}If no corrections or uncorrected measurement is reported. Plot already shows corrected data

Report Number:	R20220711-21-E1A	Rev	А
Prepared for:	Digital Monitoring Product		

4.1 DUTY CYCLE

Manufacturer declared duty cycle:

Manufacturer declares worst case duty cycle is 29.8ms within a 100ms window.

Duty Cycle Correction Factor(DCCF) = 20*log(Duty Cycle)

-10.52dB = 20*log(0.298)

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 10 of 37

Prepared for: Digital

Digital Monitoring Product

4.2 RADIATED EMISSIONS

Test Method: ANSI C63.10:2013, Section 6.5, 6.6

Limits for radiated emissions measurements:

Emissions radiated outside of the specified bands shall be applied to the limits in 15.209 as followed:

FREQUENCIES (MHz)	FIELD STRENGTH (µV/m)	MEASUREMENT DISTANCE (m)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	3
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 * log * Emission level (μ V/m).
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits by more than 20dB under any condition of modulation.

 Report Number:
 R20220711-21-E1A
 Rev
 A

 Prepared for:
 Digital Monitoring Product

Test procedures:

- a. The EUT was placed on the top of a rotating table above the ground plane in a 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. The table was 0.8m high for measurements form 30MHz-1Ghz and 1.5m for measurements from 1GHz and higher.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna was a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are used to make the measurement.
- d. For each suspected emission, the EUT was arranged to maximize its emissions and then the antenna height was varied from 1 meter to 4 meters and the rotating table was turned from 0 degrees to 360 degrees to find the maximum emission reading.
- e. The test-receiver system was set to use a peak detector with a specified resolution bandwidth. For spectrum analyzer measurements, the composite maximum of several analyzer sweeps was used for final measurements.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. The EUT was maximized in all 3 orthogonal positions. The results are presented for the axis that had the highest emissions.
- h. The orientation with the worst-case emissions was used for final measurements.
- i. Receive mode emissions were tested and found to be within the measurement noise floor of the test laboratory

NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequencies below 1GHz.

Α

2. The resolution bandwidth 1 MHz for all measurements and at frequencies above 1GHz, A peak detector was used for all measurements above 1GHz. Measurements were made with an EMI Receiver.

Deviations from test standard:

No deviation.

Test setup:

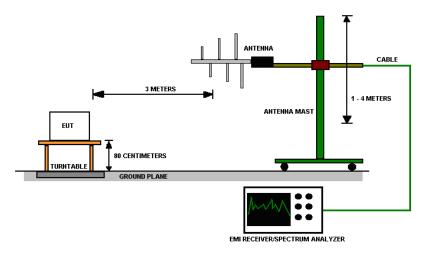


Figure 1 - Radiated Emissions Test Setup

EUT operating conditions

The EUT was powered by internal battery unless specified and set to transmit continuously on the lowest frequency channel, highest frequency channel and one in the middle of its operating range.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 13 of 37

Report Number:	R20220711-21-E1A	Rev	А
Prepared for:	Digital Monitoring Product		

Test results:

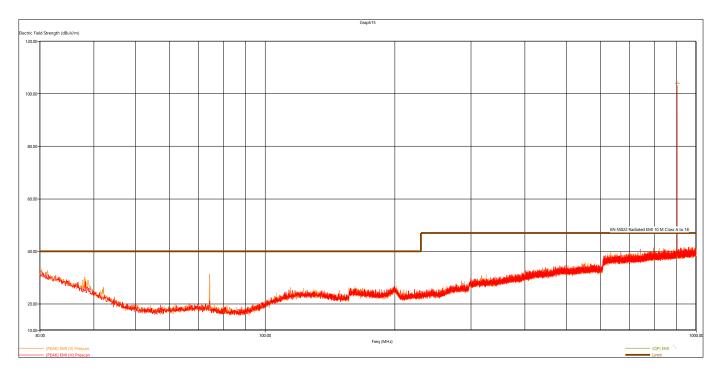


Figure 2 - Radiated Emissions Plot, 30 MHz-1 GHz Low Channel

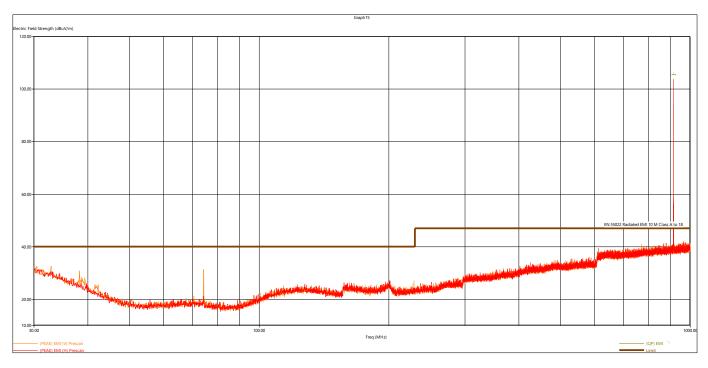


Figure 3 - Radiated Emissions Plot, 30 MHz-1 GHz, Mid Channel

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 14 of 37

Prepared for: Digital Monitoring Product

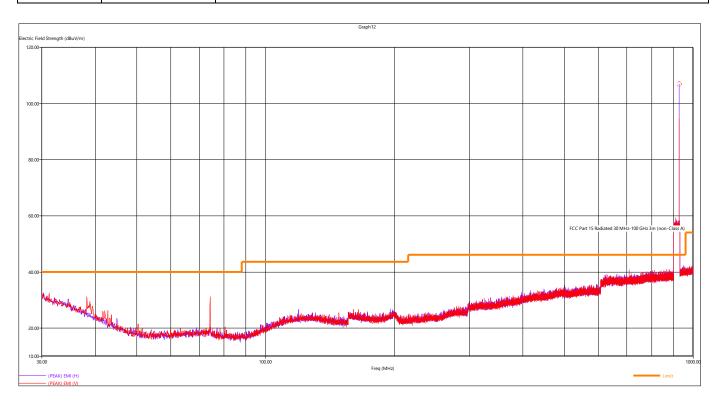


Figure 4 - Radiated Emissions Plot, 30 MHz-1 GHz High Channel

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. The EUT was measured in both the horizontal and vertical orientation. It was found that the Horizontal position produced the highest emissions, and this orientation was used for all testing. See Annex A for test photos.

Page 15 of 37

Prepared for: Digital Monitoring Product

Quasi-Peak Measurements, 30 MHz -1 GHz							
Frequency	Frequency Level Limit Margin Height Angle Pol Channe						
MHz	dBμV/m	dBμV/m	dB	cm.	deg.		
903.348240	103.82	NA	NA	104.00	75.00	Н	Low
914.975760	105.40	NA	NA	104.00	80.00	Н	Mid
926.640240	106.55	NA	NA	103.00	113.00	Н	High

^{*}All other measurements found to be at least 6dB below the limit line.

Peak Measurements, 1 GHz - 10 GHz							
Frequency	Level	Limit	Margin	Height	Angle	Pol	Channel
MHz	dBµV/m	dΒμV/m	dB	cm.	deg.		
1806.71	50.74	73.98	23.24	385	87	Н	Low
2709.95	58.49	73.98	15.49	197	56	Н	Low
4516.70	53.88	73.98	20.10	149	125	Н	Low
5419.88	49.55	73.98	24.43	120	114	Н	Low
8130.18	52.47	73.98	21.51	221	27	Н	Low
9032.93	56.84	73.98	17.14	148	11	Н	Low
9936.80	58.06	73.98	15.92	447	71	Н	Low
3613.42	47.92	73.98	26.06	560	13	V	Low
6323.03	51.39	73.98	22.59	493	171	V	Low
1830.13	49.38	73.98	24.60	251	86	Н	Mid
2745.00	62.61	73.98	11.37	364	55	V	Mid
4574.88	56.51	73.98	17.47	144	111	Н	Mid
10064.68	59.21	73.98	14.77	113	71	Н	Mid
5490.91	45.51	73.98	28.47	461	360	V	Mid
6404.90	49.66	73.98	24.32	539	83	V	Mid
8235.02	55.34	73.98	18.64	358	185	V	Mid
9149.44	53.96	73.98	20.02	215	171	V	Mid
1853.05	47.41	73.98	26.57	194	94	Н	High
2780.06	59.47	73.98	14.51	454	50	V	High
8339.78	59.87	73.98	14.11	219	33	Н	High
10193.68	59.6	73.98	14.38	112	19	Н	High
5560.17	49.39	73.98	24.59	533	18	V	High
6486.52	51.93	73.98	22.05	430	106	V	High

