

EMC Technologies (NZ) Ltd 47 Mackelvie St, Newton Auckland 1021 New Zealand Phone 09 360 0862 Fax 09 360 0861 E-Mail Address: aucklab@emctech.co.nz Web Site: www.emctech.co.nz

TEST REPORT

Tait TP9860 Portable Transceiver with WiFi / Bluetooth Module

tested to the

Code of Federal Regulations (CFR) 47

Part 15 – Radio Frequency Devices, Subpart C – Intentional Radiators

Section 15.247 – Operation in the band 2400 – 2483.5 MHz

for

Tait International Ltd

This Test Report is issued with the authority of:

Andrew Cutler - General Manager

All tests reported herein have been performed in accordance with the laboratory's scope of accreditation

Page 1 of 43

Test Report No 221004.2 This report may not be reproduced except in full.

Table of Contents

1.	STATEMENT OF COMPLIANCE	3
2.	RESULTS SUMMARY	3
3.	CLIENT INFORMATION	4
4.	DESCRIPTION OF TEST SAMPLE	4
5.	ATTESTATION	5
6.	TEST RESULTS	6
8.	TEST EQUIPMENT USED	34
9.	ACCREDITATIONS	34
10.	PHOTOGRAPHS	35

Global Product Certification

1. STATEMENT OF COMPLIANCE

The **Tait TP9860 Portable Transceiver with WiFi / Bluetooth Module** <u>complies with</u> FCC Part 15 Section 15.247 as an Intentional Radiator when the methods as described in ANSI C63.10 - 2013 and those defined in FCC KDB558074 D01 V04 are applied based on FCC KBD 996369 D04 Module Integration Guide.

2. RESULTS SUMMARY

The results of testing carried out in December 2022 and January 2023 are detailed below.

Clause	Parameter	Result
15.103	Exempted devices.	Device is not exempt.
15.201	Equipment authorisation requirement	FCC compliant modular transmitter utilised that is co-located in a Land Mobile Portable Transceiver.
15.203	Antenna requirement	Complies. Internal antenna utilised.
15.204	External PA and antenna modifications	Complies.
15.205	Restricted bands of operation	Complies.
15.207	Conducted limits	Not applicable. Internal battery powered device.
15.209	Radiated emission limits	See 15.247(d)
15.247		UIUGICS
(a)(2)	Minimum bandwidth	Not tested
(b)(3)	Peak output power	Complies.
(b)(4)	Antenna gain less than 6 dBi	Complies.
(c)	Operation with directional antenna	Not applicable
(d)	Out of band emissions	Complies
(e)	Power spectral density	Not tested
(f)	Hybrid systems	Not applicable
(g)	Use of all channels	Not applicable
(h)	Intelligent frequency hopping	Not applicable
(i)	Radio frequency hazards	Not tested SAR testing will be required.

3. CLIENT INFORMATION

Company Name	Tait International Limited
Address	245 Wooldridge Road Harewood
City	Christchurch 8051
Country	New Zealand
Contact	Alan Page

4. DESCRIPTION OF TEST SAMPLE

Brand Name	Tait
Sample Model Number	TP9860N0EC-T
Hardware ID	TPHN0A
Product Code	T03-00071-NBAC
Product	Portable Transceiver with WiFi / Bluetooth module
Manufacturer	Tait International Ltd
Country of Origin	New Zealand
Portable Serial Number	26648720, 26648721
Module Manufacturer	Texas Instruments
Module FCC ID	WL18MODGB
Portable FCC ID	CASTPHN0A

The device that was tested is a portable transceiver that can operate on various VHF and UHF land mobile bands which has had a WiFi / Bluetooth module that has been installed in-accordance with the module manufacturer's installation instructions.

The module operates in the 2400.0 - 2483.5 MHz band with verification measurements being made to ensure continued compliance of the module and the portable transceiver.

It is not possible for the WiFi and Bluetooth to operate simultaneously.

Co-location measurements were carried out with either the WiFi or Bluetooth were operating when the Portable Transceiver was operating continuously on selected VHF and UHF bands.

Testing carried out when the WiFi conducted power was set to +16 dBm.

5. ATTESTATION

This report describes the tests and measurements performed for the purpose of determining compliance with the specification with the following conditions:

The client selected the test sample.

The report relates only to the sample tested.

This report contains no erasures.

This report contains no corrections

Measurement uncertainties with statistical confidence intervals of 95% are shown below test results. Both Class A and Class B uncertainties have been accounted for, as well as influence uncertainties where appropriate.

All compliance statements have been made with respect of the specification limit with no reference to the measurement uncertainty.

All testing was carried out as per the standard in the worst-case configuration with no deviations being applied.

In addition this equipment has been tested in accordance with the requirements contained in the appropriate Commission regulations.

To the best of my knowledge, these tests were performed using measurement procedures that are consistent with industry or Commission standards and demonstrate that the equipment complies with the appropriate standards.

I further certify that the necessary measurements were made by EMC Technologies NZ Ltd, 47 MacKelvie Street, Grey Lynn, Auckland, New Zealand.

Andrew Cutler General Manager EMC Technologies NZ Ltd

Report Revision Table

Version	Version Change Made					
221004.2	Draft version	16/01/2023				
221004.2	Draft version finalised with final version issued	16/02/2023				

6. TEST RESULTS

Standard

The sample was tested in accordance with 47 CFR Part 15 Subpart C Section 15.247.

Methods and Procedures

The following measurement methods and procedures have been applied:

ANSI C63.10 - 2013

FCC KDB558074 D01 V004

Section 15.201: Equipment authorisation requirement

Certification of the WiFi / Bluetooth module, as detailed in Subpart J of Part 2, is not required for this device as it is a FCC certified module transmitter, FCC ID: WL18MODGB, that has been installed in accordance with the module manufacturer's installation instructions.

nologies

Section 15.203: Antenna requirement

The WiFi / Bluetooth module has an internal antenna

Result: Complies.

Section 15.204: External radio frequency power amplifiers and antenna modifications

An external power amplifier is NOT provided for use with this transmitter.

Suitable warnings will be placed in the user manual regarding the modification of the device.

Result: Complies.

Section 15.205: Restricted bands of operation

The module operating in this device transmit on various frequencies in the 2.4 GHz band.

Section 15.247 allows this between 2400.0 – 2483.5 MHz

Result: Complies.

Section 15.107: Conducted limits

Device is battery powered and it is not possible to directly or indirectly power it from the public AC mains supply.

