AHD EMC Laboratory 92723 M-152, Dowagiac, MI 49047 USA Phone: (616) 424-7014 www.ahde.com

EXHIBIT K: REPORT OF MEASUREMENTS [2.1033(B6)]

# Test Report for FCC ID: CB2ANHL3

# FCC Part 2.1031, Part 15 Subpart C(15.231)

Report #09900273F Issued 2/28/00



# TRANSMITTER MODEL ANHL3 OF HOMELINK® III SERIES

Prepared for:

Mr. Tom McDade Johnson Controls Interiors, LLC One Prince Center Holland, MI 49423

Test Date(s): February 15, 2000

data recorded by

witnessed by

David Blaker

Craig Harder

Gordon Helm, PE Ted Chaffee, NCE

This report prepared by:

Ked cheffer

Ted Chaffee, NCE Technical Manager/Test Engineer, AHD

90225

## TABLE OF CONTENTS

| EXHIBIT K: Report of Measurements [2.1033(b6)]                         | 1   |
|------------------------------------------------------------------------|-----|
| TABLE OF CONTENTS                                                      | 2   |
| Statements Concerning this Report                                      | 3   |
| Manufacturer/Applicant [2.1033(b1)]                                    | 4   |
| Measurement/Test Site Facility & Equipment                             | 4   |
| Test Site [2.948, 2.1033(b6)]                                          | 4   |
| Measurement Equipment Used [2.947(d), 15.31(b)]                        | 4   |
| Tested Configuration /Setup: [2.1033(b8)]                              | 5   |
| Support Equipment & Cabling                                            | 5   |
| Setup Diagram                                                          | . 5 |
| Summary of Results:                                                    | 6   |
| Changes made to achieve compliance                                     | 7   |
| Standards Applied to Test: [2.1033(b6)]                                | 7   |
| Test Methodology: [2.1033(b6)]                                         | 7   |
| Test Data [2.1033(b6)]                                                 | .10 |
| Modulation Characteristics                                             | .10 |
| Relative Emission Level vs. Supply Voltage [15.31(e)]                  | .12 |
| Occupied Bandwidth [15.231(c)]                                         | .13 |
| Restricted Bands: [15.205]                                             | .14 |
| Radiated Field Strength Measurements: [15.231(b), 15.205]              | .15 |
| Field Strength Measurements of Fundamental : [15.231(b)]               | .17 |
| Field Strength Measurements of Harmonics: [15.231(b), 15.205]          | .18 |
| Calculation of Field Strength of Tuning Pulses: [15.231(b)], 15.31(c)] | .21 |
| APPENDIX: Tune Pulses - Data Details                                   | .26 |

## **Statements Concerning this Report**

### **Test Traceability:**

The calibration of all measuring and test equipment and the measured data using this equipment are traceable to the National Institute for Standards and Technology (NIST).

### Limitations on results:

The test results contained in this report relate only to the Item(s) tested. Any electrical or mechanical modification made to the test item subsequent to the test date shall invalidate the data presented in this report. Any electrical or mechanical modification made to the test item subsequent to this test date shall require an evaluation to verify continued compliance.

### Limitations on copying:

This report shall not be reproduced, except in full, without the written approval of AHD.

### Limitations of the report:

This report shall not be used to claim product endorsement by NVLAP, FCC, or any agency of the US Government.

**Statement of Test Results Uncertainty:** Following the guidelines of NAMAS publication NIS81 and NIST Technical Note 1297, the Measurement Uncertainty at a 95% confidence level is determined to be:  $\pm 3.6 \text{ dB}$ 

## Manufacturer/Applicant [2.1033(b1)]

The manufacturer and applicant:

JOHNSON CONTROLS INTERIORS, LLC. One Prince Center Holland, Michigan 49423

## **Measurement/Test Site Facility & Equipment**

### Test Site [2.948, 2.1033(b6)]

The AHD test facility is centered on 9 acres of rural property near Sister Lakes, Michigan. The mailing address is 92723 M-152, Dowagiac, Michigan 49047. This test facility is NVLAP accredited (LabCode 200129-0). It has been fully described in a report filed with the FCC and Industry Canada. The report filed with the FCC is, dated November 5, 1996, was accepted by the FCC in a letter dated January 15, 1997, (31040/SIT 1300F2). The report filed with Industry Canada, dated August 11, 1998, was accepted via a letter dated September 1, 1998, (file:IC3161).

## Measurement Equipment Used [2.947(d), 15.31(b)]

| Equipment                            | Model        | S/N        | Last Cal  | Calibration |  |
|--------------------------------------|--------------|------------|-----------|-------------|--|
|                                      |              |            | Date      | Interval    |  |
| HP EMI Receiver system               | HP 8546A     |            |           |             |  |
| RF Filter Section                    | HP-85460A    | 3448A00283 | 22-Jun-99 | 12 month    |  |
| RF Receiver Section                  | HP-85462A    | 3625A00342 | 22-Jun-99 | 12 month    |  |
| EMCO BiconiLog Antenna               | 3142         | 1077       | 07-Sep-99 | 12 months   |  |
| (3-M) Type 129FF Ultra Flex LowLoss  | RG58/U       | 9910-12    | 29-Oct-99 | 6 months    |  |
| University of Mich Double Ridge Horn | 0.2 - 5.0GHz | С          | 16-Mar-99 | 12 months   |  |
| 6 ft. Andrew DF4 Heliax              |              | 9912-02    | 13-Dec-99 | 12 months   |  |

### **Measurement Environment**

The tests were performed with the equipment under test, and measurement equipment inside the all-weather enclosure. Ambient temperature was 22deg.C., the relative humidity 40%.

## Tested Configuration /Setup: [2.1033(b8)]

| Setup   | Description        | Model     | Serial No. / Part No. | EMC Consideration                     |
|---------|--------------------|-----------|-----------------------|---------------------------------------|
| Diagram |                    |           |                       |                                       |
| Legend  |                    |           |                       |                                       |
| А       | [EUT] Universal    | [JCI]     |                       | FCC ID: CB2ANHL3                      |
|         | Garage Door Opener | ANHL3     |                       |                                       |
| В       | 12V DC             | [Kikusui] | 47263914              | Located on the turntable base below   |
|         | Power Supply       | PAB 18-3  |                       | the EUT table.                        |
| 1       | Power Supply Cable |           |                       | 2 meters, Unshielded, lightly twisted |
|         | Harness            |           |                       | pair of wires.                        |

## Support Equipment & Cabling

## Setup Diagram

Note: Setup photographs are located in Attached Electronic File, Exhibit L.



setup\_11

## BASIC EUT SETUP (Legend designation is above)

## Summary of Results:

- 1. This test series evaluated the Equipment Under Test, ANHL3, to FCC Part 15, SubPart C.
- 2. The system tested is compliant to the requirement of CFR 47, FCC Part 15, SubPart C for periodic operation in the allowed frequency bands above 70MHz, (Part 15.231).
- 3. The equipment under test was received on December 16, 1999 and this test series commenced on December 16, 1999.
- 4. The line conducted emission testing does not apply to this product. The device is powered from a 12 volt automobile source.
- 5. The preliminary scan for spurious emissions conducted in a shielded room showed no observable spurious emissions other than the harmonics of the fundamental transmit frequency.
- 6. The frequencies selected for final evaluation include 288MHz, 310MHz, and 418MHz. This is in accordance with 47 CFR 15.31(m). The 310MHz was selected as a mid-range frequency because it is the predominant frequency used in controlling garage doors.
- 7. Occupied Band Width of the transmitted signal, at the 20dB point, nearest the limit was measured to be 540KHz. This measurement occurred with the EUT transmitting at 288MHz with a pulse modulation of 50% duty cycle. This measurement is within the allowed 720KHz bandwidth.
- 8. The field strength level of the fundamental was measured for 288MHz, 310MHz, and 418MHz. The evaluation showed the emission nearest the limit occurred while operating at 418MHz with 500Hz pulsed modulation at a 30% duty cycle. The EUT was positioned on the 'end' and the receive antenna oriented in the vertical polarization. This signal was measured to be 0.7dB below the limit of 80.3dBuV/m (10,333uV/m).
- 9. The evaluation of the field strength levels of the harmonics showed the emission nearest the limit occurred while operating at 288MHz with 500Hz pulsed modulation at 50% duty cycle. The EUT was positioned on the 'side'; and the receive antenna oriented in the vertical polarization. This signal, at 576MHz, was measured to be 3.1dB below the limit of 53.8dBuV/m (492uV/m).
- 10. Digital Spurious Emissions: The are no detectable spurious emissions associated with the digital portion of the ANHL3.
- 11. The average value of the coarse tune pulses over a 100mSec time, nearest the limit, occurred at 418MHz. The measurement was determined to be 5683uV/m which is 5.2dB below the limit of 10,333uV/m.
- 12. The average value of the fine tune pulses over a 100mSec time, nearest the limit, occurred at 418MHz. The measurement was determined to be 1654uV/m which is 15.9dB below the limit of 10,333uV/m..

Changes made to achieve compliance

1. NONE

## Standards Applied to Test: [2.1033(b6)]

ANSI C63.4 - 1992, Appendix I CFR47 FCC Part 2, Part 15, SubPart C, 15.231 Intentional Radiator; SubPart B, Digital Device

## Test Methodology: [2.1033(b6)]

The pictures in this report, showing test setups, indicate the agreed upon configuration of testing for this product-type.

