

243 Jubug-Ri, Yangji-Myeon, Yongin-Si, Gyeonggi-Do, Korea 449-822 Tel: +82-31-323-6008 Fax: +82-31-323-6010 http://www.ltalab.com

> Dates of Tests: January 5 ~ February 1, 2017 Test Report S/N: LR500111702P Test Site : LTA CO., LTD.

CERTIFICATION OF COMPLIANCE

FCC ID. IC Application APPLICANT

CCECIP-700SW	영화품
22254-CIP700SW	
COMMAX CO., Ltd.	

Equipment Class	:	Digital Transmission System (DTS)
Manufacturing Description	:	Wall PAD
Manufacturer	:	COMMAX Co., Ltd.
Model name	:	CIP-700SW
Test Device Serial No.:	:	Identical prototype
Rule Part(s)	:	FCC Part 15.247 Subpart C ; ANSI C-63.4-2014
		RSS-210 and Issue No.9 DATE : 2016
Frequency Range	:	2405 MHz ~ 2480 MHz
Max. Output Power	:	Max 23.07 dBm – Conducted
Data of issue	:	February 1, 2017

This test report is issued under the authority of:

26

Yong-Cheol, Wang / Manager

The test was supervised by:

ectre

Hee-Cheon, Kwon / Test Engineer

This test result only responds to the tested sample. It is not allowed to copy this report even partly without the allowance of the test laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

NVLAP LAB Code.: 200723-0

TABLE OF CONTENTS

1. GENERAL INFORMATION	3
2. INFORMATION ABOUT TEST ITEM	4
3. TEST REPORT	5
3.1 SUMMARY OF TESTS	5
3.2 TECHNICAL CHARACTERISTICS TEST 3.2.1 6 dB BANDWIDTH 3.2.2 PEAK OUTPUT POWER	6 6 9
3.2.3 POWER SPECTRAL DENSITY	12
3.2.4 BAND EDGE	15
3.2.5 CONDUCTED SPURIOUS EMISSIONS	18
3.2.6 RADIATED SPURIOUS EMISSIONS	21
3.2.7 AC CONDUCTED EMISSIONS	33

APPENDIX

	APPENDIX	TEST EQUIPMENT USED FOR TESTS		40
--	----------	-------------------------------	--	----

1. General information

<u>1-1 Test Performed</u>

Company name	:	LTA Co., Ltd.
Address	:	243, Jubug-ri, Yangji-Myeon, Youngin-Si, Kyunggi-Do, Korea. 449-822
Web site	:	http://www.ltalab.com
E-mail	:	chahn@ltalab.com
Telephone	:	+82-31-323-6008
Facsimile		+82-31-323-6010
Quality control in the test	ting	laboratory is implemented as per ISO/IEC 17025 which is the "General

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competents of calibration and testing laboratory".

1-2 Accredited agencies

LTA Co., Ltd. is approved to perform EMC testing by the following agencies:

Agency	Country	Accreditation No.	Validity	Reference
NVLAP	U.S.A	200723-0	2017-09-30	ECT accredited Lab.
RRA	KOREA	KR0049	-	EMC accredited Lab.
FCC	U.S.A	610755	2017-04-21	FCC filing
FCC	U.S.A	649054	2017-04-13	FCC CAB
VCCI	JAPAN	R2133(10 m), C2307	2017-06-21	VCCI registration
VCCI	JAPAN	T-2009	2017-12-23	VCCI registration
VCCI	JAPAN	G-563	2018-12-13	VCCI registration
IC	CANADA	5799A-1	2019-11-07	IC filing
KOLAS	KOREA	NO.551	2017-01-08	KOLAS accredited Lab.

2. Information about test item

2-1 Client & Manufacturer

Company name	:	COMMAX Co., Ltd.
Address		513-11, Sangdaewon-dong, jungwon-gu, Seongnam-si, Gyeonggi-do,
Audress	•	South Korea
Tel / Fax	:	TEL No : +82-31-739-3682 / FAX No : +82-31-739-3649

<u>2-2 Equipment Under Test (EUT)</u>

Model name	: CIP-700SW
Serial number	: Identical prototype
Date of receipt	: January 5, 2017
EUT condition	: Pre-production, not damaged
Antenna type	: Pattern antenna - Max Gain : -0.81 dBi
Frequency Range	: 2405 MHz ~ 2480 MHz
RF output power	: Max 23.07 dBm – Conducted
Number of channels	: 16
Type of Modulation	: Direct Sequence Spread Spectrum(DSSS)
Power Source	: 120 V AC input / 48 Vdc (POE)
Firmware Version	: V1.0.0

2-3 Tested frequency

Zigbee	LOW	MID	HIGH	
Frequency (MHz)	2405	2440	2480	

2-4 Ancillary Equipment

Equipment	Model No.	Serial No.	Manufacturer
Notebook	CR720	MS-1736	MSI

3. Test Report

3.1 Summary of tests

FCC Part Section(s)	Parameter	Limit	Test Condition	Status (note 1)	
15.247(a)	6 dB Bandwidth	> 500 kHz		С	
15.247(b)	Transmitter Peak Output Power	< 1 Watt	Conducted	С	
15.247(d)	Transmitter Power Spectral Density	< 8 dBm @ 3 kHz	Conducted	С	
15.247(d)	Band Edge	> 20 dBc		С	
15.209	Field Strength of Harmonics	Emission	Radiated	С	
15.207	AC Conducted Emissions	Emissions	Conducted	С	
15.203	Antenna requirement	-	-	С	
<u>Note 1</u> : C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable					

<u>Note 2</u>: The data in this test report are traceable to the national or international standards.

