

ROGERS LABS, INC. 4405 West 259th Terrace

Louisburg, KS 66053 Phone / Fax (913) 837-3214

Application For Grant of Certification

47 CFR, PART 15C - Intentional Radiators Paragraph 15.247, Industry Canada RSS-247 Issue 2, and RSS-GEN Issue 5

Model: 1100T 902-928 MHz (FHSS) Frequency Hopping Spread Spectrum License Exempt Intentional Radiator

FCC ID: CCKPC0225 IC: 5251A-PC0225

Digital Monitoring Products, Inc.

2500 North Partnership Boulevard Springfield, MO 65802-6310

> FCC Designation: US5305 ISED Registration: 3041A-1 Test Report Number: 201123

Test Date: November 23, 2020

Authorized Signatory: Scot D. Rogers

This report shall not be reproduced except in full, without the written approval of the laboratory. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

Rogers Labs, Inc.	Digital Monitoring Products, Inc.	SN's: ENG1 / ENG2
4405 West 259 th Terrace	Model: 1100T	FCC ID: CCKPC0225
Louisburg, KS 66053	Test: 201123	IC: 5251A-PC0225
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen RSS-247	Date: December 10, 2020
Revision 1	File: DMP 1100T FHSS TstRpt 201123	Page 1 of 43

Table of Contents

TABLE OF CONTENTS		2
REVISIONS		4
EXECUTIVE SUMMARY .		5
OPINION / INTERPRETA	TION OF RESULTS	5
EQUIPMENT TESTED		8
Equipment Function		8
Equipment Configuration		9
APPLICATION FOR CER	TIFICATION	10
APPLICABLE STANDAR	DS & TEST PROCEDURES	11
TESTING PROCEDURES		
AC Line Conducted Emissio	n Test Procedure	
Radiated Emission Test Pro	cedure	
Antenna Port Conducted Er	nission Test Procedure	12
Diagram 1 Test arrangement	for Conducted emissions	13
Diagram 2 Test arrangement	for radiated emissions of tabletop equipment	14
Diagram 3 Test arrangement	for radiated emissions tested on Open Area Test Sit	e (OATS)15
Diagram 4 Test arrangement	for Antenna Port Conducted emissions	
TEST SITE LOCATIONS		16
UNITS OF MEASUREME	NTS	17
ENVIRONMENTAL CON	DITIONS	17
STATEMENT OF MODIFI	CATIONS AND DEVIATIONS	17
INTENTIONAL RADIATO	RS	
Antenna Requirements		17
Rogers Labs, Inc. 4405 West 259 th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 1	Digital Monitoring Products, Inc. Model: 1100T Test: 201123 Test to: CFR47 15C, RSS-Gen RSS-247 File: DMP 1100T FHSS TstRpt 201123	SN's: ENG1 / ENG2 FCC ID: CCKPC0225 IC: 5251A-PC0225 Date: December 10, 2020 Page 2 of 43

Restricted Bands of Operat	ion	
Table 1 Radiated Emissions	in Restricted Frequency Bands Data	
Summary of Results for Ra	diated Emissions in Restricted Bands	
AC Line Conducted EMI P	rocedure	
Figure 1 AC Line Conducte	d emissions of EUT line 1	
Figure 2 AC Line Conducte	d emissions of EUT line 2	21
Table 2 AC Line Conducted	el Emissions Data L1	
Table 3 AC Line Conducted	l Emissions Data L2	
Summary of Results for AC	C Line Conducted Emissions Results	
General Radiated Emission	s Procedure	
Table 6 General Radiated E	missions Data	
Summary of Results for Ge	neral Radiated Emissions	24
Operation in the Band 902-	928 MHz	25
Figure 3 Plot of Transmitter	Operation across 902-928 MHz	
Figure 4 Plot of Transmitter	Emissions 20-dB Occupied Bandwidth	27
Figure 5 Plot of Transmitter	Emissions 99% Occupied Bandwidth	
Figure 6 Plot of Number of	Hopping Channels	
Figure 7 Plot of Number of	Hopping Channels	
Figure 8 Plot of Channel Se	paration	
Figure 9 Plot of Dwell Time	e on Channel	
Figure 10 Plot of 6 Times o	n Channel over 10 second period	
Figure 11 Plot of Transmitte	er Emissions Low Band Edge Channels Hopping	
Figure 12 Plot of Transmitte	er Emissions High Band Edge Channels Hopping	
Transmitter Emissions Data	3	
Table 7 Transmitter Radiate	ed Emissions	
Table 8 Transmitter Antenn	a Port Data	
Summary of Results for Tra	ansmitter Radiated Emissions of Intentional Radia	ator37
NNEX		
Annex A Measurement Unc	certainty Calculations	
ogers Labs, Inc.	Digital Monitoring Products, Inc.	SN's: ENG1 / ENG2
05 West 259 th Terrace	Model: 1100T	FCC ID: CCKPC0225
ouisburg, KS 66053	Test: 201123	IC: 5251A-PC0225
none/Fax: (913) 837-3214 evision 1	Test to: CFR47 15C, RSS-Gen RSS-247 File: DMP 1100T FHSS TstRpt 201123	Date: December 10, 2020 Page 3 of 43

Annex B Test Equipment	40
Annex C Rogers Qualifications	42
Annex D Laboratory Certificate of Accreditation	43

Revisions

Revision 1 Issued December 10, 2020

Rogers Labs, Inc.Digital Monitoring Products, Inc.4405 West 259th TerraceModel: 1100TLouisburg, KS 66053Test: 201123Phone/Fax: (913) 837-3214Test to: CFR47 15C, RSS-Gen RSS-247Revision 1File: DMP 1100T FHSS TstRpt 201123

SN's: ENG1 / ENG2 FCC ID: CCKPC0225 IC: 5251A-PC0225 Date: December 10, 2020 Page 4 of 43

Executive Summary

The following information is submitted for consideration in obtaining Grant of Certification for License Exempt Frequency Hopping Spread Spectrum (HSS) Intentional Radiator per 47 CFR Paragraph 15.247, Industry Canada RSS-247 Issue 2 and RSS-GEN Issue 5, FHSS transmitter operations in the 902-928 MHz frequency band.

Name of Applicant:	Digital Monitoring Products, Inc. 2500 North Partnership Boulevard Springfield, MO 65802-6310	
M/N: 1100T		
FCC ID: CCKPC022	5 IC: 5251A-PC0225	

Operating Frequency Range: 902-928 MHz

Power (dBm)	Power (Watts)	20-dB OBW (kHz)	99% OBW (kHz)
14.0	0.025	68.6	68.6

Opinion / Interpretation of Results

Tests Performed	Margin (dB)	Results
Restricted Bands 47 CFR 15.205, RSS-247 3.3	-9.2	Complies
AC Line Conducted 47 CFR 15.207, RSS-GEN 8.8	-24.2	Complies
Radiated Emissions 47 CFR 15.209, RSS-247 5.5	-6.3	Complies
Harmonic Emissions per 47 CFR 15.247, RSS-247 5.5.	-4.5	Complies

Rogers Labs, Inc.Digital Monitoring Products, Inc.SN's: ENG1 / ENG24405 West 259th TerraceModel: 1100TFCC ID: CCKPC0225Louisburg, KS 66053Test: 201123IC: 5251A-PC0225Phone/Fax: (913) 837-3214Test to: CFR47 15C, RSS-Gen RSS-247Date: December 10, 2020Revision 1File: DMP 1100T FHSS TstRpt 201123Page 5 of 43

Tests performed include 47CFR

§15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.(a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:

(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20-dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20-dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

(i) For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequencies and the average time of occupancy on any frequencies and the average time of occupancy on any frequencies and the average time of occupancy on any frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

(b) The maximum peak conducted output power of the intentional radiator shall not exceed the following:

(2) For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

(c) Operation with directional antenna gains greater than 6 dBi.

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Rogers Labs, Inc.	Digital Monitoring Products, Inc.	SN's: ENG
4405 West 259 th Terrace	Model: 1100T	FCC ID: C
Louisburg, KS 66053	Test: 201123	IC: 5251A-
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen RSS-247	Date: Dece
Revision 1	File: DMP 1100T FHSS TstRpt 201123	Page 6 of 4

SN's: ENG1 / ENG2 FCC ID: CCKPC0225 IC: 5251A-PC0225 Date: December 10, 2020 Page 6 of 43

RSS-247 Issue 2

5.1 Frequency hopping systems (FHS)

FHSs employ a spread spectrum technology in which the carrier is modulated with coded information in a conventional manner, causing a conventional spreading of the radio frequency (RF) energy around the carrier frequency. The carrier frequency is not fixed, but changes at fixed intervals under the direction of a coded sequence.

FHSs are not required to employ all available hopping frequencies during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the requirements in this section in case the transmitter is presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of frequency hopping equipment and must distribute its transmissions over the minimum number of hopping channels specified in this section.

Incorporation of intelligence into an FHS that enables it to recognize other users of the band and to avoid occupied frequencies is permitted provided that the FHS does it individually and independently chooses or adapts its hopset. The coordination of FHSs in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

The following applies to FHSs in each of the three bands:

a) The bandwidth of a frequency hopping channel is the 20 dB emission bandwidth, measured with the hopping stopped. The system's radio frequency (RF) bandwidth is equal to the channel bandwidth multiplied by the number of channels in the hopset. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

b) FHSs shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, FHSs operating in the band 2400-2483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided that the systems operate with an output power no greater than 0.125 W.

c) For FHSs in the band 902-928 MHz: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping channels and the average time of occupancy on any channel shall not be greater than 0.4 seconds within a 20-second period. If the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping channels and the average time of occupancy on any channel shall not be greater than 0.4 seconds within a 10-second period. The maximum 20 dB bandwidth of the hopping channel shall be 500 kHz.

d)FHSs operating in the band 2400-2483.5 MHz shall use at least 15 hopping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed. Transmissions on particular hopping frequencies may be avoided or suppressed provided that at least 15 hopping channels are used.

e)FHSs operating in the band 5725-5850 MHz shall use at least 75 hopping channels. The maximum20 dB bandwidth of the hopping channel shall be 1 MHz. The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 30-second period.