For the testing, the EUT was placed at the center of the table 80cm above the ground plane pursuant to ANSI C63.4 for stand-alone equipment. The 12volt supply harness was routed to the edge of the long side of the table then down to the power supply located on the turntable base.

The line conducted emission testing was not performed on this product. In its final configuration the product is powered from an automobile 12 volt system only.

## Radiated

The system was placed upon a 1 x 1.5 meter non-metallic table 80cm above the open field site ground plane in the prescribed setup per ANSI C63.4, Figure 9(c).

The table sits upon a remote controlled turntable. The receiving antenna, located at the appropriate standards distance of 3 or 10 meters from the table center, is also remote controlled.

 The principle settings of the EMI Receiver for radiated testing include:

 IF Bandwidth:
 120KHz for frequencies less than 1GHz.

 1 MHz
 for frequencies greater than 1GHz.

 Detector Function:
 Peak Mode

 The Average levels were determined mathematically based upon the duty cycle of the pulsed modulation of the transmitted signal.

At frequencies up to 1000MHz a BiconiLog broadband antenna was used for measurements.

At frequencies above 1000MHz a double-ridge Horn broadband antenna was used for measurements.

When using the Horn antenna the EUT position was raised to bring the EUT directly into the receive beam-width of the Horn antenna. Also, because the horn receive beamwidth is narrow and insensitive to the reflective component of the source emission, it was judged that the three orthogonal positions of the EUT and one polarization of the Horn antenna is sufficient to capture all the emission patterns of the EUT.

During the evaluation the EUT was transmitting continuously.

The turntable was rotated 360 degrees and the receiving antenna height varied from 1 to 4 meters to search out the highest emissions.

Preliminary tests were done at several transmit frequencies. The final measurements were made at a low band frequency (288MHz), a mid band frequency (310MHz), and a high band frequency (418MHz) pursuant to the requirements of 47CFR 15.31(m). At each frequency the EUT was placed in three orthogonal positions. At each position a 500Hz pulse modulation was adjusted to a 30%, 50%, and 80% duty cycle. At each duty cycle, measurements were taken with the receive antenna in vertical and horizontal positions.

The unit was evaluated up to the tenth harmonic of the fundamental as an intentional radiator, and up to 1000MHz as a digital device.

The orthogonal positions are:



THE HP8546A EMI Receiver has stored in memory the antenna and coax correction factors used in this test. The resultant Field Strength (FS) in dBuV/m presented by the HP8546A is the summation in decibels (dB) of the Received Level (RF), the Antenna Correction Factor (AF), and the Cable Loss Factor (CF).

Formula 1: FS(dBuV/m) = RF(dBuV) + AF(dB/m) + CF(dB)

The resultant Field Strength measurement is recorded using the peak hold detector of the HP8546A.

This recorded peak level is further corrected, by calculation, to an average level by a factor determined by the duty cycle of the pulsed modulation. The duty cycle factor is determined as outlined in Appendix I4 of the standard ANSI C63.4:1992.

| Formula 2:  | Average Level( $uV/m$ ) = [ Peak Level( $uV/m$ ) ] x [ duty cycle factor ].     |
|-------------|---------------------------------------------------------------------------------|
| Formula 2a: | Average Level( $dBuV/m$ ) = Peak Level) $dBuV/m$ ) + duty cycle factor( $dB$ ). |

The duty cycle factor to apply is determined for the duty cycles of 30%, 50% and 80% as follows.

| For 30% (0.30): | duty cycle factor(dB) = $20*Log(0.3) = -10.46$ |
|-----------------|------------------------------------------------|
| For 50% (0.50): | duty cycle factor(dB) = $20*Log(0.5) = -6.02$  |
| For 80% (0.80): | duty cycle factor(dB) = $20*Log(0.8) = -1.94$  |

### SAMPLE CALCULATION:

A measured peak level of 50% duty cycle pulse modulated signal is 500 uV/m. Calculated to dBuV/m is 20\*Log(500) = 53.98dBuV/m Peak level. Applying the duty cycle factor: Avg. Level(dBuV/m) = 53.98 - 6.02dB = 47.96dBuV/m.

## Test Data [2.1033(b6)]

## Modulation Characteristics

Typical encoding at 310MHz: Consisting of pulses of differing duty cycles.



ACTU DET: PEAK NEAS DET: PEAK OP AVG



310MHz, 500Hz Modulation, 30% duty cycle



310MHz, 500Hz Modulation, 50% duty cycle



310MHz, 500Hz Modulation, 80% duty cycle



## Relative Emission Level vs. Supply Voltage [15.31(e)]

The relative emission level as the supply voltage varied is presented in the charts below.

| TX OUTPUT vs Voltage LEVEL        |             |  |  |  |  |  |
|-----------------------------------|-------------|--|--|--|--|--|
| DUT= ANHL3, 310MHz, 80%duty cycle |             |  |  |  |  |  |
| Volt In                           | TX OutPut   |  |  |  |  |  |
|                                   | Peak dBuV/m |  |  |  |  |  |
| 6                                 | no-op       |  |  |  |  |  |
| 7                                 | 70.8        |  |  |  |  |  |
| 8                                 | 71.6        |  |  |  |  |  |
| 9                                 | 71.7        |  |  |  |  |  |
| 10                                | 72          |  |  |  |  |  |
| 11                                | 71.9        |  |  |  |  |  |
| 12                                | 71.9        |  |  |  |  |  |
| 13                                | 71.8        |  |  |  |  |  |
| 14                                | 72.8        |  |  |  |  |  |
| 15                                | 71.9        |  |  |  |  |  |
| 16                                | 71.8        |  |  |  |  |  |
| 17                                | 71.9        |  |  |  |  |  |
| 18                                | 71.8        |  |  |  |  |  |

#### OUTPUT FIELD STRENGTH vs INPUT VOLTAGE [Tuned to 310MHz; Modulated at 500Hz, 80% Duty Cycle]



Formula 2:

### Occupied Bandwidth [15.231(c)]

The maximum allowed 20dB bandwidth is determined pursuant to 15.23(c). For fundamental signals between 70MHz and 900MHz the bandwidth allowed is 0.25% of the fundamental.

Allowed bandwidth = [Fundamental] x [.0025]

| Fundamental<br>(MHz) | Duty Cycle | Measured<br>20dB Bandwidth | LIMIT<br>Fundamental * .0025 |
|----------------------|------------|----------------------------|------------------------------|
| 288                  | 30%        | 443 KHz                    | 720 KHz                      |
| "                    | 50%        | 540 KHz                    | 720 KHz                      |
| "                    | 80%        | 480 KHz                    | 720 KHz                      |
| 310                  | 30%        | 465 KHz                    | 775 KHz                      |
| "                    | 50%        | 428 KHz                    | 775 KHz                      |
| "                    | 80%        | 473 KHz                    | 775 KHz                      |
| 418                  | 30%        | 480 KHz                    | 1045 KHz                     |
| "                    | 50%        | 600 KHz                    | 1045 KHz                     |
| "                    | 80%        | 585 KHz                    | 1045 KHz                     |

This chart shows a typical measured bandwidth signal.



## Restricted Bands: [15.205]

The following frequency bands are restricted. Only spurious emissions are permitted at levels limited by 15.209:

| MHz               | MHz                 | MHz           | GHz         |
|-------------------|---------------------|---------------|-------------|
| 0.090-0.110       | 16.42-16.423        | 399.9-410     | 4.5-5.25    |
| 0.490-0.510       | 16.69475-16.69525   | 608-614       | 5.35-5.46   |
| 2.1735-2.1905     | 16.80425-16.80475   | 960-1240      | 7.25-7.75   |
| 4.125-4.128       | 25.5-25.67          | 1300-1427     | 8.025-8.5   |
| 4.17725-4.17775   | 37.5-38.25          | 1435-1626.5   | 9.0-9.2     |
| 4.20725-4.20775   | 73-74.6             | 1645.5-1646.5 | 9.3-9.5     |
| 6.215-6.218       | 74.8-75.2           | 1660-1710     | 10.6-12.7   |
| 6.26775-6.26825   | 108-121.94          | 1718.8-1722.2 | 13.25-13.4  |
| 6.31175-6.31225   | 123-138             | 2200-2300     | 14.47-14.5  |
| 8.291-8.294       | 149.9-150.05        | 2310-2390     | 15.35-16.2  |
| 8.362-8.366       | 156.52475-156.52525 | 2483.5-2500   | 17.7-21.4   |
| 8.37625-8.38675   | 156.7-156.9         | 2655-2900     | 22.01-23.12 |
| 8.41425-8.41475   | 162.0125-167.17     | 3260-3267     | 23.6-24.0   |
| 12.29-12.293      | 167.72-173.2        | 3332-3339     | 31.2-31.8   |
| 12.51975-12.52025 | 240-285             | 3345.8-3358   | 36.43-36.5  |
| 12.57675-12.57725 | 322-335.4           | 3600-4400     | Above 38.6  |
| 13.36-13.41       |                     |               |             |

LIMIT @ 3meter: [15.209(a)]

| 30-88MHz     | 100uV/m | 40dBuV/m   |
|--------------|---------|------------|
| 88-216MHz    | 150uV/m | 43.5dBuV/m |
| 216-960MHz   | 200uV/m | 46dBuV/m   |
| above 960MHz | 500uV/m | 54dBuV/m   |

### Verification of no capability to tune within the Restricted Bands.

The unit is designed capable of tuning from 285MHz to 420MHz. These frequencies include the restricted areas of 322-325.4MHz, 399.9-410MHz, and is near the restricted area of 240-285MHz.

