

4740 Discovery Drive | Lincoln, NE 68521 tel- 402.323.6233 | tel -888.657.6860 | fax - 402.323.6238 info@nceelabs.com | http://nceelabs.com

FCC/ISED Test Report

Prepared for:

Digital Monitoring Products

Address:

2500 North Partnership Blvd. Springfield, MO 6582

Product: FCC ID: IC: PC0114R9 CCKPC0114R9 5251A-PC0114R9

Test Report No:

R20201019-20-E1C

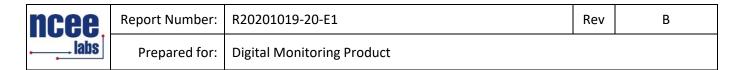
Approved by:

Nic Solohnson, NCE Technical Manager iNARTE Certified EMC Engineer #EMC-003337-NE

DATE:

5 May 2021

Total Pages:


48

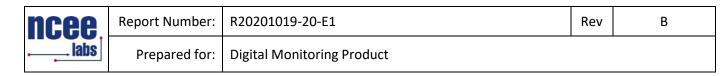
The Nebraska Center for Excellence in Electronics (NCEE) authorizes the above named company to reproduce this report provided it is reproduced in its entirety for use by the company's employees only. Any use that a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. NCEE accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

ncee.	Report Number:	R20201019-20-E1	Rev	С
labs	Prepared for:	Digital Monitoring Product		

REVISION PA	REVISION PAGE							
Rev. No.	Date	Description						
0	31 December 2020	Original – NJohnson						
		Prepared by KVepuri						
A	5 February 2021	Corrected results in Section 4.0 and power limits.						
В	19 March 2021	Updated 3 rd table on Page 9.						
		Updated duty cycle correction factor to match						
		measurements in Section 4.6						
С	5 May 2021	Added FCC Id and IC.						

CONTENTS

Revi	sion Pa	ge2
1.0	Sum	nmary of test results4
2.0	EUT	Description5
	2.1	Equipment under test
	2.2	Description of test modes
	2.3	Description of support units
3.0	Lab	oratory description7
	3.1	Laboratory description7
	3.2	Test personnel7
	3.3	Test equipment
4.0	Deta	niled results9
	4.1	Duty Cycle10
	4.2	Radiated emissions11
	4.3	Peak Output Power
	4.4	Bandwidth23
	4.5	Bandedges
	4.6	Carrier frequency seperation, number of hopping channels, time of occupancy
	4.7	Conducted AC Mains Emissions
Арр	endix A	: Sample Calculation45
Арр	endix B	– Measurement Uncertainty
REP		ID48


1.0 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

- (1) US Code of Federal Regulations, Title 47, Part 15
- (2) ISED RSS-Gen, Issue 5
- (3) ISED RSS-247, Issue 2

ANSI C63.10-2013 was used as a test method, with guidance from KBD 558074 D01 v05

	SUMMARY							
Standard Section	Test Type and Limit	Result	Remark					
FCC 15.203	Unique Antenna Requirement	Pass	PCB antenna					
FCC 15.35 RSS-Gen, 6.10	Duty cycle of pulsed emissions	Informative only	Duty cycle was applied					
FCC 15.209 RSS-Gen, 7.1	Receiver Radiated Emissions	Pass	Meets the requirement of the limit.					
FCC 15.247(a)(1)(i) RSS-247, 5.1(c)	Minimum Bandwidth, Limit: Min. 250kHz	Pass	Meets the requirement of the limit.					
FCC 15.247(b)(1) RSS-247, 5.1	Maximum Peak Output Power, Limit: Max. 24 dBm	Pass	Meets the requirement of the limit.					
FCC 15.209 RSS-Gen, 8.9 RSS-247, 5.5	Transmitter Radiated Emissions	Pass	Meets the requirement of the limit.					
FCC 15.247(a) (1) (i) RSS-247, 5.1(c)	Frequency hopping system, Limit: Max. 0.4 Seconds in 20 Second Period	Pass	Meets the requirement of the limit.					
FCC 15.209, 15.205 RSS-Gen, 8.9 RSS-247, 5.5	Band Edge Measurement, Limit: 20dB less than the peak value of fundamental frequency	Pass	Meets the requirement of the limit.					
FCC 15.207 RSS-Gen. 8.8	Conducted AC Emissions	Pass	Meets the requirement of the limit.					

2.0 EUT DESCRIPTION

2.1 EQUIPMENT UNDER TEST

Summary

The Equipment Under Test (EUT) was PC0114R9 a Wireless transmitter manufactured by DMP wireless devices. It operates in the 902 to 928 MHz ISM band and has transmit and receive capabilities.

EUT	PC0114R9
FCC ID:	CCKPC0114R9
IC:	5251A-PC0114R9
EUT Received	11/9/2020
EUT Tested	11/18/2020 - 12/21/2020
Serial No.	00221 (Assigned by test lab)
Operating Band	902 – 928 MHz
Device Type	FHSS
Power Supply	MG ELECTRONICS Model: ST-12500W Input: 100-240V, 50/60Hz, 0.2A Output: 12V,0.5A
Antenna	PCB Antenna

NOTE: For more detailed features description, please refer to the manufacturer's specifications or user's manual.

2.2 DESCRIPTION OF TEST MODES

The EUT operates on, and was tested at the frequencies below:

Channel	Frequency
Low	905.6
Middle	915.0
High	924.4

These are the only three representative channels tested in the frequency range according to FCC Part 15.31 and RSS-Gen Table A1. See the operational description for a list of all channel frequency and designations.

This EUT was set to transmit in a worse-case scenario with modulation on. The manufacturer modified the unit to transmit continuously on the lowest, highest and one channel in the middle.

2.3 DESCRIPTION OF SUPPORT UNITS

None

3.0 LABORATORY DESCRIPTION

3.1 LABORATORY DESCRIPTION

All testing was performed at the following Facility:

The Nebraska Center for Excellence in Electronics (NCEE Labs) 4740 Discovery Drive Lincoln, NE 68521

A2LA Certificate Number:1953.01FCC Accredited Test Site Designation No:US1060Industry Canada Test Site Registration No:4294A-1NCC CAB Identification No:US0177

Environmental conditions varied slightly throughout the tests: Relative humidity of $35 \pm 4\%$

Temperature of 22 \pm 3° Celsius

3.2 TEST PERSONNEL

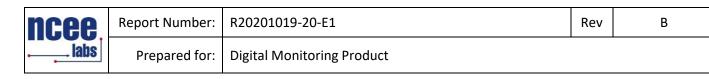
No.	PERSONNEL	TITLE	ROLE
1	Nic Johnson	Technical Manager	Review of Results
2	Karthik Vepuri	EMC Test Engineer	Testing and Report
3	Fox Lane	EMC Test Technician	Testing and Report

Notes:

All personnel are permanent staff members of NCEE Labs. No testing or review was subcontracted or performed by sub-contracted personnel.

ncee.	Report Number:	R20201019-20-E1	Rev	В
labs	Prepared for:	Digital Monitoring Product		

3.3 TEST EQUIPMENT

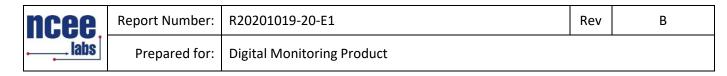

DESCRIPTION AND MANUFACTURER	MODEL NO.	SERIAL NO.	LAST CALIBRATION DATE	CALIBRATION DUE DATE
Keysight MXE Signal Analyzer (44GHz)	N9038A	MY59050109	April 23, 2019	April 23, 2021
Keysight MXE Signal Analyzer (26.5GHz)	N9038A	MY56400083	May 5, 2020	May 5, 2022
SunAR RF Motion	JB1	A091418	March 6, 2020	March 6, 2021
EMCO Horn Antenna	3115	6415	March 16, 2020	March 16, 2022
Com-Power LISN	LI-220C	20070017	September 22, 2020	September 22, 2021
Rohde & Schwarz Preamplifier**	TS-PR18	3545700803	April 14, 2020	April 14, 2022
Trilithic High Pass Filter*	6HC330	23042	April 14, 2020	April 14, 2022
MiniCircuits High Pass Filter*	VHF-1320+	15542	April 14, 2020	April 14, 2022
RF Cable (preamplifier to antenna)*	MFR-57500	01-07-002	April 14, 2020	April 14, 2022
RF Cable (antenna to 10m chamber bulkhead)*	FSCM 64639	01E3872	April 14, 2020	April 14, 2022
RF Cable (10m chamber bulkhead to control room bulkhead)*	FSCM 64639	01E3874	April 14, 2020	April 14, 2022
RF Cable (control room bulkhead to test receiver)*	FSCM 64639	01F1206	April 14, 2020	April 14, 2022
N connector bulkhead (10m chamber)*	PE9128	NCEEBH1	April 14, 2020	April 14, 2022
N connector bulkhead (control room)*	PE9128	NCEEBH2	April 14, 2020	April 14, 2022
TDK Emissions Lab Software	V11.25	700307	NA	NA
Com-Power Single Phase LISN	LI-220C	20070017	September 22, 2020	September 22, 2022

*Internal Characterization

**2 year calibration cycle

Notes:

All equipment is owned by NCEE Labs and stored permanently at NCEE Labs facilities.



4.0 DETAILED RESULTS

	Radio Measurements									
CHANNEL	Occupied Bandwidth (kHz)	20 dB Bandwidth (kHz)	Peak EIRP OUTPUT POWER* (dBm)	Peak EIRP OUTPUT POWER (mW)	RESULT	Cable loss	Antenna Factor	Uncorrected PEAK OUTPUT POWER (dBm)		
Low	71.22	72.02	25.13	325.84	PASS	4.10	26.50	-17.237		
Mid	71.91	72.10	27.12	515.23	PASS	4.07	26.60	-15.318		
High	70.45	70.52	28.59	722.60	PASS	4.04	26.60	-13.821		
20 dB Bar	20 dB Bandwidth Limit = 500 kHz max Peak Output Power Limit = 30 dBm; *Duty Cycle Factor -6.02 is applied									

	Unrestricted Band-Edge										
CHANNEL	Band edge /Measurement Frequency (MHz)	Relative Highest out of band level (dBm)	Relative Fundamental (dBm)	Measurement Type	Delta (dB)	Min Delta (dB)	Result				
Low	902.00	-83.65	-19.03	Continuous	64.62	20.00	PASS				
Low	902.00	-83.65	-18.16	Hopping	65.49	20.00	PASS				
High	928.00	-76.06	-14.31	Continuous	61.75	20.00	PASS				
High	928.00	-76.06	-14.38	Hopping	61.68	20.00	PASS				

	Peak measurements vs QP Limit- Restricted Band-Edge									
CHANNEL	Band edge /Measurement Frequency (MHz)	Highest out of band level (dBuV/m @ 3m)	Measurement Type	Limit (dBuV/m @ 3m)	Margin	Result	Cable loss	Antenna Factor	Uncorrected out of band (dBm)	
Low	608-614 MHz	35.43	Continuous	46.02	10.59	PASS	4.10	26.50	-102.175	
Low	608-614 MHz	35.74	Hopping	46.02	10.28	PASS	4.10	26.50	-101.856	
High	960-1000MHz	39.20	Continuous	53.98	14.79	PASS	4.04	26.60	-98.445	
High	960-1000MHz	37.84	Hopping	53.98	16.14	PASS	4.04	26.60	-99.797	
*L	imit shown is the pe	eak limit taken f	rom FCC Part 15.2	209; Peak values	are compare	ed to average	e limit to	show complia	ince.	

4.1 **DUTY CYCLE**

Manufacturer declared duty cycle: See Section 4.6. On time = 31ms. Maximum allowed period per FCC Part 15.35 is 100ms. Duty Cycle Correction Factor to be applied to spurious emissions is 31 / 100 ms = 31% = -10.17dB

4.2 RADIATED EMISSIONS

Test Method: ANSI C63.10:2013, Section 6.5, 6.6

Limits for radiated emissions measurements:

Emissions radiated outside of the specified bands shall be applied to the limits in 15.209 as followed:

FREQUENCIES (MHz)	FIELD STRENGTH (µV/m)	MEASUREMENT DISTANCE (m)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	3
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

NOTE:

1. The lower limit shall apply at the transition frequencies.

2. Emission level (dBuV/m) = 20 * log * Emission level (μ V/m).

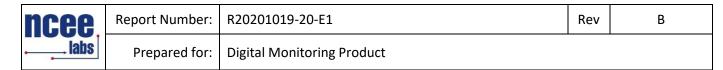
3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits by more than 20dB under any condition of modulation.

Test procedures:

a. The EUT was placed on the top of a rotating table above the ground plane in a 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. The table was 0.8m high for measurements form 30MHz-1Ghz and 1.5m for measurements from 1GHz and higher.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna was a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are used to make the measurement.


d. For each suspected emission, the EUT was arranged to maximize its emissions and then the antenna height was varied from 1 meter to 4 meters and the rotating table was turned from 0 degrees to 360 degrees to find the maximum emission reading.

e. The test-receiver system was set to use a peak detector with a specified resolution bandwidth. For spectrum analyzer measurements, the composite maximum of several analyzer sweeps was used for final measurements.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be retested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. The EUT was maximized in all 3 orthogonal positions. The results are presented for the axis that had the highest emissions.

