

4740 Discovery Drive | Lincoln, NE 68521 tel- 402.323.6233 | tel -888.657.6860 | fax - 402.323.6238 info@nceelabs.com | http://nceelabs.com

# Amended FCC/ISED Test Report

Prepared for: Digital Monitoring Products

Address:

2500 North Partnership Blvd. Springfield, MO 6582

All in One (DSS - 900 MHz Radio)

Product:

IC:

FCC ID: CCKPC0199

5251A-PC0199

**Test Report No:** 

R20180227-26-01B

Approved by:

Nic Subonson, NCE Technical Manager iNARTE Certified EMC Engineer #EMC-003337-NE

DATE:

20 July 2018

Total Pages:

58

The Nebraska Center for Excellence in Electronics (NCEE) authorizes the above named company to reproduce this report provided it is reproduced in its entirety for use by the company's employees only. Any use that a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. NCEE accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.



| ncee | Report Number: | R20180227-26-01            | Rev | В |
|------|----------------|----------------------------|-----|---|
| labs | Prepared for:  | Digital Monitoring Product |     |   |

# REVISION PAGE

| Rev. No. | Date         | Description                                                   |
|----------|--------------|---------------------------------------------------------------|
| 0        | 4 June 2018  | Original – NJohnson                                           |
|          |              | Prepared by KVepuri                                           |
| А        | 11 July 2018 | Added 99% bandwidth measurements to Section 4.4 -NJ           |
|          |              | Includes NCEE Labs report R2180224-26-01 and its amendment in |
|          |              | full.                                                         |
| В        | 20 July 2018 | 99% Bandwidth measurements were replaced with measurements    |
|          |              | using ANSI C63.10-2013, Section 6.9.3, -NJ                    |
|          |              | Includes NCEE Labs report R2180224-26-01A and its amendment   |
|          |              | in full.                                                      |



Prepared for:

**Digital Monitoring Product** 

# CONTENTS

| Revi  | sion Pag  | je                                                                          | 2   |
|-------|-----------|-----------------------------------------------------------------------------|-----|
| Table | es of Fig | ures                                                                        | 4   |
| Table | e of Tab  | les                                                                         | 5   |
| 1.0   | Sum       | mary of test results                                                        | 6   |
| 2.0   | EUT       | Description                                                                 | 7   |
|       | 2.1       | Equipment under test                                                        | 7   |
|       | 2.2       | Description of test modes                                                   | 8   |
|       | 2.3       | Description of support units                                                | 8   |
| 3.0   | Labo      | ratory description                                                          | 9   |
|       | 3.1       | Laboratory description                                                      | 9   |
|       | 3.2       | Test personnel                                                              | 9   |
|       | 3.3       | Test equipment                                                              | .10 |
| 4.0   | Deta      | iled results                                                                | .11 |
|       | 4.1       | Duty Cycle                                                                  | .11 |
|       | 4.2       | Radiated emissions                                                          | .15 |
|       | 4.3       | Peak Output Power                                                           | .26 |
|       | 4.4       | Bandwidth                                                                   | .30 |
|       | 4.5       | Bandedges                                                                   | .37 |
|       | 4.6       | Carrier frequency seperation, number of hopping channels, time of occupancy | .48 |
|       | 4.7       | Conducted AC Mains Emissions                                                | .53 |
| Арре  | endix A:  | Sample Calculation                                                          | .55 |
| Арре  | endix B - | - Measurement Uncertainty                                                   | .57 |
| REP   | ORT EN    | D                                                                           | .58 |



В

# TABLES OF FIGURES

| Figure | Number     |
|--------|------------|
| iguic  | 1 uning ci |

| Figure Number                                                                              | Page |
|--------------------------------------------------------------------------------------------|------|
| Figure 1 - Radiated Emissions Test Setup, 30MHz – 1GHz                                     | 12   |
| Figure 2 – Duty Cycle                                                                      | 13   |
| Figure 3 – Period                                                                          | 14   |
| Figure 4 - Radiated Emissions Test Setup                                                   | 17   |
| Figure 5 - Radiated Emissions Plot, Receive                                                |      |
| Figure 6 - Radiated Emissions Plot, Low Channel                                            | 20   |
| Figure 7 - Radiated Emissions Plot, Mid Channel                                            | 22   |
| Figure 8 - Radiated Emissions Plot, High Channel                                           | 24   |
| Figure 9 – Output Power, Low Channel                                                       | 27   |
| Figure 10 – Output Power, Mid Channel                                                      | 28   |
| Figure 11 – Output Power, High Channel                                                     | 29   |
| Figure 12 - Bandwidth Measurements Test Setup                                              | 31   |
| Figure 13 – 20 dB Bandwidth, Low Channel                                                   | 32   |
| Figure 14 - 20 dB Bandwidth, Mid Channel                                                   |      |
| Figure 15 - 20 dB Bandwidth, High Channel                                                  |      |
| Figure 16 - Band-edge Measurement, Low Channel, Restricted Frequency, Continuous Transmit  | 40   |
| Figure 17 - Band-edge Measurement, Low Channel, Restricted Frequency, Hopping              | 41   |
| Figure 18 - Band-edge Measurement, Low Channel, Fundamental, Continuous Transmit           | 42   |
| Figure 19 - Band-edge Measurement, Low Channel, Fundamental, Hopping Transmit              | 43   |
| Figure 20 - Band-edge Measurement, High Channel, Restricted Frequency, Continuous Transmit | 44   |
| Figure 21 - Band-edge Measurement, High Channel, Restricted Frequency, Hopping             | 45   |
| Figure 22 - Band-edge Measurement, High Channel, Fundamental, Continuous Transmit          | 46   |
| Figure 23 - Band-edge Measurement, High Channel, Fundamental, Hopping Transmit             | 47   |
| Figure 24 – Frequency Separation, 364.72 kHz                                               | 49   |
| Figure 25 – Hop Count, 53 Hops                                                             | 50   |
| Figure 26 – Time of Occupancy, On Time                                                     | 51   |
| Figure 27 – Time of Occupancy, Period                                                      | 52   |
| Figure 28 - Conducted Emissions Plot                                                       | 54   |