The restricted bands are locked out by the Homelink® III firmware. An exercise which attempted to train the units into the restricted bands demonstrated how well the firmware functioned. The unit could not be trained any closer to the restricted band area than 1MHz outside the restricted bands edges.

The spurious emissions observed in the restricted bands did not exceed the allowed limits for the restricted bands.

## Radiated Field Strength Measurements: [15.231(b), 15.205]

A scan of the ANHL3 was made in a shielded room to study the emission profile of the EUT. These scans indicate there are no emissions from the unit other than the fundamental and its associated harmonics.

The following three charts show the spectrum pattern of the EUT emissions. The levels indicated are not calibrated levels.







## Field Strength Measurements of Fundamental : [15.231(b)]

MEASUREMENT PROCEDURE:

- 1. The EUT was trained to one of the three test frequencies.
- 2. The EUT was trained to one of the three test duty cycles.
- 3. The EUT was setup to one of the three orthogonal positions.
- 4. Steps 1-3 were repeated to cover all positions, duty cycles, and frequencies.

DUT Tuned to transmit at 288MHz

| Freq. | DUT      | Ant. | Corrected     | Duty  | Duty   | Calculated | FCC    | Margin | Cable +Ant. |
|-------|----------|------|---------------|-------|--------|------------|--------|--------|-------------|
|       | position | Pol. | Data          | Cycle | Cycle  | Average    | Limit  |        | Factor      |
|       |          |      | Peak Detector |       | Factor | Level      |        |        |             |
| MHz   |          |      | dBuV/m        | %     | dB     | dBuV/m     | dBuV/m | dB     | dB+dB/m     |
| 288   | side     | Η    | 83.5          | 30%   | -10.46 | 73.0       | 73.8   | -0.8   | 14.29       |
| "     | "        | "    | 78.7          | 50%   | -6.02  | 72.7       | 73.8   | -1.1   | "           |
| "     | "        | "    | 73.3          | 80%   | -1.94  | 71.4       | 73.8   | -2.4   | "           |

## DUT Tuned to transmit at 310MHz

| Freq. | DUT      | Ant. | Corrected     | Duty  | Duty   | Calculated | FCC    | Margin | Cable +Ant. |
|-------|----------|------|---------------|-------|--------|------------|--------|--------|-------------|
|       | position | Pol. | Data          | Cycle | Cycle  | Average    | Limit  |        | Factor      |
|       |          |      | Peak Detector |       | Factor | Level      |        |        |             |
| MHz   |          |      | dBuV/m        | %     | dB     | dBuV/m     | dBuV/m | dB     | dB+dB/m     |
| 310   | side     | Η    | 82.0          | 30%   | -10.46 | 71.5       | 75.3   | -3.8   | 14.94       |
| "     | "        | "    | 77.4          | 50%   | -6.02  | 71.4       | 75.3   | -3.9   | "           |
| "     | "        | "    | 73.1          | 80%   | -1.94  | 71.2       | 75.3   | -4.1   | "           |

DUT Tuned to transmit at 418MHz

| Freq. | DUT      | Ant. | Corrected     | Duty  | Duty   | Calculated | FCC    | Margin | Cable +Ant. |
|-------|----------|------|---------------|-------|--------|------------|--------|--------|-------------|
|       | position | Pol. | Data          | Cycle | Cycle  | Average    | Limit  |        | Factor      |
|       |          |      | Peak Detector |       | Factor | Level      |        |        |             |
| MHz   |          |      | dBuV/m        | %     | dB     | dBuV/m     | dBuV/m | dB     | dB+dB/m     |
| 418   | end      | V    | 90.1          | 30%   | -10.46 | 79.6       | 80.3   | -0.7   | 17.44       |
| "     | "        | "    | 85.1          | 50%   | -6.02  | 79.1       | 80.3   | -1.2   | "           |
| "     | flat     | "    | 81.2          | 80%   | -1.94  | 79.3       | 80.3   | -1.0   | "           |

## Field Strength Measurements of Harmonics: [15.231(b), 15.205]

DUT Tuned to transmit at 288MHz

| Freq. | DUT      | Ant. | Corrected                             | Duty         | Duty   | Calculated | FCC    | Margin              | Cable +Ant. |
|-------|----------|------|---------------------------------------|--------------|--------|------------|--------|---------------------|-------------|
|       | position | Pol. | Data                                  | Cycle        | Cycle  | Average    | Limit  |                     | Factor      |
|       |          |      | Peak Detector                         |              | Factor | Level      |        |                     |             |
| MHz   |          |      | dBuV/m                                | %            | dB     | dBuV/m     | dBuV/m | dB                  | dB+dB/m     |
| 576   | flat     | Η    | 60.5                                  | 30%          | -10.46 | 50.0       | 53.8   | -3.8                | 21.03       |
| "     | side     | V    | 56.7                                  | 50%          | -6.02  | 50.7       | 53.8   | -3.1                | "           |
| "     | end      | Н    | 50.5                                  | 80%          | -1.94  | 48.6       | 53.8   | -5.2                | "           |
| 864   | end      | V    | 37.7                                  | 30%          | -10.46 | 27.2       | 53.8   | -26.6               | 24.82       |
| "     | flat     | "    | 34.2                                  | 50%          | -6.02  | 28.2       | 53.8   | -25.6               | "           |
| "     | "        | "    | 32.8                                  | 80%          | -1.94  | 30.9       | 53.8   | -22.9               | "           |
| 1152  | flat     | Н    | 36.6                                  | 30%          | -10.46 | 26.1       | 54.0   | -27.9               | 20.80       |
| "     | "        | "    | 32.0                                  | 50%          | -6.02  | 26.0       | 54.0   | -28.0               | "           |
| "     | end      | "    | 31.2                                  | 80%          | -1.94  | 29.3       | 54.0   | -24.7               | "           |
| 1440  | flat     | Н    | 42.4                                  | 30%          | -10.46 | 31.9       | 54.0   | -22.1               | 22.13       |
| "     | "        | "    | 38.1                                  | 50%          | -6.02  | 32.1       | 54.0   | -21.9               | "           |
| "     | end      | "    | 37.5                                  | 80%          | -1.94  | 35.6       | 54.0   | -18.4               | "           |
| 1728  | end      | Н    | 42.1                                  | 30%          | -10.46 | 31.6       | 54.0   | -22.4               | 23.47       |
| "     | flat     | "    | 35.4                                  | 50%          | -6.02  | 29.4       | 54.0   | -24.6               | ٤٢          |
| "     | end      | "    | 34.3                                  | 80%          | -1.94  | 32.4       | 54.0   | -21.6               | "           |
| 2016  | side     | Н    | 36.8                                  | 30%          | -10.46 | 26.3       | 54.0   | -27.7               | 24.60       |
| "     | "        | "    | 34.2                                  | 50%          | -6.02  | 28.2       | 54.0   | -25.8               | "           |
| "     | end      | "    | 33.3                                  | 80%          | -1.94  | 31.4       | 54.0   | -22.6               | "           |
| 2304  | -        | Н    | 33.8                                  | 30%          | -10.46 | 23.3       | 54.0   | -30.7               | 25.41       |
| "     |          |      | Noise Floor                           | 500/         | 6.00   | <u> </u>   | 54.0   | <b>A</b> ( <b>F</b> | 44          |
|       | -        |      | 33.5<br>Noise Floor                   | 50%          | -6.02  | 27.5       | 54.0   | -26.5               |             |
| "     | -        | "    | 33.8                                  | 80%          | -1.94  | 31.9       | 54.0   | -22.1               | "           |
|       |          |      | Noise Floor                           | <b>2</b> 004 | 10.16  |            | - 1 0  |                     | 2615        |
| 2592  | -        | Н    | 33.3<br>Noise Floor                   | 30%          | -10.46 | 22.8       | 54.0   | -31.2               | 26.17       |
| "     | -        | "    | 32.9                                  | 50%          | -6.02  | 26.9       | 54.0   | -27.1               | "           |
|       |          |      | Noise Floor                           | 0.004        | 1.0.1  |            | - 4 0  | •• •                |             |
|       | -        |      | 33.0<br>Noise Floor                   | 80%          | -1.94  | 31.1       | 54.0   | -22.9               |             |
| 2880  | -        | Н    | 34.5                                  | 30%          | -10.46 | 24.0       | 54.0   | -30.0               | 26.98       |
|       |          |      | Noise Floor                           |              |        |            |        | _                   |             |
| "     | -        | "    | 34.4                                  | 50%          | -6.02  | 28.4       | 54.0   | -25.6               | "           |
| "     | _        | "    | 1000000000000000000000000000000000000 | 80%          | -1 94  | 32.5       | 54.0   | -21 5               | دد          |
|       | -        |      | Noise Floor                           | 0070         | -1.74  | 54.5       | 57.0   | -21.3               |             |