→ Antenna Requirement

COMMAX.CO.,Ltd. FCC ID: CCECIP-700SW unit complies with the requirement of §15.203. The antenna type is Pattern Antenna

The sample was tested according to the following specification:

*FCC Parts 15.247; ANSI C-63.4-2014 *FCC KDB Publication No. 558074 D01 v03r05 *FCC TCB Workshop 2012, April *RSS-210 and Issue No.9 Date:2016

3.2 Technical Characteristics Test

3.2.1 6 dB Bandwidth

Procedure:

The bandwidth at 6 dB below the highest in-band spectral density was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate frequencies.

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 6 dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 6 dB bandwidth of the emission.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels			
RBW = 100 kHz	Span = 5 MHz		
VBW = 100 kHz (VBW \geq RBW)	Sweep = auto		
Trace = max hold Detector function =			

Measurement Data : Complies

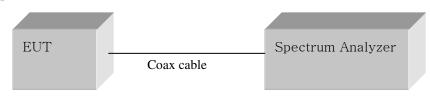
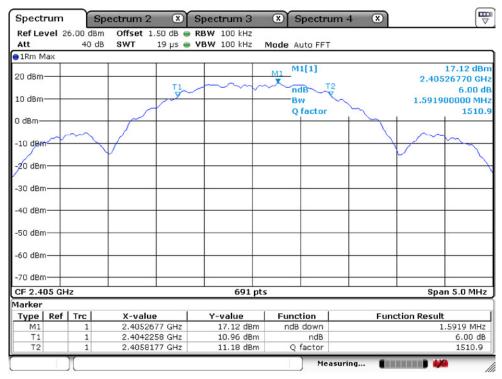
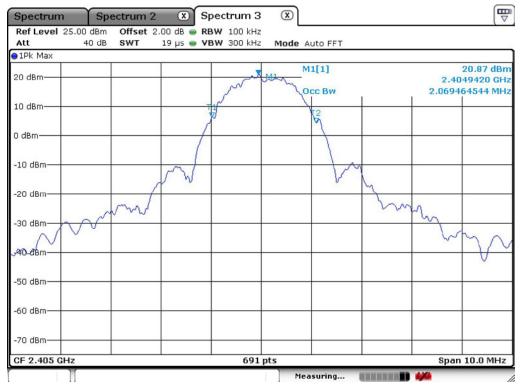
Frequency	Test Results				
(MHz)	Measured Bandwidth (MHz)	99% Bandwidth			
2405	1.592	2.069			
2440	1.614	2.098			
2480	1.592	2.098			

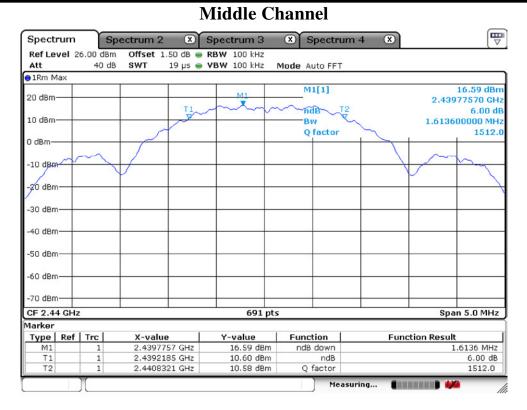
See next pages for actual measured spectrum plots.

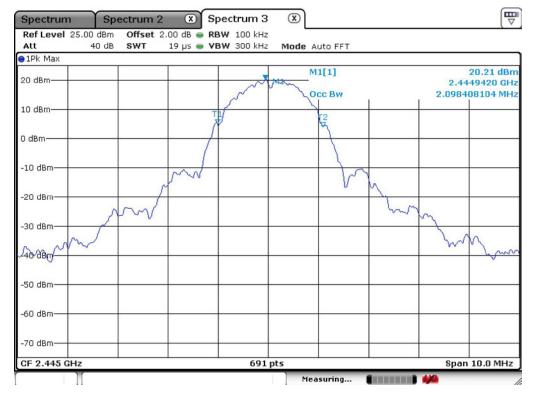
Minimum Standard:

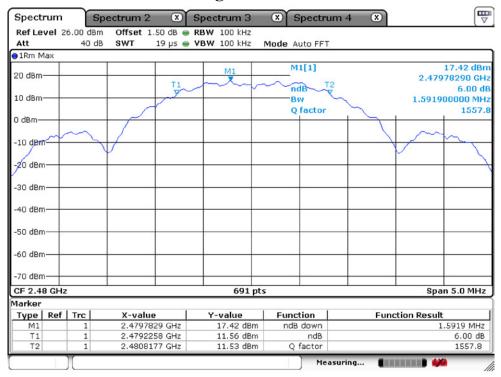
6 dB Bandwidth > 500 kHz

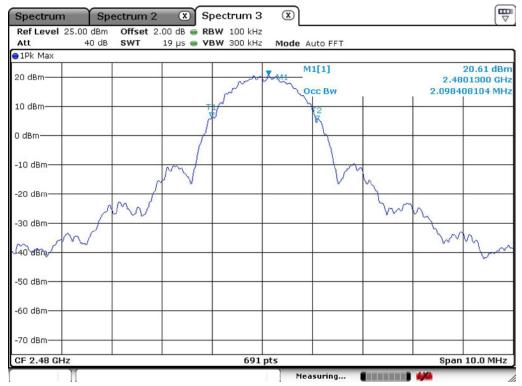
Measurement Setup


Figure 1: Measurement setup for the carrier frequency separation


Low Channel


99% Bandwidth


99% Bandwidth

High Channel

99% Bandwidth

3.2.2 Peak Output Power Measurement

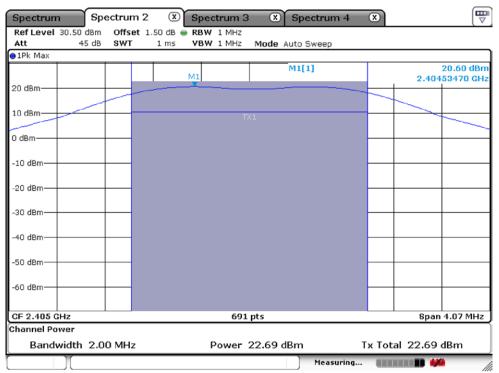
Procedure:

The maximum peak output power was measured with the spectrum analyzer connected to the antenna output of the EUT. The spectrum analyzer's internal channel power integration function is used to integrate the power over a bandwidth greater than or equal to the 99% bandwidth. The EUT was operating in transmit mode at the appropriate center frequency.