Result: Not applicable

Section 15.209 – Radiated emissions

All radiated emission testing is covered in Section 15.247(d) – Out of band emissions

Section 15.247 (b)(3) – Peak Power Output

Testing for peak power output was carried out using a test sample that was supplied with an antenna output port that was connected to the WiFi / Bluetooth module using test software supplied by the client.

For the WiFi testing test software had to be used rather than the Standard User Mode as programmed in the transceiver firmware as the fireware cannot handle test modes.

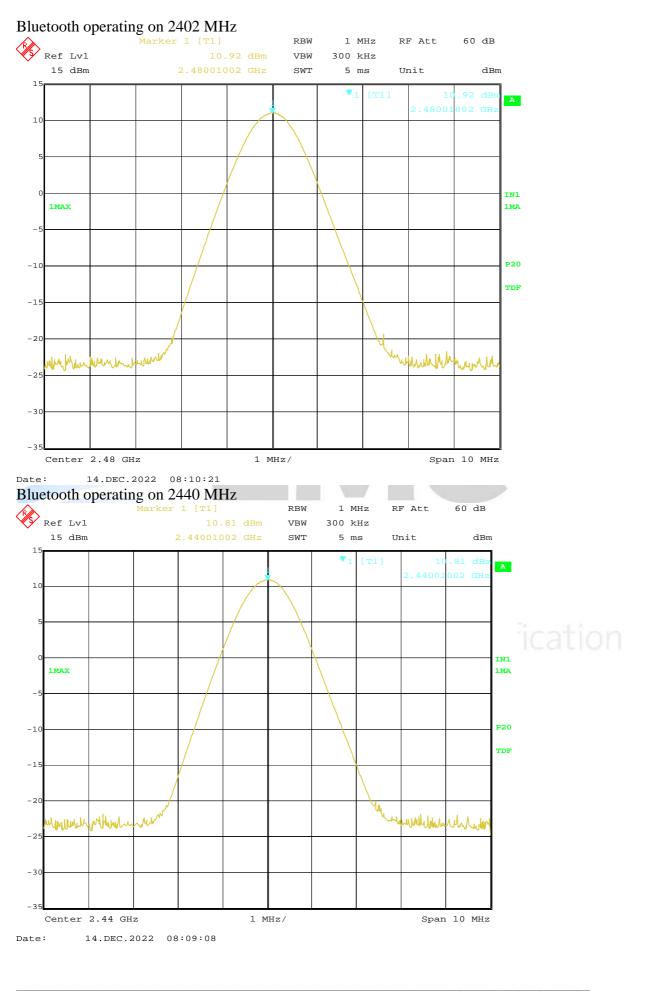
Testing was carried out at the level programmed by the manufacturer in Standard User Mode which has been declared to be +16 dBm.

No changes were made to the supplied software except for defining the transmission frequency, modulation type (DSSS, CCK, OFDM or MCS) and bandwidth of operation (20 MHz or 40 MHz).

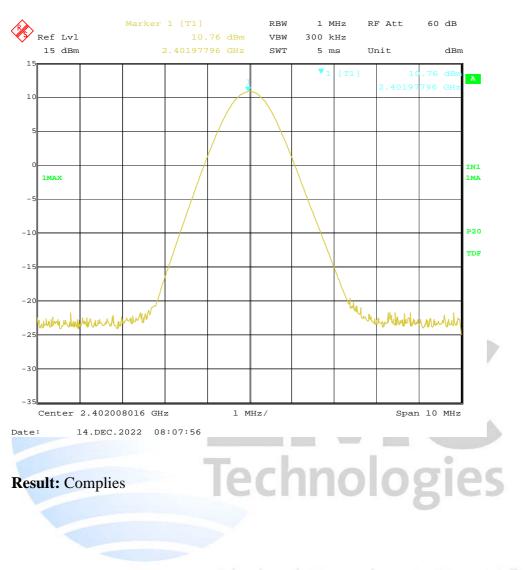
In WiFi mode the module was operated at +16 dBm.

Testing was carried out using a spectrum analyser that was attached to the device using a power attenuator and short length of sucoflex cable.

All measurements were made using peak detector with a 1 MHz that was operating in peak hold mode.


Bluetooth:

Bluetooth mode testing was carried out when operating in Constant Transmit Mode on 2402, 2440 and 2480 MHz with the following results recorded


Frequency		Limit
(MHz)	(dBm)	(dBm)
2402.000	+10.8	+30.0
2440.000	+10.9	+30.0
2480.000	+10.9	+30.0

A conducted power limit of 1 watt (+30 dBm) has been applied

Result: Complies

Test Report No 221004.2 This report may not be reproduced except in full.

Bluetooth operating on 2480 MHz

Section 15.247 (b)(3) – Peak Power Output (continued)

WiFi (20 MHz):

The module was tested when it was configured in 20 MHz channel bandwidth mode.

The spectrum analyser was configured to measure the band power.

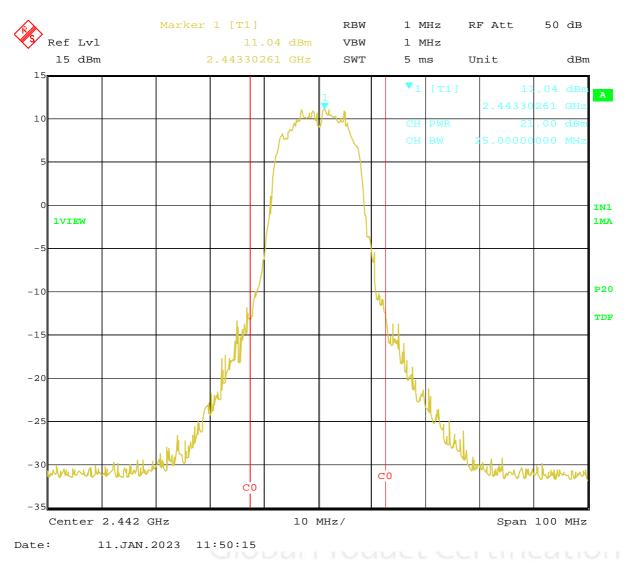
The module can operate using a number of modulation types.

All modulation types were tested when operating on 2440 MHz which roughly in the centre of the 2400 - 2483.5 MHz band when the software was configured to +16 dBm.

Once this was completed additional measurements were made on 2412 MHz and 2472 MHz using the worst case modulation mode.

