1 November 2000

Test Report No **00915.1** Report date: 11 October 2000

TEST REPORT

Tait T881-10-0500 Base Station

tested for compliance with the

Code of Federal Regulations (CFR) 47

Part 22 – Public Mobile Services

and

Part 90 – Private Land Mobile Services

for

Tait Electronics Ltd

This Test Report is issued with the authority of:

Prepared By:

Andrew Cutles

Andrew Cutler - General Manager

Malanar

Casey McNamara - Office Administrator

EMC Technologies (NZ) Ltd STREET ADDRESS - 47 MacKelvie Street, Grey Lynn, Auckland, New Zealand POSTAL ADDRESS - PO Box 68 307, Newton, Auckland, New Zealand

This report may not be reproduced except in full

Telephone: +64 9 360 0862 Fax: +64 9 360 0861

Table of Contents

1.	CLIENT INFORMATION	3
2.	DESCRIPTION OF TEST SAMPLE	3
4.	ARTICLES SUBMITTED	5
5.	TEST SAMPLE DESCRIPTION	5
7.	ATTESTATION	7
8.	TRANSMITTER TEST RESULTS	8
9.	TEST EQUIPMENT USED	18
10.	ACCREDITATIONS	19
11.	PHOTOGRAPH(S)	20

1. CLIENT INFORMATION

Company Name	Tait Electronics Ltd
Address	558 Wairakei Road Burnside
City	Christchurch
Country	New Zealand
Contact	Linda Grose

2. DESCRIPTION OF TEST SAMPLE

Brand Name	Tait
Model Number	T881-10-0500
Product	Base Station
Manufacturer	Tait Electronics Ltd
Country of Origin	New Zealand
Serial Number	702371
FCC ID	CASTEL0043

3. SUMMARY OF TEST RESULTS

Testing was carried out in accordance with the test methods defined in 47 CFR Part 2. Listed below are the relevant Part 2 test methods and the limits defined in Part 22 and Part 90.

<u>CLAUSE</u>	TEST PERFORMED	<u>RESULT</u>
2.1041	Measurement procedures	Noted
2.1046	RF power output	Noted
90.205	Power and antenna height limits	Complies
2.1047	Modulation Characteristics	
2.1047(a)	Low pass filter response	Complies
2.1047(b)	Modulation limiting characteristics	Complies
90.211(a)	Modulation characteristics	Complies
2.1049	Occupied bandwidth	Noted
2.202	Bandwidths	Noted
22.357	Emission types	Complies
22.359(a)	Emission masks	Complies
90.207	Types of emissions	Complies
90.209	Bandwidth limitations	Complies
90.210	Emission masks	Complies
2.1051	Spurious emissions at antenna terminals	Complies
2.1053	Field strength of spurious radiation	Complies
2.1055	Frequency stability	Noted
22.355	Frequency tolerance	Complies
90.213	Frequency stability	Complies
2.1057	Frequency spectrum to be investigated	Noted

E-mail: aucklab@ihug.co.nz

4. ARTICLES SUBMITTED

1 x Tait T800-22-0000 base station rack, Sn# 238873 which contained the following items:

- Tait T881-10-0500 Transmitter Sn# 702371
- Tait T808-10-0000 115 Vac power supply, Sn# 984653
- Tait T800-50-0000 Personality PCB

The base station rack had external controls to allow the following test functions:

- push to talk switch
- high and low power output switch
- narrow and wide band channel selector (not in use)
- low pass filter input and output ports

1 x Tuning and Adjustment Manual

This manual includes the following items:

- general information
- transmitter specifications
- circuit operation
- tuning and adjustment information
- PCB information
- part lists
- schematic diagrams of the transmitter

5. TEST SAMPLE DESCRIPTION

The sample tested is a base station transmitter with the following specifications:

Rated Transmitter Output Power

High power: 5 Watts (37.0 dBm) Low power: 1 Watts (30.0 dBm)

Test frequency

855.1000 MHz

Frequency Range

800.0 - 870.0 MHz

Test Report No 00915.1

Report date: 11 October 2000

Emission Types and Necessary Bandwidths

Frequency Modulation, analogue speech with wide band option

16k0F3E: 25.0 kHz channel spacing with 16 kHz necessary bandwidth

Power Supply

115 Vac to the Tait T808-10-0000 power supply.

The Tait T808-10-0000 power supply has an output voltage of 13.8 Vdc.