The spectrum analyzer is set to:Center frequency = the highest, middle and the lowest channelsRBW = 1MHzSpan = autoVBW = 1MHz (VBW \geq RBW)Sweep = autoDetector function = peak

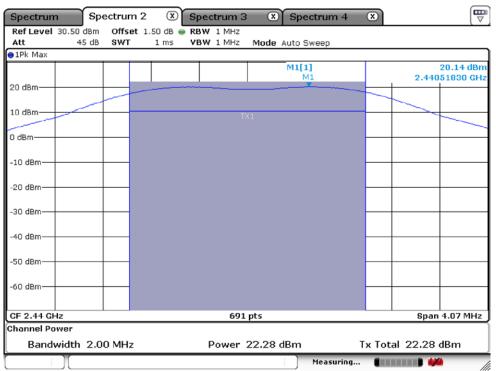
Measurement Data (Port 1) : Complies

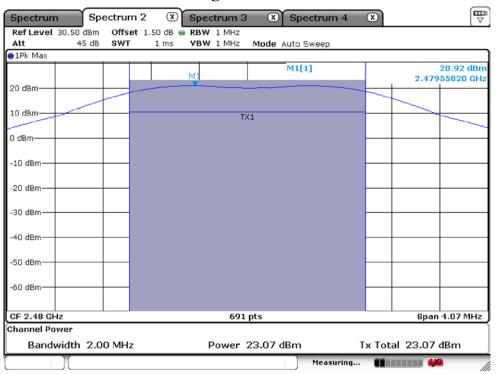
Frequency	Test Results				
(MHz)	dBm W		Result		
2405	22.69	0.186	Complies		
2440	22.28	0.169	Complies		
2480	23.07	0.203	Complies		


- See next pages for actual measured spectrum plots.

Minimum Standard:

Peak output power	< 1 W
-------------------	-------


Measurement Setup


Same as the Chapter 3.2.1 (Figure 1)

Low Channel

Middle Channel

High Channel

3.2.3 Power Spectral Density

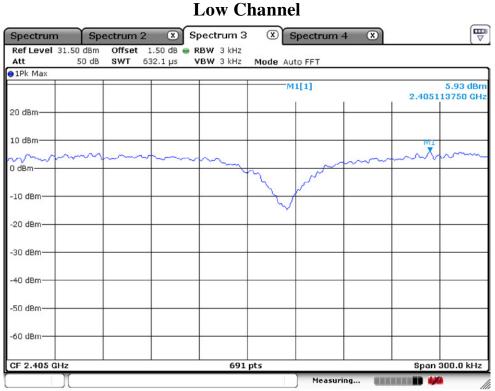
Procedure:

The peak power density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

The spectrum analyzer is set to:	
RBW = 3 kHz	Span = 300 kHz
VBW = 3 kHz	Sweep = auto
Detector function = peak	Trace = max hold

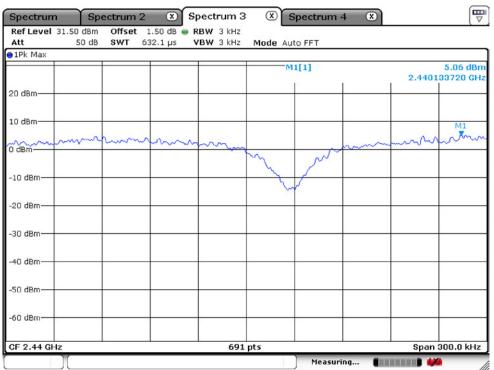
Measurement Data : Complies

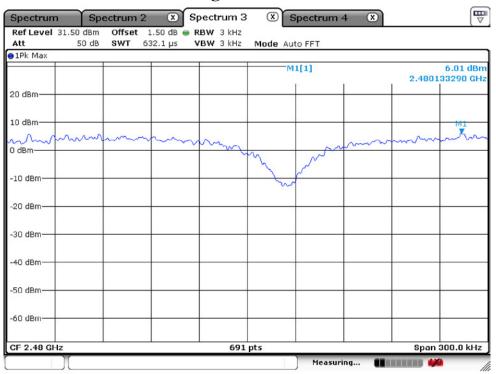
Frequency	Test Res	sults
(MHz)	dBm / 3kHz	Result
2405	5.93	Complies
2440	5.06	Complies
2480	6.01	Complies


- See next pages for actual measured spectrum plots.

Minimum Standard:

Power Spectral Density	< 8 dBm @ 3 kHz BW
------------------------	--------------------


Measurement Setup


Same as the Chapter 3.2.1 (Figure 1)

Power Density Measurement

Middle Channel

High Channel

3.2.4 Band - edge

Procedure:

The bandwidth at 20 dB down from the highest inband spectral density is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate frequencies.

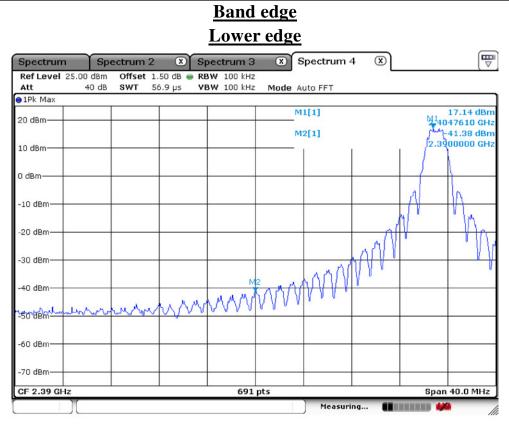
After the trace being stable, Use the marker-to-peak function to measure 20 dB down both sides of the intentional emission.