- h. The orientation with the worst-case emissions was used for final measurements.
- i. Receive mode emissions were tested and found to be within the measurement noise floor of the test laboratory

NOTE:

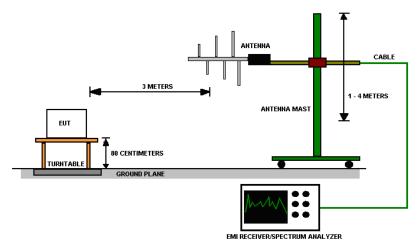
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequencies below 1GHz.

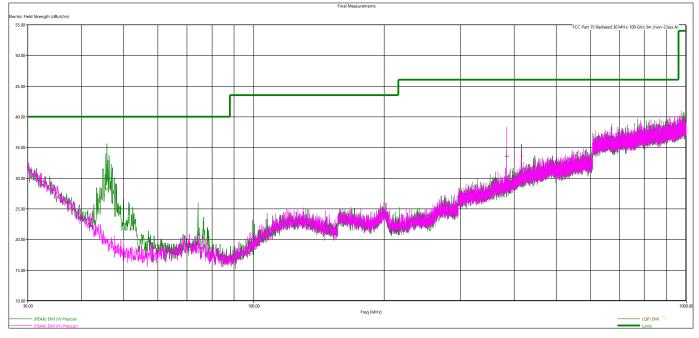
2. The resolution bandwidth 1 MHz for all measurements and at frequencies above 1GHz, A peak detector was used for all measurements above 1GHz. Measurements were made with an EMI Receiver.

Deviations from test standard:

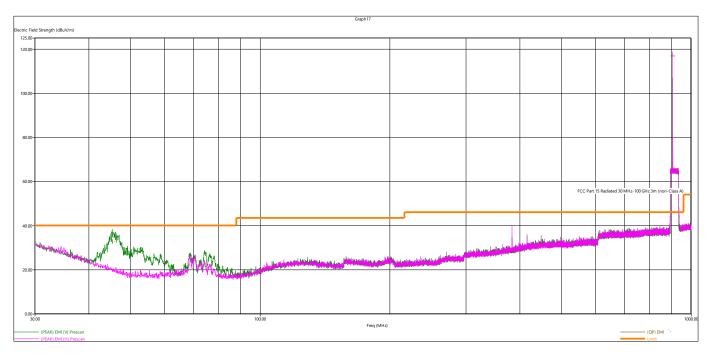
No deviation.

Test setup:

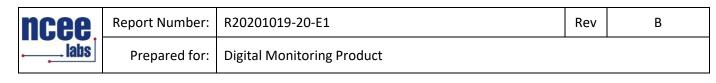



Figure 1 - Radiated Emissions Test Setup

EUT operating conditions


The EUT was powered by 12 VDC unless specified and set to transmit continuously on the lowest frequency channel, highest frequency channel and one in the middle of its operating range.

ncee.	Report Number:	R20201019-20-E1	Rev	В
labs	Prepared for:	Digital Monitoring Product		


Test results:

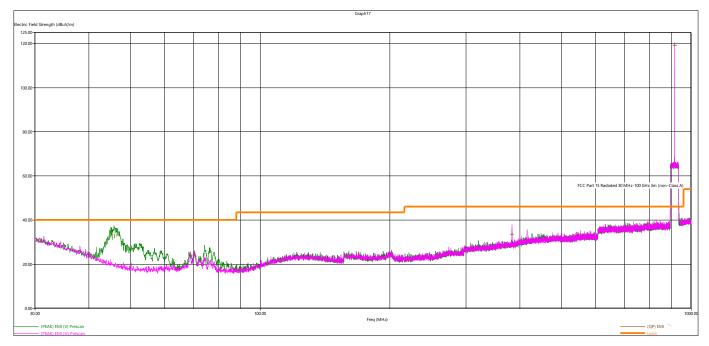
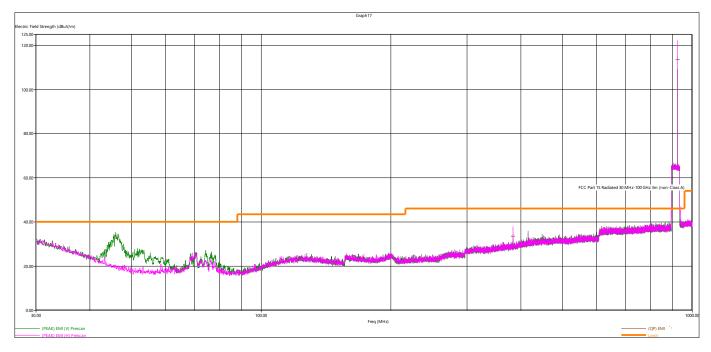



Figure 4 - Radiated Emissions Plot, 30 MHz-1 GHz, Mid Channel

The Nebraska Center for Excellence in Electronics	
4740 Discovery Drive	
Lincoln, NE 68521	Page 15 of 48

ncee.	Report Number:	R20201019-20-E1	Rev	В
labs	Prepared for:	Digital Monitoring Product		

REMARKS:

1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB)

2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

5. The EUT was measured in both the horizontal and vertical orientation. It was found that the Horizontal position produced the highest emissions, and this orientation was used for all testing. See Annex A for test photos.

Prepared for: Digital Monitoring Product

Quasi-Peak Measurements, 30 MHz -1 GHz										
Frequency	Limit	Margin	Height	Angle	Pol	Channel				
MHz	dBµV/m	dBµV/m	dB	cm.	deg.					
383.968800	33.50	46.02	12.52	176	358	н	Rx			
45.852000	28.09	40.00	11.91	100	5	V	Rx			
415.986960	33.62	46.02	12.40	248	295	V	Rx			
384.012720	27.85	46.02	18.17	127	235	н	Low			
45.351600	32.58	40.00	7.42	105	144	V	Low			
905.571520	116.77	NA	NA	104	56	Н	Low			
383.988720	33.43	46.02	12.59	178	360	н	Mid			
45.875520	32.58	40.00	7.42	116	179	V	Mid			
914.977840	118.91	NA	NA	103	57	н	Mid			
383.998080	33.33	46.02	12.69	129	3	н	High			
46.008000	33.02	40.00	6.98	106	6	V	High			
924.425200	113.24	NA	NA	104	21	н	High			

Peak Measurements, 1 GHz -10 GHz										
Frequency	Level	Limit	Margin	Height	Angle	Pol	Channel			
MHz	dBµV/m	dBµV/m	dB	cm.	deg.					
1811.280000	55.86	73.98	18.12	199	28	Н	Low			
2716.870000	47.25	73.98	26.73	170	73	н	Low			
3622.414000	54.27	73.98	19.71	197	288	V	Low			
4528.232000	46.47	73.98	27.51	109	205	V	Low			
1829.990000	51.57	73.98	22.41	194	37	н	Mid			
2745.060000	45.55	73.98	28.43	126	359	н	Mid			
3660.016000	53.19	73.98	20.79	214	128	V	Mid			
1848.720000	49.69	73.98	24.29	244	41	н	High			
2772.880000	43.29	73.98	30.69	146	74	н	High			
3697.538000	51.90	73.98	22.08	206	126	V	High			