DUT Tuned to transmit at 310MHz

| Freq. | DUT      | Ant. | Corrected                  | Duty  | Duty   | Calculated | FCC    | Margin | Cable +Ant. |
|-------|----------|------|----------------------------|-------|--------|------------|--------|--------|-------------|
|       | position | Pol. | Data                       | Cycle | Cycle  | Average    | Limit  |        | Factor      |
|       |          |      | Peak Detector              |       | Factor | Level      |        |        |             |
| MHz   |          |      | dBuV/m                     | %     | dB     | dBuV/m     | dBuV/m | dB     | dB+dB/m     |
| 620   | flat     | Н    | 61.1                       | 30%   | -10.46 | 50.6       | 55.3   | -4.7   | 21.73       |
| "     | "        | "    | 56.2                       | 50%   | -6.02  | 50.2       | 55.3   | -5.1   | .د          |
| "     | "        | "    | 52.1                       | 80%   | -1.94  | 50.2       | 55.3   | -5.1   | "           |
| 930   | end      | Н    | 38.6                       | 30%   | -10.46 | 28.1       | 55.3   | -27.2  | 25.34       |
| "     | end      | V    | 32.6                       | 50%   | -6.02  | 26.6       | 55.3   | -28.7  | .د          |
| "     | "        | Η    | 30.2                       | 80%   | -1.94  | 28.3       | 55.3   | -27.0  | "           |
| 1240  | end      | Н    | 36.4                       | 30%   | -10.46 | 25.9       | 54.0   | -28.1  | 21.24       |
| "     | flat     | "    | 32.2                       | 50%   | -6.02  | 26.2       | 54.0   | -27.8  | "           |
| "     | "        | "    | 29.2                       | 80%   | -1.94  | 27.3       | 54.0   | -26.7  | "           |
| 1550  | flat     | Н    | 42.5                       | 30%   | -10.46 | 32.0       | 54.0   | -22.0  | 22.65       |
| "     | "        | "    | 38.9                       | 50%   | -6.02  | 32.9       | 54.0   | -21.1  | ٤٢          |
| "     | end      | "    | 37.3                       | 80%   | -1.94  | 35.4       | 54.0   | -18.6  | ٤٢          |
| 1860  | flat     | Н    | 39.0                       | 30%   | -10.46 | 28.5       | 55.3   | -26.8  | 24.01       |
| "     | "        | "    | 34.8                       | 50%   | -6.02  | 28.8       | 55.3   | -26.5  | ٠٠          |
| "     | "        | "    | 33.5                       | 80%   | -1.94  | 31.6       | 55.3   | -23.7  | ٠٠          |
| 2170  | flat     | Н    | 36.1                       | 30%   | -10.46 | 25.6       | 55.3   | -29.7  | 25.07       |
| "     | side     | "    | 33.6                       | 50%   | -6.02  | 27.6       | 55.3   | -27.7  | "           |
| "     | end      | "    | 32.9                       | 80%   | -1.94  | 31.0       | 55.3   | -24.3  | ٠٠          |
| 2480  | -        | Н    | 34.1                       | 30%   | -10.46 | 23.6       | 55.3   | -31.7  | 25.83       |
|       |          |      | Noise Floor                |       |        |            |        | • • •  |             |
|       | -        |      | 33.2<br>Noise Floor        | 50%   | -6.02  | 27.2       | 55.3   | -28.1  |             |
| "     | -        | "    | 34.0                       | 80%   | -1.94  | 32.1       | 55.3   | -23.2  | "           |
|       |          |      | Noise Floor                |       |        |            | - 1 0  |        |             |
| 2790  | -        | Н    | 34.8                       | 30%   | -10.46 | 24.3       | 54.0   | -29.7  | 26.74       |
| "     | -        | "    | 34.5                       | 50%   | -6.02  | 28.5       | 54.0   | -25.5  | "           |
|       |          |      | Noise Floor                |       |        |            |        |        |             |
| "     | -        | "    | 34.3                       | 80%   | -1.94  | 32.4       | 54.0   | -21.6  | ٤٤          |
| 3100  | -        | н    | 35.6                       | 30%   | -10.46 | 25.1       | 54.0   | -28.9  | 28.34       |
| 0100  |          |      | Noise Floor                | 2070  | 10.10  |            | 0 110  | _0.,   | 20.01       |
| "     | -        | "    | 35.2                       | 50%   | -6.02  | 29.2       | 54.0   | -24.8  | "           |
| "     | _        | "    | Noise Floor<br><b>35 9</b> | 80%   | -1 94  | 34 0       | 54.0   | -20.0  | "           |
|       |          |      | Noise Floor                | 0070  | 1.77   | 5-1.0      | 54.0   | -20.0  |             |
|       |          |      |                            |       |        |            |        |        |             |

| DUT Tuned to transmit at 418MHz |          |      |                     |       |        |             |                |              | 1           |
|---------------------------------|----------|------|---------------------|-------|--------|-------------|----------------|--------------|-------------|
| Freq.                           | DUT      | Ant. | Corrected           | Duty  | Duty   | Calculated  | FCC            | Margin       | Cable +Ant. |
|                                 | position | Pol. | Data                | Cycle | Cycle  | Average     | Limit          |              | Factor      |
|                                 |          |      | Peak Detector       |       | Factor | Level       |                |              |             |
| MHz                             |          |      | dBuV/m              | %     | dB     | dBuV/m      | dBuV/m         | dB           | dB+dB/m     |
| 836                             | flat     | Н    | 66.6                | 30%   | -10.46 | 56.1        | 60.3           | -4.2         | 24.62       |
| "                               | "        | "    | 57.7                | 50%   | -6.02  | 51.7        | 60.3           | -8.6         | "           |
| "                               | end      | "    | 50.5                | 80%   | -1.94  | 48.6        | 60.3           | -11.7        | ٠٠          |
| 1254                            | end      | Н    | 48.3                | 30%   | -10.46 | 37.8        | 54.0           | -16.2        | 21.31       |
| "                               | "        | "    | 39.9                | 50%   | -6.02  | 33.9        | 54.0           | -20.1        | "           |
| "                               | "        | "    | 35.2                | 80%   | -1.94  | 33.3        | 54.0           | -20.7        | "           |
| 1672                            | flat     | Н    | 49.7                | 30%   | -10.46 | 39.2        | 54.0           | -14.8        | 23.23       |
| "                               | end      | "    | 41.9                | 50%   | -6.02  | 35.9        | 54.0           | -18.1        | "           |
| "                               | flat     | "    | 36.9                | 80%   | -1.94  | 35.0        | 54.0           | -19.0        | ٠٠          |
| 2090                            | flat     | Н    | 43.3                | 30%   | -10.46 | 32.8        | 60.3           | -27.5        | 24.83       |
|                                 | "        | "    | 38.8                | 50%   | -6.02  | 32.8        | 60.3           | -27.5        | ٠٠          |
| "                               | end      | "    | 35.8                | 80%   | -1.94  | 33.9        | 60.3           | -26.4        | "           |
| 2508                            | end      | н    | 37.7                | 30%   | -10.46 | 27.2        | 60.3           | -33.1        | 25.91       |
|                                 | -        | "    | 34.0                | 50%   | -6.02  | 27.2        | 60.3           | -32.0        |             |
|                                 |          |      | Noise Floor         | 5070  | 0.02   | 20.0        | 00.5           | -52.0        |             |
| "                               | -        | "    | 33.5                | 80%   | -1.94  | 31.6        | 60.3           | -28.7        | ٤٢          |
| 2026                            |          | тт   | Noise Floor         | 200/  | 10.46  | 24.0        | 60.2           | 25 4         | 27.10       |
| 2920                            | -        | п    | 33.4<br>Noise Floor | 30%   | -10.40 | 24.9        | 00.5           | -35.4        | 27.10       |
| "                               | -        | "    | 34.5                | 50%   | -6.02  | 28.5        | 60.3           | -31.8        | ٠٠          |
|                                 |          |      | Noise Floor         | 0004  | 1.0.4  |             | <b>(0, 0</b> ) | <b>0</b> 0 4 |             |
|                                 | -        |      | 34.1<br>Noise Floor | 80%   | -1.94  | 32.2        | 60.3           | -28.1        |             |
| 3344                            | -        | Н    | 40.0                | 30%   | -10.46 | 29.5        | 60.3           | -30.8        | 30.71       |
|                                 |          |      | Noise Floor         |       |        |             |                |              |             |
|                                 | -        |      | 38.2                | 50%   | -6.02  | 32.2        | 60.3           | -28.1        | 22          |
| "                               | -        | "    | 34.1                | 80%   | -1.94  | 32.2        | 60.3           | -28.1        | "           |
|                                 |          |      | Noise Floor         | 0070  |        | ~           | 00.0           | -311         |             |
| 3762                            | -        | Η    | 38.8                | 30%   | -10.46 | 28.3        | 54.0           | -25.7        | 31.51       |
| "                               | _        | "    | Noise Floor         | 50%   | -6.02  | 32.2        | 54.0           | -21 8        | "           |
|                                 |          |      | Noise Floor         | 5070  | 0.02   | 34.4        | 54.0           | -21.0        |             |
| "                               | -        | "    | 38.3                | 80%   | -1.94  | 36.4        | 54.0           | -17.6        | "           |
| 1100                            |          | т    | Noise Floor         | 200/  | 10.46  | <b>20</b> 1 | 54.0           | 25.0         | 21.40       |
| 4180                            | -        | п    | Jð.O<br>Noise Floor | 30%   | -10.40 | 20.1        | 34.0           | -23.9        | 51.42       |
| "                               | -        | "    | 39.8                | 50%   | -6.02  | 33.8        | 54.0           | -20.2        | "           |
| 64                              |          |      | Noise Floor         | 0004  | 1.0.4  | a           | 540            | 1            | 64          |
|                                 | -        |      | 38.4<br>Noise Floor | 80%   | -1.94  | 36.5        | 54.0           | -17.5        |             |
|                                 |          | 1    | 110150 1 1001       |       |        |             |                |              |             |

## Calculation of Field Strength of Tuning Pulses: [15.231(b)], 15.31(c)]

The tuning pulses are generated each time the ANHL3 is activated.