6. Test Conditions

Standard Temperature and Humidity

Temperature: $+25^{\circ}C \pm 4^{\circ}$ maintained.Relative Humidity: $60\% \pm 10\%$ observed.

Standard Test Power Source

The base station rack was supplied with a 13.8 Vdc power supply which was supplied with 115 Vac.

Standard Test Voltage: 115.0 Vac.

Extreme Temperature

High Temperature: + 50°C maintained. Low Temperature: - 30 °C maintained.

Tests carried out in 10° intervals over this range

Extreme Test Voltages

High Voltage:	132.3 Vac
Low Voltage:	97.7 Vac

7. ATTESTATION

This report describes the tests and measurements performed for the purpose of determining compliance with the specification with the following conditions:

The test sample was selected by the client.

The report relates only to the sample tested.

This report does not contain corrections or erasures.

Measurement uncertainties with statistical confidence intervals of 95% are shown below test results. Both Class A and Class B uncertainties have been accounted for, as well as influence uncertainties where appropriate.

In addition this equipment has been tested in accordance with the requirements contained in the appropriate Commission regulations. To the best of my knowledge, these tests were performed using measurement procedures that are consistent with industry or Commission standards and demonstrate that the equipment complies with the appropriate standards. Each unit manufactured, imported, or marketed, as defined in the Commission's regulations, will conform to the sample(s) tested with the variations statistical basis. I further certify that the necessary measurements were made by EMC Technologies NZ Ltd, 47 MacKelvie Street, Grey Lynn, Auckland, New Zealand.

Indrew Cutto

Andrew Cutler General Manager EMC Technologies NZ Ltd

8. TRANSMITTER TEST RESULTS

RF power ouput

Measurements were carried out at the RF output terminals of the transmitter using a 30 dB power attenuator and a 50 ohm dummy load.

Measurements were carried out when the transmitter was not being modulated.

Measurements were made with the input voltage set to 115 Vac.

RF power output (Watts)						
Temp. Level Rated Measured						
+25°C	High	5.0	4.8			
+25°C Low		1.0	1.0			

Limits:

Part 22 contains no transmitter base power limits.

Clause 90.205(i) of Part 90 specifies that in the band 806-824 / 851-869 MHz power and height limitations are specified in section 90.635. Section 90.635(b) states that a suburban system shall have a power output no greater that 500 watts.

Result: Complies

Measurement Uncertainty: ±0.5 dB

Modulation Characteristics

The following graphs are attached:

(a) Frequency response of the audio frequency low pass filter between 100 Hz and 15 kHz.

This measurement was carried out using an audio signal generator and an audio modulation analyser.

At 1 kHz an audio signal was applied which was used as a 0 dB response reference.

The frequency of the input signal was then varied and the output response noted. This measurement was carried out from 100 Hz to 5000 Hz as required by Part 2 with further measurements carried out in order to show the full range of this filter.

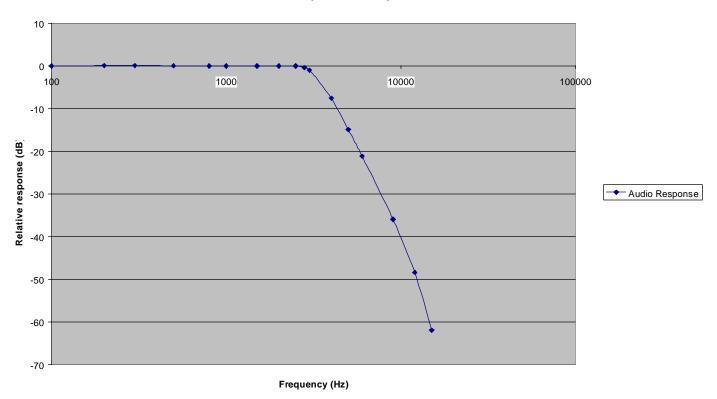
(b) A family of curves showing the percentage of modulation versus the modulation input voltage.

These measurements were carried out with modulating frequencies from 100 Hz to 10 kHz.

At each frequency the input voltage was slowly increased with the resulting frequency deviation of the transmitter being recorded.

This deviation was then converted to a modulation percentage where 5 kHz deviation is 100% for 25 kHz channeling.