Rogers Labs, Inc.	Digital Monitoring Products, Inc.	SN's: ENG1 / ENG2
4405 West 259 th Terrace	Model: 1100T	FCC ID: CCKPC0225
Louisburg, KS 66053	Test: 201123	IC: 5251A-PC0225
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen RSS-247	Date: December 10, 2020
Revision 1	File: DMP 1100T FHSS TstRpt 201123	Page 7 of 43

Equipment Tested

Model: 1100T Equipment Model Serial Number EUT 1100T ENG1 EUT2 ENG2 1100T AC Adapter ST-12500W 14090416573 Test results in this report relate only to the items tested Firmware Version 106 HVIN: PC-0225-R02

PMN: 1100T

PIFA antenna system 1.5 dBi gain

Test results in this report relate only to the items tested and operating in mode 2. Worst-case configuration data recorded in this report.

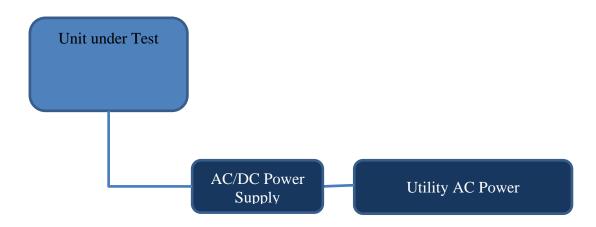
Equipment Function

The EUT is a wall mounted 905.6-924.4 MHz frequency hopping spread spectrum transceiver system. Transceiver performs wireless notification to an alarm panel installation of for use in alarm system installations. The design operates from direct current only and offers no provision for connection to utility power systems. The manufacturer supplied an AC/DC adapter for use in conducting AC line conducted emissions testing. This device contains the wireless FHSS transceiver operating in the 902-928 MHz band and incorporates separate receiver capability at 319.5 MHz, 345 MHz, or 433 MHz depending on configuration. The receiver function provides the EUT the ability to accept signals from burglary and fire initiating devices in a receive only mode. Then the EUT may transmit the information on other associated alarm installation equipment. The design utilizes internal fixed antenna systems and offers no provision for antenna replacement or modification. Two samples were provided for testing, one representative of production design, and the other modified for testing purposes replacing the integral antennas with RF connection ports. The test samples were provided with software providing testing personnel the ability to enable transmitter functions on defined functions and channels. The test software enabled near 100% transmit duty cycle for testing purposes on channel.

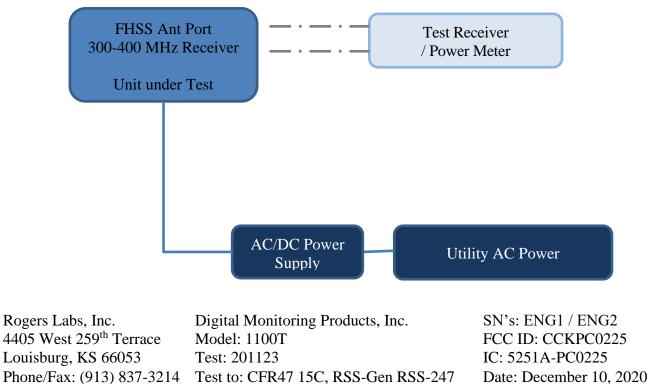
Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 1

Digital Monitoring Products, Inc. Model: 1100T Test: 201123 Test to: CFR47 15C, RSS-Gen RSS-247 File: DMP 1100T FHSS TstRpt 201123

SN's: ENG1 / ENG2 FCC ID: CCKPC0225 IC: 5251A-PC0225 Date: December 10, 2020 Page 8 of 43



The EUT was arranged as described by the manufacturer emulating typical user configurations for testing purposes. For testing purposes, the EUT received powered from the manufacturer provided AC/DC power supply and configured to operate in available modes. As requested by the manufacturer and required by regulations, the equipment was tested for compliance using the available configurations with the worst-case data presented. Test results in this report relate only to the products described in this report.


Equipment Configuration

Revision 1

1) Integral antenna (EUT) connected to Utility AC power through AC/DC power supply

2) Antenna Port (EUT2) connected to Utility AC power through AC/DC power supply

File: DMP 1100T FHSS TstRpt 201123

Page 9 of 43

Application for Certification

(1)	Manufacturer:	Digital Monitoring Products, Inc.
		2500 North Partnership Boulevard
		Springfield, MO 65802-6310
(2)	Identification: M/N	I: 1100T

- FCC ID: CCKPC0225 IC: 5251A-PC0225
- (3) Instruction Book:Refer to Exhibit for Instruction Manual.
- (4) Description of Circuit Functions:Refer to Exhibit of Operational Description.
- (5) Block Diagram with Frequencies:Refer to Exhibit of Operational Description.
- (6) Report of Measurements:

Report of measurements follows in this Report.

- (7) Photographs: Construction, Component Placement, etc.:Refer to Exhibit for photographs of equipment.
- (8) List of Peripheral Equipment Necessary for operation. The equipment operates from direct current power only. An AC/DC Power supply was provided for operation. The EUT offers no other connection ports than those presented in this filing.
- (9) Transition Provisions of 47 CFR 15.37 are not requested.
- (10) Not Applicable. The unit is not a scanning receiver.
- (11) Not Applicable. The EUT does not operate in the 59 64 GHz frequency band.
- (12) The equipment is not software defined and this section is not applicable.
- (13) Applications for certification of U-NII devices in the 5.15-5.35 GHz and the 5.47-5.85 GHz bands must include a high-level operational description of the security procedures that control the radio frequency operating parameters and ensure that unauthorized modifications cannot be made. This requirement is not applicable to his DTS device.
- (14) Contain at least one drawing or photograph showing the test set-up for each of the required types of tests applicable to the device for which certification is requested. These drawings or photographs must show enough detail to confirm other information contained in the test report. Any photographs used must be focused originals without glare or dark spots and must clearly show the test configuration used. This information is provided in this report and Test Setup Exhibits provided with the application filing.

Rogers Labs, Inc.	Digital Monitoring Products, Inc.	SN's: ENG1 / ENG2
4405 West 259 th Terrace	Model: 1100T	FCC ID: CCKPC0225
Louisburg, KS 66053	Test: 201123	IC: 5251A-PC0225
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen RSS-247	Date: December 10, 2020
Revision 1	File: DMP 1100T FHSS TstRpt 201123	Page 10 of 43

Applicable Standards & Test Procedures

In accordance with the e-CFR Code of Federal Regulations Title 47, dated November 23, 2020: Part 2, Subpart J, Paragraphs 2.907, 2.911, 2.913, 2.925, 2.926, 2.1031 through 2.1057, and applicable parts of paragraph 15, Part 15C Paragraph 15.247, Industry Canada RSS-247 Issue 2, and RSS-GEN Issue 5 operation in the 902-928 MHz Frequency band. Test procedures used are the established Methods of Measurement of Radio-Noise Emissions as described in ANSI C63.10-2013.

Testing Procedures

AC Line Conducted Emission Test Procedure

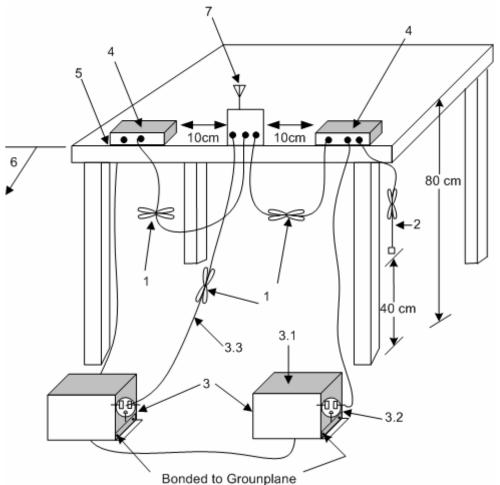
Testing for the AC line-conducted emissions was performed as defined in ANSI C63.10-2013. The test setup, including the EUT, was arranged in the test configurations as presented during testing. The test configuration was placed on a 1 x 1.5-meter bench, 0.8 meters high located in a screen room. The power lines of the system were isolated from the power source using a standard LISN with a 50- μ Hy choke. EMI was coupled to the spectrum analyzer through a 0.1 μ F capacitor internal to the LISN. The LISN was positioned on the floor beneath the wooden bench supporting the EUT. The power lines and cables were draped over the back edge of the table. Refer to diagram 1 showing typical test arrangement and photographs in exhibits for EUT placement during testing.

Radiated Emission Test Procedure

Radiated emissions testing was performed as required in 47 CFR 15C, RSS-247 and specified in ANSI C63.10-2013. The EUT was placed on a rotating 0.9 x 1.2-meter platform, elevated as required above the ground plane at a distance of 3 meters from the FSM antenna. EMI energy was maximized by equipment placement permitting orientation in three orthogonal axes, raising and lowering the FSM antenna, changing the antenna polarization, and by rotating the turntable. Each emission was maximized before data was taken and recorded. The frequency spectrum from 9 kHz to 25,000 MHz was searched for emissions during preliminary investigation. Refer to diagrams 2 and 3 showing typical test setup. Refer to photographs in the test setup exhibits for specific EUT placement during testing.