20 MHz bandwidth on 2442 MHz

Modulation Type	Level	Limit
	(dBm)	(dBm)
1 MHz DSSS	+15.5	+30.0
2 MHz DSSS	+15.7	+30.0
5CCK	+17.3	+30.0
11CCK	+18.8	+30.0
60FDM	+20.3	+30.0
90FDM	+20.3	+30.0
12OFDM	+20.7	+30.0
18OFDM	+20.7	+30.0
24OFDM	+21.0	+30.0
36OFDM	+21.0	+30.0
480FDM	+21.0	+30.0
54OFDM	+21.0	+30.0
	UIUL	al FIUUL
MCS0	+20.4	+30.0
MCS1	+20.8	+30.0
MCS2	+20.7	+30.0
MCS3	+21.0	+30.0
MCS4	+20.8	+30.0
MCS5	+20.7	+30.0
MCS6	+20.8	+30.0
MCS7	+20.0	+30.0


$20\ \text{MHz}$ on $2412\ \text{MHz}$ and $2472\ \text{MHz}$

Modulation Type	2412 MHz Level (dBm)	2472 MHz Level (dBm)	Limit (dBm)
2 MHz DSSS	+15.9	+16.5	+30.0
11CCK	+19.1	+19.5	+30.0
540FDM	+21.0	+21.2	+30.0
MCS3	+21.1	+21.6	+30.0

Test Report No 221004.2

Plot of power level measured

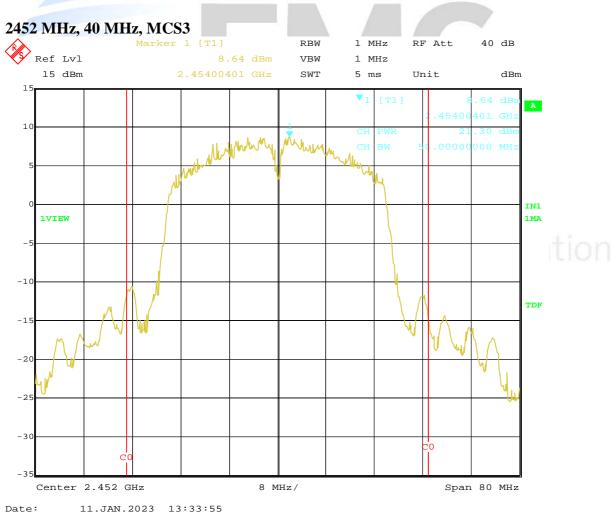
2440 MHz, 20 MHz, MCS3

Result: Complies

Section 15.247 (b)(3) – Peak Power Output (continued)

WiFi (40 MHz):

The module was also tested when configured in 40 MHz channel bandwidth mode.


The spectrum analyser was configured to measure the band power.

Using the worst case 20 MHz modulation modes measurements were made when the module was operating on a centre frequency of 2452 MHz when the software was set to +16 dBm

40 MHz bandwidth on 2452 MHz

Modulation Type	Level (dBm)	Limit (dBm)
2 MHz DSSS	+12.8	+30.0
11CCK	+16.0	+30.0
540FDM	+19.0	+30.0
MCS3	+21.3	+30.0

Plot of power level measured

Result: Complies

Section 15.247 (b)(4) – Antenna gain not exceeding 6 dBi (WiFi)

Radiated power measurements were made at the test site to ensure that the internal antenna fitted to the WiFi module does not exceed 6 dBi.

Measurements were made using each of the modulation types which gave the highest conducted power measurements in the laboratory.

20 MHz Channel Bandwidth

540FDM							
Frequency	Level	Antenna	Coax	Path Loss	EIRP	Antenna	Limit
MHz	dBm	dBi	dB	dB	dBm		dBm
2412.0	-29.2	9.4	7.0	49.6	18.0	Vertical	30.0
2442.0	-32.1	9.7	7.0	49.7	14.9	Vertical	30.0
2472.0	-33.8	9.9	7.0	49.9	13.2	Vertical	30.0

MCS3

MCDJ							
Frequency MHz	Level dBm	Antenna dBi	Coax dB	Path Loss dB	EIRP dBm	Antenna	Limit dBm
2412.0	-28.2	9.4	7.0	49.6	19.0	Vertical	30.0
2442.0	-31.8	9.7	7.0	49.7	15.2	Vertical	30.0
						and the second s	
2472.0	-33.8	9.9	7.0	49.9	13.2	Vertical	30.0
ANDER		le	chr	1010	ØIE	aς	
2MDSS					Contraction of the local division of the loc		

2MDSS

Frequency MHz	Level dBm	Antenna dBi	Coax dB	Path Loss dB	EIRP dBm	Antenna	Limit dBm
2412.0	-33.5	9.4	7.0	49.6	13.7	Vertical	30.0
					0	10 10 George	
2442.0	-36.9	9.7	7.0	49.7	10.1	Vertical	30.0
		CIO.	Dali	rouur		CHI ICO	
2472.0	-38.7	9.9	7.0	49.9	8.3	Vertical	30.0

11CCK

Frequency	Level	Antenna	Coax	Path Loss	EIRP	Antenna	Limit
MHz	dBm	dBi	dB	dB	dBm		dBm
2412.0	-30.5	9.4	7.0	49.6	16.7	Vertical	30.0
2442.0	-33.8	9.7	7.0	49.7	13.2	Vertical	30.0
2472.0	-35.8	9.9	7.0	49.9	11.4	Vertical	30.0

Section 15.247 (b)(4) – Antenna gain not exceeding 6 dBi (WiFi) continued

MCS3 Frequency Antenna Coax Path Loss EIRP Antenna Limit Level MHz dBm dBm dBi dB dB dBm 2422.0 -28.5 9.4 7.0 49.7 18.8 Vertical 30.0 7.0 49.7 Vertical 30.0 2452.0 -31.5 9.7 15.6 -32.5 9.9 7.0 49.8 14.5 Vertical 2472.0 30.0

40 MHz Channel Bandwidth

The transmitter EIRP (dBm) was calculated using the following

Channel power on spectrum analyser (dBm) – Receive Antenna gain (dBi) + Coax loss between the receive antenna and the spectrum analyser (dB) – Path loss between the transmitter and the receive antenna over a distance of 3 metres (dB)

These factors were determined as follows:

Antenna gain	dBi:	Antenna calibration certificate
Coax loss	dB:	Laboratory bench measurements
Path loss	dB:	Formula = $32.45 + 20 * \log (f MHz) + 20 * \log (d km)$