The tuning pulse sequence is: During the first 100mSec of activation two pulses of a 'coarse' tune. During the second 100mSec of activation are nine pulses of a 'fine' tune. At approximately 200mSec after activation the encoded transmission begins.

The signal levels of the tuning pulses were maximized by maximizing the signal levels of the pulse modulated transmission. The antenna height and turntable azimuth for maximum emission levels were adjusted while measuring the field strength of the pulse modulated transmissions.



A typical tuning pulse sequence is presented in this figure below.

To determine level of the tuning pulses for comparison to the limits, the following procedure was used.

### MEASUREMENT PROCEDURE:

- 1. The EUT was trained to each of the three test frequencies at 30% duty cycle of the 500Hz modulating pulse.
- 2. The HP8456A EMI Receiver was adjusted to a fundamental frequency and set at 0Hz span, with 1MHz IF Bandwidth.
- 3. The trigger level was adjusted to capture the pulses of interest.
- 4. The EUT was activated and a single trace recorded on the Receiver in order to capture the tuning pulses.
- 5. The captured trace was digitally stored. The stored data points (400 data points for a full screen trace) were then used in calculations to determine the levels of the pulses.

CALCULATION OF THE FIELD STRENGTH OF THE TUNING PULSES.[15.35(c)]

Pursuant to 47 CFR 15.35(c), the field strength is determined by averaging over ONE complete pulse train up to 100mSec, including blanking intervals.

1. First was determined the number of data points captured which represented 100mSec span of time. There are 400 data points stored for one complete trace. The scan rate of the HP8546A receiver was set to capture the tuning pulses. This rate was 250mSec sweep speed.

Therefore: Number of data points per 100mSec =( 400 pts ) \* 100mS / 250mS = 160 data points.

2. The AVERAGE field strength level within the 100mSec is then determined by dividing the SUM of the levels (uV/m) of all data points by the number of data points.

Formula 3: Average Field Intensity

Avg. F.I. = 
$$(1/160) * \sum_{n=1}^{160} (\text{Level}_n) uV/m$$

The three charts that follow are the reproduction of the coarse tune pulse traces using the number of data points representing 100mSec sweep time from the screen display of the HP8546A EMI receiver.





Coarse Tune Pulses, 310MHz fundamental

Coarse Tune Pulses, 418MHz fundamental Linear Scale



The three charts that follow are the reproduction of the fine tune pulse traces using the number of data points representing 100mSec sweep time from the screen display of the HP8546A EMI receiver.



Fine Tune Pulses, 288MHz fundamental Linear Scale







Fine Tune Pulses, 418MHz fundamental Linear Scale

The raw data used in calculating the average field intensity of the tuning pulses are presented in the Appendix of this test report.

COARSE TUNE PULSES, Calculated average over 100mSec

| TX    | SUM of the levels of all data | Number of Data points | Average | LIMIT  | MARGIN |
|-------|-------------------------------|-----------------------|---------|--------|--------|
| Freq. | points in 100mSec span        | in 100mSec span       | SUM/N   |        |        |
| (MHz) | (uV/m)                        | Ν                     | (uV/m)  | (uV/m) | (dB)   |
| 288   | 221,750                       | 160                   | 1386    | 4917   | -11.0  |
| 310   | 279,072                       | 160                   | 1744    | 5833   | -10.5  |
| 418   | 909,343                       | 160                   | 5683    | 10333  | -5.2   |
|       |                               |                       |         |        |        |

FINE TUNE PULSES, Calculated average over 100mSec

| TX    | SUM of the levels of all data | Number of Data points | Average | LIMIT  | MARGIN |
|-------|-------------------------------|-----------------------|---------|--------|--------|
| Freq. | points in 100mSec span        | in 100mSec span       | SUM/N   |        |        |
| (MHz) | (uV/m)                        | Ν                     | (uV/m)  | (uV/m) | (dB)   |
| 288   | 84,156                        | 160                   | 526     | 4917   | -19.4  |
| 310   | 130,564                       | 160                   | 816     | 5833   | -17.1  |
| 418   | 264,702                       | 160                   | 1654    | 10333  | -15.9  |
|       |                               |                       |         |        |        |

## **APPENDIX:** Tune Pulses - Data Details

COARSE TUNE Pulse; Fundamental Frequency = 288MHz

|         | Level    |         | Level    |         | Level   |         | Level |
|---------|----------|---------|----------|---------|---------|---------|-------|
| mSec    | uV/m     | mSec    | uV/m     | mSec    | uV/m    | mSec    | uV/m  |
|         |          |         |          |         |         |         |       |
| 130.625 | 47.81    | 155.625 | 44.72    | 180.625 | 1214.79 | 205.625 | 48.47 |
| 131.25  | 55.78    | 156.25  | 55.08    | 181.25  | 1192.61 | 206.25  | 45.08 |
| 131.875 | 50.18    | 156.875 | 45.81    | 181.875 | 1192.61 | 206.875 | 53.03 |
| 132.5   | 54.33    | 157.5   | 45.34    | 182.5   | 1188.50 | 207.5   | 45.71 |
| 133.125 | 48.98    | 158.125 | 52.60    | 183.125 | 1185.77 | 208.125 | 47.21 |
| 133.75  | 47.81    | 158.75  | 47.21    | 183.75  | 1176.25 | 208.75  | 54.33 |
| 134.375 | 43.70    | 159.375 | 59.84    | 184.375 | 1221.80 | 209.375 | 44.87 |
| 135     | 47.04    | 160     | 56.23    | 185     | 1185.77 | 210     | 48.19 |
| 135.625 | 54.76    | 160.625 | 50.82    | 185.625 | 1176.25 | 210.625 | 56.89 |
| 136.25  | 56.56    | 161.25  | 46.45    | 186.25  | 1170.85 | 211.25  | 50.35 |
| 136.875 | 53.33    | 161.875 | 60.95    | 186.875 | 1176.25 | 211.875 | 49.15 |
| 137.5   | 48.98    | 162.5   | 46.83    | 187.5   | 1170.85 | 212.5   | 51.23 |
| 138.125 | 62.81    | 163.125 | 44.16    | 188.125 | 1161.45 | 213.125 | 46.94 |
| 138.75  | 48.58    | 163.75  | 55.78    | 188.75  | 1161.45 | 213.75  | 53.03 |
| 139.375 | 52.91    | 164.375 | 49.66    | 189.375 | 1161.45 | 214.375 | 48.47 |
| 140     | 2113.49  | 165     | 54.64    | 190     | 1154.78 | 215     | 56.23 |
| 140.625 | 4320.16  | 165.625 | 2603.15  | 190.625 | 49.77   | 215.625 | 53.15 |
| 141.25  | 9204.50  | 166.25  | 3451.44  | 191.25  | 50.70   | 216.25  | 50.18 |
| 141.875 | 14825.18 | 166.875 | 5128.61  | 191.875 | 50.93   | 216.875 | 52.18 |
| 142.5   | 15470.35 | 167.5   | 10185.91 | 192.5   | 51.64   | 217.5   | 49.77 |
| 143.125 | 8384.94  | 168.125 | 15310.87 | 193.125 | 48.58   | 218.125 | 45.45 |
| 143.75  | 5847.90  | 168.75  | 12574.77 | 193.75  | 55.65   | 218.75  | 52.18 |
| 144.375 | 4847.30  | 169.375 | 7762.47  | 194.375 | 47.97   | 219.375 | 62.30 |
| 145     | 4216.97  | 170     | 5064.07  | 195     | 48.19   | 220     | 49.95 |
| 145.625 | 3837.07  | 170.625 | 3775.72  | 195.625 | 46.45   | 220.625 | 54.64 |
| 146.25  | 3576.84  | 171.25  | 2975.09  | 196.25  | 49.77   | 221.25  | 44.00 |
| 146.875 | 3388.44  | 171.875 | 2471.72  | 196.875 | 46.45   | 221.875 | 53.46 |
| 147.5   | 3269.64  | 172.5   | 2152.78  | 197.5   | 50.35   | 222.5   | 50.35 |
| 148.125 | 3147.75  | 173.125 | 1938.65  | 198.125 | 49.15   | 223.125 | 49.55 |
| 148.75  | 3054.92  | 173.75  | 1761.98  | 198.75  | 47.70   | 223.75  | 49.37 |
| 149.375 | 2999.16  | 174.375 | 1655.77  | 199.375 | 51.11   | 224.375 | 47.04 |
| 150     | 2917.43  | 175     | 1559.55  | 200     | 46.94   | 225     | 54.20 |
| 150.625 | 2880.71  | 175.625 | 1470.62  | 200.625 | 46.18   | 225.625 | 49.26 |
| 151.25  | 2844.46  | 176.25  | 1432.19  | 201.25  | 50.58   | 226.25  | 48.87 |
| 151.875 | 2867.48  | 176.875 | 1370.88  | 201.875 | 54.01   | 226.875 | 49.66 |
| 152.5   | 2792.54  | 177.5   | 1344.31  | 202.5   | 56.10   | 227.5   | 51.23 |
| 153.125 | 51.11    | 178.125 | 1306.17  | 203.125 | 48.87   | 228.125 | 48.08 |
| 153.75  | 48.19    | 178.75  | 1274.97  | 203.75  | 53.77   | 228.75  | 45.71 |
| 154.375 | 54.01    | 179.375 | 1251.70  | 204.375 | 48.36   | 229.375 | 49.26 |
| 155     | 47.59    | 180     | 1231.69  | 205     | 48.47   | 230     | 49.37 |