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 1

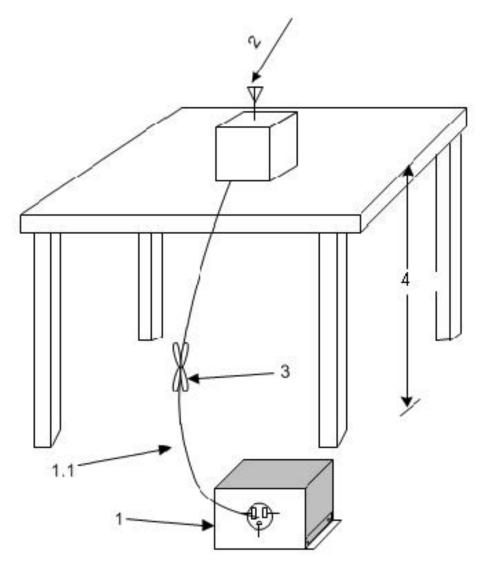
Digital Monitoring Products, Inc. Model: 1100T Test: 201123 Test to: CFR47 15C, RSS-Gen RSS-247 File: DMP 1100T FHSS TstRpt 201123 SN's: ENG1 / ENG2 FCC ID: CCKPC0225 IC: 5251A-PC0225 Date: December 10, 2020 Page 11 of 43


Antenna Port Conducted Emission Test Procedure

The EUT was assembled as required for operation placed on a benchtop. This configuration provided the ability to connect test equipment to the provided test antenna port Antenna Port conducted emissions testing was performed presented in the regulations and specified in ANSI C63.10-2013. Testing was completed on a laboratory bench in a shielded room. The active antenna port of the device was connected to appropriate attenuation and the spectrum analyzer. Refer to diagram 4 showing typical test setup. Refer to photographs in the test setup exhibits for specific EUT placement during testing.

Rogers Labs, Inc.Digital Monitoring Products, Inc.4405 West 259th TerraceModel: 1100TLouisburg, KS 66053Test: 201123Phone/Fax: (913) 837-3214Test to: CFR47 15C, RSS-Gen RSS-247Revision 1File: DMP 1100T FHSS TstRpt 201123

SN's: ENG1 / ENG2 FCC ID: CCKPC0225 IC: 5251A-PC0225 Date: December 10, 2020 Page 12 of 43



- 1. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 cm to 40 cm long see (see 6.2.3.1).
- 2. I/O cables that are not connected to an accessory shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m (see 6.2.2).
- 3. EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω loads. LISN can be placed on top of, or immediately beneath, reference ground plane (see 6.2.2 and 6.2.3).
 - 3.1 All other equipment powered from additional LISN(s).
 - 3.2 Multiple-outlet strip can be used for multiple power cords of non-EUT equipment.
 - 3.3 LISN at least 80 cm from nearest part of EUT chassis.
- 4. Non-EUT components of EUT system being tested.
- 5. Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop (see 6.2.3.1).
- 6. Edge of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane (see 6.2.2 for options).
- 7. Antenna may be integral or detachable. If detachable, the antenna shall be attached for this test.

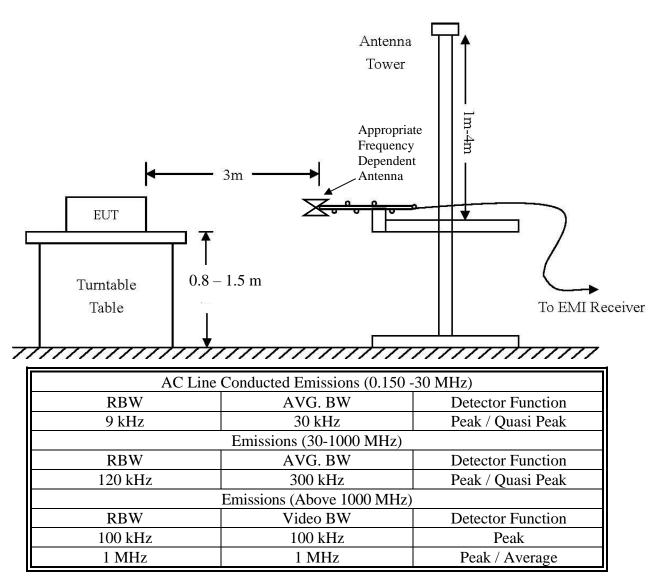
Diagram 1 Test arrangement for Conducted emissions

Rogers Labs, Inc.	Digital Monitoring Products, Inc.	SN's: ENG1 / ENG2
4405 West 259 th Terrace	Model: 1100T	FCC ID: CCKPC0225
Louisburg, KS 66053	Test: 201123	IC: 5251A-PC0225
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen RSS-247	Date: December 10, 2020
Revision 1	File: DMP 1100T FHSS TstRpt 201123	Page 13 of 43

1—A LISN is optional for radiated measurements between 30 MHz and 1000 MHz but not allowed for measurements below 30 MHz and above 1000 MHz (see 6.3.1). If used, then connect EUT to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω loads. The LISN may be placed on top of, or immediately beneath, the reference ground plane (see 6.2.2 and 6.2.3.2).

1.1—LISN spaced at least 80 cm from the nearest part of the EUT chassis.

2—Antenna can be integral or detachable, depending on the EUT (see 6.3.1).


3—Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 cm to 40 cm long (see 6.3.1).

4—For emission measurements at or below 1 GHz, the table height shall be 80 cm. For emission measurements above 1 GHz, the table height shall be 1.5 m for measurements, except as otherwise specified (see 6.3.1 and 6.6.3.1).

Diagram 2 Test arrangement for radiated emissions of tabletop equipment

Rogers Labs, Inc.	Digital Monitoring Products, Inc.	SN's: ENG1 / ENG2
4405 West 259 th Terrace	Model: 1100T	FCC ID: CCKPC0225
Louisburg, KS 66053	Test: 201123	IC: 5251A-PC0225
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen RSS-247	Date: December 10, 2020
Revision 1	File: DMP 1100T FHSS TstRpt 201123	Page 14 of 43

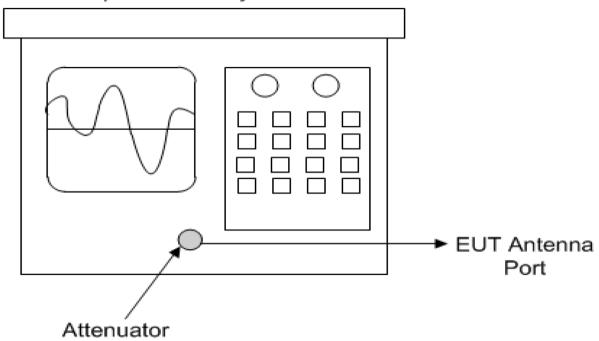


Diagram 3 Test arrangement for radiated emissions tested on Open Area Test Site (OATS)

Rogers Labs, Inc.	Digital Monitoring Products, Inc.	SN's: ENG1 / ENG2
4405 West 259 th Terrace	Model: 1100T	FCC ID: CCKPC0225
Louisburg, KS 66053	Test: 201123	IC: 5251A-PC0225
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen RSS-247	Date: December 10, 2020
Revision 1	File: DMP 1100T FHSS TstRpt 201123	Page 15 of 43

Spectrum Analyzer

Diagram 4 Test arrangement for Antenna Port Conducted emissions

Test Site Locations

Conducted EMI	AC line conducted emissions testing performed in a shielded screen room			
	located at Rogers Labs, Inc., 4405 West 259th Terrace, Louisburg, KS			
Antenna port	Antenna port conducted emissions testing was performed in a shielded			
	screen room located at Rogers Labs, Inc., 4405 West 259th Terrace,			
	Louisburg, KS			
Radiated EMI	The radiated emissions tests were performed at the 3 meters, Open Area			
	Test Site (OATS) located at Rogers Labs, Inc., 4405 West 259th Terrace,			
	Louisburg, KS			
Registered Site inform	nation: FCC Site: US5305, ISED: 3041A, CAB Identifier: US0096			
NVLAP Accreditatio	n Lab code 200087-0			

Rogers Labs, Inc.	Digital Monitoring Products, Inc.	SN's: ENG1 / ENG2
4405 West 259 th Terrace	Model: 1100T	FCC ID: CCKPC0225
Louisburg, KS 66053	Test: 201123	IC: 5251A-PC0225
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen RSS-247	Date: December 10, 2020
Revision 1	File: DMP 1100T FHSS TstRpt 201123	Page 16 of 43

Units of Measurements

Conducted EMI	Data is in $dB\mu V$; dB referenced to one microvolt
Radiated EMI	Data is in $dB\mu V/m$; dB/m referenced to one microvolt per meter
Sample Calculation:	

RFS = Radiated Field Strength, FSM = Field Strength MeasuredA.F. = Receive antenna factor, Gain = amplification gains and/or cable losses $RFS (dB\mu V/m @ 3m) = FSM (dB\mu V) + A.F. (dB) - Gain (dB)$

Environmental Conditions

Ambient Temperature	20.6° C
Relative Humidity	33%
Atmospheric Pressure	1025.0 mb

Statement of Modifications and Deviations

No modifications to the EUT were required for the equipment to demonstrate compliance with the 47 CFR Part 15C, 15.247, Industry Canada RSS-247 Issue 2, and RSS-GEN Issue 5 emission requirements. There were no deviations to the specifications.

Intentional Radiators

The following information is submitted supporting compliance with the requirements of 47 CFR, Subpart C, paragraph 15.247, Industry Canada RSS-247 Issue 2 and RSS-GEN Issue 5.

Antenna Requirements

The EUT incorporates integral antenna system. Production equipment offers no provision for connection to alternate antenna system. The antenna connection point complies with the unique antenna connection requirements. There are no deviations or exceptions to the specification.