The antenna gain can therefore be determined to be:

Channel BW	Modulation	1 0	Conducted	Radiated	Gain/Loss
		(MHz)	(dBm)	(dBm)	(dB)
20 MHz	540FDM	2412	21.0	18.0	-3.0
		2442	21.0	14.9	-6.1
		2472	21.2	13.2	-8.0
20 MHz 🥌	MCS3	2412	21.1	19.0	-2.1
	6	2442	21.0	15.2	-5.8
		2472	21.6	13.2	-8.4
20 MHz	2MDSS	2412	15.9	13.7	-2.2
		2442	15.7	10.1	-5.6
		2472	16.5	8.3	-8.2
20 MHz	11CCK	2412	19.1	16.7	-2.4
		2442	18.8	13.2	-5.6
		2472	19.5	11.4	-8.1
40 MHz	MCS3	2452	21.3	15.6	-5.7

It can be seen that the antenna gain is less than +6 dBi

Result: Complies

Section 15.247 (b)(4) – Antenna gain not exceeding 6 dBi (Bluetooth)

Radiated power measurements were made at the test site to ensure that the internal antenna fitted to the Bluetooth module does not exceed 6 dBi.

Measurements were made using a measurements receiver with a peak detector with a 1 MHz bandwidth using a measurement distance of 3 metres.

Frequency MHz	Level dBuV/m	EIRP dBm	Limit dBm	Antenna	Margin dBm	Detector	RBW
2402.000	103.5	8.3	30.0	Vertical	21.7	Peak	1 MHz
2402.000	96.7	1.5	30.0	Horizontal	28.5	Peak	1 MHz
2440.000	98.8	3.6	30.0	Vertical	26.4	Peak	1 MHz
2480.000	96.1	0.9	30.0	Vertical	29.1	Peak	1 MHz

The EIRP level was calculated using the formula:

Field strength (V/m) = (square root (30 * power (watts)) / distance (metres)

The antenna gain can therefore be determined to be:

Channel BW	Modulation	Frequency (MHz)	Conducted (dBm)	Radiated (dBm)	Gain / Loss (dB)
1 MHz	Bluetooth	2402	10.8	8.3	-2.5
		2440	10.9	3.6 •	-7.3
		2480	10.9	0.9	-10.0

It can be seen that the antenna gain is less than +6 dBi

Result: Complies

Measurement uncertainty with a confidence interval of 95% is:- Free radiation tests $(30 - 25000 \text{ MHz}) \pm 2.1 \text{ dB}$

Section 15.247(d) – Out of band emissions – Band edges (Conducted)

The WiFi and Bluetooth emissions from this module are required to remain within the 2400.0 -2483.5 MHz band.

When conducted measurements are made at the band edges of 2400.0 MHz and 2483.5 MHz using a peak detector with a 100 kHz resolution bandwidth the emission levels are required to be attenuated by at least 20 dB compared to highest emission level observed in the band of operation.

The device was operated in Bluetooth mode at 2402 MHz and 2480 MHz

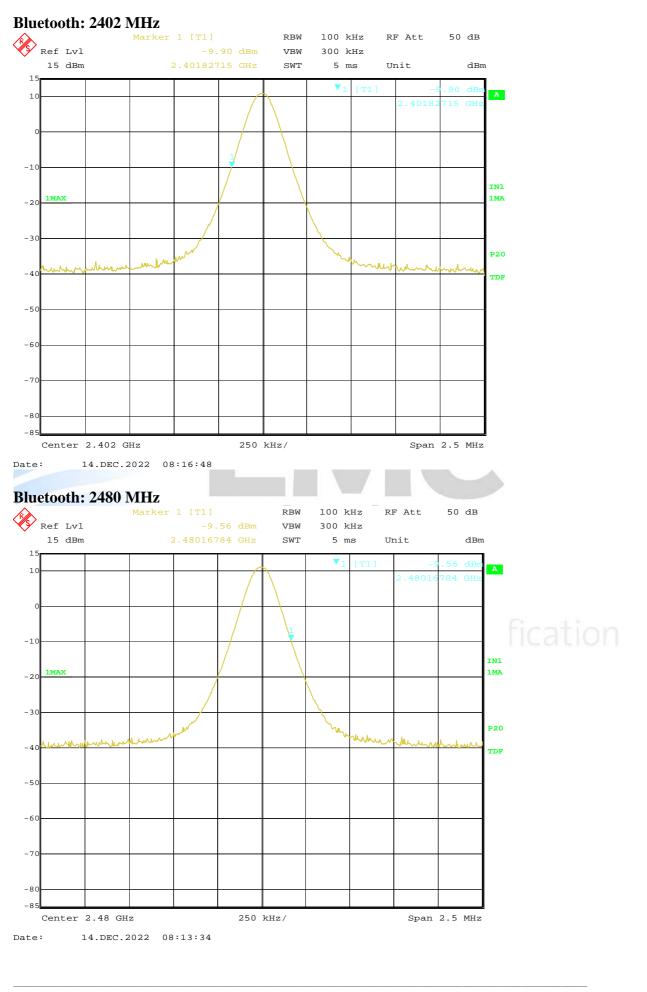
The device was also operated in WiFi mode using a channel bandwidth of 20 MHz centred on 2412 MHz and 2472 MHz.

In addition the device was operated in WiFi mode using a channel bandwidth of 40 MHz that was centred on 2422 MHz and 2452 MHz.

In WiFi mode testing was carried out using 2MDSS, 11CCK, 18OFDM and MCS3 modulation types for both 20 MHz and 40 MHz channel bandwidths.

The following measurements were recorded:

Bluetooth on 2402 MHz and 2480 MHz


Modulation Type	F Low (MHz)	F High (MHz)		
Bluetooth	2401.827	2480.168		

20 MHz on 2412 MHz and 2472 MHz

Modulation Type	F Low (MHz)	F High (MHz)	
2 MHz DSSS	2403.632	2480.467	
11CCK	2403.432	2480.667	
54OFDM	2403.332	2480.967	
MCS3	2402.731	2481.368	

40 MHz on 2422 MHz and 2462 MHz

Modulation Type	F Low (MHz)	F High (MHz)
2 MHz DSSS	2403.663	2480.537
11CCK	2403.663	2480.537
540FDM	2403.262	2480.537
MCS3	2403.262	2480.537

Page 18 of 43

Test Report No 221004.2 This report may not be reproduced except in full.