# TABLE OF TABLES

| Table Number                                                             | Page |
|--------------------------------------------------------------------------|------|
| Table 1 - Radiated Emissions Quasi-peak Measurements, Receive            |      |
| Table 2 - Radiated Emissions Peak Measurement vs Average Limits, Receive |      |
| Table 3 - Radiated Emissions Quasi-peak Measurements, Low Channel        | 21   |
| Table 4 - Radiated Emissions Average Measurements, Low Channel           | 21   |
| Table 5 - Radiated Emissions Peak Measurements, Low Channel              | 21   |
| Table 6 - Radiated Emissions Quasi-peak Measurements, Mid Channel        | 23   |
| Table 7 - Radiated Emissions Average Measurements, Mid Channel           | 23   |
| Table 8 - Radiated Emissions Peak Measurements, Mid Channel              | 23   |
| Table 9 - Radiated Emissions Quasi-peak Measurements, High Channel       |      |
| Table 10 - Radiated Emissions Average Measurements, High Channel         |      |
| Table 11 - Radiated Emissions Peak Measurements, High Channel            | 25   |

| ncee | Report Number: | R20180227-26-01A           | Rev | В |
|------|----------------|----------------------------|-----|---|
| labs | Prepared for:  | Digital Monitoring Product |     |   |

# 1.0 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

- (1) US Code of Federal Regulations, Title 47, Part 15
- (2) ISED RSS-Gen, Issue 5
- (3) ISED RSS-247, Issue 2

| SUMMARY                                            |                                                                                      |        |                                            |  |  |
|----------------------------------------------------|--------------------------------------------------------------------------------------|--------|--------------------------------------------|--|--|
| Standard Section                                   | Test Type and Limit                                                                  | Result | Remark                                     |  |  |
| FCC 15.203                                         | Unique Antenna Requirement                                                           | Pass   | PCB antenna                                |  |  |
| FCC 15.35<br>RSS-Gen, 6.10                         | Duty cycle of pulsed emissions                                                       | Pass   | Pulsed emissions duty cycle<br>was applied |  |  |
| FCC 15.209<br>RSS-Gen, 7.1                         | Receiver Radiated Emissions                                                          |        | The EUT has no receiver functionality      |  |  |
| FCC 15.247(a)(1)(i)<br>RSS-247, 5.1(c)             | Minimum Bandwidth,<br>Limit: Min. 250kHz                                             |        | Meets the requirement of the limit.        |  |  |
| FCC 15.247(b)(1)<br>RSS-247, 5.1                   | Maximum Peak Output Power, Limit: Max. 24<br>dBm                                     | Pass   | Meets the requirement of the limit.        |  |  |
| FCC 15.209<br>RSS-Gen, 8.9<br>RSS-247, 5.5         | Transmitter Radiated Emissions                                                       | Pass   | Meets the requirement of the limit.        |  |  |
| FCC 15.247(a) (1) (i)<br>RSS-247, 5.1(c)           | Frequency hopping system,<br>Limit: Max. 0.4 Seconds in 10 Second Period             | Pass   | Meets the requirement of the limit.        |  |  |
| FCC 15.209, 15.205<br>RSS-Gen, 8.9<br>RSS-247, 5.5 | Band Edge Measurement, Limit: 20dB less than the peak value of fundamental frequency | Pass   | Meets the requirement of the limit.        |  |  |
| FCC 15.207<br>RSS-Gen. 8.8                         | Conducted AC Emissions                                                               |        | Meets the requirement of the limit.        |  |  |

### 2.0 EUT DESCRIPTION

# 2.1 EQUIPMENT UNDER TEST

### Summary

The Equipment Under Test (EUT) was an All in One Keypad manufactured by DMP wireless devices. It operates from 905 to 925 MHz and has transmit and receive capabilities.

| EUT            | All in One, DSS radio                                                 |
|----------------|-----------------------------------------------------------------------|
| EUT Received   | 5/23/2018                                                             |
| EUT Tested     | 5/23/2018 - 5/30/2018<br>7/20/2018 ( 99% bandwidth measurements only) |
| Serial No.     | NCEETEST1 (Assigned)                                                  |
| Operating Band | 900.0 – 928.0 MHz                                                     |
| Device Type    | FHSS                                                                  |
| Power Supply   | MH Electronics, 12 VDC ITE Power Supply<br>MN: MGT-12500-SPS          |

NOTE: For more detailed features description, please refer to the manufacturer's specifications or user's manual.



# 2.2 DESCRIPTION OF TEST MODES

The EUT operates on, and was tested at the frequencies below:

| Channel | Frequency |
|---------|-----------|
| Low     | 905.6     |
| Middle  | 915.0     |
| High    | 924.4     |

These are the only three representative channels tested in the frequency range according to FCC Part 15.31 and RSS-Gen Table A1. See the operational description for a list of all channel frequency and designations.

This EUT was set to transmit in a worse-case scenario with modulation on. The manufacturer modified the unit to transmit continuously on the lowest, highest and one channel in the middle.

# 2.3 DESCRIPTION OF SUPPORT UNITS

None



# 3.0 LABORATORY DESCRIPTION

# 3.1 LABORATORY DESCRIPTION

All testing was performed at the following Facility:

The Nebraska Center for Excellence in Electronics (NCEE Labs) 4740 Discovery Drive Lincoln, NE 68521

| A2LA Certificate Number:                   | 1953.01 |
|--------------------------------------------|---------|
| FCC Accredited Test Site Designation No:   | US1060  |
| Industry Canada Test Site Registration No: | 4294A-1 |
| NCC CAB Identification No:                 | US0177  |

Environmental conditions varied slightly throughout the tests:

Relative humidity of  $35 \pm 4\%$ Temperature of  $22 \pm 3^{\circ}$  Celsius



# 3.2 TEST PERSONNEL

| No. | PERSONNEL      | TITLE             | ROLE              |
|-----|----------------|-------------------|-------------------|
| 1   | Karthik Vepuri | EMC Test Engineer | Testing           |
| 3   | Nic Johnson    | Technical Manager | Review of Results |

### Notes:

All personnel are permanent staff members of NCEE Labs. No testing or review was sub-contracted or performed by sub-contracted personnel.