Rogers Labs, Inc.Digital Monitoring Products, Inc.4405 West 259th TerraceModel: 1100TLouisburg, KS 66053Test: 201123Phone/Fax: (913) 837-3214Test to: CFR47 15C, RSS-Gen RSS-247Revision 1File: DMP 1100T FHSS TstRpt 201123

SN's: ENG1 / ENG2 FCC ID: CCKPC0225 IC: 5251A-PC0225 Date: December 10, 2020 Page 17 of 43

Restricted Bands of Operation

Spurious emissions falling in the restricted frequency bands of operation were measured at the OATS. The EUT utilizes frequency, determining circuitry, which generates harmonics falling in the restricted bands. Emissions were investigated at the OATS, using appropriate antennas or pyramidal horns, amplification stages, and a spectrum analyzer. Peak and average amplitudes of frequencies above 1000 MHz were compared to the required limits with worse-case data presented below. Test procedures of ANSI C63.10-2013 were used during testing. No other significant emission was observed which fell into the restricted bands of operation. Computed emission values take into account the received radiated field strength, receive antenna correction factor, amplifier gain stage, and test system cable losses.

Frequency in MHz	Horizontal Peak (dBµV/m)	Horizontal Average (dBµV/m)	Vertical Peak (dBµV/m)	Vertical Average (dBµV/m)	Limit @ 3m (dBµV/m)	Horizontal Margin (dB)	Vertical Margin (dB)
2716.8	46.6	44.8	38.3	34.6	54.0	-9.2	-19.4
2745.0	46.4	44.3	42.2	39.7	55.0	-10.7	-15.3
2773.2	46.7	45.1	42.5	39.8	56.0	-10.9	-16.2
3622.4	45.4	43.1	41.2	38.0	57.0	-13.9	-19.0
3660.0	40.8	37.2	36.4	31.2	58.0	-20.8	-26.8
3697.6	39.1	34.7	37.5	31.6	59.0	-24.3	-27.4
4528.0	37.8	32.4	38.4	32.3	60.0	-27.6	-27.7
4575.0	38.8	33.2	38.5	33.3	61.0	-27.8	-27.7
4622.0	39.4	33.9	39.1	33.8	62.0	-28.1	-28.2
5433.6	39.1	33.5	38.7	33.4	63.0	-29.5	-29.6
5490.0	39.9	34.5	39.9	34.5	64.0	-29.5	-29.5
5546.4	39.6	34.6	40.2	34.6	65.0	-30.4	-30.4

 Table 1 Radiated Emissions in Restricted Frequency Bands Data

Other emissions present had amplitudes at least 20 dB below the limit. Peak and Quasi-Peak amplitude emissions are recorded for frequency below 1000 MHz. Peak and Average amplitude emissions are recorded for frequency range above 1000 MHz.

Rogers Labs, Inc.Digital Monitoring Products, Inc.SN's: ENG1 / ENG24405 West 259th TerraceModel: 1100TFCC ID: CCKPC0225Louisburg, KS 66053Test: 201123IC: 5251A-PC0225Phone/Fax: (913) 837-3214Test to: CFR47 15C, RSS-Gen RSS-247Date: December 10, 2020Revision 1File: DMP 1100T FHSS TstRpt 201123Page 18 of 43

Summary of Results for Radiated Emissions in Restricted Bands

The EUT demonstrated compliance with the radiated emissions requirements of 47 CFR Part 15C and RSS-247 Intentional Radiator requirements. The EUT demonstrated a worse-case minimum margin of -9.2 dB below the emissions requirements in restricted frequency bands. Peak, Quasi-peak, and average amplitudes were checked for compliance with the regulations. Worse-case emissions are reported with other emissions found in the restricted frequency bands at least 20 dB below the requirements.

AC Line Conducted EMI Procedure

The EUT was arranged in typical equipment configurations operating from AC power adapter. Testing was performed with the EUT placed on a 1 x 1.5-meter wooden bench 80 cm above the conducting ground plane, floor of a screen room. The bench was positioned 40 cm away from the wall of the screen room. The LISN was positioned on the floor of the screen room 80-cm from the rear of the EUT. Testing for the line-conducted emissions were the procedures of ANSI C63.10-2013 paragraph 6. The AC adapter for the EUT was connected to the LISN for lineconducted emissions testing. A second LISN was positioned on the floor of the screen room 80cm from the rear of the supporting equipment of the EUT. All power cords except the EUT were then powered from the second LISN. EMI was coupled to the spectrum analyzer through a 0.1 μ F capacitor, internal to the LISN. Power line conducted emissions testing was carried out individually for each current carrying conductor of the EUT. The excess length of lead between the system and the LISN receptacle was folded back and forth to form a bundle not exceeding 40 cm in length. The screen room, conducting ground plane, analyzer, and LISN were bonded together to the protective earth ground. Preliminary testing was performed to identify the frequencies of each of the emissions, which demonstrated the highest amplitudes. The cables were repositioned to obtain maximum amplitude of measured EMI level. Once the worst-case configuration was identified, plots were made of the EMI from 0.15 MHz to 30 MHz then data was recorded with maximum conducted emissions levels.

Refer to figures 1 and 2 for plots of the EUT – AC Line conducted emissions.

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 1

Digital Monitoring Products, Inc. Model: 1100T Test: 201123 Test to: CFR47 15C, RSS-Gen RSS-247 File: DMP 1100T FHSS TstRpt 201123

SN's: ENG1 / ENG2 FCC ID: CCKPC0225 IC: 5251A-PC0225 Date: December 10, 2020 Page 19 of 43

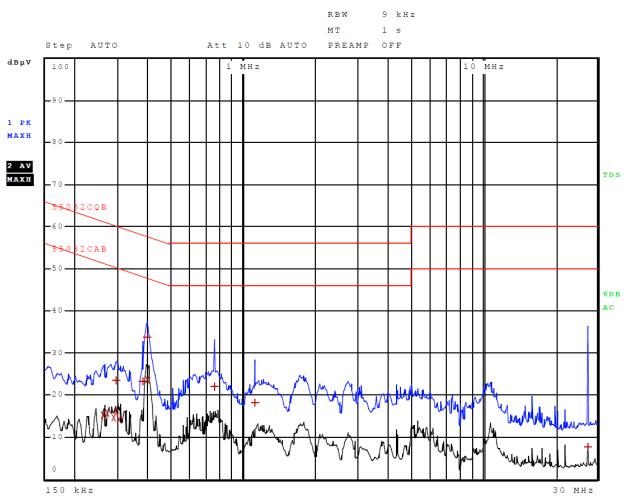


Figure 1 AC Line Conducted emissions of EUT line 1

Rogers Labs, Inc.Digital Monitoring Products, Inc.SN's: ENG1 / ENG24405 West 259th TerraceModel: 1100TFCC ID: CCKPC0225Louisburg, KS 66053Test: 201123IC: 5251A-PC0225Phone/Fax: (913) 837-3214Test to: CFR47 15C, RSS-Gen RSS-247Date: December 10, 2020Revision 1File: DMP 1100T FHSS TstRpt 201123Page 20 of 43

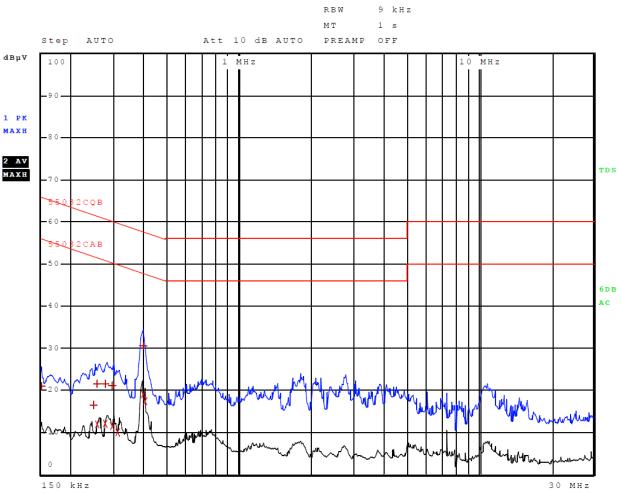


Figure 2 AC Line Conducted emissions of EUT line 2

Rogers Labs, Inc.Digital Monitoring Products, Inc.SN's: ENG1 / ENG24405 West 259th TerraceModel: 1100TFCC ID: CCKPC0225Louisburg, KS 66053Test: 201123IC: 5251A-PC0225Phone/Fax: (913) 837-3214Test to: CFR47 15C, RSS-Gen RSS-247Date: December 10, 2020Revision 1File: DMP 1100T FHSS TstRpt 201123Page 21 of 43

Trace	Frequency	y	Level (dBµV)	Detector	Delta Limit/dB
2	262.000000000	kHz	15.15	Average	-36.22
2	274.000000000	kHz	15.57	Average	-35.42
2	290.000000000	kHz	14.69	Average	-35.83
1	294.000000000	kHz	23.38	Quasi Peak	-37.03
2	298.000000000	kHz	15.83	Average	-34.47
2	306.000000000	kHz	14.18	Average	-35.90
1	378.000000000	kHz	23.31	Quasi Peak	-35.01
2	394.000000000	kHz	23.55	Average	-24.43
1	394.000000000	kHz	33.78	Quasi Peak	-24.20
1	754.000000000	kHz	22.01	Quasi Peak	-33.99
1	1.114000000	MHz	18.17	Quasi Peak	-37.83
1	27.388000000	MHz	7.73	Quasi Peak	-52.27

Other emissions present had amplitudes at least 20 dB below the limit.

Trace	Frequency	у	Level (dBµV)	Detector	Delta Limit/dB
1	150.000000000	kHz	20.87	Quasi Peak	-45.13
1	250.000000000	kHz	16.59	Quasi Peak	-45.16
1	258.000000000	kHz	21.53	Quasi Peak	-39.96
2	258.000000000	kHz	11.92	Average	-39.57
2	278.000000000	kHz	12.04	Average	-38.84
1	278.000000000	kHz	21.54	Quasi Peak	-39.34
2	298.000000000	kHz	11.53	Average	-38.77
1	298.000000000	kHz	21.05	Quasi Peak	-39.25
2	314.000000000	kHz	10.04	Average	-39.83
2	394.000000000	kHz	19.04	Average	-28.94
1	394.000000000	kHz	30.50	Quasi Peak	-27.48
2	402.000000000	kHz	17.24	Average	-30.57

Other emissions present had amplitudes at least 20 dB below the limit.