The spectrum analyzer is set to:

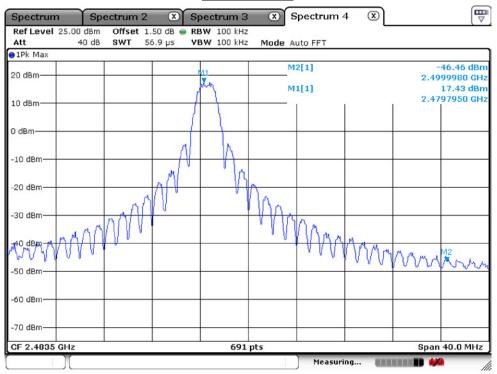
Center frequency = the highest, middle and the lowest channels RBW = 100 kHz VBW = 100 kHz Span = 40 MHz Detector function = peak

Trace = max hold Sweep = auto

Radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a)


The spectrum analyzer is set to:

Center frequency = the highest, the lowest channels						
PEAK:	RBW = VBW = 1 MHz, Sweep=Auto					
Average:	RBW = 1 MHz, VBW=10 Hz, Sweep=Auto					
Measurement Distance:	3 m					
Polarization:	Horizontal / Vertical					


Measurement Data: Complies

- All conducted emission in any 100 kHz bandwidth outside of the spread spectrum band was at least 20 dB lower than the highest inband spectral density. Therefore the applying equipment meets the require ment.
- See next pages for actual measured spectrum plots.

> 20 dBc

Upper edge

Radiated Band-edges in the restricted band 2310-2390 MHz measurement

Frequency	Reading [dBuV/ m]		Pol.									Mar [d	°
[MHz]	AV /	Peak	P01.	Antenna	Amp. Gain + Cable Loss	AV / Peak		AV / Peak		AV /	Peak	AV /	Peak
2390.0	34.80	56.07	Н	27.86	22.92	54.0	74.0	39.74	61.01	14.26	12.99		

Radiated Band-edges in the restricted band 2483.5-2500 MHz measurement

Frequency	Reading [dBuV/ m]			C	Correction Limi Factor [dBuV		Result [dBuV/m]	Margin [dB]
[MHz]	AV /	Peak	Pol.	Antenna	Amp. Gain + Cable Loss	AV / Peak	AV / Peak	AV / Peak
2483.5	33.30	57.10	Н	27.86	22.92	54.0 74.0	38.24 62.04	15.76 11.96

Note : This EUT was tested in 3 orthogonal positions and the worst-case data was presented

3.2.5 Conducted Spurious Emissions

Procedure:

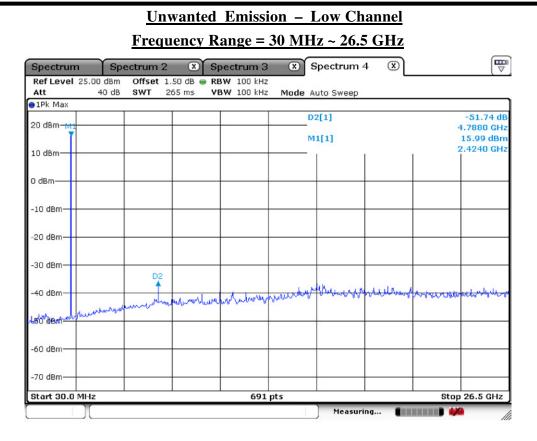
The test follows KDB558074. The conducted spurious emissions were measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels..

After the trace being stable, set the marker on the peak of any spurious emission recorded.

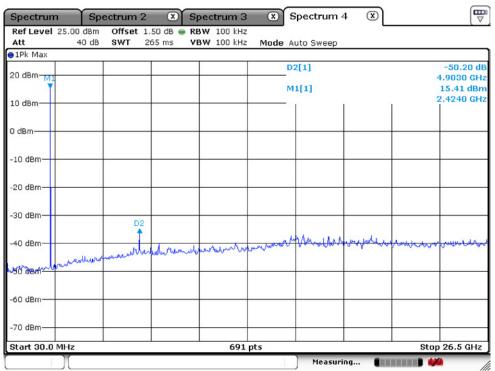
The spectrum analyzer is set to:

Span = wide enough to capture the peak level of the in-band emission and all spurious emissions

RBW = 100 kHzSweep = autoVBW = 100 kHzDetector function = peakTrace = max hold


Measurement Data: Complies

- All conducted emission in any 100 kHz bandwidth outside of the spread spectrum band was at least 20 dB lower than the highest inband spectral density. Therefore the applying equipment meets the require ment.
- See next pages for actual measured spectrum plots.

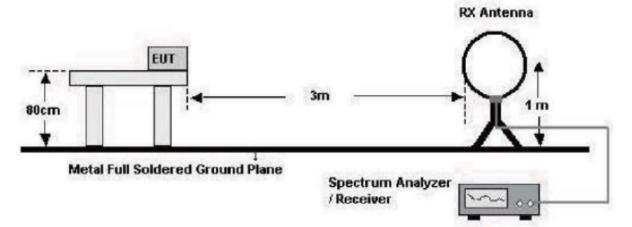

Minimum Standard:	> 20 dBc

Measurement Setup

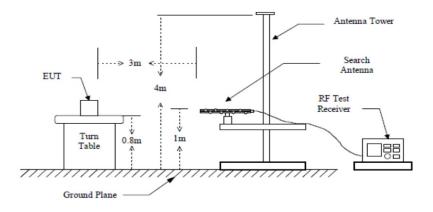
Same as the Chapter 3.2.1 (Figure 1)