# 3.3 TEST EQUIPMENT

| DESCRIPTION AND<br>MANUFACTURER                          | MODEL NO.  | SERIAL NO.   | LAST<br>CALIBRATION<br>DATE | CALIBRATION<br>DUE DATE |
|----------------------------------------------------------|------------|--------------|-----------------------------|-------------------------|
| Rohde & Schwarz Test Receiver                            | ES126      | 100037       | 30 Jan 2018                 | 30 Jan 2019             |
| EMCO Biconilog Antenna                                   | 3142B      | 1647         | 02 Aug 2017                 | 02 Aug 2018             |
| EMCO Horn Antenna                                        | 3115       | 6416         | 26 Jan 2018                 | 26 Jan 2020             |
| Rohde & Schwarz Preamplifier                             | TS-PR18    | 3545700803   | 09 Mar 2018*                | 09 Mar 2019*            |
| Trilithic High Pass Filter                               | 6HC330     | 23042        | 09 Mar 2018*                | 09 Mar 2019*            |
| Rohde & Schwarz LISN                                     | ESH3-Z5    | 836679/010   | 25 Jul 2017                 | 25 Jul 2018             |
| RF Cable (preamplifier to antenna)                       | MFR-57500  | 01-07-002    | 09 Mar 2018*                | 09 Mar 2019*            |
| RF Cable (antenna to 10m chamber bulkhead)               | FSCM 64639 | 01E3872      | 09 Mar 2018*                | 09 Mar 2019*            |
| RF Cable (10m chamber bulkhead to control room bulkhead) | FSCM 64639 | 01E3874      | 09 Mar 2018*                | 09 Mar 2019*            |
| RF Cable (Control room bulkhead to RF switch)            | FSCM 64639 | 01E3871      | 09 Mar 2018*                | 09 Mar 2019*            |
| RF Cable (RF switch to test receiver)                    | FSCM 64639 | 01F1206      | 09 Mar 2018*                | 09 Mar 2019*            |
| RF switch – Rohde and Schwarz                            | TS-RSP     | 1113.5503.14 | 09 Mar 2018*                | 09 Mar 2019*            |
| N connector bulkhead (10m chamber)                       | PE9128     | NCEEBH1      | 09 Mar 2018*                | 09 Mar 2019*            |
| N connector bulkhead (control room)                      | PE9128     | NCEEBH2      | 09 Mar 2018*                | 09 Mar 2019*            |

\*Internal Characterization

### Notes:

All equipment is owned by NCEE Labs and stored permanently at NCEE Labs facilities.

### 4.0 DETAILED RESULTS

### 4.1 DUTY CYCLE

Test Method: ANSI C63.10:2013, Section 7.5

#### Limits for duty cycle:

As shown in FCC Part 15.35(b), and RSS-Gen, Section 6.1, for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits by more than 20dB under any condition of modulation.

(c) Unless otherwise specified, *e.g.*, §§15.255(b), and 15.256(l)(5), when the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted with any application for certification or shall be retained in the measurement data file for equipment subject to Supplier's Declaration of Conformity.

#### **Test procedures:**

Because the EUT did not have provisions for making conducted measurements, the duty cycle was measured on bench with the test receiver set to "Zero span" mode.

All field strength or power measurements shown in these plots are arbitrary and only the times and levels of the EUT relative to the remote are considered for compliance.

#### **Deviations from test standard:**

No deviation.

| ncee | Report Number: | R20180227-26-01A           | Rev | В |
|------|----------------|----------------------------|-----|---|
| labs | Prepared for:  | Digital Monitoring Product |     |   |

# Test setup:



Figure 1 - Radiated Emissions Test Setup, 30MHz – 1GHz

# EUT operating conditions:

The EUT was powered by 12 VDC unless specified. The duty cycle was only tested on the mid channel as it will be identical for all channels.



**Test results:** 



Maximum of 1 pulse can occur in any 100 ms window on any one frequency channel.





Figure 3 – Period

### Duty cycle correction factor = 20\*log(12.22)/100) = -18.25 dB

On time = 12.22 ms per Figure 2

Period = 100 ms (Figure 3 shows greater than 1 s; maximum 100ms was used)



# 4.2 RADIATED EMISSIONS

Test Method: ANSI C63.10:2013, Section 6.5, 6.6

# Limits for radiated emissions measurements:

Emissions radiated outside of the specified bands shall be applied to the limits in 15.209 as followed:

| FREQUENCIES<br>(MHz) | FIELD<br>STRENGTH<br>(μV/m) | MEASUREMENT<br>DISTANCE (m) |
|----------------------|-----------------------------|-----------------------------|
| 0.009-0.490          | 2400/F(kHz)                 | 300                         |
| 0.490-1.705          | 24000/F(kHz)                | 30                          |
| 1.705-30.0           | 30                          | 3                           |
| 30-88                | 100                         | 3                           |
| 88-216               | 150                         | 3                           |
| 216-960              | 200                         | 3                           |
| Above 960            | 500                         | 3                           |

### NOTE:

1. The lower limit shall apply at the transition frequencies.

2. Emission level (dBuV/m) = 20 \* log \* Emission level ( $\mu$ V/m).

3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits by more than 20dB under any condition of modulation.



В

Rev

Prepared for: Digital Monitoring Product

# Test procedures:

a. The EUT was placed on the top of a rotating table above the ground plane in a 10 meter semianechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. The table was 0.8m high for measurements form 30MHz-1Ghz and 1.5m for measurements from 1GHz and higher.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna was a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are used to make the measurement.

d. For each suspected emission, the EUT was arranged to maximize its emissions and then the antenna height was varied from 1 meter to 4 meters and the rotating table was turned from 0 degrees to 360 degrees to find the maximum emission reading.

e. The test-receiver system was set to use a peak detector with a specified resolution bandwidth. For spectrum analyzer measurements, the composite maximum of several analyzer sweeps was used for final measurements.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. The EUT was maximized in all 3 orthogonal positions. The results are presented for the axis that had the highest emissions.



### NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequencies below 1GHz.

В

2. The resolution bandwidth 1 MHz for all measurements and at frequencies above 1GHz, A peak detector was used for all measurements above 1GHz. Measurements were made with an EMI Receiver.

### Deviations from test standard:

No deviation.

#### Test setup:



Figure 4 - Radiated Emissions Test Setup

### EUT operating conditions

The EUT was powered by 12 VDC unless specified and set to transmit continuously on the lowest frequency channel, highest frequency channel and one in the middle of its operating range.



### Test results:



Figure 5 - Radiated Emissions Plot, Receive

### REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value

5. The EUT was measured in both the horizontal and vertical orientation. It was found that the Horizontal position produced the highest emissions, and this orientation was used for all testing. See Annex A for test photos.

В

Rev

Prepared for: Digital Monitoring Product

| Frequency  | Level  | Limit  | Margin | Height | Angle | Pol  | Axis   |
|------------|--------|--------|--------|--------|-------|------|--------|
| MHz        | dBµV/m | dBµV/m | dB     | cm.    | deg.  |      |        |
| 120.000000 | 38.94  | 43.50  | 4.60   | 100    | 163   | VERT | X-axis |
| 125.520000 | 20.41  | 43.50  | 23.10  | 99     | 187   | VERT | X-axis |
| 127.080000 | 18.25  | 43.50  | 25.30  | 100    | 360   | VERT | X-axis |
| 129.180000 | 25.63  | 43.50  | 17.90  | 398    | 205   | VERT | X-axis |
| 936.840000 | 27.32  | 46.00  | 18.70  | 230    | 212   | HORI | X-axis |

### Table 1 - Radiated Emissions Quasi-peak Measurements, Receive

| Table 2 - Radiated  | <b>Emissions</b> Peal | Measurement vs | Average | limits      | Receive  |
|---------------------|-----------------------|----------------|---------|-------------|----------|
| I able Z - Naulaleu | LIIIISSIUIIS Fear     |                | Average | : LIIIII13, | IVECEIAE |

| Frequency   | Level  | Limit  | Margin | Height | Angle | Pol  | Axis   |
|-------------|--------|--------|--------|--------|-------|------|--------|
| MHz         | dBµV/m | dBµV/m | dB     | cm.    | deg.  |      |        |
| 5949.000000 | 44.28  | 54.00  | 9.70   | 99     | 36    | VERT | X-axis |

Peak measurements were compared to average limit and found to be compliant so average measurements were not performed





Figure 6 - Radiated Emissions Plot, Low Channel

### REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value

5. The EUT was measured in both the horizontal and vertical orientation. It was found that the Horizontal position produced the highest emissions, and this orientation was used for all testing. See Annex A for test photos.

Rev

В

Prepared for: **Digital Monitoring Product** 

| Frequency  | Level  | Limit  | Margin | Height | Angle | Pol  | Axis   |
|------------|--------|--------|--------|--------|-------|------|--------|
| MHz        | dBµV/m | dBµV/m | dB     | cm.    | deg.  |      |        |
| 46.140000  | 36.64  | 40.00  | 3.40   | 99     | 360   | VERT | X-axis |
| 131.880000 | 33.21  | 43.50  | 10.30  | 98     | 99    | VERT | X-axis |
| 150.180000 | 32.88  | 43.50  | 10.60  | 101    | 116   | VERT | X-axis |
| 905.590000 | 104.49 | NA     | NA     | 99     | 287   | HORI | X-axis |

Table 3 - Radiated Emissions Quasi-neak Measurements, Low Channel

| Table 4 - Radiate | ed Emission | s Average | e Measurer | nents, Lov | v Channe |
|-------------------|-------------|-----------|------------|------------|----------|
|                   |             |           |            |            |          |

| Frequency   | Level  | Limit  | Margin | Height | Angle | Pol  | Axis   |
|-------------|--------|--------|--------|--------|-------|------|--------|
| MHz         | dBµV/m | dBµV/m | dB     | cm.    | deg.  |      |        |
| 1811.200000 | 59.62  | NA*    | NA*    | 126    | 216   | HORI | X-axis |
| 2716.800000 | 37.37  | 54.00  | 16.63  | 100    | 226   | HORI | X-axis |
| 3622.400000 | 36.80  | 54.00  | 17.20  | 126    | 30    | HORI | X-axis |
| 4528.000000 | 45.07  | 54.00  | 8.93   | 115    | 39    | HORI | X-axis |
| 5433.600000 | 48.30  | 54.00  | 5.70   | 153    | 107   | HORI | X-axis |
| 6339.000000 | 48.84  | 54.00  | 5.16   | 100    | 77    | HORI | X-axis |
| 7244.600000 | 33.04  | 54.00  | 20.96  | 99     | 152   | HORI | X-axis |
| 8150.400000 | 36.61  | 54.00  | 17.39  | 101    | 141   | HORI | X-axis |
| 9055.800000 | 35.12  | 54.00  | 18.88  | 123    | 74    | HORI | X-axis |

Note: Average Level = Peak Level – Duty Cycle Correction Factor Duty Cycle Correction Factor is calculated in Figures 2 and 3. 18.25 dB was used.

| l au        |        |        |        |        |       |      |        |
|-------------|--------|--------|--------|--------|-------|------|--------|
| Frequency   | Level  | Limit  | Margin | Height | Angle | Pol  | Axis   |
| MHz         | dBµV/m | dBµV/m | dB     | cm.    | deg.  |      |        |
| 1811.200000 | 77.87  | NA*    | NA*    | 126    | 216   | HORI | X-axis |
| 2716.800000 | 55.62  | 74.00  | 18.38  | 100    | 226   | HORI | X-axis |
| 3622.400000 | 55.05  | 74.00  | 18.95  | 126    | 30    | HORI | X-axis |
| 4528.000000 | 63.32  | 74.00  | 10.68  | 115    | 39    | HORI | X-axis |
| 5433.600000 | 66.55  | 74.00  | 7.45   | 153    | 107   | HORI | X-axis |
| 6339.000000 | 67.09  | 74.00  | 6.91   | 100    | 77    | HORI | X-axis |
| 7244.600000 | 51.29  | 74.00  | 22.71  | 99     | 152   | HORI | X-axis |
| 8150.400000 | 54.86  | 74.00  | 19.14  | 101    | 141   | HORI | X-axis |
| 9055.800000 | 53.37  | 74.00  | 20.63  | 123    | 74    | HORI | X-axis |

honnol Padiated Emissions De Tabla E

\*Unrestricted band, the level need to be 20 dB below the fundamental; Pass.