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 16 of 37

Prepared for: Digital Monitoring Product

Average Measurements, 1 GHz- 10 GHz							
Frequency	Average Level*	Limit	Margin	Height	Angle	Pol	Channel
MHz	dBµV/m	dBµV/m	dB	cm.	deg.		
1806.71	40.22	53.98	13.76	385	87	Н	Low
2709.95	47.97	53.98	6.01	197	56	Η	Low
4516.70	43.36	53.98	10.62	149	125	Н	Low
5419.88	39.03	53.98	14.95	120	114	Н	Low
8130.18	41.95	53.98	12.03	221	27	Н	Low
9032.93	46.32	53.98	7.66	148	11	Н	Low
9936.8	47.54	53.98	6.44	447	71	Н	Low
3613.42	37.40	53.98	16.58	560	13	V	Low
6323.03	40.87	53.98	13.11	493	171	V	Low
1830.13	38.86	53.98	15.12	251	86	Н	Mid
2745.00	52.09	53.98	1.89	364	55	V	Mid
4574.88	45.99	53.98	7.99	144	111	Н	Mid
10064.68	48.69	53.98	5.29	113	71	Н	Mid
5490.91	34.99	53.98	18.99	461	360	V	Mid
6404.90	39.14	53.98	14.84	539	83	V	Mid
8235.02	44.82	53.98	9.16	358	185	V	Mid
9149.44	43.44	53.98	10.54	215	171	V	Mid
1853.05	36.89	53.98	17.09	194	94	Н	High
2780.06	48.95	53.98	5.03	454	50	V	High
8339.78	49.35	53.98	4.63	219	33	Н	High
10193.68	49.08	53.98	4.90	112	19	Н	High
5560.17	38.87	53.98	15.11	533	18	V	High
6486.52	41.41	53.98	12.57	430	106	V	High

The EUT was maximized in all 3 orthogonal axes. The worst-case is shown in the table above.

*Average Level = Peak Level – 10.52 (Duty Cycle Correction Factor from section 4.1)

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 17 of 37

Prepared for: Digital Monitoring Product

4.3 PEAK OUTPUT POWER

Test Method: ANSI C63.10, Section(s) 7.8.5

Limits of bandwidth measurements:

For an FHSS system with 50 channels or more, the output power is required to be less than 1000 mW or 30 dBm.

EIRP was calculated from field strength measurements using ANSI C63.10:2013, Section 9.5, Equation (22). The field strength was measured at a 3m distance and maximized.

Test procedures:

All measurements were taken at a distance of 3m from the EUT.

The EUT was maximized in all 3 orthogonal positions in a similar manner as described in Section 4.2.

Deviations from test standard:

No deviation.

Test setup:

See Section 4.2

EUT operating conditions:

The EUT was powered by internal battery unless specified and set to transmit continuously on the lowest frequency channel, highest frequency channel and one in the middle of its operating range.