## COARSE TUNE Pulse; Fundamental Frequency = 310MHz

|         | Level |         | Level    |   |         | Level    |         | Level   |
|---------|-------|---------|----------|---|---------|----------|---------|---------|
| mSec    | uV/m  | mSec    | uV/m     |   | mSec    | uV/m     | mSec    | uV/m    |
|         |       |         |          |   |         |          |         |         |
| 90.625  | 63.97 | 115.625 | 55.46    | ĺ | 140.625 | 4275.63  | 165.625 | 3209.96 |
| 91.25   | 60.33 | 116.25  | 53.09    |   | 141.25  | 4087.90  | 166.25  | 3023.43 |
| 91.875  | 57.48 | 116.875 | 60.46    |   | 141.875 | 3958.22  | 166.875 | 2870.78 |
| 92.5    | 55.46 | 117.5   | 53.52    |   | 142.5   | 3845.92  | 167.5   | 2697.74 |
| 93.125  | 61.59 | 118.125 | 53.09    |   | 143.125 | 3736.80  | 168.125 | 2564.48 |
| 93.75   | 60.33 | 118.75  | 58.55    |   | 143.75  | 3685.53  | 168.75  | 2488.86 |
| 94.375  | 53.64 | 119.375 | 56.10    |   | 144.375 | 3626.60  | 169.375 | 2398.83 |
| 95      | 49.77 | 120     | 52.78    |   | 145     | 3556.31  | 170     | 2341.53 |
| 95.625  | 56.10 | 120.625 | 52.24    |   | 145.625 | 53.52    | 170.625 | 2314.73 |
| 96.25   | 53.21 | 121.25  | 55.08    |   | 146.25  | 58.21    | 171.25  | 2256.84 |
| 96.875  | 50.29 | 121.875 | 49.15    |   | 146.875 | 54.64    | 171.875 | 2238.72 |
| 97.5    | 54.76 | 122.5   | 55.65    |   | 147.5   | 55.65    | 172.5   | 2202.93 |
| 98.125  | 54.64 | 123.125 | 57.28    |   | 148.125 | 50.06    | 173.125 | 2172.70 |
| 98.75   | 56.36 | 123.75  | 45.03    |   | 148.75  | 54.89    | 173.75  | 2145.36 |
| 99.375  | 59.16 | 124.375 | 52.36    |   | 149.375 | 63.75    | 174.375 | 2133.04 |
| 100     | 47.32 | 125     | 54.64    |   | 150     | 59.36    | 175     | 2125.69 |
| 100.625 | 51.29 | 125.625 | 50.18    |   | 150.625 | 54.08    | 175.625 | 2118.36 |
| 101.25  | 59.50 | 126.25  | 46.72    |   | 151.25  | 48.98    | 176.25  | 2096.52 |
| 101.875 | 56.56 | 126.875 | 55.46    |   | 151.875 | 54.08    | 176.875 | 2096.52 |
| 102.5   | 52.97 | 127.5   | 55.08    |   | 152.5   | 56.10    | 177.5   | 2096.52 |
| 103.125 | 51.11 | 128.125 | 55.46    |   | 153.125 | 55.65    | 178.125 | 2091.70 |
| 103.75  | 53.21 | 128.75  | 56.23    |   | 153.75  | 52.24    | 178.75  | 2074.91 |
| 104.375 | 57.15 | 129.375 | 49.15    |   | 154.375 | 50.70    | 179.375 | 2074.91 |
| 105     | 50.99 | 130     | 51.94    |   | 155     | 51.70    | 180     | 2067.76 |
| 105.625 | 54.26 | 130.625 | 56.10    |   | 155.625 | 50.87    | 180.625 | 2063.00 |
| 106.25  | 61.94 | 131.25  | 57.48    |   | 156.25  | 56.23    | 181.25  | 2063.00 |
| 106.875 | 55.78 | 131.875 | 51.29    |   | 156.875 | 52.24    | 181.875 | 2067.76 |
| 107.5   | 55.34 | 132.5   | 2618.18  |   | 157.5   | 50.99    | 182.5   | 2058.26 |
| 108.125 | 61.94 | 133.125 | 4390.36  |   | 158.125 | 52.12    | 183.125 | 50.87   |
| 108.75  | 55.08 | 133.75  | 7647.16  |   | 158.75  | 3944.57  | 183.75  | 57.15   |
| 109.375 | 49.77 | 134.375 | 11468.33 |   | 159.375 | 5642.87  | 184.375 | 57.15   |
| 110     | 57.61 | 135     | 13427.65 |   | 160     | 9343.29  | 185     | 50.47   |
| 110.625 | 52.54 | 135.625 | 13381.35 |   | 160.625 | 13427.65 | 185.625 | 55.78   |
| 111.25  | 54.08 | 136.25  | 10092.53 |   | 161.25  | 13228.18 | 186.25  | 56.69   |
| 111.875 | 57.48 | 136.875 | 7682.45  |   | 161.875 | 10221.16 | 186.875 | 49.89   |
| 112.5   | 55.78 | 137.5   | 6397.35  |   | 162.5   | 7542.23  | 187.5   | 54.64   |
| 113.125 | 59.84 | 138.125 | 5642.87  |   | 163.125 | 5841.17  | 188.125 | 54.08   |
| 113.75  | 51.94 | 138.75  | 5110.93  |   | 163.75  | 4830.59  | 188.75  | 58.55   |
| 114.375 | 48.87 | 139.375 | 4742.42  |   | 164.375 | 4064.43  | 189.375 | 57.48   |
| 115     | 57.28 | 140     | 4502.98  |   | 165     | 3499.45  | 190     | 49.49   |

## COARSE TUNE Pulse; Fundamental Frequency = 418MHz

|         | Level |         | Level    |         | Level    |         | Level    |
|---------|-------|---------|----------|---------|----------|---------|----------|
| mSec    | uV/m  | mSec    | uV/m     | mSec    | uV/m     | mSec    | uV/m     |
|         |       |         |          |         |          |         |          |
| 100.625 | 70.96 | 125.625 | 28608.82 | 150.625 | 72.28    | 175.625 | 11168.63 |
| 101.25  | 74.82 | 126.25  | 28608.82 | 151.25  | 76.47    | 176.25  | 11233.11 |
| 101.875 | 74.64 | 126.875 | 19792.47 | 151.875 | 69.66    | 176.875 | 11168.63 |
| 102.5   | 70.96 | 127.5   | 15958.79 | 152.5   | 72.44    | 177.5   | 11142.95 |
| 103.125 | 71.53 | 128,125 | 14996.85 | 153.125 | 70.39    | 178.125 | 78.16    |
| 103.75  | 69.82 | 128.75  | 14571.36 | 153.75  | 14256.08 | 178.75  | 68.71    |
| 104.375 | 72.86 | 129.375 | 14174.25 | 154.375 | 16143.59 | 179.375 | 72.69    |
| 105     | 71.29 | 130     | 13931.57 | 155     | 18113.40 | 180     | 66.91    |
| 105.625 | 71.29 | 130.625 | 13598.78 | 155.625 | 21727.01 | 180.625 | 66.37    |
| 106.25  | 69.26 | 131.25  | 13304.54 | 156.25  | 26853.44 | 181.25  | 81.28    |
| 106.875 | 64.79 | 131.875 | 13091.82 | 156.875 | 28477.38 | 181.875 | 67.76    |
| 107.5   | 74.05 | 132.5   | 12971.79 | 157.5   | 28477.38 | 182.5   | 71.70    |
| 108.125 | 76.03 | 133.125 | 12823.31 | 158.125 | 27133.14 | 183.125 | 85.41    |
| 108.75  | 74.64 | 133.75  | 12691.12 | 158.75  | 23741.05 | 183.75  | 67.07    |
| 109.375 | 70.23 | 134.375 | 12661.93 | 159.375 | 20796.97 | 184.375 | 71.53    |
| 110     | 71.70 | 135     | 12516.99 | 160     | 18302.06 | 185     | 72.28    |
| 110.625 | 80.26 | 135.625 | 12488.20 | 160.625 | 16846.12 | 185.625 | 77.09    |
| 111.25  | 68.87 | 136.25  | 12459.48 | 161.25  | 15363.85 | 186.25  | 75.42    |
| 111.875 | 74.22 | 136.875 | 12359.47 | 161.875 | 14521.12 | 186.875 | 76.65    |
| 112.5   | 72.11 | 137.5   | 12316.86 | 162.5   | 13819.74 | 187.5   | 66.68    |
| 113.125 | 73.03 | 138.125 | 12288.53 | 163.125 | 13335.21 | 188.125 | 62.59    |
| 113.75  | 67.22 | 138.75  | 72.11    | 163.75  | 12867.67 | 188.75  | 64.42    |
| 114.375 | 69.42 | 139.375 | 97.72    | 164.375 | 12560.30 | 189.375 | 71.29    |
| 115     | 69.26 | 140     | 73.28    | 165     | 12288.53 | 190     | 67.76    |
| 115.625 | 92.36 | 140.625 | 71.29    | 165.625 | 12189.90 | 190.625 | 74.47    |
| 116.25  | 73.62 | 141.25  | 72.69    | 166.25  | 11981.19 | 191.25  | 74.47    |
| 116.875 | 68.55 | 141.875 | 78.34    | 166.875 | 11912.42 | 191.875 | 70.96    |
| 117.5   | 85.90 | 142.5   | 75.86    | 167.5   | 11789.63 | 192.5   | 73.03    |
| 118.125 | 75.25 | 143.125 | 70.79    | 168.125 | 11721.95 | 193.125 | 65.84    |
| 118.75  | 67.61 | 143.75  | 77.54    | 168.75  | 11694.99 | 193.75  | 77.27    |
| 119.375 | 73.03 | 144.375 | 72.69    | 169.375 | 11574.44 | 194.375 | 76.47    |
| 120     | 70.23 | 145     | 73.62    | 170     | 11574.44 | 195     | 83.18    |
| 120.625 | 70.55 | 145.625 | 70.55    | 170.625 | 11481.54 | 195.625 | 73.88    |
| 121.25  | 79.98 | 146.25  | 75.08    | 171.25  | 11508.00 | 196.25  | 81.75    |
| 121.875 | 77.71 | 146.875 | 74.22    | 171.875 | 11415.63 | 196.875 | 97.50    |
| 122.5   | 83.85 | 147.5   | 70.55    | 172.5   | 11415.63 | 197.5   | 74.64    |
| 123.125 | 73.28 | 148.125 | 74.47    | 173.125 | 11297.96 | 198.125 | 68.00    |
| 123.75  | 67.76 | 148.75  | 71.70    | 173.75  | 11324.00 | 198.75  | 70.39    |
| 124.375 | 83.18 | 149.375 | 78.52    | 174.375 | 11233.11 | 199.375 | 75.25    |
| 125     | 88.00 | 150     | 77.27    | 175     | 11297.96 | 200     | 64.57    |