В

Average Measurements, 1 GHz- 10 GHz										
Frequency	Level	Limit	Margin	Height	Angle	Pol	Channel			
MHz	dBµV/m	dBµV/m	dB	cm.	deg.					
1811.280000	45.69	53.98	8.29	199	28	н	Low			
2716.870000	37.08	53.98	16.9	170	73	н	Low			
3622.414000	44.1	53.98	9.88	197	288	V	Low			
4528.232000	36.3	53.98	17.68	109	205	V	Low			
1829.990000	41.4	53.98	12.58	194	37	Н	Mid			
2745.060000	35.38	53.98	18.6	126	359	н	Mid			
3660.016000	43.02	53.98	10.96	214	128	V	Mid			
1848.720000	39.52	53.98	14.46	244	41	н	High			
2772.880000	33.12	53.98	20.86	146	74	н	High			
3697.538000	41.73	53.98	12.25	206	126	V	High			

The EUT was maximized in all 3 orthogonal axis.

The worst-case (X axis) is shown in the table above. Average Level = Peak Level – 10.17 dB (Duty Cycle Correction Factor from section 4.1)

4.3 PEAK OUTPUT POWER

Test Method: ANSI C63.10, Section(s) 7.8.5

Limits of bandwidth measurements:

For an FHSS system with 50 channels or more, the output power is required to be less than 1 W or 30 dBm.

EIRP was calculated from field strength measurements using ANSI C63.10:2013, Section 9.5, Equation (22). The field strength was measured at a 3m distance and maximized.

Test procedures:

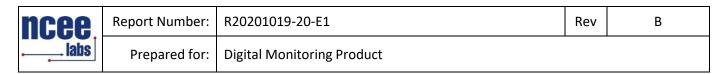
All measurements were taken at a distance of 3m from the EUT.

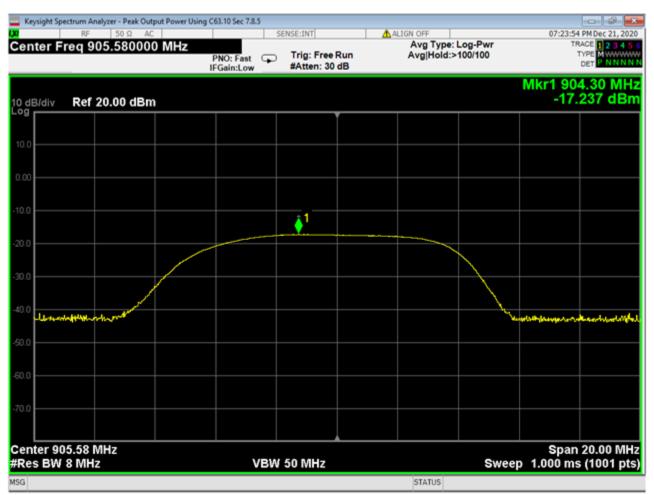
The EUT was maximized in all 3 orthogonal positions in a similar manner as described in Section 4.2.

Deviations from test standard:

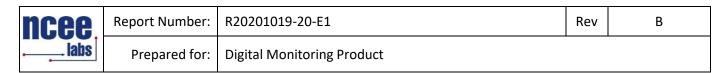
No deviation.

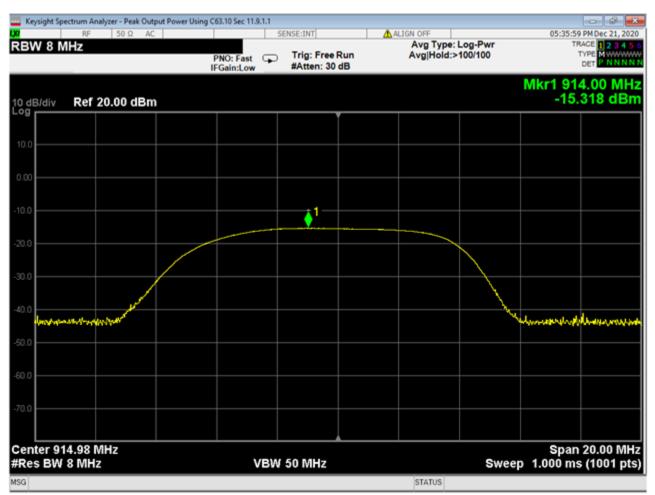
Test setup:

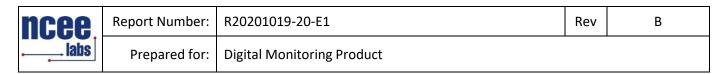

See Section 4.2


EUT operating conditions:

The EUT was powered by 12 VDC unless specified and set to transmit continuously on the lowest frequency channel, highest frequency channel and one in the middle of its operating range.


Test results:


Refer to section 4.0 for the results table.



4.4 BANDWIDTH

 Test Method:
 ANSI C63.10, Section(s) 6.9.2 (20 dB BW)

 ANSI C63.10, Section(s) 6.9.3 (99% BW)

Limits of bandwidth measurements:

From FCC Part 15.247 (1) (i) and RSS-247 5.1(c)

The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

Test procedures:

Bandwidth measurement was taken at a distance of 3m from the EUT. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 3 kHz RBW and 10 kHz VBW.

The 20dB bandwidth is defined as the bandwidth of which is higher than peak power minus 20dB.

The 99% occupied bandwidth was measured using the test receiver's occupied bandwidth function.

Test setup:

All the measurements were done at 3m test distance while an operator was trying to activate the hopping sequence manually. See Section 4.3 for more details.

Deviations from test standard:

No deviation.

ncee.	Report Number:	R20201019-20-E1	Rev	В
labs	Prepared for:	Digital Monitoring Product		

Test setup:

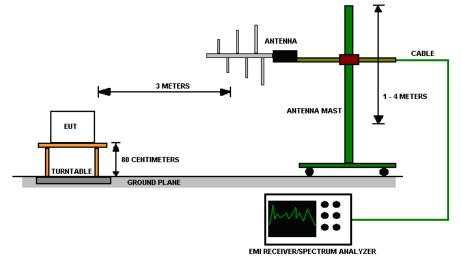
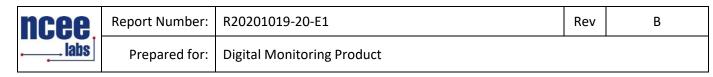



Figure 9 - Bandwidth Measurements Test Setup

EUT operating conditions:

The EUT was powered by 12 VDC unless specified and set to transmit continuously on the lowest frequency channel, highest frequency channel and one in the middle of its operating range.