Test results:

Refer to section 4.0 for the results table.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 18 of 37

Prepared for: Digital Monitoring Product

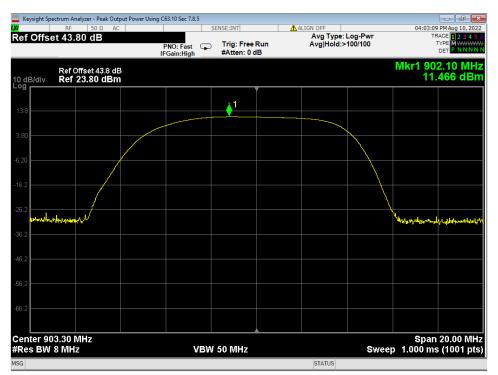


Figure 5 – Output Power, Low Channel.

Corrections included in offset

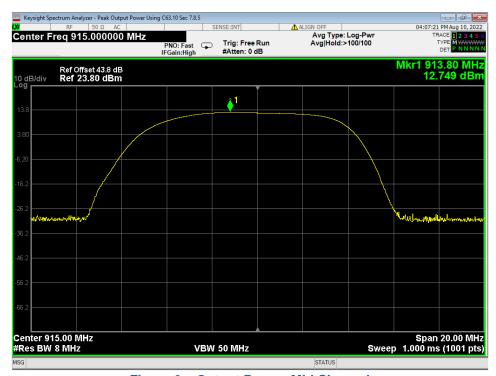


Figure 6 - Output Power, Mid Channel

Corrections included in offset

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 19 of 37

Prepared for: Digital Monitoring Product



Figure 7 – Output Power, High Channel

Corrections included in offset

Page 20 of 37

Prepared for: Digital Monitoring Product

4.4 BANDWIDTH

Test Method: ANSI C63.10, Section(s) 6.9.2 (20 dB BW)

ANSI C63.10, Section(s) 6.9.3 (99% BW)

Limits of bandwidth measurements:

From FCC Part 15.247 (1) (i) and RSS-247 5.1(c)

The maximum allowed 20 dB bandwidth of the hopping channel is 250 kHz.

Test procedures:

Bandwidth measurement was taken at a distance of 3m from the EUT. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 3 kHz RBW.

The 20dB bandwidth is defined as the bandwidth of which is higher than peak power minus 20dB.

The 99% occupied bandwidth was measured using the test receiver's occupied bandwidth function.

Test setup:

All the measurements were done at 3m test distance while operating at low, mid, and high channels. See Section 4.3 for more details.

Deviations from test standard:

No deviation.

Page 21 of 37

ncee.

Report Number: R20220711-21-E1A Rev A

Prepared for: Digital Monitoring Product

Test setup:

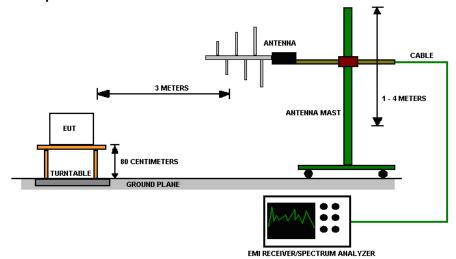


Figure 8 - Bandwidth Measurements Test Setup

EUT operating conditions:

The EUT was powered by internal battery unless specified and set to transmit continuously on the lowest frequency channel, highest frequency channel and one in the middle of its operating range.

Test results:

Figure 9 -Bandwidth, Low Channel

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 22 of 37

Prepared for: Digital Monitoring Product

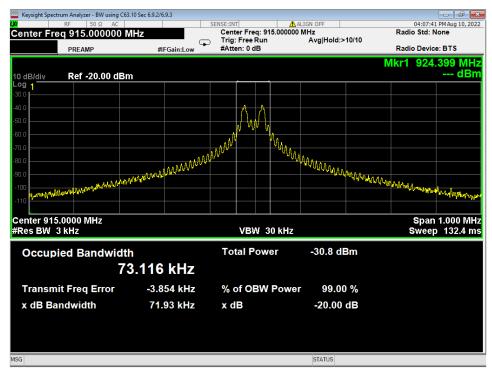


Figure 10 - Bandwidth, Mid Channel

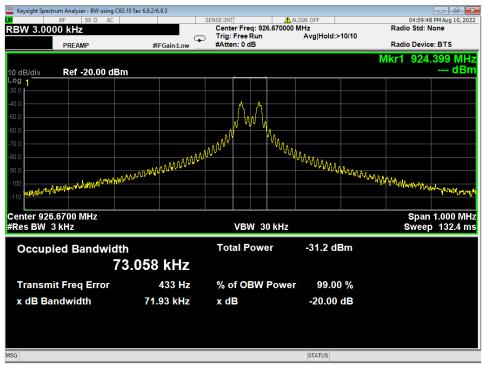


Figure 11 - Bandwidth, High Channel

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 23 of 37

 Report Number:
 R20220711-21-E1A
 Rev
 A

Prepared for: Digital Monitoring Product

4.5 BANDEDGES

Test Method: ANSI C63.10, Section(s) 6.10.6

Limits of bandedge measurements:

For emissions outside of the allowed band of operation (902 – 928MHz), the emission level needs to be 20dB under the maximum fundamental field strength. However, if the emissions fall within one of the restricted bands from 15.205 the field strength levels need to be under that of the limits in 15.209.

Test procedures:

All measurements were taken at a distance of 3m from the EUT.

The EUT was maximized in all 3 orthogonal positions in a similar manner as described in Section 4.2.

Deviations from test standard:

No deviation.

Test setup:

All the measurements were done at 3m test distance while operating on the highest and lowest channel depending on which band edge was investigated.

EUT operating conditions:

The EUT was powered by internal battery unless specified and set to transmit continuously on the lowest frequency channel and the highest frequency channel.

Page 24 of 37

Prepared for: Digital Monitoring Product

Test results:

Refer to section 4.0 for the results table.

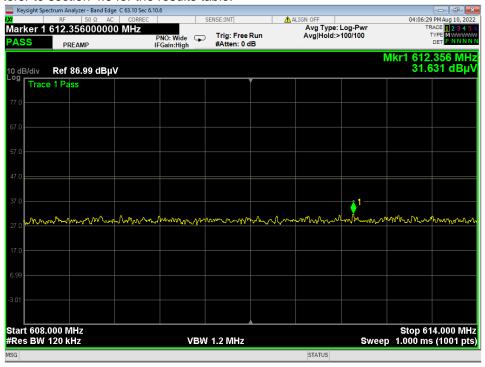


Figure 12 - Band-edge Measurement, Low Channel, Restricted Frequency, Continuous

Figure 13 - Band-edge Measurement, Low Channel, Unrestricted Frequency, Continuous
The plot shows a corrected measurement, used for relative measurements only.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 25 of 37

Prepared for: Digital Monitoring Product

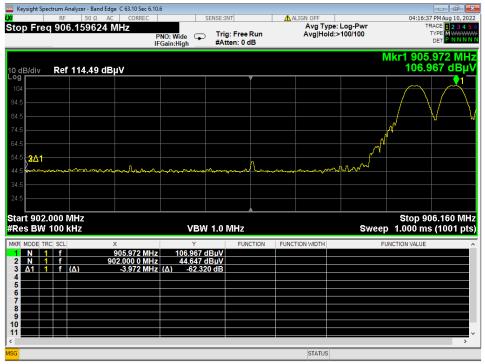


Figure 14 - Band-edge Measurement, Low Channel, Unrestricted Frequency, Hopping, LI
The plot shows a corrected measurement, used for relative measurements only.

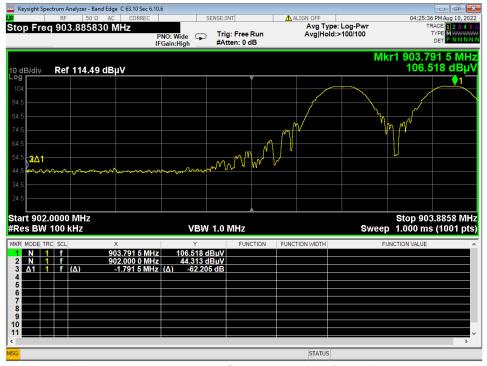


Figure 15 - Band-edge Measurement, Low Channel, Unrestricted Frequency, Hopping, STD
The plot shows a corrected measurement, used for relative measurements only.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 26 of 37