Middle Channel

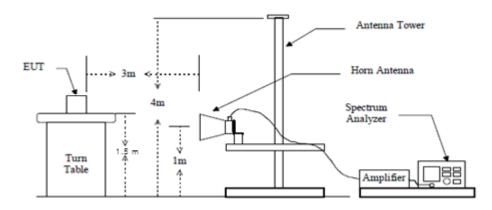
High Channel							
Spectrum Spe	ectrum 2 🛛 🗴 Spectrum	3 🗶 Spectrum 4 🗶					
Ref Level 26.00 dBm Att 40 dB	Offset 1.50 dB RBW 100 kł SWT 265 ms VBW 100 kł						
●1Pk Max	341 203 III3 484 100 KI	12 Mode Add Sweep]				
20 dBm		D2[1] M1[1]	-51.49 dB 4.9800 GHz 15.41 dBm				
10 dBm			2.4620 GHz				
0 dBm							
-10 dBm							
-20 dBm-							
-30 dBm	D2						
-40 dBm	↑	down that a dudy as a run	marching and the mouth				
wob dear how when when	manshorthand and the second	www.www.mar.	and the former of the second				
-60 dBm							
-70 dBm							
Start 30.0 MHz	69	1 pts	Stop 26.5 GHz				
		Measuring					


3.2.6 Radiated Spurious Emissions

Procedure:


The EUT was placed on a 0.8m high wooden table inside a shielded enclosure. An antenna was placed near the EUT and measurements of frequencies and amplitudes of field strengths were recorded for reference during final measurements. For final radiated testing, measurements were performed in OATS. Measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

The spectrum analyzer is set to:Center frequency = the worst channelFrequency Range = 9 kHz ~ 10^{th} harmonic.RBW = 100 kHz (30 MHz ~ 1 GHz)VBW \geq RBW= 1 MHz (1 GHz ~ 10^{th} harmonic)Span = 100 MHzDetector function = peakTrace = max holdSweep = auto


below 30 MHz

below 1 GHz (30 MHz to 1 GHz)

above 1 GHz

Measurement Data: Complies

- See next pages for actual measured data.
- No other emissions were detected at a level greater than 20 dB below limit include from 9 kHz to 30 MHz.

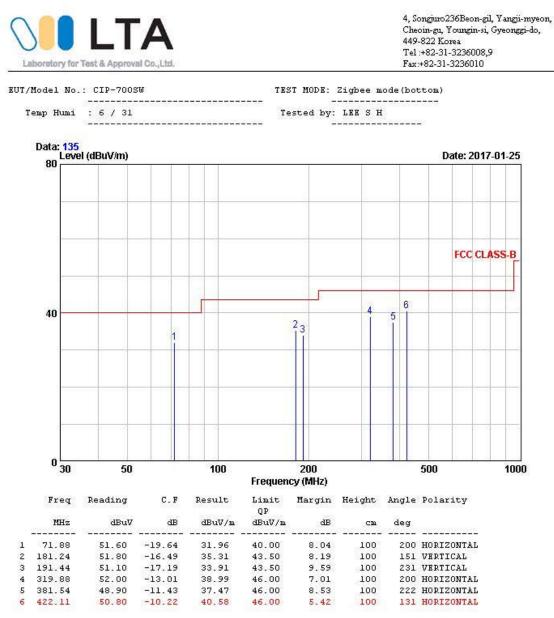
Frequency (MHz)	Limit (uV/m) @ 3 m
0.009 ~ 0.490	2400/F(kHz) (@ 300 m)
0.490 ~ 1.705	24000/F(kHz) (@ 30 m)
1.705 ~ 30	30(@ 30 m)
30 ~ 88	100 **
88 ~ 216	150 **
216 ~ 960	200 **
Above 960	500

Minimum Standard: FCC Part 15.209(a)

** Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-80 6 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

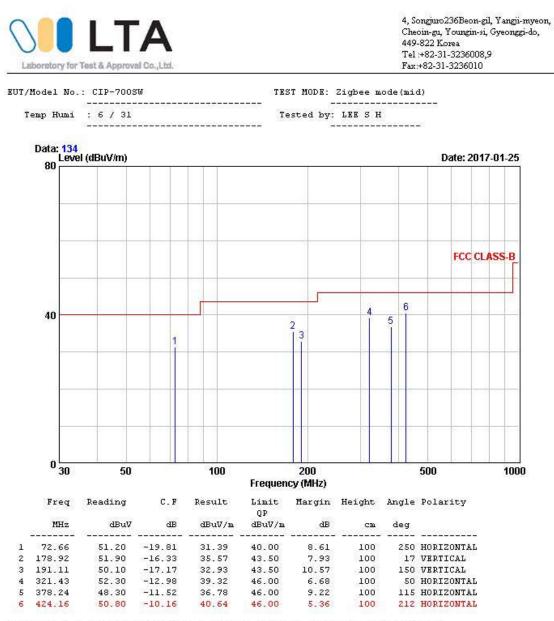
Frequency	Reading			Correction Factor		Limits [dBuV/m]		Result		Margin	
	[dBuV/m]		Pol.					[dBuV/m]		[dB]	
[MHz]	AV / Peak			Antenna	Amp.Gain+ Cable	AV/ Peak		AV/ Peak		AV / Peak	
7490.0	15.81	28.41	Н	37.15	3.87	54.0	74.0	49.09	61.69	4.91	12.31
7429.2	17.03	28.93	н	37.04	4.54	54.0	74.0	49.53	61.43	4.47	12.57
7511.2	17.21	31.21	н	37.18	3.64	54.0	74.0	50.75	64.75	3.25	9.25

Measurement Data : (Above 1 GHz)

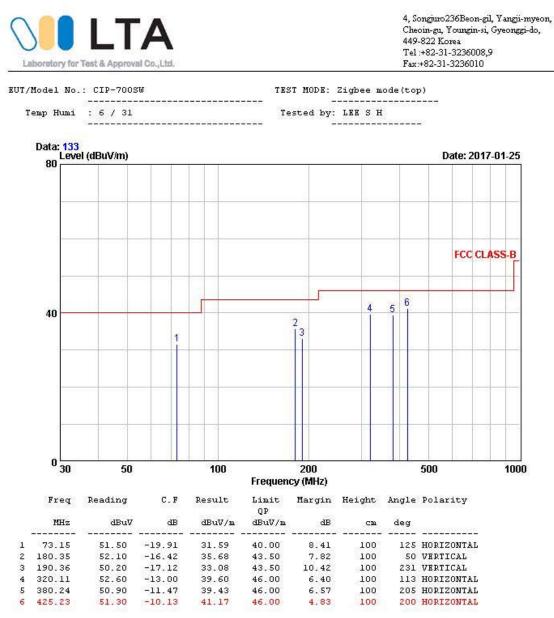

- No other emissions were detected at a level greater than 20 dB below limit.