Summary of Results for AC Line Conducted Emissions Results

The EUT demonstrated compliance with the AC Line Conducted Emissions requirements of 47CFR Part 15C and other applicable emissions requirements. The EUT worst-case configuration demonstrated a minimum margin of -24.2 dB below the requirement. Other emissions were present with amplitudes at least 20 dB below the limit and worst-case amplitudes recorded.

Rogers Labs, Inc.	Digital Monitoring Products, Inc.	SN's: ENG1 / ENG2
4405 West 259 th Terrace	Model: 1100T	FCC ID: CCKPC0225
Louisburg, KS 66053	Test: 201123	IC: 5251A-PC0225
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen RSS-247	Date: December 10, 2020
Revision 1	File: DMP 1100T FHSS TstRpt 201123	Page 22 of 43

General Radiated Emissions Procedure

The EUT was arranged in typical equipment configurations and operated through available modes during testing. Preliminary testing was performed in a screen room with the EUT positioned 1 meter from the FSM. Radiated emissions measurements were performed to identify the frequencies, which produced the highest emissions. Each radiated emission was then maximized at the OATS location before final radiated measurements were performed. Final data was taken with the EUT located at the OATS at a distance of 3 meters between the EUT and the receiving antenna. The frequency spectrum from 9 kHz to 10,000 MHz was searched for general radiated emissions. Measured emission levels were maximized by EUT placement on the table, rotating the turntable through 360 degrees, varying the antenna height between 1 and 4 meters above the ground plane and changing antenna position between horizontal and vertical polarization. Antennas used were Loop from 9 kHz to 30 MHz, Broadband Biconical from 30 to 200 MHz, Biconilog from 30 to 1000 MHz, Log Periodic from 200 MHz to 1 GHz and or double Ridge or pyramidal horns and mixers above 1 GHz, notch filters and appropriate amplifiers and external mixers were utilized.

Rogers Labs, Inc.Digital Monitoring Products, Inc.4405 West 259th TerraceModel: 1100TLouisburg, KS 66053Test: 201123Phone/Fax: (913) 837-3214Test to: CFR47 15C, RSS-Gen RSS-247Revision 1File: DMP 1100T FHSS TstRpt 201123

SN's: ENG1 / ENG2 FCC ID: CCKPC0225 IC: 5251A-PC0225 Date: December 10, 2020 Page 23 of 43

Frequency (MHz)	Horizontal Peak (dBµV/m)	Horizontal Quasi-Peak (dBµV/m)	Vertical Peak (dBµV/m)	Vertical Quasi-Peak (dBµV/m)	Limit @ 3m (dBµV/m)	Horizontal Margin (dB)	Vertical Margin (dB)
47.8	34.2	28.7	37.3	33.1	40.0	-11.3	-6.9
49.2	32.6	26.5	38.5	33.7	40.0	-13.5	-6.3
51.1	34.7	27.8	37.6	31.7	40.0	-12.2	-8.3
75.0	32.9	26.3	30.8	26.0	40.0	-13.7	-14.0
78.8	35.6	31.3	29.8	22.4	40.0	-8.7	-17.6
80.8	33.2	26.4	32.0	21.7	40.0	-13.6	-18.3
120.0	26.5	20.8	27.2	21.1	40.0	-19.2	-18.9

Table 6 General Radiated Emissions Data

Other emissions present had amplitudes at least 20 dB below the limit. Peak and Quasi-Peak amplitude emissions are recorded for frequency range below 1000 MHz. Peak and Average amplitude emissions are recorded for frequency range above 1000 MHz.

Summary of Results for General Radiated Emissions

The EUT demonstrated compliance with the radiated emissions requirements of CFR47 Paragraph 15.209, RSS-247 Issue 2 and RSS-GEN Issue 5 emission requirements. The EUT demonstrated a minimum margin of -6.3 dB below the requirements. Other emissions were present with amplitudes at least 20 dB below the Limits.

Rogers Labs, Inc.	Digital Monitoring Products, Inc.	SN'
4405 West 259 th Terrace	Model: 1100T	FCC
Louisburg, KS 66053	Test: 201123	IC:
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen RSS-247	Date
Revision 1	File: DMP 1100T FHSS TstRpt 201123	Pag

SN's: ENG1 / ENG2 FCC ID: CCKPC0225 IC: 5251A-PC0225 Date: December 10, 2020 Page 24 of 43

Operation in the Band 902-928 MHz

Test procedures of ANSI C63.10-2013 and KDB 558074 D01 15.247 Meas Guidance v05 were used during transmitter testing. The transmitter peak power was measured at the antenna port as described in ANSI C63.10-2013. The 20-dB and 99% emission bandwidths were measured as described in C63.10-2013. The channel separation and the number of hopping channels were measured at the antenna port as described in C63.10-2013. The system utilizes at least 50 channels with average time of occupancy on any channel not exceeding 0.4 seconds within a 20 second period. The transmitter radiated spurious and general emissions were measured on an open area test site @ 3 meters. During radiated emissions measurements the EUT sample #1 was placed on a turntable elevated as required above the ground plane at a distance of 3 meters from the measurement antenna. The amplitude of each emission was then recorded from the measurement results. The test system gains and losses were accounted for in the measurement results presented. The amplitude of each radiated emission was maximized by equipment orientation and placement on the turn table, raising and lowering the FSM (Field Strength Measuring) antenna, changing the FSM antenna polarization, and by rotating the turntable. A Loop antenna was used for measuring emissions from 0.009 to 30 MHz, Biconilog Antenna for 30 to 1000 MHz, Double-Ridge, and/or Pyramidal Horn Antennas from 1 GHz to 10 GHz. Emissions were measured in dBµV/m @ 3 meters. Antenna port conducted emission data and plots were taken using test sample #2.

Refer to figures 3 through 12 showing plots taken of the 902-928 MHz operation displaying compliance with the specifications.

Requirement: Average occupancy time Requirement:

Average time of occupancy on any channel shall not be greater than 400 mS (0.4 seconds) within a 20 second period.

Time on channel: The design resides on channel 12 times in a 20 second period. Transmitting each time for 30.05 mS which equates to an average time of occupancy of (30.05 mS * 12) 360.6 mS in 20 second period.

The 360 mS average occupancy time demonstrates compliance with requirement of less than 400 mS in 20 second period.

Additional Frequency Hopping detail may be found in the operational description exhibits.

Rogers Labs, Inc.	Digital Monitoring Products, Inc.	SN's: ENG1 / ENG2
4405 West 259 th Terrace	Model: 1100T	FCC ID: CCKPC0225
Louisburg, KS 66053	Test: 201123	IC: 5251A-PC0225
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen RSS-247	Date: December 10, 2020
Revision 1	File: DMP 1100T FHSS TstRpt 201123	Page 25 of 43

1 Frequer	ncy Sweep						∙1Pk View	• 2Pk Vi	ew (3Pk View
20 dBm	M1			M	2			м	3	
10 dBm										
0 dBm									-	
-10 dBm										
-20 dBm									-	
-30 dBm									$\left[- \right]$	
40. dBm			No. 1	, w	4					
Article Statistics	Markinson Walking	kinester the subscription	and harden and the		war contraction of the	a-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A	freedings and second	MARCAR SAN		and the second
-50 dBm										
60 d0m										
-60 dBm										
-70 dBm										
902.0 MH	lz		2000 pt	S	2.	6 MHz/				928.0 MHz
Туре	Ref Tra	ace X-Va	alue	Y-Valu	e l	Function		Func	Re	sult
M1	1	905.	.6 MHz	14 dBn	n					
M2	2	915	MHz	13.8 dE	Зm					
M3	3	924.	4 MHz	13.5 dE	Зm					

Figure 3 Plot of Transmitter Operation across 902-928 MHz

Rogers Labs, Inc.	Digital Monitoring Products, Inc.	SN's: ENG1 / ENG2
4405 West 259 th Terrace	Model: 1100T	FCC ID: CCKPC0225
Louisburg, KS 66053	Test: 201123	IC: 5251A-PC0225
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen RSS-247	Date: December 10, 2020
Revision 1	File: DMP 1100T FHSS TstRpt 201123	Page 26 of 43

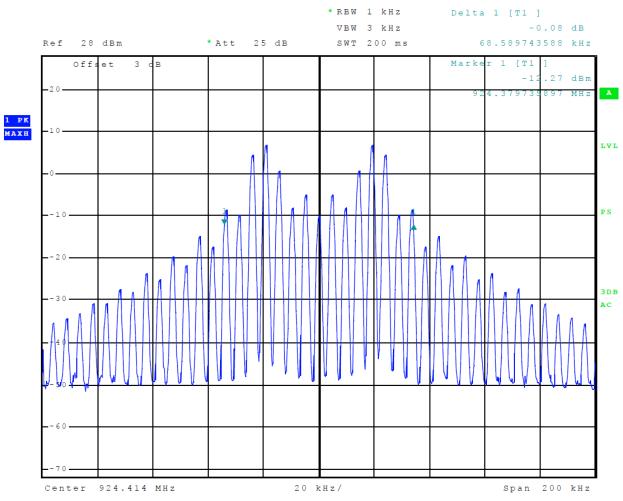


Figure 4 Plot of Transmitter Emissions 20-dB Occupied Bandwidth

Rogers Labs, Inc.Digital Monitoring Products, Inc.SN's: ENG1 / ENG24405 West 259th TerraceModel: 1100TFCC ID: CCKPC0225Louisburg, KS 66053Test: 201123IC: 5251A-PC0225Phone/Fax: (913) 837-3214Test to: CFR47 15C, RSS-Gen RSS-247Date: December 10, 2020Revision 1File: DMP 1100T FHSS TstRpt 201123Page 27 of 43