Page 20 of 43

Test Report No 221004.2 This report may not be reproduced except in full.

Section 15.247(d) – Out of band emissions – Band edges (Radiated)

The WiFi and Bluetooth emissions from this module are required to remain within the 2400.0 - 2483.5 MHz band.

When radiated measurements are made at the band edges of 2400.0 MHz and 2483.5 MHz using a peak detector with a 100 kHz resolution bandwidth the emission levels are required to be attenuated by at least 20 dB compared to highest emission level observed in the band of operation.

The device was operated in Bluetooth mode at 2402 MHz and 2480 MHz

The device was also operated in WiFi mode using a channel bandwidth of 20 MHz and 40 MHz using MCS3 modulation.

At the 2483.5 MHz band edge the device is required to meet the general emission limits as defined in FCC part 15 section 15.209 due a restricted band extending from 2483.5 - 2500.0 MHz.

At the 2400.0 MHz band edge the general emission limits as defined in FCC part 15 section 15.209 need to be applied due a restricted band extending from 2310.0 - 2390.0 MHz.

The results below will show that the frequency of operation will need to be modified due to restricted band non compliance

Using a measuring receiver with a peak detector and an average detector with a 1 MHz resolution bandwidth the following measurements were recorded at the test site.

ecnnor

Bluetooth

2402 MHz

Frequency MHz	Vertical dBuV/m	Horizontal dBuV/m		Margin dB	Result	Antenna	Detector
2390.000	48.5	48.5	74.0	25.5	Pass	Vertical	Peak
2390.000	35.5	35.5	54.0	18.0	Pass	Vertical	Average

2480 MHz

Frequency MHz	Vertical dBuV/m	Horizontal dBuV/m		Margin dB	Result	Antenna	Detector
2483.5	49.9	49.9	74.0	24.1	Pass	Vertical	Peak
2483.5	37.8	37.8	54.0	12.2	Pass	Vertical	Average

No Bluetooth emissions detected. Noise floor has been recorded

Radiated -20 dBc 100 kHz band edge measurements were made which confirmed the conducted measurements that were previously made Plots are shown below

Result: Complies

Measurement uncertainty with a confidence interval of 95% is:

- Free radiation tests $(30 - 25000 \text{ MHz}) \pm 2.1 \text{ dB}$

Test Report No 221004.2 This report may not be reproduced except in full.

40 MHz Channel bandwidth – MCS3

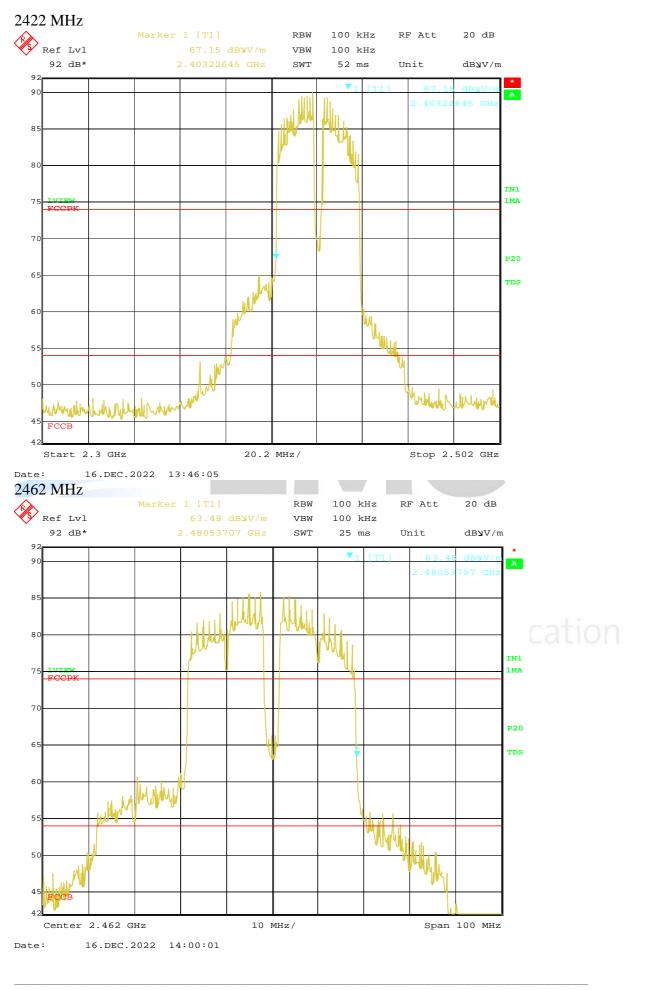
2+22 WITTZ (2	2 ± 12 IVII IZ (
Frequency	Vertical	Horizontal	Limit	Margin	Result	Antenna	Detector
MHz	dBuV/m	dBuV/m	dBuV/m	dB			
2390.000	69.1	68.2	74.0	4.9	Pass	Vertical	Peak
2390.000	43.5	41.5	54.0	10.5	Pass	Vertical	Average

2422 MHz (2412 MHz Channel 1)

2462 MHz (2452 MHz Channel 9)

Frequency MHz		Horizontal dBmV/m		0	Result	Antenna	Detector
2483.500	67.1		74.0	6.9	Pass	Vertical	Peak
2483.500	41.1		54.0	12.9	Pass	Vertical	Average

In order to comply the module will need to be restricted to operating on 40 MHz channel bandwidths between 2422 MHz and 2462 MHz.


Radiated -20 dBc 100 kHz band edge measurements were made which confirmed the conducted measurements that were previously made

Frequency MHz	F Low MHz	F High MHz	
2422.0	2403.322		
2462.0		2480.537	

Plots are shown below

Result: Complies when the module frequency of operations is contained as detailed above. Measurement uncertainty with a confidence interval of 95% is:

- Free radiation tests $(30 - 25000 \text{ MHz}) \pm 2.1 \text{ dB}$

Test Report No 221004.2 This report may not be reproduced except in full.