Measurement Data: (9 kHz - 30 MHz)

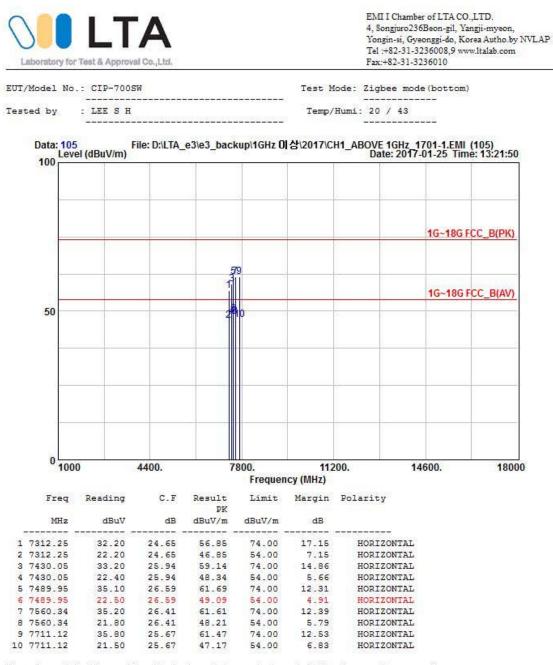
Frequency	Frequency [dBuV/m] [MHz] AV / Peak		Pol.	Correction Factor		Limits [dBuV/m]		Result [dBuV/ m]		Margin [dB]	
[MHz]				Antenna	Amp.Gain+Cable	AV /	Peak	AV /	Peak	AV /	Peak
-	-	-	-	-	-	-	-	-	-	-	-
No emissions were detected at a level greater than 20 dB below limit.											
-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-


*No emissions were detected at a level greater than 20 dB below limit.

Radiated Emissions (Below 1 GHz) - 2.4 GHz Zigbee(Low) mode

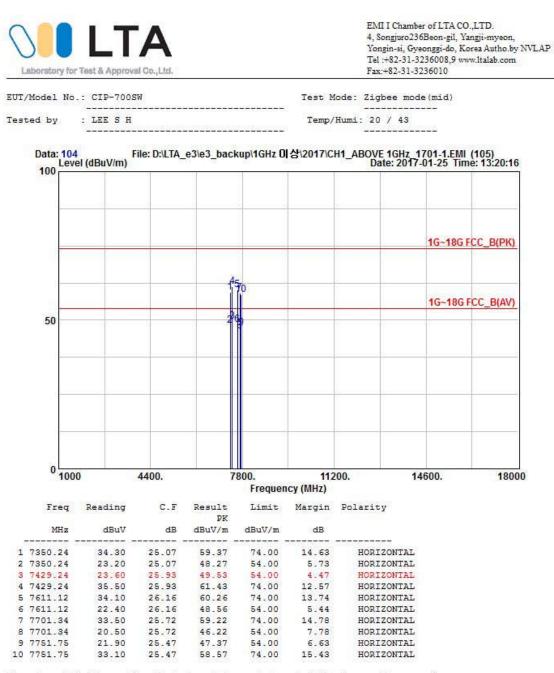

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

Radiated Emissions (Below 1 GHz) – 2.4GHz Zigbee(Middle) mode


Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

Radiated Emissions (Below 1 GHz) – 2.4GHz Zigbee(High) mode

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain


Radiated Emissions (Above 1 GHz) – 2.4 GHz Zigbee(Low) mode

- 1 -


Radiated Emissions (Above 1 GHz) – 2.4 GHz Zigbee(Middle) mode

418250.37 3.50 45.12 48.62 54.00 5.38 HORIZONTAL

Radiated Emissions (Above 1 GHz) – 2.4 GHz Zigbee(High) mode

- 1 -

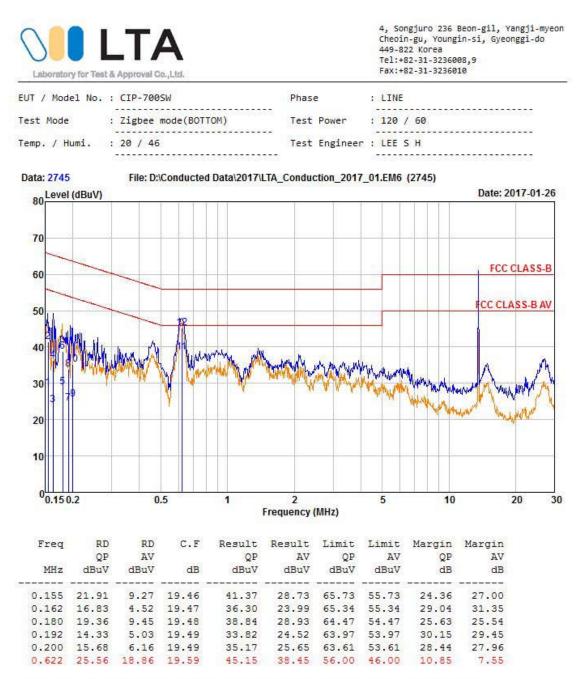
3.2.7 AC Conducted Emissions

Procedure:

The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. While the measurement, EUT had its hopping function disabled at the middle channels in line with Section 15.31(m). Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