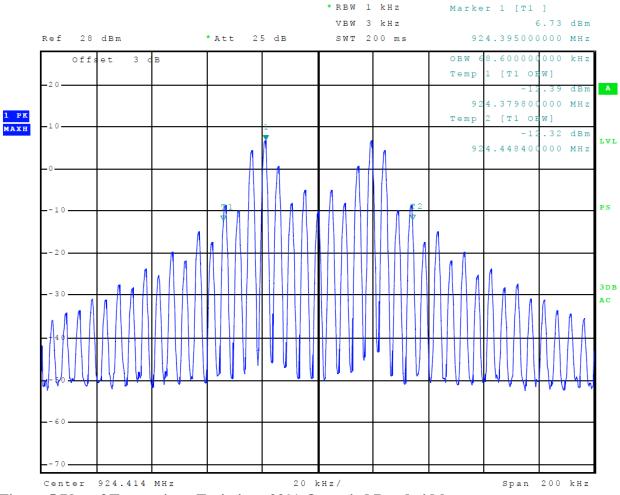
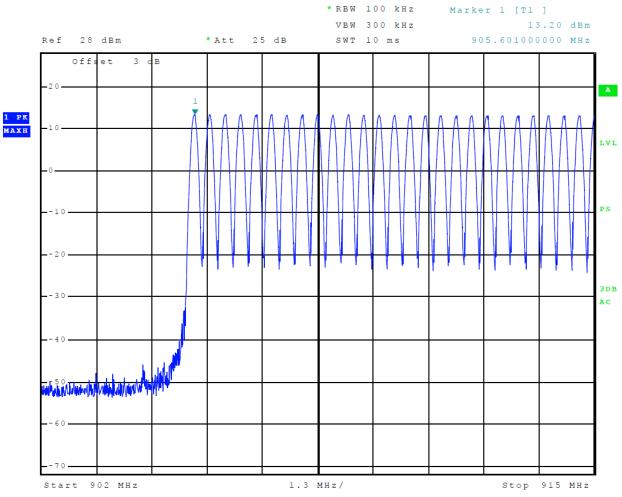



Figure 5 Plot of Transmitter Emissions 99% Occupied Bandwidth

Rogers Labs, Inc.Digital Monitoring Products, Inc.SN's: ENG1 / ENG24405 West 259th TerraceModel: 1100TFCC ID: CCKPC0225Louisburg, KS 66053Test: 201123IC: 5251A-PC0225Phone/Fax: (913) 837-3214Test to: CFR47 15C, RSS-Gen RSS-247Date: December 10, 2020Revision 1File: DMP 1100T FHSS TstRpt 201123Page 28 of 43

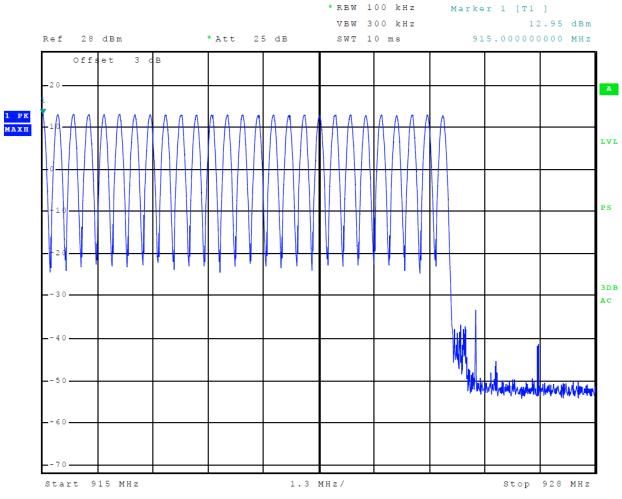


Figure 6 Plot of Number of Hopping Channels

Rogers Labs, Inc.Digital Monitoring Products, Inc.SN's: ENG1 / ENG24405 West 259th TerraceModel: 1100TFCC ID: CCKPC0225Louisburg, KS 66053Test: 201123IC: 5251A-PC0225Phone/Fax: (913) 837-3214Test to: CFR47 15C, RSS-Gen RSS-247Date: December 10, 2020Revision 1File: DMP 1100T FHSS TstRpt 201123Page 29 of 43

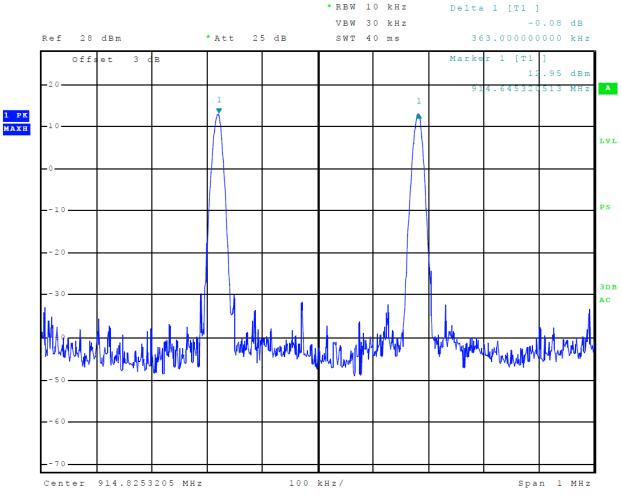


Figure 7 Plot of Number of Hopping Channels

Rogers Labs, Inc.Digital Monitoring Products, Inc.SN's: ENG1 / ENG24405 West 259th TerraceModel: 1100TFCC ID: CCKPC0225Louisburg, KS 66053Test: 201123IC: 5251A-PC0225Phone/Fax: (913) 837-3214Test to: CFR47 15C, RSS-Gen RSS-247Date: December 10, 2020Revision 1File: DMP 1100T FHSS TstRpt 201123Page 30 of 43

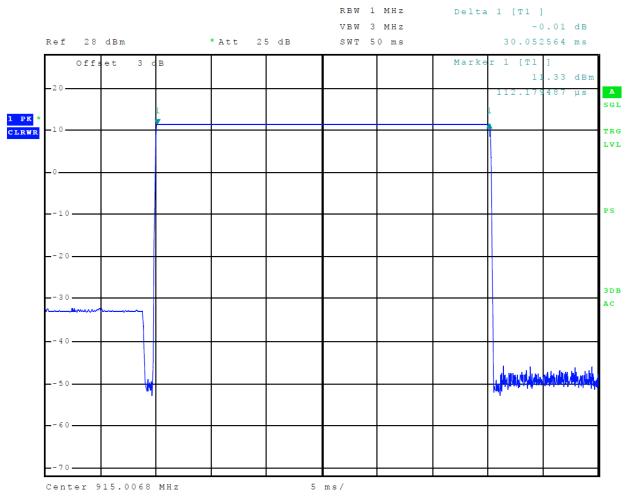


Figure 8 Plot of Channel Separation

Rogers Labs, Inc.Digital Monitoring Products, Inc.SN's: ENG1 / ENG24405 West 259th TerraceModel: 1100TFCC ID: CCKPC0225Louisburg, KS 66053Test: 201123IC: 5251A-PC0225Phone/Fax: (913) 837-3214Test to: CFR47 15C, RSS-Gen RSS-247Date: December 10, 2020Revision 1File: DMP 1100T FHSS TstRpt 201123Page 31 of 43

Figure 9 Plot of Dwell Time on Channel

Rogers Labs, Inc.Digital Monitoring Products, Inc.SN's: ENG1 / ENG24405 West 259th TerraceModel: 1100TFCC ID: CCKPC0225Louisburg, KS 66053Test: 201123IC: 5251A-PC0225Phone/Fax: (913) 837-3214Test to: CFR47 15C, RSS-Gen RSS-247Date: December 10, 2020Revision 1File: DMP 1100T FHSS TstRpt 201123Page 32 of 43

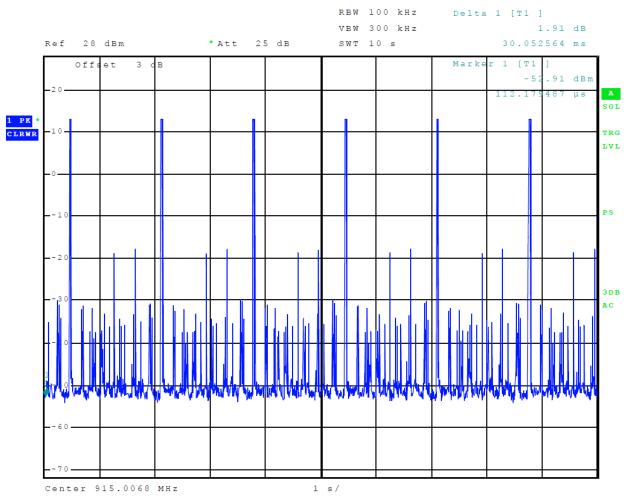


Figure 10 Plot of 6 Times on Channel over 10 second period

Rogers Labs, Inc.Digital Monitoring Products, Inc.SN's: ENG1 / ENG24405 West 259th TerraceModel: 1100TFCC ID: CCKPC0225Louisburg, KS 66053Test: 201123IC: 5251A-PC0225Phone/Fax: (913) 837-3214Test to: CFR47 15C, RSS-Gen RSS-247Date: December 10, 2020Revision 1File: DMP 1100T FHSS TstRpt 201123Page 33 of 43