Prepared for: Digital Monitoring Product

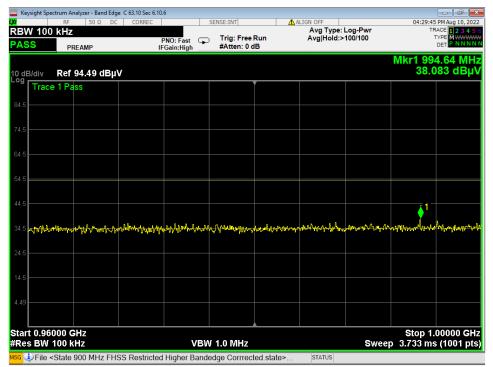


Figure 16 - Band-edge Measurement, High Channel, Restricted Frequency, Continuous

Figure 17 - Band-edge Measurement, High Channel, Unrestricted Frequency, Continuous
The plot shows a corrected measurement, used for relative measurements only.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 27 of 37

Prepared for: Digital Monitoring Product

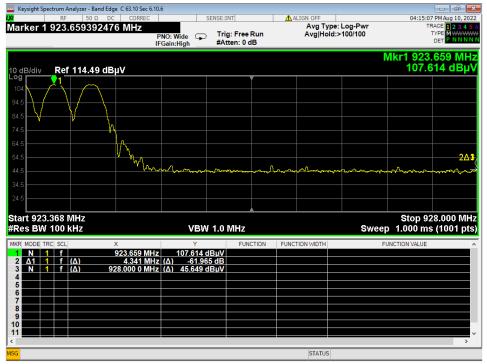


Figure 18 - Band-edge Measurement, High Channel, Unrestricted Frequency, Hopping, LI
The plot shows a corrected measurement, used for relative measurements only.

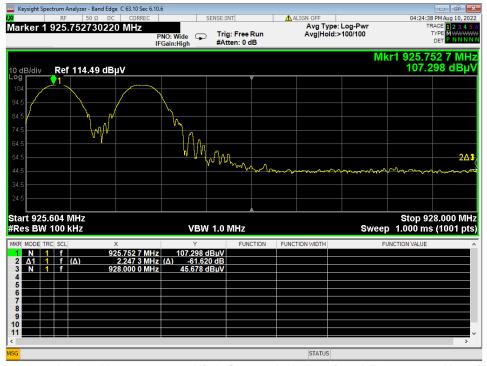


Figure 19 - Band-edge Measurement, High Channel, Unrestricted Frequency, Hopping, STD The plot shows a corrected measurement, used for relative measurements only.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 28 of 37

Prepared for:

Digital Monitoring Product

4.6 CARRIER FREQUENCY SEPERATION, NUMBER OF HOPPING CHANNELS, TIME OF OCCUPANCY

Test Method: ANSI C63.10, Section 7.8.2, 7.8.3, 7.8.4

Limits for Time of Occupancy

Average time of occupancy on any frequency should not to exceed 0.4 seconds within a 20 second period.

Test procedures:

The method from FCC DA 00-705

All measurements were taken at a distance of 3m from the EUT.

Test setup:

All the measurements were performed at 3m test distance while hopping mode was enabled.

EUT operating conditions:

The EUT was powered internal batter unless otherwise specified and set to Hopping mode. Both Low interference mode and Standard mode were investigated, worst case was reported.

Test results:

Lowest recorded Period was 1.580seconds, 20s/1.580s = 12.658 transmissions within 20 second Dwell.