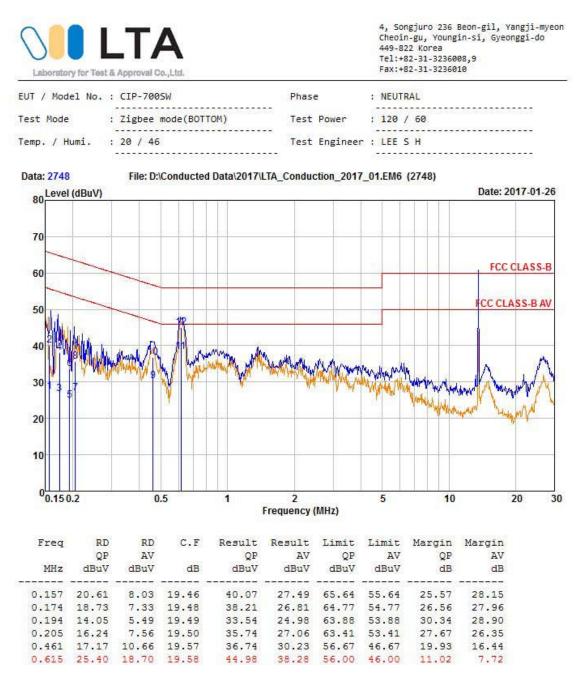
Measurement Data: Complies

- See next pages for actual measured spectrum plots.
- No emissions were detected at a level greater than 20 dB below limit.

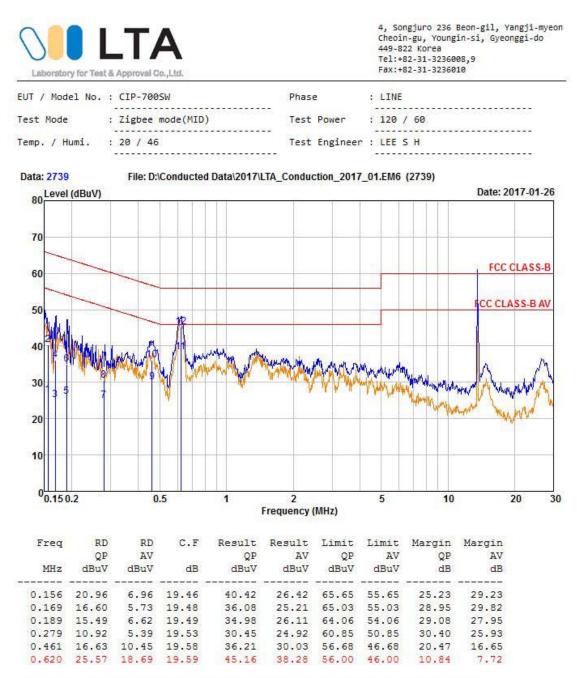

Minimum Standard: FCC Part 15.207(a)

Class B

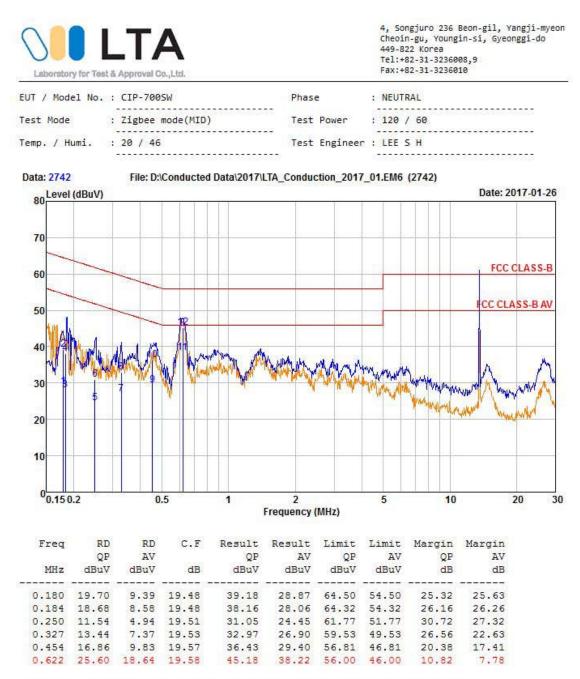
Frequency Range	quasi-peak	Average
0.15 ~ 0.5	66 to 56 *	56 to 46 *
0.5 ~ 5	56	46
5 ~ 30	60	50


* Decreases with the logarithm of the frequency

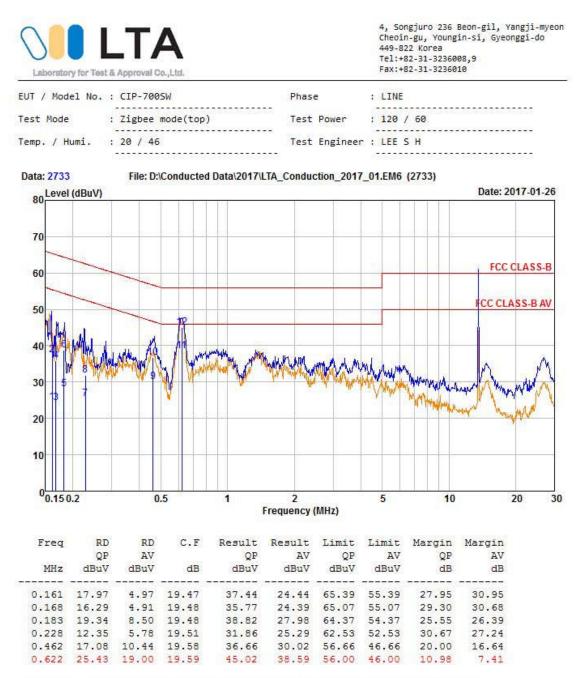
Conducted Emissions – 2.4 GHz Zigbee(LOW) mode + LINE