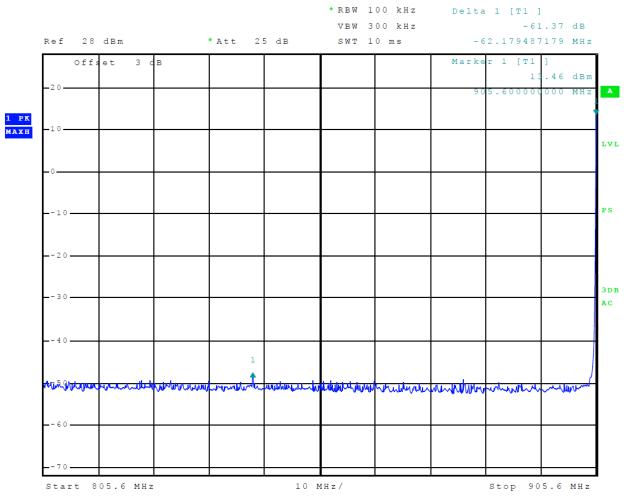


Figure 11 Plot of Transmitter Emissions Low Band Edge Channels Hopping

Rogers Labs, Inc.Digital Monitoring Products, Inc.SN's: ENG1 / ENG24405 West 259th TerraceModel: 1100TFCC ID: CCKPC0225Louisburg, KS 66053Test: 201123IC: 5251A-PC0225Phone/Fax: (913) 837-3214Test to: CFR47 15C, RSS-Gen RSS-247Date: December 10, 2020Revision 1File: DMP 1100T FHSS TstRpt 201123Page 34 of 43

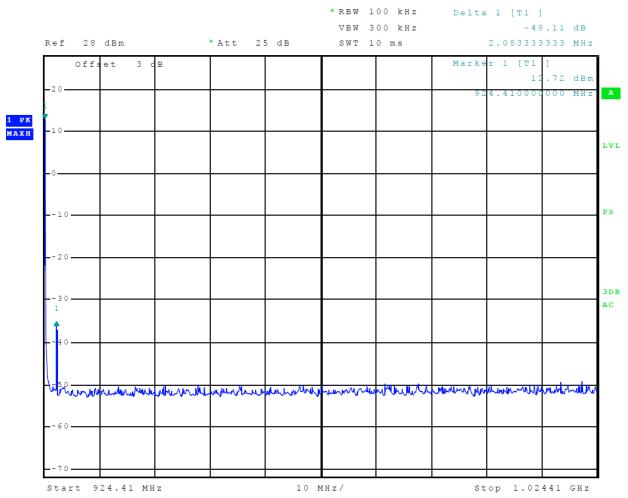


Figure 12 Plot of Transmitter Emissions High Band Edge Channels Hopping

Rogers Labs, Inc.Digital Monitoring Products, Inc.SN's: ENG1 / ENG24405 West 259th TerraceModel: 1100TFCC ID: CCKPC0225Louisburg, KS 66053Test: 201123IC: 5251A-PC0225Phone/Fax: (913) 837-3214Test to: CFR47 15C, RSS-Gen RSS-247Date: December 10, 2020Revision 1File: DMP 1100T FHSS TstRpt 201123Page 35 of 43

Transmitter Emissions Data

Table 7 Transmitter Radiated Emissions

Frequency (MHz)	Horizontal Peak (dBµV/m)	Horizontal Average (dBµV/m)	Vertical Peak (dBµV/m)	Vertical Average (dBµV/m)	Limit @ 3m (dBµV/m)	Horizontal Margin (dB)	Vertical Margin (dB)
905.6							
1811.2	50.4	49.5	46.9	45.9	54.0	-4.5	-8.1
2716.8	46.6	44.8	38.3	34.6	54.0	-9.2	-19.4
3622.4	45.4	43.1	41.2	38.0	54.0	-10.9	-16.0
4528.0	37.8	32.4	38.4	32.3	54.0	-21.6	-21.7
5433.6	39.1	33.5	38.7	33.4	54.0	-20.5	-20.6
6339.2	43.3	37.1	42.4	37.1	54.0	-16.9	-16.9
915.0							
1830.0	44.9	43.0	45.1	43.7	54.0	-11.0	-10.3
2745.0	46.4	44.3	42.2	39.7	54.0	-9.7	-14.3
3660.0	40.8	37.2	36.4	31.2	54.0	-16.8	-22.8
4575.0	38.8	33.2	38.5	33.3	54.0	-20.8	-20.7
5490.0	39.9	34.5	39.9	34.5	54.0	-19.5	-19.5
6405.0	42.4	36.7	42.1	36.8	54.0	-17.3	-17.2
924.4							
1848.8	42.8	40.8	43.3	41.6	54.0	-13.2	-12.4
2773.2	46.7	45.1	42.5	39.8	54.0	-8.9	-14.2
3697.6	39.1	34.7	37.5	31.6	54.0	-19.3	-22.4
4622.0	39.4	33.9	39.1	33.8	54.0	-20.1	-20.2
5546.4	39.6	34.6	40.2	34.6	54.0	-19.4	-19.4
6470.8	43.4	37.0	41.7	36.6	54.0	-17.0	-17.4

Other emissions present had amplitudes at least 20 dB below the limit. Peak and Quasi-Peak amplitude emissions are recorded for frequency range below 1000 MHz. Peak and Average amplitude emissions are recorded for frequency range above 1000 MHz.

Rogers Labs, Inc.	Digital Monitoring Products, Inc.	SN's: E
4405 West 259 th Terrace	Model: 1100T	FCC ID
Louisburg, KS 66053	Test: 201123	IC: 525
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen RSS-247	Date: D
Revision 1	File: DMP 1100T FHSS TstRpt 201123	Page 3

SN's: ENG1 / ENG2 FCC ID: CCKPC0225 IC: 5251A-PC0225 Date: December 10, 2020 Page 36 of 43

Frequency MHz	Output Power (dBm)	Output Power (Watts)	99% Occupied Bandwidth (kHz)	20-dB Occupied Bandwidth (kHz)
905.6	14.0	0.025	68.6	68.6
915.0	13.8	0.024	68.4	68.6
924.4	13.5	0.022	68.6	68.6

Table 8 Transmitter Antenna Port Data

Summary of Results for Transmitter Radiated Emissions of Intentional Radiator

The EUT demonstrated compliance with the regulations and emission requirements of 47 CFR Part 15.247, Industry Canada RSS-247 Issue 2 and RSS-GEN Issue 5. The antenna port conducted output power measured was 0.025 Watts. The unit utilizes 53 hopping channels with the average time of occupancy less than 0.4 seconds over the required time. The EUT worse-case configuration demonstrated minimum radiated harmonic emission margin of -4.5 dB below the limit. No other radiated emissions were found in the restricted bands less than 20 dB below limits than those recorded in this report. Other emissions were present with amplitudes at least 20 dB below the limits.

Rogers Labs, Inc.Digital Monitoring Products, Inc.4405 West 259th TerraceModel: 1100TLouisburg, KS 66053Test: 201123Phone/Fax: (913) 837-3214Test to: CFR47 15C, RSS-Gen RSS-247Revision 1File: DMP 1100T FHSS TstRpt 201123

SN's: ENG1 / ENG2 FCC ID: CCKPC0225 IC: 5251A-PC0225 Date: December 10, 2020 Page 37 of 43

Annex

- Annex A Measurement Uncertainty Calculations
- Annex B Test Equipment
- Annex C Rogers Qualifications
- Annex D Laboratory Certificate of Accreditation

Rogers Labs, Inc.Digital Monitoring Products, Inc.4405 West 259th TerraceModel: 1100TLouisburg, KS 66053Test: 201123Phone/Fax: (913) 837-3214Test to: CFR47 15C, RSS-Gen RSS-247Revision 1File: DMP 1100T FHSS TstRpt 201123

SN's: ENG1 / ENG2 FCC ID: CCKPC0225 IC: 5251A-PC0225 Date: December 10, 2020 Page 38 of 43

Annex A Measurement Uncertainty Calculations

The measurement uncertainty was calculated for all measurements listed in this test report according To CISPR 16–4. Result of measurement uncertainty calculations are recorded below. Component and process variability of production devices similar to those tested may result in additional deviations. The manufacturer has the sole responsibility of continued compliance.

Measurement	Expanded Measurement Uncertainty U _(lab)
3 Meter Horizontal 0.009-1000 MHz Measurements	4.16
3 Meter Vertical 0.009-1000 MHz Measurements	4.33
3 Meter Measurements 1-18 GHz	5.14
3 Meter Measurements 18-40 GHz	5.16
10 Meter Horizontal Measurements 0.009-1000 MHz	4.15
10 Meter Vertical Measurements 0.009-1000 MHz	4.32
AC Line Conducted	1.75
Antenna Port Conducted power	1.17
Frequency Stability	1.00E-11
Temperature	1.6°C
Humidity	3%

Rogers Labs, Inc.Digital Monitoring Products, Inc.SN's:4405 West 259th TerraceModel: 1100TFCC ILouisburg, KS 66053Test: 201123IC: 52Phone/Fax: (913) 837-3214Test to: CFR47 15C, RSS-Gen RSS-247Date:Revision 1File: DMP 1100T FHSS TstRpt 201123Page

SN's: ENG1 / ENG2 FCC ID: CCKPC0225 IC: 5251A-PC0225 Date: December 10, 2020 Page 39 of 43