Test results:

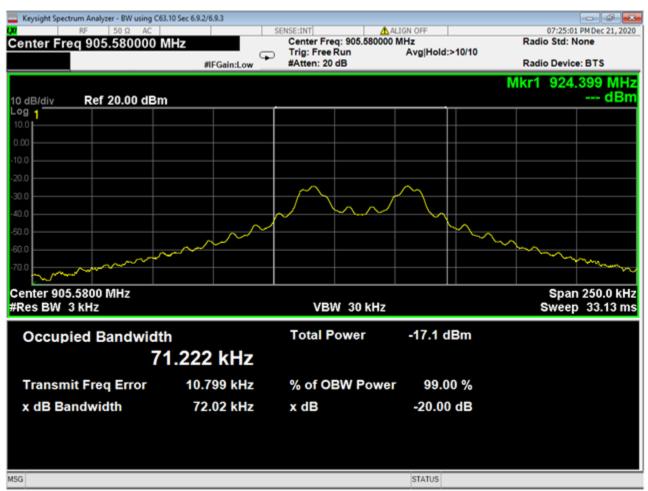
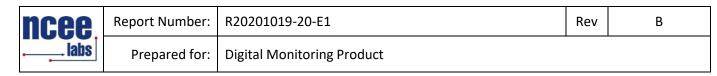



Figure 10 – Bandwidth, Low Channel

Keysight Spectrum Analyzer - BW using C63.	10 Sec 6.9.2/6.9.3			
RF 50 Ω AC	#FGain:Low	Center Freq: 915.000000	MHz Avg Hold:>10/10	05:57:49 PM Dec 21, 20 Radio Std: None Radio Device: BTS
	#IFGain:Low	#Atten: 20 db		Mkr1 924.399 MH
dB/div Ref 20.00 dBm				dB
0				
			\sim	
	~~~			~~~~
m				
nter 915.0000 MHz		<u> </u>		Span 250.0 k
es BW 3 kHz		VBW 30 kHz		Sweep 33.13 r
Occupied Bandwidth	ı	Total Power	-14.9 dBm	
71	.905 kHz			
Fransmit Freq Error	-2.410 kHz	% of OBW Power	r 99.00 %	
dB Bandwidth	72.10 kHz	x dB	-20.00 dB	
			STATUS	

Figure 11 - Bandwidth, Mid Channel

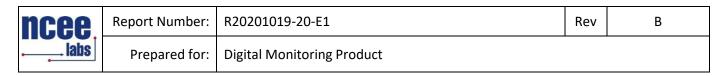





Figure 12 - Bandwidth, High Channel



#### 4.5 BANDEDGES

Test Method: ANSI C63.10, Section(s) 6.10.6

#### Limits of bandedge measurements:

For emissions outside of the allowed band of operation (902 - 928MHz), the emission level needs to be 20dB under the maximum fundamental field strength. However, if the emissions fall within one of the restricted bands from 15.205 the field strength levels need to be under that of the limits in 15.209.

#### Test procedures:

The EUT was tested in the same method as described in section *4.4* - *Bandwidth*. The EUT was oriented as to produce the maximum emission levels. The resolution bandwidth was set to 30kHz and the EMI receiver was used to scan from the bandedge to the fundamental frequency with a quasi-peak detector. The highest emissions level beyond the bandedge was measured and recorded. All band edge measurements were evaluated to the general limits in Part 15.209.

#### **Deviations from test standard:**

No deviation.

#### Test setup:

All the measurements were done at 3m test distance while an operator was trying to activate the hopping sequence manually.

#### EUT operating conditions:

The EUT was powered by 12 VDC unless specified and set to transmit continuously on the lowest frequency channel, and the highest frequency channel.

ncee.	Report Number:	R20201019-20-E1	Rev	В
	Prepared for:	Digital Monitoring Product		

#### Test results:

Refer to section 4.0 for the results table.

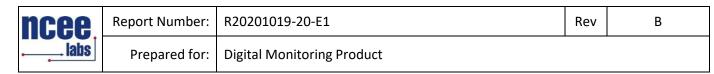

	RF 50	Ω AC		SENSE	INT	ALIGN OFF		07:19:57 PM Dec 21
Fre	q 614.000		PNO: Wide IFGain:High		rig: Free Run Atten: 0 dB		: Log-Pwr >100/100	TRACE 1 2 3 TYPE MWW DET P N N
	PREAMP		IFGain:riigh		titen. v ub		N	lkr1 609.710 N
B/div	Ref -55.0	0 dBm						-102.175 d
					Ĭ			
			_ <u>1</u>					
~~~~~	m	mm	www.www.	o	mm		man	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
				_				
 								
t 608	.000 MHz				A			Stop 614.000 /
s BW	120 kHz		V	BW 1.2	2 MHz		Sweep	1.000 ms (1001
MODE TR	RC SCL	× 609.710		r 175 dBm	FUNCTION	FUNCTION WIDTH	FU	NCTION VALUE
		609.710	MHZ -102.	175 aBm				

Figure 13 - Band-edge Measurement, Low Channel, Restricted Frequency, Continuous Transmit The plot shows an uncorrected measurement, used for relative measurements only.

ncee.	Report Number:	R20201019-20-E1	Rev	В
	Prepared for:	Digital Monitoring Product		

	n Analyzer - Band Edge C 63.10 Sec					
	RF 50 Ω AC	PNO: Wide	Trig: Free Run #Atten: 0 dB	ALIGN OFF Avg Type Avg Hold:		07:09:57 PM Dec 21, 2020 TRACE 2 3 4 5 6 TYPE M
10 dB/div R	ef -55.00 dBm				M	/kr1 610.094 MHz -101.856 dBm
-65.0						
-75.0						
-95.0			<u> </u>	M	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m. 7704 - 400 - 400 - 0 - 10
-115						
-125						
-145						
Start 608.000 #Res BW 120		VBW	1.2 MHz		Sweep	Stop 614.000 MHz 1.000 ms (1001 pts)
MKR MODE TRC SC		Y Hz -101.856 d	FUNCTION	FUNCTION WIDTH	FL	NCTION VALUE
2 3 5 6 7 8 9 10 11						
KSG → File <sta< td=""><td>te 900 MHz FHSS Restric</td><td>ted Lower Banded</td><td>lge.state> recalled</td><td>STATUS</td><td></td><td>></td></sta<>	te 900 MHz FHSS Restric	ted Lower Banded	lge.state> recalled	STATUS		>

Figure 14 - Band-edge Measurement, Low Channel, Restricted Frequency, Hopping The plot shows an uncorrected measurement, used for relative measurements only.