Prepared for: Digital Monitoring Product



Figure 7 - Radiated Emissions Plot, Mid Channel

# REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.

5. The EUT was measured in both the horizontal and vertical orientation. It was found that the Horizontal position produced the highest emissions, and this orientation was used for all testing. See Annex A for test photos.



В

Rev

Prepared for: Digital Monitoring Product

| Frequency  | Level  | Limit  | Margin | Height | Angle | Pol  | Axis   |
|------------|--------|--------|--------|--------|-------|------|--------|
| MHz        | dBµV/m | dBµV/m | dB     | cm.    | deg.  |      |        |
| 43.980000  | 30.33  | 40.00  | 9.70   | 104    | 290   | VERT | X-axis |
| 120.000000 | 38.06  | 43.50  | 5.50   | 102    | 321   | VERT | X-axis |
| 122.100000 | 32.87  | 43.50  | 10.60  | 102    | 111   | VERT | X-axis |
| 915.000000 | 102.97 | NA     | NA     | 100    | 290   | HORI | X-axis |

Table 6 - Radiated Emissions Quasi-peak Measurements, Mid Channel

The EUT was maximized in all 3 orthogonal axis. The worst-case is shown in the table above.

|  | Table 7 - R | adiated Emissio | ns Average Mea | asurements, Mid | Channel |
|--|-------------|-----------------|----------------|-----------------|---------|
|--|-------------|-----------------|----------------|-----------------|---------|

| Frequency   | Level  | Limit  | Margin | Height | Angle | Pol  | Axis   |
|-------------|--------|--------|--------|--------|-------|------|--------|
| MHz         | dBµV/m | dBµV/m | dB     | cm.    | deg.  |      |        |
| 1830.000000 | 56.99  | NA*    | NA*    | 100    | 337   | HORI | X-axis |
| 2745.000000 | 35.79  | 54.00  | 18.21  | 187    | 20    | VERT | X-axis |
| 3660.000000 | 38.49  | 54.00  | 15.51  | 153    | 10    | VERT | X-axis |
| 4575.000000 | 44.71  | 54.00  | 9.29   | 176    | 28    | VERT | X-axis |
| 5490.000000 | 40.52  | NA*    | NA*    | 150    | 38    | VERT | X-axis |
| 6405.000000 | 38.03  | 54.00  | 15.97  | 146    | 60    | VERT | X-axis |
| 7320.000000 | 32.78  | 54.00  | 21.22  | 210    | 207   | VERT | X-axis |
| 8235.000000 | 46.24  | 54.00  | 7.76   | 100    | 92    | VERT | X-axis |

The EUT was maximized in all 3 orthogonal axis. The worst-case is shown in the table above. Note: Average Level = Peak Level – Duty Cycle Correction Factor Duty Cycle Correction Factor is calculated in Figures 2 and 3. 18.25 dB was used.

|             |        |        |        |        |       | •    |        |
|-------------|--------|--------|--------|--------|-------|------|--------|
| Frequency   | Level  | Limit  | Margin | Height | Angle | Pol  | Axis   |
| MHz         | dBµV/m | dBµV/m | dB     | cm.    | deg.  |      |        |
| 1830.000000 | 75.24  | NA*    | NA*    | 100    | 337   | HORI | X-axis |
| 2745.000000 | 54.04  | 74.00  | 19.96  | 187    | 20    | VERT | X-axis |
| 3660.000000 | 56.74  | 74.00  | 17.26  | 153    | 10    | VERT | X-axis |
| 4575.000000 | 62.96  | 74.00  | 11.04  | 176    | 28    | VERT | X-axis |
| 5490.000000 | 58.77  | NA*    | NA*    | 150    | 38    | VERT | X-axis |
| 6405.000000 | 56.28  | 74.00  | 17.72  | 146    | 60    | VERT | X-axis |
| 7320.000000 | 51.03  | 74.00  | 22.97  | 210    | 207   | VERT | X-axis |
| 8235.000000 | 64.49  | 74.00  | 9.51   | 100    | 92    | VERT | X-axis |

### Table 8 - Radiated Emissions Peak Measurements, Mid Channel

The EUT was maximized in all 3 orthogonal axis. The worst-case is shown in the table above.

\*Unrestricted band, the level need to be 20 dB below the fundamental; Pass.



Rev

Prepared for: Digital Monitoring Product



Figure 8 - Radiated Emissions Plot, High Channel

### REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.

5. The EUT was measured in both the horizontal and vertical orientation. It was found that the Horizontal position produced the highest emissions, and this orientation was used for all testing. See Annex A for test photos.