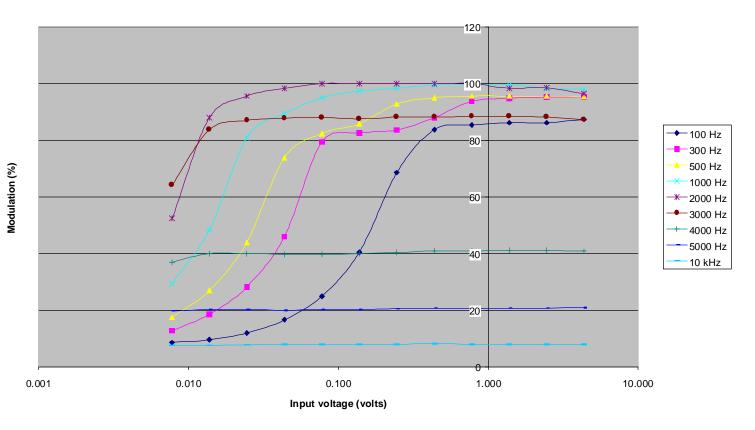
Limit


Part 22 provides no limits for these measurements.

Part 90.211 – Modulation requirements states the transmitter must meet the emission requirements of 90.210. Refer to the Occupied Bandwidth measurements in this report.

Result: Complies

Measurement Uncertainty: ±1%.


Report date: 11 October 2000

Low pass filter response

EMC Technologies (NZ) Ltd STREET ADDRESS - 47 MacKelvie Street, Grey Lynn, Auckland, New Zealand POSTAL ADDRESS - PO Box 68 307, Newton, Auckland, New Zealand Telephone: +64 9 360 0862 Fax: +64 9 360 0861

Telephone: +64 9 360 0862 Fax: +64 9 360 0861

Ocupied Bandwidth

Measurements were carried out with a 2500 Hz modulating frequency applied at a level 16 dB higher than the level required to achieve 50% modulation (2.5 kHz deviation) at the frequency of maximum response. The frequency of maximum response was found to be at 2200 Hz.

Before occupied bandwidth measurements were made, the 0 dB reference point of the spectrum mask was determined by operating the transmitter with no modulation.

The spectrum mask is defined in: Part 22.359(a) – Analog modulation Part 90.210(b) – Mask B has been applied.

Part 22 has no authorised bandwidth's defined. The necessary bandwidth is therefore taken to be the authorised bandwidth.

Using the formulas contained in Part 2.202: $B_n = 2 \times D + 2 \times M$ Where D = maximum deviation: 5.0 kHz Where M = maximum modulation frequency: 3 kHz $B_{n=} 16$ kHz

This is confirmed in the emission designation, 16k0F3E as declared by the client.

Part 90.209(5) defines the authorised bandwidth as 20 kHz where 25 kHz channeling is used in the bands 806-821 / 851-866 MHz.

In this instance a necessary bandwidth of 16 kHz has been applied to the emission masks as Part 22 calls for 16 kHz and part 90 calls for 20 kHz.

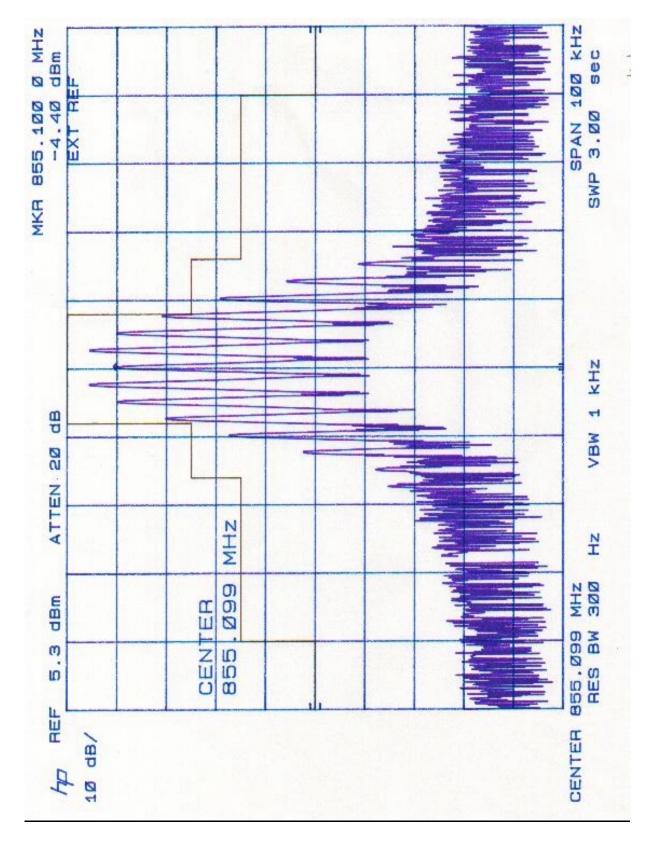
The following clauses are also covered by these tests:

Part 22.357 - Emission types: The transmitter uses analogue speech which complies with the appropriate emission mask.

Part 90.207 – Emission types: Emission type F3E is used by this transmitter.

Part 90.209 – Bandwidth limitations: Bandwidth has been calculated using the formula contained in Part 2.202 as described for the Part 22 requirements above.

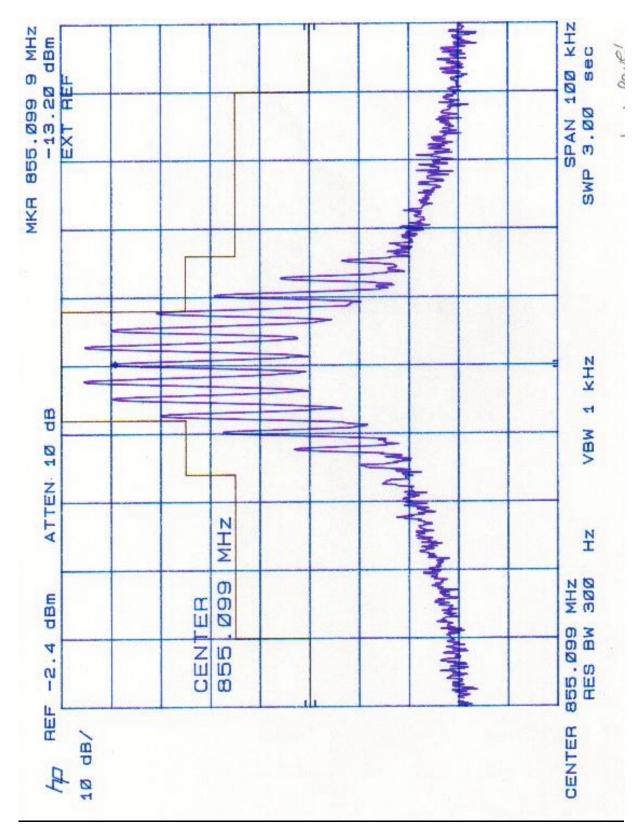
Two plots have been provided. One plot is for high power operation and the other plot is for low power operation.


Result: Complies

E-mail: aucklab@ihug.co.nz

Web Site: www.emctech.com.au

Test Report No 00915.1


Report date: 11 October 2000

EMC Technologies (NZ) Ltd STREET ADDRESS - 47 MacKelvie Street, Grey Lynn, Auckland, New Zealand POSTAL ADDRESS - PO Box 68 307, Newton, Auckland, New Zealand Telephone: +64 9 360 0862 Fax: +64 9 360 0861

Test Report No 00915.1

Report date: 11 October 2000

Telephone: +64 9 360 0862 Fax: +64 9 360 0861

Spurious emissions at antenna terminals

Frequency:	855.1000 MHz
-------------------	--------------

Measured Spurious Emission					
Spurious emission (MHz)	Emission level – High power (dBm)	Emission level – Low power (dBm)			
1710.2	-41.0	-51.4			
2565.3	-	-			
3420.4	-37.6	-51.9			
4275.5	-47.6	-61.9			
5130.6	-56.1	-60.5			
5985.7	-52.3	-			
6840.8	-50.7	-			
7685.9	-55.3	-			
8551.0	-	-			

Limit

Part 22.359(a) Analogue Modulation, (3) on any frequency removed by more than 250% all emissions are to be attenuated by at least $43 + 10 \log (P) dB$ or 80 dB which ever is the lesser attenuation.

Part 90.210(b) Mask B, (3) on any frequency removed by more than 250% all emissions are to be attenuated by at least $43 + 10 \log (P)$.

Part 2.1051 states that emissions greater than 20 dB below the limit need not be specified

Part 2.1057 states that the spectrum should be investigated up to the 10th harmonic if the transmitter operates below 10 GHz.