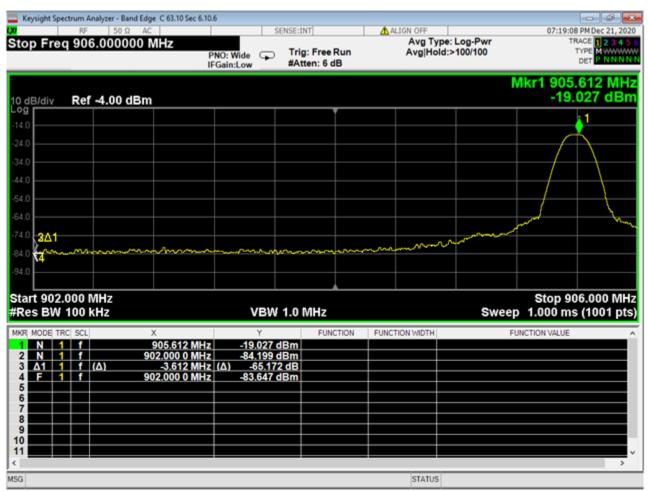


Figure 15 - Band-edge Measurement, Low Channel, Fundamental, Continuous Transmit The plot shows an uncorrected measurement, used for relative measurements only.

ncee labs	Report Number:	R20201019-20-E1	Rev	В
	Prepared for:	Digital Monitoring Product		

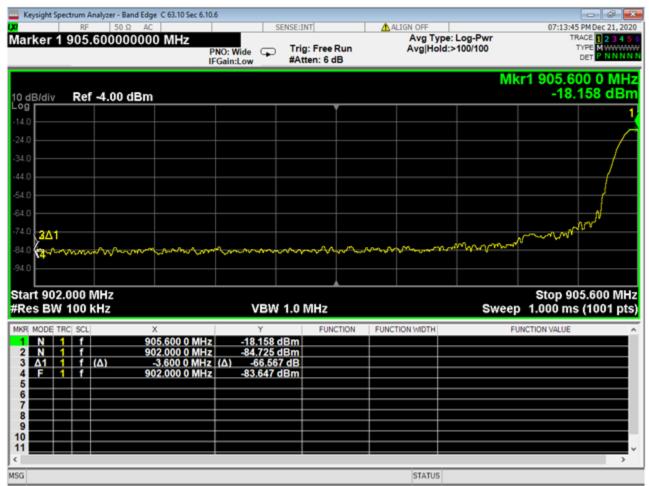


Figure 16 - Band-edge Measurement, Low Channel, Fundamental, Hopping Transmit The plot shows an uncorrected measurement, used for relative measurements only.

ncee.	Report Number:	R20201019-20-E1	Rev	В
labs	Prepared for:	Digital Monitoring Product		

🔤 Keysigh			e C 63.10 Sec 6.10.6	5							- 6
<mark>,x</mark> Roflo	RF	50 Ω AC 00 dBm			SENSE:INT		ALI0	Avg Type:	Log-Pwr		7 PM Dec 21, 2020
Kel Le				NO: Fast 🖵	Trig: Free			Avg Hold:>			
_	PF	REAMP	IF	Gain:High	#Atten: 0	dB					
										Mkr1 99	6.12 MHz
10 dB/d Log	iv Ref	-55.00 dBr	n			-			_	-98.	445 dBm
-65.0						<u> </u>					
-75.0											
-85.0											
-95.0											<mark> </mark>
-105		مەربىمودمىيەملى	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		ann	handlene	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	enere	moundation	norman
-115											
-125											
-135											
-145											
-145											
Start 0	.96000 (SHz								Stop 1.	00000 GHz
#Res E	3W 120 H	(Hz		VBM	/ 1.2 MHz				Swee	p 2.600 ms	s (1001 pts)
	E TRC SCL	1	<	Y		ICTION	FUNCTIO	N WIDTH	F	UNCTION VALUE	^
2 N	1 1		996.12 MHz	-98,445	dBm						
3											
5											
6											
8											
10											
11 <											>
MSG								STATUS			

Figure 17 - Band-edge Measurement, High Channel, Restricted Frequency, Continuous Transmit The plot shows an uncorrected measurement, used for relative measurements only.

ncee.	Report Number:	R20201019-20-E1	Rev	В
	Prepared for:	Digital Monitoring Product		

Keys		inalyzer - Band Edg		6	concentral		A 11 JON 007		07-00-1	
	RF	50 Ω AC	F	PNO: Fast Gain:High	SENSE:INT			e: Log-Pwr i:>100/100	TF	PM Dec 21, 2020 RACE 2 3 4 5 6 TYPE P NNNNN DET P NNNNN
10 dB		-55.00 dBr		- and a second						3.88 MHz 797 dBm
Log -65.0										
-75.0						_				
-85.0								±1		
-95.0 -105	hand		and the second second	mmm	monda	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	and marian	and the second s	and the second	mon
-115										
-125										
-135										
-145										
	0.96000 BW 120			VB	N 1.2 MH	z		Swee	Stop 1. 2.600 ms	00000 GHz (1001 pts)
			× 983.88 MHz	Y -99.79		UNCTION	FUNCTION WIDTH	F	UNCTION VALUE	^
2			965.88 MHZ	-99.79	dBm					
4										
6										
8										
10 11										~
K MSG 🚺	File <state< td=""><td>900 MHz FH</td><td>SS Restricted</td><td>Higher Band</td><td>ledge.state:</td><td>recalled</td><td>STATUS</td><td></td><td></td><td>></td></state<>	900 MHz FH	SS Restricted	Higher Band	ledge.state:	recalled	STATUS			>

Figure 18 - Band-edge Measurement, High Channel, Restricted Frequency, Hopping The plot shows an uncorrected measurement, used for relative measurements only.

ncee labs	Report Number:	R20201019-20-E1	Rev	В
	Prepared for:	Digital Monitoring Product		

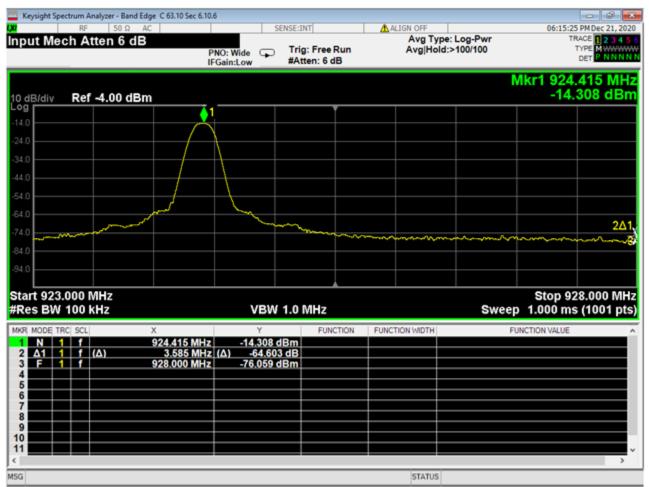


Figure 19 - Band-edge Measurement, High Channel, Fundamental, Continuous Transmit The plot shows an uncorrected measurement, used for relative measurements only.

ncee labs	Report Number:	R20201019-20-E1	Rev	В
	Prepared for:	Digital Monitoring Product		