Rev

В

Prepared for: Digital Monitoring Product

| Table 9 Radiated Emissions Quasi peak measurements, riigh onamer |        |        |        |        |       |      |        |  |
|------------------------------------------------------------------|--------|--------|--------|--------|-------|------|--------|--|
| Frequency                                                        | Level  | Limit  | Margin | Height | Angle | Pol  | Axis   |  |
| MHz                                                              | dBµV/m | dBµV/m | dB     | cm.    | deg.  |      |        |  |
| 120.480000                                                       | 16.11  | 43.50  | 27.40  | 100    | 360   | VERT | X-axis |  |
| 125.640000                                                       | 35.68  | 43.50  | 7.80   | 100    | 0     | VERT | X-axis |  |
| 131.220000                                                       | 18.55  | 43.50  | 25.00  | 399    | 119   | VERT | X-axis |  |
| 924.400000                                                       | 100.92 | NA     | NA     | 100    | 263   | HORI | X-axis |  |
|                                                                  |        |        |        |        |       |      |        |  |

Table 9 - Radiated Emissions Quasi-peak Measurements, High Channel

The EUT was maximized in all 3 orthogonal axis. The worst-case is shown in the table above.

|--|

| Frequency   | Level  | Limit  | Margin | Height | Angle | Pol  | Axis   |
|-------------|--------|--------|--------|--------|-------|------|--------|
| MHz         | dBµV/m | dBµV/m | dB     | cm.    | deg.  |      |        |
| 1848.800000 | 42.69  | NA*    | NA*    | 100    | 337   | HORI | X-axis |
| 2773.200000 | 38.67  | 54.00  | 15.33  | 170    | 22    | VERT | X-axis |
| 3697.600000 | 35.52  | 54.00  | 18.48  | 177    | 6     | VERT | X-axis |
| 4622.000000 | 39.62  | 54.00  | 14.38  | 160    | 33    | VERT | X-axis |
| 5546.400000 | 53.96  | NA*    | NA*    | 163    | 34    | VERT | X-axis |
| 6470.800000 | 38.70  | 54.00  | 15.30  | 100    | 72    | VERT | X-axis |
| 7395.200000 | 33.49  | 54.00  | 20.51  | 126    | 74    | VERT | X-axis |
| 8319.600000 | 41.77  | 54.00  | 12.23  | 100    | 86    | VERT | X-axis |

The EUT was maximized in all 3 orthogonal axis. The worst-case is shown in the table above.

Note: Average Level = Peak Level – Duty Cycle Correction Factor Duty Cycle Correction Factor is calculated in Figures 2 and 3. 18.25 dB was used.

| Frequency   | Level  | Limit  | Margin | Height | Angle | Pol  | Axis   |
|-------------|--------|--------|--------|--------|-------|------|--------|
| MHz         | dBµV/m | dBµV/m | dB     | cm.    | deg.  |      |        |
| 1848.800000 | 60.94  | NA*    | NA*    | 100    | 337   | HORI | X-axis |
| 2773.200000 | 56.92  | 74.00  | 17.08  | 170    | 22    | VERT | X-axis |
| 3697.600000 | 53.77  | 74.00  | 20.23  | 177    | 6     | VERT | X-axis |
| 4622.000000 | 57.87  | 74.00  | 16.13  | 160    | 33    | VERT | X-axis |
| 5546.400000 | 72.21  | NA*    | NA*    | 163    | 34    | VERT | X-axis |
| 6470.800000 | 56.95  | 74.00  | 17.05  | 100    | 72    | VERT | X-axis |
| 7395.200000 | 51.74  | 74.00  | 22.26  | 126    | 74    | VERT | X-axis |
| 8319.600000 | 60.02  | 74.00  | 13.98  | 100    | 86    | VERT | X-axis |

### Table 11 - Radiated Emissions Peak Measurements, High Channel

The EUT was maximized in all 3 orthogonal axis. The worst-case is shown in the table above. \*Unrestricted band, the level need to be 20 dB below the fundamental; Pass.

**Intermodulation Product:** EUT contains three separate radios modules. They were all turned ON at the same time. No intermodulation products were found to be above the noise floor.

**Digital Monitoring Product** 

Rev

В

# 4.3 PEAK OUTPUT POWER

Prepared for:

Test Method: ANSI C63.10, Section(s) 7.8.5

# Limits of bandwidth measurements:

For an FHSS system with 25 channels, the output power is required to be less than 250 mW or 24 dBm.

EIRP was calculated from field strength measurements using ANSI C63.10:2013, Section 9.5, Equation (22). The field strength was measured at a 3m distance and maximized.

# Test procedures:

All measurements were taken at a distance of 3m from the EUT.

The EUT was maximized in all 3 orthogonal positions in a similar manner as described in Section 4.2.

# Deviations from test standard:

No deviation.

### Test setup:

See Section 4.2

Measurement device used was power meter

### EUT operating conditions:

The EUT was powered by 12 VDC unless specified and set to transmit continuously on the lowest frequency channel, highest frequency channel and one in the middle of its operating range.

### Test results:

| CHANNEL | CHANNEL<br>FREQUENCY<br>(MHz) | PEAK OUTPUT<br>POWER (dBm) | Method | RESULT |
|---------|-------------------------------|----------------------------|--------|--------|
| Low     | 905.60                        | 8.31                       | EIRP   | PASS   |
| Middle  | 915.00                        | 6.80                       | EIRP   | PASS   |
| High    | 924.40                        | 5.30                       | EIRP   | PASS   |





Maximum power = -31.86 dBm + 107 + CL + AF - 95.23 = 8.31 dBm\*

CL = cable loss = 4.80 dB

AF = antenna factor = 23.60 dB

107 = conversion from dBm to dB $\mu$ V on a 50 $\Omega$  measurement system

-95.23 = Conversion from field strength (dBµV/m) to EIRP (dBm) at a 3m measurement distance.





#### Figure 10 – Output Power, Mid Channel

Maximum power = -33.21 dBm + 107 + CL + AF - 95.23 = 6.86 dBm\*

CL = cable loss = 4.80 dB

AF = antenna factor = 23.50 dB

107 = conversion from dBm to dB $\mu$ V on a 50 $\Omega$  measurement system

-95.23 = Conversion from field strength (dB $\mu$ V/m) to EIRP (dBm) at a 3m measurement distance.





#### Figure 11 – Output Power, High Channel

Maximum power = -35.07 dBm + 107 + CL + AF - 95.23 = 5.30 dBm\*

CL = cable loss = 4.80 dB

AF = antenna factor = 23.80 dB

107 = conversion from dBm to  $dB\mu V$  on a 50 $\Omega$  measurement system

-95.23 = Conversion from field strength (dBµV/m) to EIRP (dBm) at a 3m measurement distance.