Section 15.247(d) – Out of band emissions – Band edges (Radiated)

2412 MHz							
Frequency MHz		Horizontal dBuV/m		Margin dB	Result	Antenna	Detector
2390.000	69.1	68.2	74.0	4.9	Pass	Vertical	Peak
2390.000	43.5	41.5	54.0	10.5	Pass	Vertical	Average

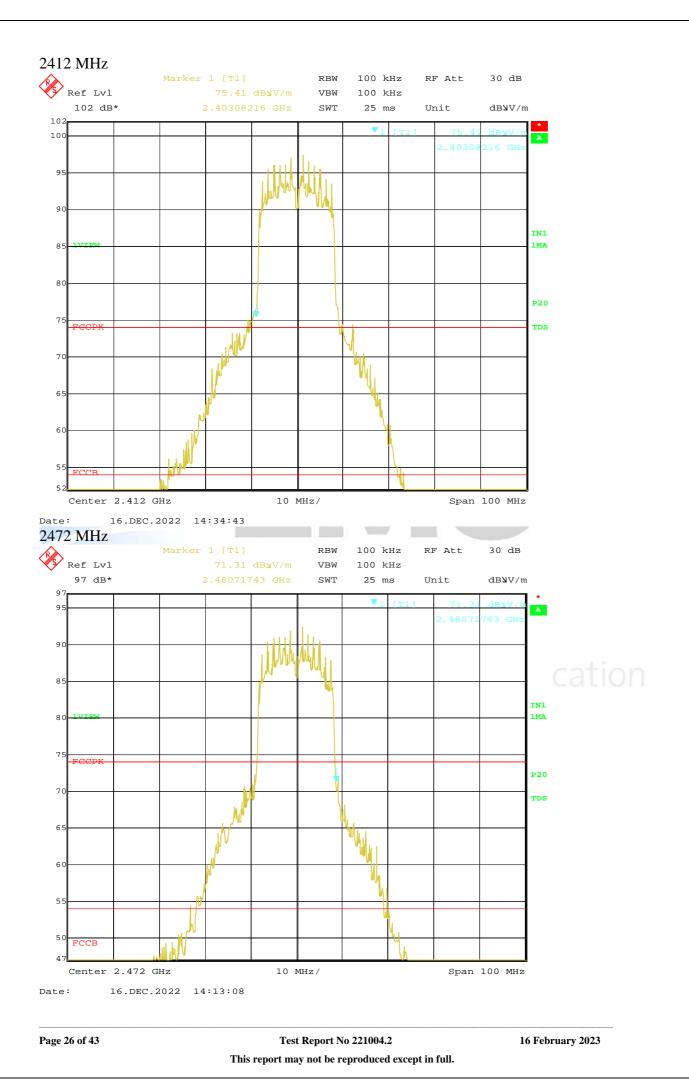
20 MHz Channel bandwidth - MCS3

 $2472 \; MHz$

Frequency MHz	Vertical dBuV/m	Horizontal dBuV/m		Margin dB	Result	Antenna	Detector
2483.500	73.9	70.3	74.0	0.1	Pass	Vertical	Peak
2483.500	45.3	44.5	54.0	8.7	Pass	Vertical	Average

In order to comply the module will need to be restricted to operating on 20 MHz channel bandwidths between 2412 MHz and 2472 MHz.

Radiated -20 dBc 100 kHz band edge measurements were made which confirmed the conducted measurements that were previously made


Frequency MHz	F Low MHz	F High MHz
2412.0	2403.082	
2472.0		2480.717
		00

Plots are shown below

Result: Complies when the module frequency of operations is contained as detailed above. Measurement uncertainty with a confidence interval of 95% is:

- Free radiation tests

 $(30 - 25000 \text{ MHz}) \pm 4.1 \text{ dB}$

Section 15.247(d) – Out of band emissions – Conducted Spurious Emissions

As the sample was supplied with an antenna port conducted spurious emissions measurements were made at this port using a spectrum analyser over the range of 100 kHz up to 25 GHz.

A peak detector with a 100 kHz resolution bandwidth was used to make these measurements

All levels are required to be attenuated by at least 20 dB compared to highest emission levels observed in the band of operation.

The device was operated in Bluetooth mode at 2402 MHz, 2440 MHz and 2480 MHz

The device was also operated in WiFi mode using a channel bandwidth of 20 MHz on 2412 MHz, 2440 MHz and 2472 MHz.

In addition the device was operated in WiFi mode using a channel bandwidth of 40 MHz on 2422 MHz and 2452 MHz.

In WiFi mode testing was carried out using 2MDSS, 11CCK, 18OFDM and MCS3 modulation types for both 20 MHz and 40 MHz channel bandwidths.

The following measurements were recorded:

Bluetooth: 2402 MHz

DIUCIUUIII. 2402 WIIIZ		
Frequency (MHz)	Level (dBm)	Limit (dBm)
2402.0	+10.8	
4804.0	-31.2	-9.2
7206.0	-52.2	-9.2
9608.0	-72.1	-9.2
12010.0	-69.9	-9.2
14412.0	-66.8	-9.2
16814.0	-69.5	-9.2
19216.0	-68.4	-9.2
21618.0	-61.0	-9.2
24020.0	-68.4	-9.2

Bluetooth: 2440 MHz

Frequency (MHz)	Level (dBm)	Limit (dBm)
2440.0	+10.8	-
4880.0	-29.5	-9.2
7320.0	-51.6	-9.2
9760.0	-71.6	-9.2
12200.0	-68.1	-9.2
14640.0	-60.2	-9.2
17080.0	-70.3	-9.2
19520.0	-68.4	-9.2
21960.0	-61.0	-9.2
24400.0	-68.4	-9.2

Test Report No 221004.2 This report may not be reproduced except in full.

Bluetooth: 2480 MHz		
Frequency	Level	Limit
(MHz)	(dBm)	(dBm)
2480.0	+10.9	-
4960.0	-28.7	-9.1
7440.0	-51.5	-9.1
9920.0	-74.1	-9.1
12400.0	-66.1	-9.1
14880.0	-57.8	-9.1
17360.0	-68.4	-9.1
19840.0	-71.3	-9.1
22320.0	-65.2	-9.1
24800.0	-67.7	-9.1
Other emissions		
4125.9	-56.1	-9.1
3294.0	-58.7	-9.1

All other emissions observed were observed to less than -60 dBm and were not recorded.

Harmonic emissions less than -60 dBm have been recorded for completeness.

Result: Complies

Measurement uncertainty with a confidence interval of 95% is: - Free radiation tests $(30 - 25000 \text{ MHz}) \pm 2.1 \text{ dB}$

Section 15.247(d) – Out of band emissions - Radiated emissions above 30 MHz

Testing for radiated emissions was carried out over the frequency range of 30 MHz to 25 GHz as the WiFI / Bluetooth module operates at various frequencies between 2400.0 - 2483.5 MHz

Testing was carried out at the laboratory's open area test site - located at Driving Creek, Orere Point, Auckland, New Zealand.