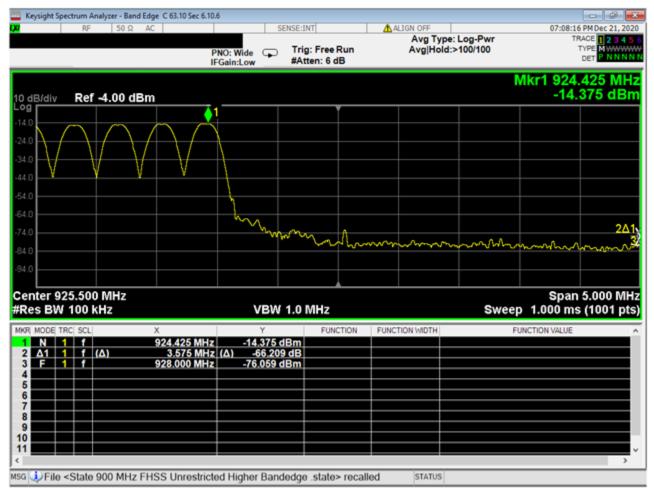


Figure 20 - Band-edge Measurement, High Channel, Fundamental, Hopping Transmit The plot shows an uncorrected measurement, used for relative measurements only.

4.6 CARRIER FREQUENCY SEPERATION, NUMBER OF HOPPING CHANNELS, TIME OF OCCUPANCY

Test Method: ANSI C63.10, Section 7.8.2, 7.8.3, 7.8.4

Limits for Time of Occupancy

Average time of occupancy on any frequency should not to exceed 0.4 seconds within a 20 second period.

Test procedures:

The method from FCC DA 00-705

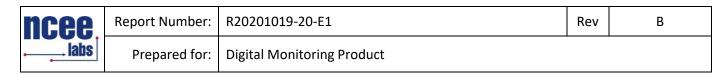
All measurements were taken at a distance of 3m from the EUT.

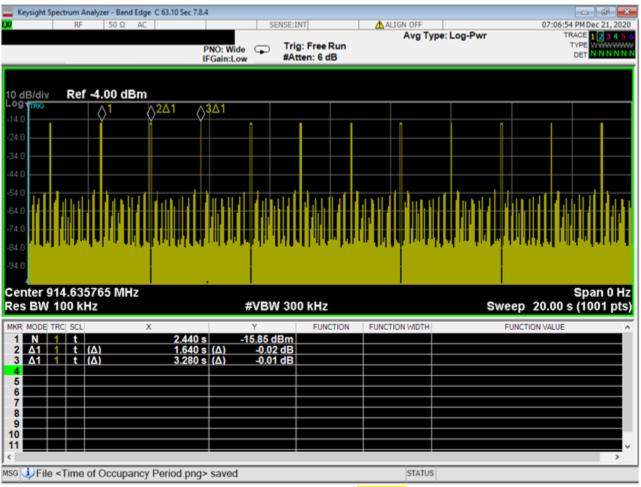
Test setup:

All the measurements were done at 3m test distance while an operator was trying to activate the hopping sequence manually.

EUT operating conditions:

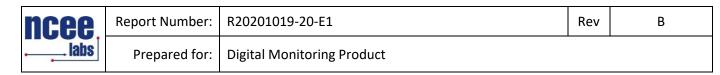
The EUT was powered by 12 VDC unless specified and set to transmit continuously on the lowest frequency channel, highest frequency channel and one in the middle of its operating range.


Test results:


The EUT only transmits at most 13 packets per 20 s period and each packet is 30.56 ms. $13 \times 30.56 = 0.39 \text{ sec} < 0.4 \text{ sec}$ -Pass.

ncee.	Report Number:	R20201019-20-E1	Rev	В
labs	Prepared for:	Digital Monitoring Product		

Keysight Spectrum Analyzer - Band Edge C 63.1					- Ø
rker 1 0.00000 s	SENSE:	g: Video	ALIGN OFF Avg Type: L Avg Hold: 50		06:57:10 PM Dec 21, 20 TRACE 2 3 4 TYPE 0
	PNO: Wide FIGain:Low #A	g: video tten: 6 dB	Avginoid: or		DET P NNN
dB/div Ref -4.00 dBm					Mkr1 0.000 -15.905 dB
g <mark>{1</mark>					
					TRIO L
0					
0					
0					
0					
0					
0	2Δ1	a hanne h			Lasterer and Harry
0	<i>v</i>				- Andrew Contraction of the second
nter 914.635765 MHz s BW 100 kHz	VBW 1.0	MHz		Sweep	Span 0 100.0 ms (1001 pi
R MODE TRC SCL X	Y	FUNCTION	FUNCTION WIDTH	FUI	ICTION VALUE
N 1 t Δ1 1 t (Δ) 30	0.000 s -15.905 dBm .56 ms (Δ) -71.303 dB				
					>



Page 39 of 48

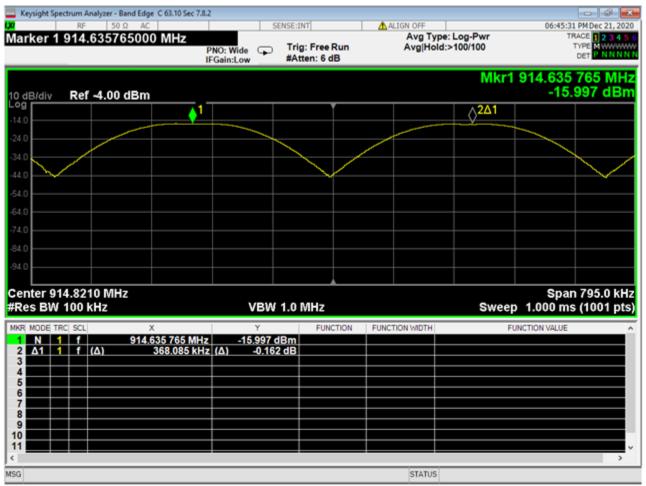
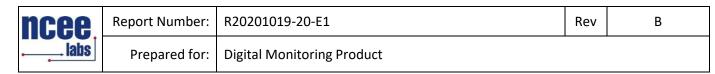
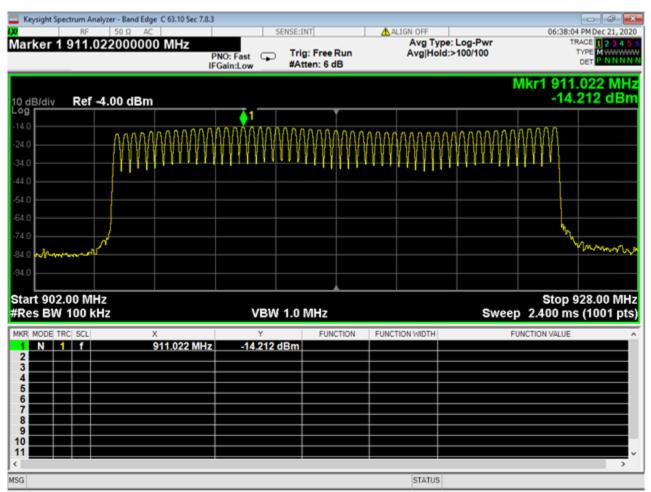




Figure 23 – Frequency Separation, 368.085 kHz

4.7 CONDUCTED AC MAINS EMISSIONS

Test Method: ANSI C63.10-2013, Section(s) 6.2

Limits for conducted emissions measurements:

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dBµV)		
	Quasi-peak	Average	
0.15-0.5	66 to 56	56 to 46	
0.5-5	56	46	
5-30	60	50	

Notes:

1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz

3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

Test Procedures:

- a. The EUT was placed 0.8m above a ground reference plane and 0.4 meters from the conducting wall of a shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). The LISN provides 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference as well as the ground.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels over 10dB under the prescribed limits are not reported.
- d. Results were compared to the 15.207 limits.