Rev

# В

### 4.4 BANDWIDTH

Test Method: ANSI C63.10, Section(s) 6.9.2 (20 dB BW) ANSI C63.10, Section(s) 6.9.3 (99% BW)

### Limits of bandwidth measurements:

From FCC Part 15.247 (1) (i) and RSS-247 5.1(c)

The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

### Test procedures:

Bandwidth measurement was taken at a distance of 3m from the EUT. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 3 kHz RBW and 10 kHz VBW.

The 20dB bandwidth is defined as the bandwidth of which is higher than peak power minus 20dB.

The 99% occupied bandwidth was measured using the test receiver's occupied bandwidth function.

### Test setup:

All the measurements were done at 3m test distance while an operator was trying to activate the hopping sequence manually. See Section 4.3 for more details.

### **Deviations from test standard:**

No deviation.

| ncee | Report Number: | R20180227-26-01A           | Rev | В |
|------|----------------|----------------------------|-----|---|
| labs | Prepared for:  | Digital Monitoring Product |     |   |



Figure 12 - Bandwidth Measurements Test Setup

# EUT operating conditions:

The EUT was powered by 12 VDC unless specified and set to transmit continuously on the lowest frequency channel, highest frequency channel and one in the middle of its operating range.

| 100010000000 |
|--------------|
|--------------|

|         |                               | Bandwidth        |                                    |        |
|---------|-------------------------------|------------------|------------------------------------|--------|
| CHANNEL | CHANNEL<br>FREQUENCY<br>(MHz) | 20dB BW<br>(kHz) | 99% Occupied<br>Bandwidth<br>(kHz) | RESULT |
| Low     | 905.60                        | 72.14            | 77.76                              | PASS   |
| Mid     | 915.00                        | 71.58            | 74.15                              | PASS   |
| High    | 924.40                        | 71.74            | 74.95                              | PASS   |



В

# Prepared for: Digital Monitoring Product









Figure 15 - 20 dB Bandwidth, High Channel



Figure 16 - 99% Occupied Bandwidth, Low Channel



Figure 17 - 99% Occupied Bandwidth, Middle Channel





# 4.5 BANDEDGES

Test Method: ANSI C63.10, Section(s) 6.10.6

| The Nebraska Center for Excellence in Electronics |
|---------------------------------------------------|
| 4740 Discovery Drive                              |
| Lincoln, NE 68521                                 |

Page 37 of 58



### Limits of bandedge measurements:

For emissions outside of the allowed band of operation (902 - 928MHz), the emission level needs to be 20dB under the maximum fundamental field strength. However, if the emissions fall within one of the restricted bands from 15.205 the field strength levels need to be under that of the limits in 15.209.

#### Test procedures:

The EUT was tested in the same method as described in section *4.4* - *Bandwidth*. The EUT was oriented as to produce the maximum emission levels. The resolution bandwidth was set to 30kHz and the EMI receiver was used to scan from the bandedge to the fundamental frequency with a quasi-peak detector. The highest emissions level beyond the bandedge was measured and recorded. All band edge measurements were evaluated to the general limits in Part 15.209.

#### **Deviations from test standard:**

No deviation.

#### Test setup:

All the measurements were done at 3m test distance while an operator was trying to activate the hopping sequence manually.

#### EUT operating conditions:

The EUT was powered by 12 VDC unless specified and set to transmit continuously on the lowest frequency channel, and the highest frequency channel.



### Test results:

| Highest Out of Band Emissions |              |                |             |       |       |        |  |  |  |
|-------------------------------|--------------|----------------|-------------|-------|-------|--------|--|--|--|
| CHANNEL                       | Band edge    | Relative       | Relative    |       |       |        |  |  |  |
|                               | /Measurement | Highest out of | Fundamental | Dolta | Min   | Deput  |  |  |  |
|                               | Frequency    | band level     | Level (dBm) | Della | (dBc) | Result |  |  |  |
|                               | (MHz)        | dBm            |             |       |       |        |  |  |  |
| Low, Continuous               | 614.0        | -102.55        | -31.71      | 70.84 | 58.49 | PASS   |  |  |  |
| High, Continuous              | 960.0        | -102.11        | -35.09      | 67.02 | 54.49 | PASS   |  |  |  |
| Low Hopping                   | 614.0        | -102.72        | -37.73      | 64.99 | 58.49 | PASS   |  |  |  |
| High, Hopping                 | 960.0        | -102.15        | -38.87      | 63.28 | 54.49 | PASS   |  |  |  |

\*Minimum delta = [highest fundamental peak field strength from Section 4.2] – [Part 15.209 radiated emissions limit.]

From Section 4.2

Fundamental average field strength at 905.6 MHz for low channel =  $104.49 \text{ dB}\mu\text{V/m}$ Fundamental average field strength at 924.4 MHz for high channel =  $100.92 \text{ dB}\mu\text{V/m}$ 

Low channel minimum delta =  $104.49 - 46.0 \text{ dB}\mu\text{V/m} = 58.49 \text{ dBc}$ High channel minimum delta =  $100.92 - 46.0 \text{ dB}\mu\text{V/m} = 54.92 \text{ dBc}$ 

Measurements do not include correction factors and are intended to be relative measurements only.



P20



Figure 19 - Band-edge Measurement, Low Channel, Restricted Frequency, Continuous Transmit The plot shows an uncorrected measurement, used for relative measurements only.

-70



Figure 20 - Band-edge Measurement, Low Channel, Restricted Frequency, Hopping The plot shows an uncorrected measurement, used for relative measurements only.









Figure 22 - Band-edge Measurement, Low Channel, Fundamental, Hopping Transmit The plot shows an uncorrected measurement, used for relative measurements only. Delta = 34.09 dB > 20 dB minimum

385 kHz/

Stop 905.85 MHz

-7

Start 902 MHz



white the for the second the second

4 MHz/

Figure 23 - Band-edge Measurement, High Channel, Restricted Frequency, Continuous Transmit The plot shows an uncorrected measurement, used for relative measurements only.

P20

Motive in the second contraction of the second states

Stop 1 GHz

-70

-8

-90

-100

-110 -115

Date:

LA.

n kan kal A

24.MAY.2018 10:37:01

white the the

Start 960 MHz



Figure 24 - Band-edge Measurement, High Channel, Restricted Frequency, Hopping The plot shows an uncorrected measurement, used for relative measurements only.