## FINE TUNE Pulses; Fundamental Frequency = 288MHz

|         | Level   |         | Level    |         | Level   |         | Level   |
|---------|---------|---------|----------|---------|---------|---------|---------|
| mSec    | uV/m    | mSec    | uV/m     | mSec    | uV/m    | mSec    | uV/m    |
|         |         |         |          |         |         |         |         |
| 90.625  | 47.97   | 115.625 | 48.47    | 140.625 | 47.97   | 165.625 | 54.76   |
| 91.25   | 49.15   | 116.25  | 55.78    | 141.25  | 62.30   | 166.25  | 66.22   |
| 91.875  | 44.16   | 116.875 | 49.26    | 141.875 | 56.23   | 166.875 | 54.76   |
| 92.5    | 56.43   | 117.5   | 45.34    | 142.5   | 47.42   | 167.5   | 48.98   |
| 93.125  | 48.98   | 118.125 | 9885.53  | 143.125 | 47.70   | 168.125 | 47.42   |
| 93.75   | 49.15   | 118.75  | 9828.79  | 143.75  | 48.87   | 168.75  | 56.89   |
| 94.375  | 49.15   | 119.375 | 52.91    | 144.375 | 46.94   | 169.375 | 44.98   |
| 95      | 47.21   | 120     | 52.91    | 145     | 51.64   | 170     | 50.18   |
| 95.625  | 46.94   | 120.625 | 49.77    | 145.625 | 49.55   | 170.625 | 49.55   |
| 96.25   | 4135.23 | 121.25  | 53.58    | 146.25  | 51.64   | 171.25  | 54.20   |
| 96.875  | 4135.23 | 121.875 | 55.34    | 146.875 | 47.59   | 171.875 | 57.94   |
| 97.5    | 51.11   | 122.5   | 49.55    | 147.5   | 46.94   | 172.5   | 3315.13 |
| 98.125  | 44.98   | 123.125 | 48.75    | 148.125 | 44.36   | 173.125 | 2988.82 |
| 98.75   | 43.15   | 123.75  | 49.77    | 148.75  | 51.11   | 173.75  | 51.23   |
| 99.375  | 57.74   | 124.375 | 48.75    | 149.375 | 47.32   | 174.375 | 53.89   |
| 100     | 55.98   | 125     | 49.37    | 150     | 50.47   | 175     | 51.64   |
| 100.625 | 48.08   | 125.625 | 48.36    | 150.625 | 46.56   | 175.625 | 53.03   |
| 101.25  | 53.89   | 126.25  | 47.42    | 151.25  | 5223.96 | 176.25  | 47.32   |
| 101.875 | 54.01   | 126.875 | 49.26    | 151.875 | 48.36   | 176.875 | 49.95   |
| 102.5   | 61.94   | 127.5   | 53.33    | 152.5   | 50.18   | 177.5   | 44.72   |
| 103.125 | 44.36   | 128.125 | 47.42    | 153.125 | 46.08   | 178.125 | 54.89   |
| 103.75  | 52.06   | 128.75  | 51.76    | 153.75  | 45.34   | 178.75  | 59.36   |
| 104.375 | 56.43   | 129.375 | 12189.90 | 154.375 | 47.97   | 179.375 | 46.45   |
| 105     | 50.82   | 130     | 47.21    | 155     | 47.32   | 180     | 43.80   |
| 105.625 | 52.18   | 130.625 | 48.58    | 155.625 | 48.19   | 180.625 | 50.35   |
| 106.25  | 45.81   | 131.25  | 46.08    | 156.25  | 48.98   | 181.25  | 55.21   |
| 106.875 | 51.11   | 131.875 | 55.98    | 156.875 | 49.95   | 181.875 | 57.61   |
| 107.5   | 6553.90 | 132.5   | 54.76    | 157.5   | 49.95   | 182.5   | 51.46   |
| 108.125 | 49.77   | 133.125 | 46.18    | 158.125 | 46.08   | 183.125 | 48.98   |
| 108.75  | 45.08   | 133.75  | 45.60    | 158.75  | 53.58   | 183.75  | 1111.73 |
| 109.375 | 55.08   | 134.375 | 50.58    | 159.375 | 48.47   | 184.375 | 2747.89 |
| 110     | 46.45   | 135     | 55.21    | 160     | 48.75   | 185     | 53.77   |
| 110.625 | 51.11   | 135.625 | 51.76    | 160.625 | 45.24   | 185.625 | 52.48   |
| 111.25  | 49.26   | 136.25  | 55.98    | 161.25  | 49.77   | 186.25  | 54.89   |
| 111.875 | 50.18   | 136.875 | 54.64    | 161.875 | 3767.04 | 186.875 | 50.58   |
| 112.5   | 49.15   | 137.5   | 52.30    | 162.5   | 53.77   | 187.5   | 45.81   |
| 113.125 | 49.55   | 138.125 | 45.97    | 163.125 | 48.19   | 188.125 | 44.72   |
| 113.75  | 44.00   | 138.75  | 50.35    | 163.75  | 51.46   | 188.75  | 47.42   |
| 114.375 | 48.47   | 139.375 | 48.75    | 164.375 | 45.97   | 189.375 | 56.10   |
| 115     | 46.45   | 140     | 10876.77 | 165     | 50.47   | 190     | 51.76   |