Annex B Test Equipment

<u>Equipment</u>	Manufacturer	Model (SN)	Band C	al Date(m/d/y) Due
\boxtimes LISN				4/21/2020	4/21/2021
\boxtimes LISN		FCC-LISN-2.Mod.cd,(126)		10/14/2020	10/14/2021
⊠ Cable	· ·	Sucoflex102ea(L10M)(3030			10/14/2021
		Sucoflex102ea(1.5M)(30306		10/14/2020	10/14/2021
⊠ Cable		Sucoflex102ea(1.5M)(30307		10/14/2020	10/14/2021
⊠ Cable	Belden	RG-58 (L1-CAT3-11509)	9kHz-30 MHz	10/14/2020	10/14/2021
⊠ Cable	Belden	RG-58 (L2-CAT3-11509)	9kHz-30 MHz	10/14/2020	10/14/2021
🛛 Antenna	Com Power	AL-130 (121055)	.001-30 MHz	10/14/2020	10/14/2021
□ Antenna:	EMCO	6509	.001-30 MHz	10/14/2020	10/14/2022
□ Antenna	ARA	BCD-235-B (169)	20-350MHz	10/14/2020	10/14/2021
□ Antenna:	Schwarzbeck Model	VHBB 9124 (9124-627)		4/21/2020	4/21/2021
🛛 Antenna	Sunol	JB-6 (A100709)	30-1000 MHz	10/14/2020	10/14/2021
□ Antenna	ETS-Lindgren	3147 (40582)	200-1000MHz	10/14/2020	10/14/2022
□ Antenna:	e e	VULP 9118 A (VULP 9118	A-534)	4/21/2020	4/21/2021
🛛 Antenna	ETS-Lindgren	3117 (200389)	1-18 GHz	4/21/2020	4/21/2022
□ Antenna	Com Power	AH-118 (10110)	1-18 GHz	10/14/2020	10/14/2022
□ Antenna	Com Power	AH-840 (101046)	18-40 GHz	4/21/2020	4/21/2021
🛛 Analyzer	Rohde & Schwarz	ESU40 (100108)	20Hz-40GHz	5/15/2020	5/15/2021
⊠ Analyzer	Rohde & Schwarz	ESW44 (101534)	20Hz-44GHz	1/27/2020	1/27/2021
□ Analyzer	Rohde & Schwarz	FS-Z60, 90, 140, and 220	40GHz-220GHz	12/22/2017	12/22/2027
🛛 Amplifier	Com-Power	PA-010 (171003)	100Hz-30MHz	10/14/2020	10/14/2021
⊠ Amplifier	Com-Power	CPPA-102 (01254)	1-1000 MHz	10/14/2020	10/14/2021
⊠ Amplifier	Com-Power	PAM-118A (551014)	0.5-18 GHz	10/14/2020	10/14/2021
□ Amplifier	Com-Power	PAM-840A (461328)	18-40 GHz	10/14/2020	10/14/2021
⊠ Power Mete	rAgilent	N1911A with N1921A	0.05-40 GHz	4/21/2020	4/21/2021
□ Generator	Rohde & Schwarz	SMB100A6 (100150)	20Hz-6 GHz	4/21/2020	4/21/2021
□ Generator	Rohde & Schwarz	SMBV100A6 (260771)	20Hz-6 GHz	4/21/2020	4/21/2021
□ RF Filter	Micro-Tronics	BRC50722 (009).9G notch	30-18000 MHz	4/21/2020	4/21/2021
🛛 RF Filter	Micro-Tronics	HPM50114 (017)1.5G HPF	30-18000 MHz	4/21/2020	4/21/2021
□ RF Filter	Micro-Tronics	HPM50117 (063) 3G HPF	30-18000 MHz	4/21/2020	4/21/2021
□ RF Filter	Micro-Tronics	HPM50105 (059) 6G HPF	30-18000 MHz	4/21/2020	4/21/2021
□ RF Filter	Micro-Tronics	BRM50702 (172) 2G notch	30-18000 MHz	4/21/2020	4/21/2021
□ RF Filter	Micro-Tronics	BRC50703 (G102) 5G notch	30-18000 MHz	4/21/2020	4/21/2021
\Box RF Filter	Micro-Tronics	BRC50705 (024) 5G notch	30-18000 MHz	4/21/2020	4/21/2021
\Box Attenuator	Fairview	SA6NFNF100W-40 (1625)	30-18000 MHz	4/21/2020	4/18/2021
\boxtimes Attenuator	Mini-Circuits	VAT-3W2+ (1436)	30-6000 MHz	4/21/2020	4/21/2021
\boxtimes Attenuator	Mini-Circuits	VAT-3W2+ (1445)	30-6000 MHz	4/21/2020	4/21/2021
\Box Attenuator	Mini-Circuits	VAT-3W2+ (1735)	30-6000 MHz	4/21/2020	4/21/2021
\square Attenuator	Mini-Circuits	VAT-6W2+ (1438)	30-6000 MHz	4/21/2020	4/21/2021
\square Attenuator	Mini-Circuits	VAT-6W2+ (1736)	30-6000 MHz	4/21/2020	4/21/2021
\boxtimes Weather stat	tion Davis	6312 (A81120N075)		11/4/2020	11/4/2021

SN's: ENG1 / ENG2 FCC ID: CCKPC0225 IC: 5251A-PC0225 Date: December 10, 2020 Page 40 of 43

List of Test Equipment			Calibration	Date (m/d/y)	Due	
\Box Frequency (Counter: Leader LDC	-825 (8060153		4/21/2020	4/21/2021	
□ LISN: Com-Power Model LI-220A					10/14/2021	
□ LISN: Com	-Power Model LI-550	C		10/14/2020	10/14/2021	
□ ISN: Com-H	Power Model ISN T-8			4/21/2020	4/21/2021	
□ LISN: Fisch	ner Custom Communi	cations Model: FCC-LISN-5	0-16-2-08	4/21/2020	4/21/2021	
\Box Cable	Huber & Suhner Inc	. Sucoflex102ea(1.5M)(3030	072) 9kHz-40 GHz	2 10/14/2020	10/14/2021	
\Box Cable	Huber & Suhner Inc	. Sucoflex102ea(L1M)(2811	83) 9kHz-40 GHz	10/14/2020	10/14/2021	
\Box Cable	Huber & Suhner Inc	. Sucoflex102ea(L4M)(2811	84) 9kHz-40 GHz	10/14/2020	10/14/2021	
\Box Cable	Huber & Suhner Inc	. Sucoflex102ea(L10M)(317	7546)9kHz-40 GHz	z 10/14/2020	10/14/2021	
\Box Cable	Time Microwave	4M-750HF290-750 (4M)	9kHz-24 GHz	10/14/2020	10/14/2021	
□ RF Filter	Micro-Tronics	BRC17663 (001) 9.3-9.5 n	otch 30-1800 MHz	z 4/21/2020	4/21/2021	
□ RF Filter	Micro-Tronics	BRC19565 (001) 9.2-9.6 n	otch 30-1800 MHz	z 10/16/2018	4/21/2021	
□ Analyzer	HP	8562A (3051A05950)	9kHz-125GHz	4/21/2020	4/21/2021	
□ Analyzer	HP External Mixers	11571, 11970	25GHz-110GHz	z 4/18/2015	4/18/2025	
□ Analyzer	HP	8591EM (3628A00871)		4/21/2020	4/21/2021	
□ Antenna: S	olar 9229-1 & 9230-1			2/22/2020	2/22/2021	
CDN: Com-	Power Model CDN32	25E		10/14/2020	10/14/2021	
□ Injection Cl	amp Luthi Model EM	101		10/14/2020	10/14/2021	
□ Oscilloscop	e Scope: Tektronix M	1DO 4104		2/22/2020	2/22/2021	
\Box EMC Trans	ient Generator HVT 7	TR 3000		2/22/2020	2/22/2021	
\Box AC Power S	Source (Ametech, Cal	ifornia Instruments)		2/22/2020	2/22/2021	
□ Field Intensity Meter: EFM-018					2/22/2021	
\Box ESD Simulator: MZ-15					2/22/2021	
□ R.F. Power Amp ACS 230-50W				not required		
□ R.F. Power Amp EIN Model: A301				not required		
□ R.F. Power Amp A.R. Model: 10W 1010M7				not required		
\Box R.F. Power	Amp A.R. Model: 50	U1000		not required		
⊠ Shielded Room				not required		

Rogers Labs, Inc.Digital Monitoring Products, Inc.SN's: ENG1 / ENG24405 West 259th TerraceModel: 1100TFCC ID: CCKPC0225Louisburg, KS 66053Test: 201123IC: 5251A-PC0225Phone/Fax: (913) 837-3214Test to: CFR47 15C, RSS-Gen RSS-247Date: December 10, 2020Revision 1File: DMP 1100T FHSS TstRpt 201123Page 41 of 43

Annex C Rogers Qualifications

Scot D. Rogers, Engineer

Rogers Labs, Inc.

Mr. Rogers has approximately 35 years' experience in the field of electronics. Working experience includes six years working in the automated controls industry and 6 years working with the design, development and testing of radio communications and electronic equipment.

Positions Held:

Systems Engineer:	A/C Controls Mfg. Co., Inc. 6 Years
Electrical Engineer:	Rogers Consulting Labs, Inc. 5 Years
Electrical Engineer:	Rogers Labs, Inc. Current

Educational Background:

Bachelor of Science Degree in Electrical Engineering from Kansas State University Bachelor of Science Degree in Business Administration Kansas State University Several Specialized Training courses and seminars pertaining to Microprocessors and Software programming

Rogers Labs, Inc.	Digital Monitoring Products, Inc.
4405 West 259 th Terrace	Model: 1100T
Louisburg, KS 66053	Test: 201123
Phone/Fax: (913) 837-3214	Test to: CFR47 15C, RSS-Gen RSS-247
Revision 1	File: DMP 1100T FHSS TstRpt 201123

SN's: ENG1 / ENG2 FCC ID: CCKPC0225 IC: 5251A-PC0225 Date: December 10, 2020 Page 42 of 43

Annex D Laboratory Certificate of Accreditation

Rogers Labs, Inc.Digital Monitoring Products, Inc.SN's: ENG1 / ENG24405 West 259th TerraceModel: 1100TFCC ID: CCKPC0225Louisburg, KS 66053Test: 201123IC: 5251A-PC0225Phone/Fax: (913) 837-3214Test to: CFR47 15C, RSS-Gen RSS-247Date: December 10, 2020Revision 1File: DMP 1100T FHSS TstRpt 201123Page 43 of 43