Remarks: C.F (Correction Factor) = Insertion loss + Cable loss + Pulse Limiter

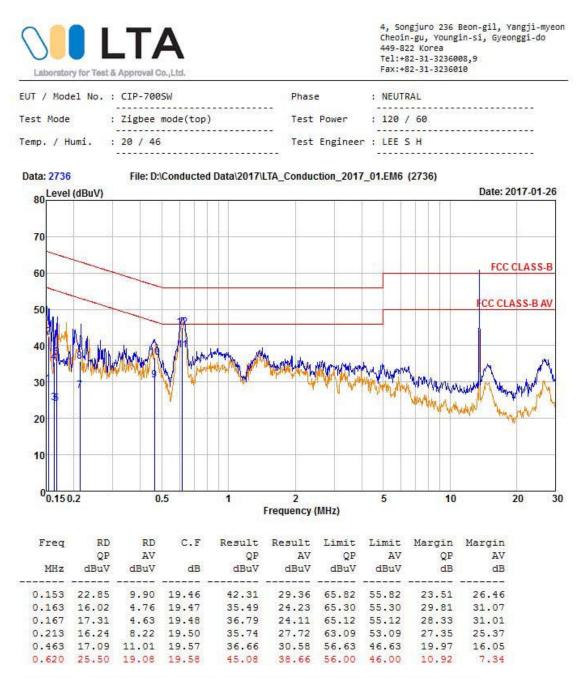
Conducted Emissions - 2.4 GHz Zigbee(LOW) mode + NEUTRAL


Remarks: C.F (Correction Factor) = Insertion loss + Cable loss + Pulse Limiter

Conducted Emissions – 2.4 GHz Zigbee(Middle) mode + LINE


Remarks: C.F (Correction Factor) = Insertion loss + Cable loss + Pulse Limiter

Conducted Emissions - 2.4 GHz Zigbee(Middle) mode + NEUTRAL


Remarks: C.F (Correction Factor) = Insertion loss + Cable loss + Pulse Limiter

Conducted Emissions – 2.4 GHz Zigbee(High) mode + LINE

Remarks: C.F (Correction Factor) = Insertion loss + Cable loss + Pulse Limiter

Conducted Emissions - 2.4 GHz Zigbee(High) mode + NEUTRAL

Remarks: C.F (Correction Factor) = Insertion loss + Cable loss + Pulse Limiter

APPENDIX

TEST EQUIPMENT USED FOR TESTS

	Description	Model No.	Serial No.	Manufacturer	Interval	Last Cal. Date
1	Signal Analyzer (9 kHz ~ 30 GHz)	FSV30	100757	R&S	1 year	2016-10-11
2	Signal Generator (~ 3.2 GHz)	8648C	3623A02597	HP	1 year	2016-03-21
3	SYNTHESIZED CW GENERATOR	83711B	US34490456	НР	1 year	2016-03-21
4	Attenuator (3 dB)	8491A	37822	НР	1 year	2016-09-12
5	Attenuator (10 dB)	8491A	63196	НР	1 year	2016-09-12
6	Test Receiver (~ 30 MHz)	ESHS10	828404/009	R&S	1 year	2016-03-21
7	EMI Test Receiver (~ 7 GHz)	ESCI7	100722	R&S	1 year	2016-09-12
8	RF Amplifier (~ 1.3 GHz)	8447D	2944A07974	НР	1 year	2016-09-12
9	RF Amplifier (1 ~ 26.5 GHz)	8449B	3008A02126	HP	1 year	2016-03-21
10	Horn Antenna (1 ~ 18 GHz)	3115	00114105	ETS	1 year	2016-04-21
11	DRG Horn (Small)(18GHz ~40GHz)	3116B	81109	ETS-Lindgren	1 year	2016-05-03
12	DRG Horn (Small) (18GHz ~40GHz)	3116B	133350	ETS-Lindgren	1 year	2016-05-03
13	TRILOG Antenna	VULB 9160	9160-3237	SCHWARZBECK	2 year	2015-04-21
14	Temp. Humidity Data Logger	SK-L200TH II A	00801	SATO	1 year	2016-03-22
15	Splitter	1580	SL769	WEINSCHEL	1 year	2016-03-22
16	Power Divider	11636A	06243	HP	1 year	2016-09-12
17	DC Power Supply	6674A	3637A01657	Agilent	-	-
18	Frequency Counter	5342A	2826A12411	НР	1 year	2016-03-21
19	Power Meter	EPM-441A	GB32481702	НР	1 year	2016-03-22
20	Power Sensor	8481A	3318A94972	НР	1 year	2016-12-31
21	Audio Analyzer	8903B	3729A18901	HP	1 year	2016-09-12
22	Modulation Analyzer	8901B	3749A05878	HP	1 year	2016-09-12
23	TEMP & HUMIDITY Chamber	YJ-500	LTAS06041	JinYoung Tech	1 year	2016-09-12
24	Stop Watch	HS-3	812Q08R	CASIO	2 year	2016-03-22
25	LISN	KNW-407	8-1430-1	Kyoritsu	1 year	2016-09-12
26	Two-Lime V-Network	ESH3-Z5	893045/017	R&S	1 year	2016-03-21
27	UNIVERSAL RADIO COMMUNICATION TESTER	CMU200	106243	R&S	1 year	2016-03-21
28	Highpass Filter	WHKX1.5/15G-10SS	74	Wainwright Instruments	1 year	2016-03-21
29	Highpass Filter	WHKX3.0/18G-10SS	118	Wainwright Instruments	1 year	2016-03-21
30	Active Loop Antenna	FMZB1519	1519-031	SCHWARZBECK	2 year	2016-01-12
31	OSP120 BASE UNIT	OSP120	101230	R&S	1 year	2016-03-22
32	Signal Generator(100 kHz ~ 40 GHz)	SMB100A	177621	R&S	1 year	2016-03-22
33	Signal Analyzer (10 Hz ~ 40 GHz)	FSV40	101367	R&S	1 year	2016-03-22