Rated powers are 5 watts and 1 watts. $43 + 10 \log (P)$ gives 50 dB and 43 dB. This gives a limit of -13 dBm for both 5 watts and 1 watts.

No measurements less than -33 dBm have been reported except those reported above.

No measurements were made above the 10th harmonic.

Result: Complies

Measurement Uncertainty: ±3.3 dB

Field strenght of spurious emissions at antenna terminals

Frequency: 76.9000 MHz

Emission frequency (MHz)	Level (dBuV/m)	Power (dBm)	Limit (dBm)	Margin (dB)	Polarity
65.00	45.0	-52.4	-13.0	-39.4	Vertical
1710.20	52.3	-45.1	-13.0	-32.1	Vertical
2565.30	53.6	-43.8	-13.0	-30.8	Vertical
3420.40	49.6	-47.8	-13.0	-34.8	Horizontal
4275.50	-	-	-13.0	-	Vert/Hort
5130.60	-	-	-13.0	-	Vert/Hort
5985.70	-	-	-13.0	-	Vert/Hort
6840.80	-	-	-13.0	-	Vert/Hort
7695.90	-	_	-13.0	_	Vert/Hort
8551.00	-	-	-13.0	-	Vert/Hort

Device was tested on an open area test site at a distance of 3 metres.

Testing was carried out at EMC Technologies NZ Ltd Open Area Test Site which si located at Dakota Lane, Ardmore Aerodrome, Auckland. Details of this site have been filed with the Commission, Registration Number:90838, which was last updated on February 11, 2000.

The transmitter tested operating on high power with a 50 ohm dummy load attached to the output.

All significant emissions from the base station have been recorded.

Field strength measurements have been carried out and converted to transmitted power measurements using the formula

Field strength (V/m) = $\sqrt{(1.64 \times 30 \times P)} / D$

Where:

P is the eirp transmitted power

1.64 is a the gain of a dipole antenna when compared to an isotropic antenna D is the distance in metres. In this case 3 metres

Limit

Part 22.359(a) Analogue Modulation, (3) on any frequency removed by more than 250% all emissions are to be attenuated by at least $43 + 10 \log (P) dB$.

E-mail: aucklab@ihug.co.nz

Web Site: www.emctech.com.au

EMC Technologies (NZ) Ltd Test Report No 00915.1

Report date: 11 October 2000

Part 90.210(b) Mask B, (3) on any frequency removed by more than 250% all emissions are to be attenuated by at least $43 + 10 \log (P)$.

Rated power is 50 watts. $43 + 10 \log (P)$ gives 60 dB and 53 dB. This gives a limit of -13 dBm.

No measurements were made above the 10th harmonic.

Result: Complies

Measurement Uncertainty: $\pm 4.1 \ dB$

Frequency Stability

Frequency stability measurements were made over the range - $30 \degree C$ to + $50\degree C$ in + $10\degree C$ increments.

At each temperature the transmitter was given a period of 30 minutes to stabilise. The transmitter was then turned on and the frequency error measured after a period of 1 minute.

Measurements were made with the supply varied between 115% and 85% of the nominal supply voltage (115 Vac).

Nominal Frequency: 855.100 000 MHz

Frequency Error (Hz)						
Voltage Temp.	97.7 Vac	115 Vac	132.3 Vac			
+50°C	-210.0	-211.0	-214.0			
+40°C	-170.0	-167.0	-164.0			
+30°C	-113.0	-113.0	-113.0			
+20°C	-3.0	-4.0	-6.0			
+10°C	+1.0	+2.0	+2.0			
0°C	+32.0	+35.0	+37.0			
-10°C	+38.0	+39.0	+41.0			
-20°C	+303.0	+301.0	+296.0			
-30°C	-49.0	-49.0	-49.0			

Limit

Part 22.355 states base transmitters operating between 821 - 896 MHz are required to have frequency tolerance of 1.5 ppm.

Telephone: +64 9 360 0862 Fax: +64 9 360 0861

Part 90.213 states that the following minimum stability for fixed and base transmitters is:

- 1.5 ppm if operating between 806 821 MHz
- 1.0 ppm if operating between 821 824 MHz
- 1.5 ppm if operating between 851 866 MHz.