Highest on time recorded was 29.80ms

Time of Occupancy =

On time * number of transmissions over 20 seconds 29.80ms * 12.658 transmissions = 377.208ms < 400ms (FCC 15.247 Limit)

Total Hop Count = 52 Channels

Minimum Frequency Separation = 360.9kHz Limit = 20dB Bandwidth = 71.85kHz

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 29 of 37

Prepared for: Digital Monitoring Product

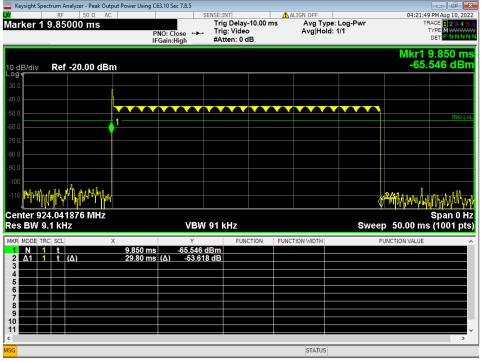


Figure 20 - On time, LI

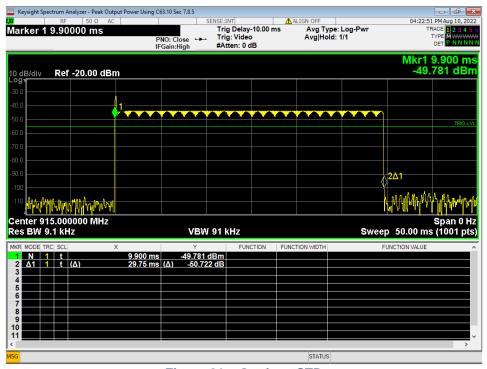


Figure 21 - On time, STD

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 30 of 37

Prepared for: Digital Monitoring Product

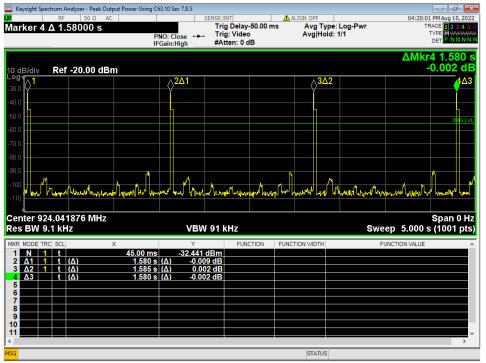


Figure 22 - Period, LI

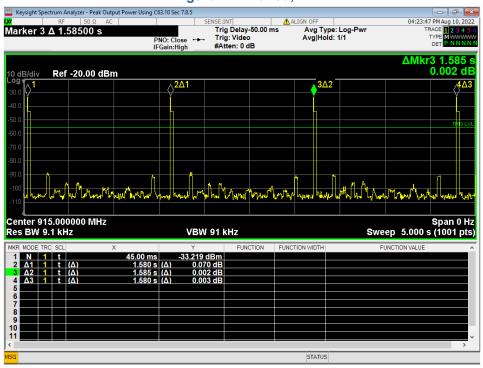


Figure 23 - Period, STD

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 31 of 37

Prepared for: Digital Monitoring Product

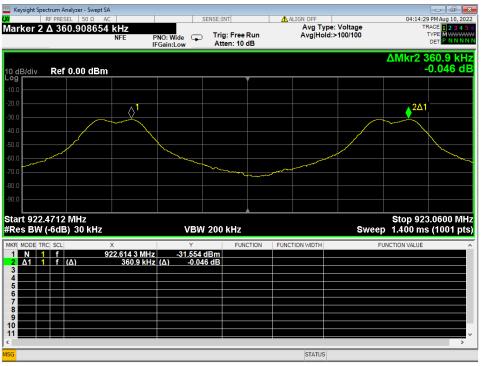


Figure 24 - Minimum Frequency Separation, 360.9 kHz, LI

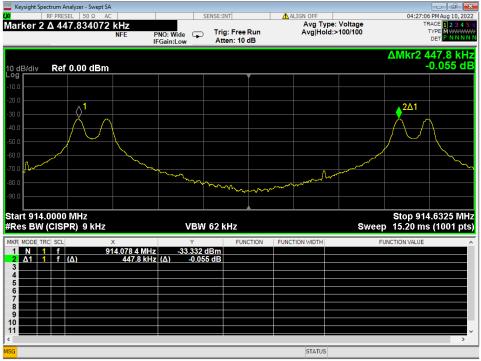


Figure 25 - Minimum Frequency Separation, 447.8 kHz, STD

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 32 of 37

Prepared for: Digital Monitoring Product

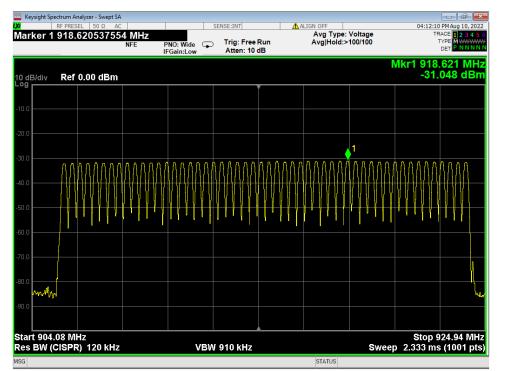


Figure 26 - Hop Count, 902-928MHz, LI

Figure 27 - Hop Count, 902-928MHz, STD

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 33 of 37

Report Number: R20220711-21-E1A Rev A

Prepared for:

Digital Monitoring Product

APPENDIX A: SAMPLE CALCULATION

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF - (-CF + AG) + AV$$

where FS = Field Strength

RA = Receiver Amplitude

AF = Antenna Factor

CF = Cable Attenuation Factor

AG = Amplifier Gain

AV = Averaging Factor (if applicable)

Assume a receiver reading of 55 dB μ V is obtained. The Antenna Factor of 12 and a Cable Factor of 1.1 is added. The Amplifier Gain of 20 dB is subtracted, giving a field strength of 48.1 dB μ V/m.

 $FS = 55 + 12 - (-1.1 + 20) + 0 = 48.1 dB\mu V/m$