Deviation from the test standard:

No deviation

EUT operating conditions:

The EUT was powered by 12 VDC unless specified and set to transmit continuously on the middle channel.

ncee.	Report Number:	R20201019-20-E1	Rev	В
labs	Prepared for:	Digital Monitoring Product		

Test Results:

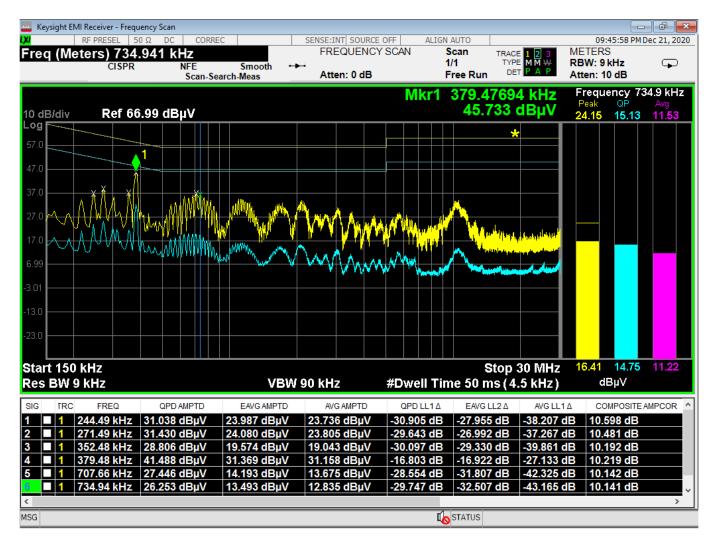
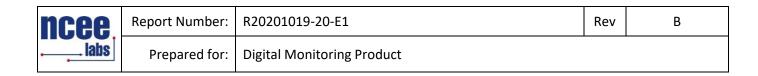



Figure 25 - Conducted Emissions, Line

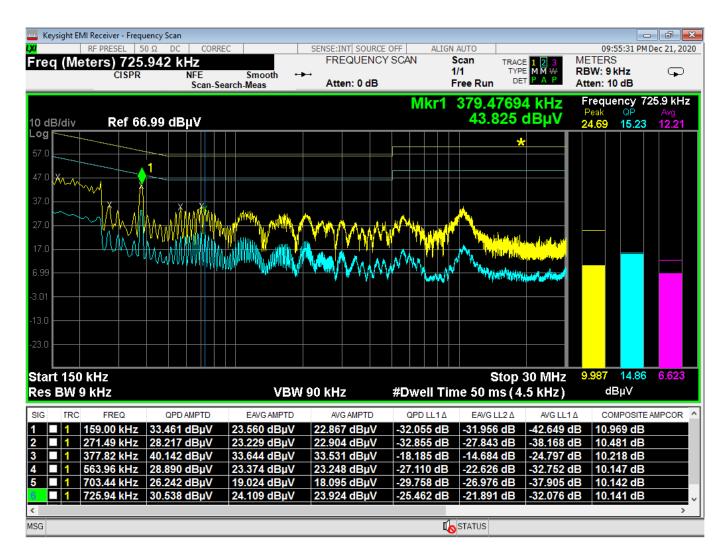


Figure 26 - Conducted Emissions, Neutral

ncee	Report Number:	R20201019-20-E1	Rev	В
labs		Digital Monitoring Product		

APPENDIX A: SAMPLE CALCULATION

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF - (-CF + AG) + AV

where FS = Field Strength

RA = Receiver Amplitude

AF = Antenna Factor

CF = Cable Attenuation Factor

AG = Amplifier Gain

AV = Averaging Factor (if applicable)

Assume a receiver reading of 55 dB μ V is obtained. The Antenna Factor of 12 and a Cable Factor of 1.1 is added. The Amplifier Gain of 20 dB is subtracted, giving a field strength of 48.1 dB μ V/m.

 $FS = 55 + 12 - (-1.1 + 20) + 0 = 48.1 \text{ dB}\mu\text{V/m}$

The 48.1 dB μ V/m value can be mathematically converted to its corresponding level in μ V/m.

Level in μ V/m = Common Antilogarithm [(48.1 dB μ V/m)/20]= 254.1 μ V/m

AV is calculated by the taking the $20*\log(T_{on}/100)$ where T_{on} is the maximum transmission time in any 100ms window.

ncee.	Report Number:	R20201019-20-E1	Rev	В
labs	Prepared for:	Digital Monitoring Product		

EIRP Calculations

In cases where direct antenna port measurement is not possible or would be inaccurate, output power is measured in EIRP. The maximum field strength is measured at a specified distance and the EIRP is calculated using the following equation;

EIRP (Watts) = [Field Strength (V/m) x antenna distance (m)]² / 30 Power (watts) = $10^{Power} (dBm)/10$] / 1000Voltage (dB μ V) = Power (dBm) + 107 (for 50Ω measurement systems) Field Strength (V/m) = 10^{Field} Strength (dB μ V/m) / 20] / 10^{6} Gain = 1 (numeric gain for isotropic radiator) Conversion from 3m field strength to EIRP (d=3):

 $EIRP = [FS(V/m) \times d^2]/30 = FS[0.3]$ for d = 3

 $EIRP(dBm) = FS(dB\mu V/m) - 10(log 10^9) + 10log[0.3] = FS(dB\mu V/m) - 95.23$

10log(10^9) is the conversion from micro to milli

APPENDIX B – MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been for tests performed in this test report:

Test	Frequency Range	Uncertainty Value (dB)
Radiated Emissions, 3m	30MHz - 1GHz	3.82
Radiated Emissions, 3m	1GHz - 18GHz	4.44
Emissions limits, conducted	30MHz – 18GHz	±3.30 dB

Expanded uncertainty values are calculated to a confidence level of 95%.

ncee.	Report Number:	R20201019-20-E1	Rev	В
labs	Prepared for:	Digital Monitoring Product		

REPORT END