## FINE TUNE Pulses; Fundamental Frequency = 310MHz

|         | Level   |         | Level    |         | Level    |         | Level    |
|---------|---------|---------|----------|---------|----------|---------|----------|
| mSec    | uV/m    | mSec    | uV/m     | mSec    | uV/m     | mSec    | uV/m     |
|         | 0.07111 |         | ,        |         | 0.07.00  |         | 0.17,111 |
| 90.625  | 68.00   | 115.625 | 53.95    | 140.625 | 60.33    | 165.625 | 7169.68  |
| 91.25   | 51.94   | 116.25  | 53.39    | 141.25  | 58.68    | 166.25  | 51.82    |
| 91.875  | 56.10   | 116.875 | 60.95    | 141.875 | 49.26    | 166.875 | 51.70    |
| 92.5    | 56.36   | 117.5   | 53.09    | 142.5   | 13381.35 | 167.5   | 48.08    |
| 93.125  | 52.54   | 118.125 | 56.10    | 143.125 | 13335.21 | 168.125 | 57.02    |
| 93.75   | 53.21   | 118.75  | 50.47    | 143.75  | 62.59    | 168.75  | 61.94    |
| 94.375  | 50.47   | 119.375 | 57.74    | 144.375 | 51.52    | 169.375 | 53.21    |
| 95      | 52.24   | 120     | 9418.90  | 145     | 59.84    | 170     | 62.09    |
| 95.625  | 55.46   | 120.625 | 74.90    | 145.625 | 63.24    | 170.625 | 58.08    |
| 96.25   | 53.39   | 121.25  | 55.78    | 146.25  | 48.08    | 171.25  | 51.82    |
| 96.875  | 56.10   | 121.875 | 53.21    | 146.875 | 52.66    | 171.875 | 51.94    |
| 97.5    | 5345.64 | 122.5   | 49.49    | 147.5   | 59.84    | 172.5   | 49.37    |
| 98.125  | 51.52   | 123.125 | 61.80    | 148.125 | 60.46    | 173.125 | 56.82    |
| 98.75   | 52.54   | 123.75  | 56.36    | 148.75  | 51.11    | 173.75  | 58.41    |
| 99.375  | 54.26   | 124.375 | 50.06    | 149.375 | 53.21    | 174.375 | 63.46    |
| 100     | 53.52   | 125     | 53.39    | 150     | 55.46    | 175     | 56.36    |
| 100.625 | 57.15   | 125.625 | 54.26    | 150.625 | 55.21    | 175.625 | 49.89    |
| 101.25  | 60.46   | 126.25  | 55.91    | 151.25  | 55.78    | 176.25  | 47.59    |
| 101.875 | 60.12   | 126.875 | 49.89    | 151.875 | 57.02    | 176.875 | 6463.98  |
| 102.5   | 55.65   | 127.5   | 54.26    | 152.5   | 66.37    | 177.5   | 52.78    |
| 103.125 | 61.94   | 128.125 | 53.21    | 153.125 | 50.06    | 178.125 | 54.39    |
| 103.75  | 51.29   | 128.75  | 53.21    | 153.75  | 11898.71 | 178.75  | 56.23    |
| 104.375 | 52.12   | 129.375 | 58.55    | 154.375 | 9806.18  | 179.375 | 57.02    |
| 105     | 57.48   | 130     | 58.41    | 155     | 55.78    | 180     | 60.60    |
| 105.625 | 56.56   | 130.625 | 50.99    | 155.625 | 53.83    | 180.625 | 48.98    |
| 106.25  | 52.54   | 131.25  | 12022.64 | 156.25  | 52.36    | 181.25  | 54.89    |
| 106.875 | 56.36   | 131.875 | 11926.14 | 156.875 | 57.15    | 181.875 | 51.52    |
| 107.5   | 52.66   | 132.5   | 61.80    | 157.5   | 49.89    | 182.5   | 54.76    |
| 108.125 | 52.24   | 133.125 | 47.42    | 158.125 | 56.56    | 183.125 | 57.02    |
| 108.75  | 7095.78 | 133.75  | 58.88    | 158.75  | 58.21    | 183.75  | 59.36    |
| 109.375 | 70.63   | 134.375 | 60.33    | 159.375 | 51.40    | 184.375 | 51.52    |
| 110     | 52.78   | 135     | 49.37    | 160     | 57.94    | 185     | 53.21    |
| 110.625 | 52.97   | 135.625 | 57.28    | 160.625 | 54.26    | 185.625 | 67.30    |
| 111.25  | 49.66   | 136.25  | 55.08    | 161.25  | 63.24    | 186.25  | 51.94    |
| 111.875 | 54.64   | 136.875 | 55.91    | 161.875 | 56.10    | 186.875 | 54.39    |
| 112.5   | 51.52   | 137.5   | 57.74    | 162.5   | 51.52    | 187.5   | 58.68    |
| 113.125 | 45.76   | 138.125 | 48.08    | 163.125 | 54.64    | 188.125 | 5794.29  |
| 113.75  | 50.87   | 138.75  | 60.60    | 163.75  | 52.66    | 188.75  | 71.53    |
| 114.375 | 49.49   | 139.375 | 56.56    | 164.375 | 54.89    | 189.375 | 53.83    |
| 115     | 60.12   | 140     | 61.59    | 165     | 8759.92  | 190     | 52.36    |

## FINE TUNE Pulses; Fundamental Frequency = 418MHz

|         | Level    |         | Level    |  |         | Level    |         | Level    |
|---------|----------|---------|----------|--|---------|----------|---------|----------|
| mSec    | uV/m     | mSec    | uV/m     |  | mSec    | uV/m     | mSec    | uV/m     |
|         |          |         |          |  |         |          |         |          |
| 100.625 | 74.05    | 125.625 | 68.87    |  | 150.625 | 70.23    | 175.625 | 68.00    |
| 101.25  | 28477.38 | 126.25  | 69.26    |  | 151.25  | 76.65    | 176.25  | 90.89    |
| 101.875 | 89.43    | 126.875 | 70.79    |  | 151.875 | 78.34    | 176.875 | 68.16    |
| 102.5   | 76.91    | 127.5   | 82.70    |  | 152.5   | 65.61    | 177.5   | 71.70    |
| 103.125 | 73.45    | 128,125 | 26332.98 |  | 153.125 | 72.69    | 178.125 | 71.70    |
| 103.75  | 83.85    | 128.75  | 63.39    |  | 153.75  | 71.70    | 178.75  | 71.12    |
| 104.375 | 76.30    | 129.375 | 78.34    |  | 154.375 | 22855.99 | 179.375 | 67.07    |
| 105     | 70.55    | 130     | 64.42    |  | 155     | 22908.68 | 180     | 74.82    |
| 105.625 | 79.34    | 130.625 | 71.29    |  | 155.625 | 72.11    | 180.625 | 78.70    |
| 106.25  | 70.39    | 131.25  | 73.03    |  | 156.25  | 75.68    | 181.25  | 18492.69 |
| 106.875 | 81.28    | 131.875 | 66.37    |  | 156.875 | 72.11    | 181.875 | 68.16    |
| 107.5   | 76.30    | 132.5   | 76.91    |  | 157.5   | 76.30    | 182.5   | 69.26    |
| 108.125 | 74.82    | 133.125 | 80.91    |  | 158.125 | 79.62    | 183.125 | 68.55    |
| 108.75  | 66.68    | 133.75  | 62.88    |  | 158.75  | 72.28    | 183.75  | 73.28    |
| 109.375 | 72.44    | 134.375 | 70.55    |  | 159.375 | 78.52    | 184.375 | 67.61    |
| 110     | 69.98    | 135     | 69.66    |  | 160     | 69.42    | 185     | 74.64    |
| 110.625 | 71.29    | 135.625 | 70.55    |  | 160.625 | 70.23    | 185.625 | 71.53    |
| 111.25  | 71.12    | 136.25  | 68.87    |  | 161.25  | 68.31    | 186.25  | 81.10    |
| 111.875 | 72.11    | 136.875 | 73.88    |  | 161.875 | 75.68    | 186.875 | 72.11    |
| 112.5   | 63.75    | 137.5   | 67.61    |  | 162.5   | 87.50    | 187.5   | 71.70    |
| 113.125 | 65.61    | 138.125 | 77.71    |  | 163.125 | 85.41    | 188.125 | 75.08    |
| 113.75  | 72.44    | 138.75  | 75.86    |  | 163.75  | 65.84    | 188.75  | 69.26    |
| 114.375 | 27637.58 | 139.375 | 67.61    |  | 164.375 | 69.98    | 189.375 | 92.79    |
| 115     | 27861.21 | 140     | 72.44    |  | 165     | 75.08    | 190     | 73.62    |
| 115.625 | 67.61    | 140.625 | 68.55    |  | 165.625 | 71.29    | 190.625 | 76.65    |
| 116.25  | 64.57    | 141.25  | 25032.26 |  | 166.25  | 76.47    | 191.25  | 70.23    |
| 116.875 | 84.33    | 141.875 | 67.07    |  | 166.875 | 65.99    | 191.875 | 70.23    |
| 117.5   | 79.80    | 142.5   | 71.53    |  | 167.5   | 68.55    | 192.5   | 68.87    |
| 118.125 | 66.68    | 143.125 | 75.42    |  | 168.125 | 20230.19 | 193.125 | 72.44    |
| 118.75  | 87.10    | 143.75  | 73.45    |  | 168.75  | 76.30    | 193.75  | 94.62    |
| 119.375 | 78.16    | 144.375 | 70.39    |  | 169.375 | 75.86    | 194.375 | 16923.88 |
| 120     | 66.68    | 145     | 64.79    |  | 170     | 85.70    | 195     | 17021.59 |
| 120.625 | 72.86    | 145.625 | 66.91    |  | 170.625 | 62.37    | 195.625 | 73.03    |
| 121.25  | 73.28    | 146.25  | 74.22    |  | 171.25  | 82.99    | 196.25  | 73.88    |
| 121.875 | 67.45    | 146.875 | 70.96    |  | 171.875 | 90.16    | 196.875 | 70.96    |
| 122.5   | 66.68    | 147.5   | 73.28    |  | 172.5   | 82.70    | 197.5   | 76.65    |
| 123.125 | 74.05    | 148.125 | 73.62    |  | 173.125 | 64.94    | 198.125 | 75.25    |
| 123.75  | 64.05    | 148.75  | 80.26    |  | 173.75  | 74.47    | 198.75  | 73.88    |
| 124.375 | 69.66    | 149.375 | 67.76    |  | 174.375 | 69.10    | 199.375 | 73.88    |
| 125     | 82.99    | 150     | 73.45    |  | 175     | 76.91    | 200     | 79.80    |