Figure 25 - Band-edge Measurement, High Channel, Fundamental, Continuous Transmit The plot shows an uncorrected measurement, used for relative measurements only. Delta = 45.39 dB > 20 dB minimum





Figure 26 - Band-edge Measurement, High Channel, Fundamental, Hopping Transmit The plot shows an uncorrected measurement, used for relative measurements only. Delta = 42.57 dB > 20 dB minimum



Rev

В

## 4.6 CARRIER FREQUENCY SEPERATION, NUMBER OF HOPPING CHANNELS, TIME OF OCCUPANCY

**Test Method**: ANSI C63.10, Section 7.8.2, 7.8.3, 7.8.4

### Limits for Time of Occupancy

Average time of occupancy on any frequency should not to exceed 0.4 seconds within a 20 second period.

### Test procedures:

The method from FCC DA 00-705

All measurements were taken at a distance of 3m from the EUT.

#### Test setup:

All the measurements were done at 3m test distance while an operator was trying to activate the hopping sequence manually.

### EUT operating conditions:

The EUT was powered by 12 VDC unless specified and set to transmit continuously on the lowest frequency channel, highest frequency channel and one in the middle of its operating range.

### Test results:



Figure 27 – Frequency Separation, 364.72 kHz



Rev

В

Prepared for: Digital Monitoring Product













\*Maximum of 12 transmissions can occur in a given channel in any 20 s so the average time of occupancy is 12.22 ms x 12 = 146.64 ms = 0.146 s < 0.4 s - Pass



# 4.7 CONDUCTED AC MAINS EMISSIONS

Test Method: ANSI C63.10-2013, Section(s) 6.2

### Limits for conducted emissions measurements:

| FREQUENCY OF EMISSION<br>(MHz) | CONDUCTED LIMIT<br>(dBµV) |          |
|--------------------------------|---------------------------|----------|
|                                | Quasi-peak                | Average  |
| 0.15-0.5                       | 66 to 56                  | 56 to 46 |
| 0.5-5                          | 56                        | 46       |
| 5-30                           | 60                        | 50       |

#### Notes:

1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

### **Test Procedures:**

- a. The EUT was placed 0.8m above a ground reference plane and 0.4 meters from the conducting wall of a shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). The LISN provides 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference as well as the ground.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels over 10dB under the prescribed limits are not reported.
- d. Results were compared to the 15.207 limits.

### Deviation from the test standard:

No deviation

### EUT operating conditions:

The EUT was powered by 12 VDC unless specified and set to transmit continuously on the Middle channel of its operating range.

Rev



**Test Results:** 



Figure 31 - Conducted Emissions Plot All measurements were found to be at least 10dB below the applicable limit.

| ncee. | Report Number: | R20180227-26-01A           | Rev | В |
|-------|----------------|----------------------------|-----|---|
|       | Prepared for:  | Digital Monitoring Product |     |   |

### APPENDIX A: SAMPLE CALCULATION

### **Field Strength Calculation**

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows: FS = RA + AF - (-CF + AG) + AV

where FS = Field Strength

RA = Receiver Amplitude AF = Antenna Factor CF = Cable Attenuation Factor AG = Amplifier Gain AV = Averaging Factor (if applicable)

Assume a receiver reading of 55 dB $\mu$ V is obtained. The Antenna Factor of 12 and a Cable Factor of 1.1 is added. The Amplifier Gain of 20 dB is subtracted, giving a field strength of 48.1 dB $\mu$ V/m.

 $FS = 55 + 12 - (-1.1 + 20) + 0 = 48.1 \text{ dB}\mu\text{V/m}$ 

The 48.1 dB $\mu$ V/m value can be mathematically converted to its corresponding level in  $\mu$ V/m.

Level in  $\mu$ V/m = Common Antilogarithm [(48.1 dB $\mu$ V/m)/20]= 254.1  $\mu$ V/m

AV is calculated by the taking the  $20^{100}(T_{on}/100)$  where  $T_{on}$  is the maximum transmission time in any 100ms window.

| ncee. | Report Number: | R20180227-26-01A           | Rev | В |
|-------|----------------|----------------------------|-----|---|
|       | Prepared for:  | Digital Monitoring Product |     |   |

# **EIRP Calculations**

In cases where direct antenna port measurement is not possible or would be inaccurate, output power is measured in EIRP. The maximum field strength is measured at a specified distance and the EIRP is calculated using the following equation;

EIRP (Watts) = [Field Strength (V/m) x antenna distance (m)]<sup>2</sup> / 30

Power (watts) = 10^[Power (dBm)/10] / 1000

Voltage ( $dB\mu V$ ) = Power (dBm) + 107 (for 50 $\Omega$  measurement systems)

Field Strength (V/m) =  $10^{Field}$  Strength (dB $\mu$ V/m) / 20] /  $10^{6}$ 

Gain = 1 (numeric gain for isotropic radiator)

Conversion from 3m field strength to EIRP (d=3):

 $EIRP = [FS(V/m) \times d^2]/30 = FS[0.3]$  for d = 3

 $EIRP(dBm) = FS(dB\mu V/m) - 10(log 10^9) + 10log[0.3] = FS(dB\mu V/m) - 95.23$ 

10log( 10^9) is the conversion from micro to milli



# APPENDIX B - MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been for tests performed in this test report:

| Test                        | Frequency Range | Uncertainty Value (dB) |
|-----------------------------|-----------------|------------------------|
| Radiated Emissions, 3m      | 30MHz - 1GHz    | 3.82                   |
| Radiated Emissions, 3m      | 1GHz - 18GHz    | 4.44                   |
| Emissions limits, conducted | 30MHz – 18GHz   | ±3.30 dB               |

Expanded uncertainty values are calculated to a confidence level of 95%.

| ncee. | Report Number: | R20180227-26-01A           | Rev | В |
|-------|----------------|----------------------------|-----|---|
|       | Prepared for:  | Digital Monitoring Product |     |   |

REPORT END