The 48.1 dB μ V/m value can be mathematically converted to its corresponding level in μ V/m.

Level in μ V/m = Common Antilogarithm [(48.1 dB μ V/m)/20]= 254.1 μ V/m

AV is calculated by the taking the $20*log(T_{on}/100)$ where T_{on} is the maximum transmission time in any 100ms window.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 34 of 37

Prepared for: Digital Monitoring Product

EIRP Calculations

In cases where direct antenna port measurement is not possible or would be inaccurate, output power is measured in EIRP. The maximum field strength is measured at a specified distance and the EIRP is calculated using the following equation;

EIRP (Watts) = [Field Strength (V/m) x antenna distance (m)]² / 30 Power (watts) = $10^{Power} (dBm)/10] / 1000$ Voltage (dBμV) = Power (dBm) + $10^{To} (for 50\Omega)$ measurement systems) Field Strength (V/m) = $10^{To} (field Strength) (dBμV/m) / 20] / 10^{To} (for 50\Omega)$ Gain = 1 (numeric gain for isotropic radiator) Conversion from 3m field strength to EIRP (d=3):

 $EIRP = [FS(V/m) \times d^2]/30 = FS[0.3]$ for d = 3

 $EIRP(dBm) = FS(dB\mu V/m) - 10(log 10^9) + 10log[0.3] = FS(dB\mu V/m) - 95.23$

10log(10^9) is the conversion from micro to milli

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 35 of 37

Report Number:	R20220711-21-E1A	Rev	А
Prepared for:	Digital Monitoring Product		

APPENDIX B - MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been for tests performed in this test report:

Test	Frequency Range	Uncertainty Value (dB)		
Radiated Emissions, 3m	30MHz - 1GHz	±4.31		
Radiated Emissions, 3m	1GHz - 18GHz	±5.08		
Emissions limits, conducted	30MHz – 18GHz	±3.03		

Expanded uncertainty values are calculated to a confidence level of 95%.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

 Report Number:
 R20220711-21-E1A
 Rev
 A

 Prepared for:
 Digital Monitoring Product

REPORT END

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 37 of 37