An enclosure containing absorber material, Panashield HYB-NF-12, has been placed between the turntable and the measurement antenna for when measurements are made above 1 GHz.

This material has no absorbing affect below 1 GHz with site verification measurements.

Below 1000 MHz the transmitter was placed on the test table top which was a total of 0.8 m above the test site ground plane.

Above 1000 MHz the transmitter was placed on the test table top which was a total of 1.5 m above the test site ground plane.

Measurements of the radiated field were made 3 metres from the transmitting antenna.

When an emission is located, it is positively identified and its maximum level is found by rotating the automated turntable, and by varying the antenna height with an automated antenna tower.

All emissions were measured in both vertical and horizontal antenna polarisations with no measurements made above the 10th harmonic.

Testing was carried out with the device being placed in the centre of the test table standing vertically upright.

The module was installed into a multi band VHF / UHF portable transceiver that was powered using an internal battery pack that was fully charged.

Testing was carried out when the RF module was programed using supplied software in various modes of operation.

Below 1000 MHz a Quasi Peak detector with a 120 kHz bandwidth was used.

Above 1000 MHz the restricted band emission measurements were made using an Average detector and a Peak detector with a bandwidth of 1.0 MHz.

In the non-restricted bands measurements were made using a peak detector with a 100 kHz bandwidth.

The general limits that are defined in Section 15.209(a) were applied to the restricted bands frequencies that are defined Section 15.205(a)

All other frequencies not listed in Section 15.205(a) are defined as non-restricted frequencies where a limit of -20 dBc relative to field strength of the highest level in the band operation when measured using a Peak detector with a 100 kHz bandwidth as defined in Section 15.247(d).

The emission level was determined in field strength by taking the following into consideration:

Level $(dB\mu V/m) =$ Receiver Reading $(dB\mu V) +$ Antenna Factor (dB/m) + Coax Loss (dB) For example, if an emission of 30 dB μV was observed at 30 MHz.

 $45.5 \text{ dB}\mu\text{V/m} = 30.0 \text{ dB}\mu\text{V} + 14 \text{ dB/m} + 1.5 \text{ dB}$

Results:

General Emissions: 30 MHz – 2700 MHz

Testing was carried out when the device was transmitting in

- WiFi mode at 2437 MHz when operating with a 20 MHz channel bandwidth with 180FDM modulation

and

- Bluetooth mode at 2440 MHz

In both modes the following result was obtained

1 0			0	Antenna Polarisation		BW
61.440	17.9	40.0	22.1	Pass	QP	120 kHz

No further emissions were detected from the device when measurements were made between 30 - 2700 MHz when vertical and horizontal antenna polarisations were used except for the fundamental emissions which were observed at 2437 MHz and 2440 MHz depending upon the mode of operation

Result: Complies

Measurement uncertainty with a confidence interval of 95% is:

- Free radiation tests $(30 - 2700 \text{ MHz}) \pm 4.1 \text{ dB}$

Harmonic Spurious Emissions

Testing was carried out when the WiFi module was operating o 2437 MHz with a 20 MHz channel bandwidth with 180FDM modulation applied.

Measurements were made on the channel which was measured to the highest radiated power.

Transmitting on 2412 MHz								
Frequency	Vertical	Horizontal	Limit	Margin	Detector	Antenna	BW	
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)				
4824.000	< 59	< 59	74.0	> 15	Peak	Vert/Horiz	1 MHz	
4824.000	< 46	< 46	54.0	> 8	Average	Vert/Horiz	1 MHz	
-	-	-	-	-	-	-	-	
7236.000	60.4	-	74.0	13.6	Pass	Vertical	1 MHz	
7236.000	43.5	-	54.0	10.5	Pass	Vertical	1 MHz	
-	-	-	-	-	-	-	-	
9648.000	< 59	< 59	74.0	> 15	Peak	Vert/Horiz	1 MHz	
9648.000	< 46	< 46	54.0	> 8	Average	Vert/Horiz	1 MHz	
-	-	-	-	-	-	-	-	
12060.000	< 59	< 59	74.0	> 15	Peak	Vert/Horiz	1 MHz	
12060.000	< 46	< 46	54.0	> 8	Average	Vert/Horiz	1 MHz	
-		-	-	-	-	-	-	
14472.000	< 59	< 59	74.0	> 15	Peak	Vert/Horiz	1 MHz	
14472.000	< 46	< 46	54.0	> 8	Average	Vert/Horiz	1 MHz	
-		_	-	-	-	-	-	
16884.000	< 59	< 59	74.0	> 15	Peak	Vert/Horiz	1 MHz	
16884.000	< 46	< 46	54.0	> 8	Average	Vert/Horiz	1 MHz	
-	-	-10	-	-	-	-	-	
19296.000	< 59	< 59	74.0	> 15	Peak	Vert/Horiz	1 MHz	
19296.000	< 46	< 46	54.0	> 8	Average	Vert/Horiz	1 MHz	
-	-		-	-	-	-	-	
21708.000	< 59	< 59	74.0	> 15	Peak	Vert/Horiz	1 MHz	
21708.000	< 46	< 46	54.0	> 8	Average	Vert/Horiz	1 MHz	
	-	-	-	_	_		-	
24120.000	< 59	< 59	74.0	> 15	Peak	Vert/Horiz	1 MHz	
24120.000	< 46	< 46	54.0	> 8	Average	Vert/Horiz	1 MHz	

Transmitting on 2412 MHz

The general limits were applied to all frequencies.

No further emissions were detected from the device when measurements were made between 30 - 25000 MHz when vertical and horizontal antenna polarisations were used.

Result: Complies

Measurement uncertainty with a confidence interval of 95% is:

- Free radiation tests $(30 - 25000 \text{ MHz}) \pm 4.1 \text{ dB}$

Harmonic Spurious Emissions

Testing was carried out when the Bluetooth module was operating on 2402.

Measurements were made on the channel which was measured to the highest radiated power.