As the transmitter can operate between 800 - 870 MHz the worst case stability of 1 ppm for transmitters operating between 821 - 824 MHz has been applied.

This transmitter operates on 885.1 MHz. 1 $ppm = 1 \times 885.1 = 885.1$ Hz.

Result: Complies

Measurement Uncertainty: ±30 Hz

9. TEST EQUIPMENT USED

Instrument	Manufacturer	Model	Serial #	Asset
Attenuator 10 dB	Weinschel	40-10-33	CU 386	E1281
Attenuator 20 dB	Narda	766-20	7807	E1305
Audio Analyzer	Hewlett Packard	HP 8903B		E1046
2	Hewlett Packard	HP6032A		E1069
	Hewlett Packard	HP 5342A		E1224
Level generator	Anritsu	MG443B	M72691	E1142
Modulation Analyzer	Hewlett Packard	HP 8901B		E1090
Resistance Thermometer Meter	DSIR	RT200	35	E1409
RF Power Meter	Hewlett Packard	HP 436A		E1209
Rubidium Oscillator	Ball Efratom	FRS – C	4287	
Spectrum Analyzer	Hewlett Packard	8566B		3771/3772
Thermal chamber	Contherm	M180F		E1129
Aerial Controller	EMCO	1090	9112-1062	RFS 3710
Aerial Mast	EMCO	1070-1	9203-1661	RFS 3708
Biconical Antenna	Schwarzbeck	BBA 9106		RFS 3612
Log Periodic Antenna	Schwarzbeck	UHALP 9107		RFS 3702
Measurement Receiver	Rohde & Schwarz	ESCS 30	839873/1	
Turntable	ЕМСО	1080-1-2.1	9109-1578	RFS 3709
Coax Cable	Sucoflex	104PA	2736/4PA	
Spectrum Analyzer	Hewlett Packard	E7405A	US39150142	RFS 3776
Horn Antenna	Electronics	RGA-60	6234	E1494

10. ACCREDITATIONS

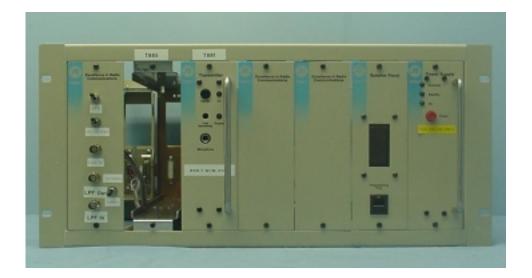
Testing was carried out in accordance with EMC Technologies NZ Ltd registration with the Federal Communications Commission as a listed facility, Registration Number: 90838, which was updated on February 11th, 2000.

All measurement equipment has been calibrated in accordance with the terms of EMC Technologies (NZ) Ltd's International Accreditation New Zealand (TELARC) Accreditation to the New Zealand Code of Laboratory Management Practice incorporating ISO Guide 25: 1990 and ISO 9002: 1994.

11. PHOTOGRAPH(S)

EMC Technologies (NZ) Ltd STREET ADDRESS - 47 MacKelvie Street, Grey Lynn, Auckland, New Zealand POSTAL ADDRESS - PO Box 68 307, Newton, Auckland, New Zealand Telephone: +64 9 360 0862 Fax: +64 9 360 0861

Test Report No **00915.1** Report date: 11 October 2000



EMC Technologies (NZ) Ltd STREET ADDRESS - 47 MacKelvie Street, Grey Lynn, Auckland, New Zealand POSTAL ADDRESS - PO Box 68 307, Newton, Auckland, New Zealand

EMC Technologies (NZ) Ltd Test Report No 00915.1

Report date: 11 October 2000

EMC Technologies (NZ) Ltd STREET ADDRESS - 47 MacKelvie Street, Grey Lynn, Auckland, New Zealand POSTAL ADDRESS - PO Box 68 307, Newton, Auckland, New Zealand

Telephone: +64 9 360 0862 Fax: +64 9 360 0861

E-mail: aucklab@ihug.co.nz Web Site: www.emctech.com.au

Test Report No **00915.1** Report date: 11 October 2000

EMC Technologies (NZ) Ltd STREET ADDRESS - 47 MacKelvie Street, Grey Lynn, Auckland, New Zealand POSTAL ADDRESS - PO Box 68 307, Newton, Auckland, New Zealand Telephone: +64 9 360 0862 Fax: +64 9 360 0861