Transmitting on 2402 MHz									
Frequency	Vertical	Horizontal	Limit	Margin	Detector	Antenna	BW		
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)					
4804.000	55.8	_	74.0	18.2	Pass	Vertical	1 MHz		
4804.000	46.8	-	54.0	7.2	Pass	Vertical	1 MHz		
							-		
7206.000	53.8	54.9	74.0	19.1	Pass	Horizontal	1 MHz		
7206.000	44.3	44.8	54.0	9.2	Pass	Horizontal	1 MHz		
	-	-	-	-	-	-	-		
9608.000	< 59	< 59	74.0	> 15	Peak	Vert/Horiz	1 MHz		
9608.000	< 46	< 46	54.0	> 8	Average	Vert/Horiz	1 MHz		
	-	-	-	-	-	-	-		
12010.000	< 59	< 59	74.0	> 15	Peak	Vert/Horiz	1 MHz		
12010.000	< 46	< 46	54.0	>8	Average	Vert/Horiz	1 MHz		
		_	-	-	-	-	-		
14412.000	< 59	< 59	74.0	> 15	Peak	Vert/Horiz	1 MHz		
14412.000	< 46	< 46	54.0	>8	Average	Vert/Horiz	1 MHz		
	-	-	-	-	-	-	-		
16814.000	< 59	< 59	74.0	> 15	Peak	Vert/Horiz	1 MHz		
16814.000	< 46	< 46	54.0	> 8	Average	Vert/Horiz	1 MHz		
	-	To	-	-	-	-	-		
19216.000	< 59	< 59	74.0	> 15	Peak	Vert/Horiz	1 MHz		
19216.000	< 46	< 46	54.0	> 8	Average	Vert/Horiz	1 MHz		
	-	-	-	-	-	-	-		
21618.000	< 59	< 59	74.0	> 15	Peak	Vert/Horiz	1 MHz		
21618.000	< 46	< 46	54.0	> 8	Average	Vert/Horiz	1 MHz		
	-	Eile	-	-	-	-	-		
24020.000	< 59	< 59	74.0	> 15	Peak	Vert/Horiz	1 MHz		
24020.000	< 46	< 46	54.0	> 8	Average	Vert/Horiz	1 MHz		

• . . • 2402 MI

The general limits were applied to all frequencies.

No further emissions were detected from the device when measurements were made between 30 – 25000 MHz when vertical and horizontal antenna polarisations were used.

Result: Complies

Measurement uncertainty with a confidence interval of 95% is:

- Free radiation tests $(30 - 25000 \text{ MHz}) \pm 4.1 \text{ dB}$

Co Location Measurements

It is not possible for the Bluetooth transmitter and the WiFi transmitter to operate simultaneously.

It is possible for the VHF / UHF portable transmitter to operate simultaneously when either the Bluetooth or the WiFi transmitter were operating.

Testing was carried out when the WiFi transmitter was operating on 2437 MHz with a 20 MHz channel bandwidth with 180FDM modulation when the portable was operating on 136 MHz, 450 MHz and 850 MHz.

Testing was also carried out when the Bluetooth transmitter was operating on 2440 MHz with a 20 MHz channel bandwidth with 180FDM modulation when the portable was operating on 136 MHz, 450 MHz and 850 MHz.

The WiFi and Bluetooth transmitters were operating on high power as set by the supplied software.

The portable was operating with a multi band antenna attached and the power as configured by the client (assumed to be set to high).

Observations were made between 30 MHz - 12.5 GHz which close observation made between 1500 MHz - 5000 MHz.

The device was made to transmit continuously on each frequency and was rotated and height scanned.

In order to avoid the generation of intermodulation products in the receiver due to high level signals being present a 2400 – 2483.5 MHz band stop filter was applied to the receiver input.

When the FCC part 15 section 15.209 general limits were applied no Co Location spurious emissions were detected.

Result: Complies

Measurement uncertainty with a confidence interval of 95% is:

- Free radiation tests $(30 - 12500 \text{ MHz}) \pm 4.1 \text{ dB}$

Instrument	Manufacturer	Model	Serial No	Asset Ref	Cal Due	Period
Aerial Controller	EMCO	1090	9112-1062	RFS 3710	Not applic	Not applic
Aerial Mast	EMCO	1070-1	9203-1661	RFS 3708	Not applic	Not applic
Biconical Antenna	Schwarzbeck	BBA 9106	9124-420	3802	23 Nov 2023	3 years
Horn Antenna	EMCO	3115	9511-4629	E1526	6 Mar 2026	3 years
Horn Antenna	EMCO	3116	92035	E1527	21 Sept 2026	3 years
Log Periodic	Schwarzbeck	VUSLP 9111	9111-112	EMC4025	16 Nov 2023	3 years
SG Horn Antenna	EMCO	3160-08	00114637	-	11 Sept 2024	3 years
2.4 GHz Filter	Micro-Tronics	BRM50702	128	-	19 Dec 2023	1 year
10 m Coax Cable	Sucoflex	104PA	2546/49A	-	19 Dec 2023	1 year
Heliax cable	Andrews	L6PNM-RPD	22869	-	25 Feb 2023	1 year
Microwave Cable	InTELCOM	ISL05898	-	-	19 Dec 2023	1 year
Receiver	R & S	ESIB 40	100295	EMC4030	03 Jun 2023	1 year
Turntable	EMCO	1080-1-2.1	9109-1578	RFS 3709	Not applic	Not applic

8. TEST EQUIPMENT USED

9. ACCREDITATIONS

Testing was carried out in accordance with EMC Technologies NZ Ltd designation as a FCC Accredited Laboratory by International Accreditation New Zealand, designation number: NZ0002 under the APEC TEL MRA.

In addition testing was carried out in accordance with the terms of EMC Technologies (NZ) Ltd's International Accreditation New Zealand (IANZ) Accreditation to NZS/IEC/ISO 17025.

All measurement equipment has been calibrated in accordance with the terms of EMC Technologies (NZ) Ltd's International Accreditation New Zealand (IANZ) Accreditation to NZS/IEC/ISO 17025.

International Accreditation New Zealand has International Laboratory Accreditation Council (ILAC) Mutual Recognition Arrangements for testing and calibration with various accreditation bodies in a number of economies.

This includes NATA (Australia), UKAS (UK), SANAS (South Africa), NVLAP (USA), A2LA (USA), SWEDAC (Sweden).

Further details can be supplied on request.

10. PHOTOGRAPHS

Test Report No 221004.2 This report may not be reproduced except in full.

Front view of test sample

Test Report No 221004.2 This report may not be reproduced except in full.

Frequencies below 1000 MHz – Test table 80 cm high Test set up – Front view of test sample

Test set up - Front view of test sample on top of test table

Test set up – Side views of test sample on top of test table

Test set up – Side views of test sample on top of test table

Test set up – Side views of test sample on top of test table

Frequencies above 1000 MHz – Test table 150 cm high

