Sub-part 2.983 (f):

EQUIPMENT IDENTIFICATION

FCC ID: CASTEL0010

NAMEPLATE DRAWING

ATTACHED, EXHIBIT 1.

LOCATION

AS PER LABEL DRAWING(S)

DATE OF REPORT

July 27, 1998

MONTON FLOM, P. Eng.

SUPERVISED BY: MF:glk

THE APPLICANT HAS BEEN CAUTIONED AS TO THE FOLLOWING:

15.21 INFORMATION TO USER.

The users manual or instruction manual for an intentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

15.27(a) SPECIAL ACCESSORIES.

Equipment marketed to a consumer must be capable of complying with the necessary regulations in the configuration in which the equipment is marketed. Where special accessories, such as shielded cables and/or special connectors are required to enable an unintentional or intentional radiator to comply with the emission limits in this part, the equipment must be marketed with, i.e. shipped and sold with, those special accessories. However, in lieu of shipping or packaging the special accessories with the unintentional or intentional radiator, the responsible party may employ other methods of ensuring that the special accessories are provided to the consumer, without additional charge.

Information detailing any alternative method used to supply the special accessories for a grant of equipment authorization or retained in the verification records, as appropriate. The party responsible for the equipment, as detailed in § 2.909 of this chapter, shall ensure that these special accessories are provided with the equipment. The instruction manual for such devices shall include appropriate instructions on the first page of text concerned with the installation of the device that these special accessories must be used with the device. It is the responsibility of the user to use the needed special accessories supplied with the equipment.

TABLE OF CONTENTS

CASTEL0010

RULE	DESCRIPTION	PAGE
2.983	List of General Information Required	2
2.985(a)	Carrier Output Power	6
2.991	Unwanted Emissions (Transmitter Conducted)	8
2.993(a)	Field Strength of Spurious Radiation	11
2.989(c)	Occupied Bandwidth	14
90.214	Transient Frequency Behavior	16
2.987(a)	Audio Low Pass Filter (Voice Input)	19
2.987(a)	Audio Frequency Response	22
2.987(b)	Modulation Limiting	24
2.995(a)	Frequency Stability (Temperature Variation)	26
2.995(d)	Frequency Stability (Voltage Variation)	29
2.202(g)	Necessary Bandwidth and Emission Bandwidth	30

CASTEL0010

LIST OF GENERAL INFORMATION REQUIRED FOR TYPE ACCEPTANCE

IN ACCORDANCE WITH FCC RULES AND REGULATIONS, VOLUME II, PART 2 AND TO

90

<u>Sub-part</u>

2.983(a): NAME AND ADDRESS OF APPLICANT:

Tait Electronics Ltd. 558 Wairakei Rd. Burnside, Christchurch 5, NEW ZEALAND

VENDOR:

Tait Electronics, Ltd. P.O. Box 1646 Christchurch 1, NEW ZEALAND

2.983(b): <u>FCC ID</u>: CASTEL0010

MODEL NO: T856-26-0000

SERIAL NUMBER: none

2.983(c): QUANTITY PRODUCTION PLANNED.

2.983(d): TECHNICAL DESCRIPTION: SEE ATTACHED EXHIBITS

(1): TYPE OF EMISSION: 11K0F3E, 16K0F3E

(2): FREQUENCY RANGE, MHz: 480 to 520

(3): POWER RATING, Watts: 5, 25
SWITCHABLE x ADJUSTABLE N/A

(4): MAXIMUM POWER RATING, Watts: 300

PAGE NO. 3. CASTEL0010

2.983(<u>d</u>)

(5): VOLTAGES & CURRENTS IN ALL ELEMENTS IN FINAL R. F. STAGE, INCLUDING FINAL TRANSISTOR OR SOLID STATE DEVICE:

COLLECTOR CURRENT, A = per manual COLLECTOR VOLTAGE, Vdc = per manual

SUPPLY VOLTAGE, Vdc = 120

(6): FUNCTION OF ACTIVE CIRCUIT DEVICES:

PLEASE SEE ATTACHED EXHIBITS

(7): <u>CIRCUIT DIAGRAM</u>:

PLEASE SEE ATTACHED EXHIBITS

(8): MANUAL:

PLEASE SEE ATTACHED EXHIBITS

(9): TUNE-UP PROCEDURE:

PLEASE SEE ATTACHED EXHIBITS

(10): DESCRIPTION OF CIRCUITRY & DEVICES PROVIDED FOR DETERMINING AND STABILIZING FREQUENCY:

PLEASE SEE ATTACHED EXHIBITS

(11): DESCRIPTION OF CIRCUITS OR DEVICES EMPLOYED FOR

(a) SUPPRESSION OF SPURIOUS RADIATION,

(b) LIMITING MODULATION,

(c) LIMITING POWER:

PLEASE SEE ATTACHED EXHIBITS

(12): DIGITAL MODULATION DESCRIPTION:

ATTACHED EXHIBITS N/A

2.983(e): TEST AND MEASUREMENT DATA:

FOLLOWS

2.983(f): LABEL INFORMATION:

PLEASE SEE ATTACHED EXHIBITS

2.983(g): PHOTOGRAPHS:

PLEASE SEE ATTACHED EXHIBITS

CASTEL0010 PAGE NO. 4.

Sub-part 2 983(e).

TECT AND MEASUREMENT DATA

____ 101 - Fixed Microwave Services

STANDARD TEST CONDITIONS and ENGINEERING PRACTICES

Except as noted herein, the following conditions and procedures were observed during the testing:

ROOM TEMPERATURE = 25 ± 5 °C

ROOM HUMIDITY = 20-50%

D.C. SUPPLY VOLTAGE, Vdc = N/A

A.C. SUPPLY VOLTAGE, Vac = 120

A.C. SUPPLY FREQUENCY, Hz = 60

Prior to testing, the EUT was tuned up in accordance with the manufacturer's alignment procedures. All external gain controls were maintained at the position of maximum and/or optimum gain throughout the testing.

Measurement results, unless otherwise noted, are worst case measurements.

PAGE NO.

6.

CASTEL0010

NAME OF TEST:

Carrier Output Power (Conducted)

SPECIFICATION:

FCC: 47 CFR 2.985(a)

IC: RSS-119, Section 6.2

GUIDE:

TIA/EIA-603, Paragraph 2.2.1

TEST CONDITIONS:

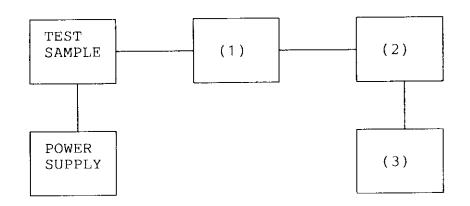
Standard Temperature and Humidity (S. T. & H.)

TEST EQUIPMENT:

As per attached page

MEASUREMENT PROCEDURE

- The EUT was connected to a resistive coaxial attenuator of normal load impedance, and the unmodulated output power was measured by means of an R. F. Power Meter.
- 2. Measurement accuracy is $\pm 3\%$.


MEASUREMENT RESULTS

NOMINAL,	MHz	R.F. POWE	R OUTPUT, WATTS
460.1		5	25

MORTON FLOM, P. Eng.

TRANSMITTER POWER CONDUCTED MEASUREMENTS

TEST 1: R. F. POWER OUTPUT TEST 2: FREQUENCY STABILITY

(1) COAXIAL ATTENUATOR

NARDA 766-10 SIERRA 661A-30 BIRD 8329 (30 dB)

<u>X</u>

(2) POWER METERS

HP 435A HP 436A HP 8901A POWER MODE

(3) FREQUENCY COUNTER

HP 5383A HP 5334B HP 8901A FREQUENCY MODE

__X__

PAGE NO. 8. CASTEL0010

NAME OF TEST: Unwanted Emissions (Transmitter Conducted)

SPECIFICATION: FCC: 47 CFR 2.991

IC: RSS-119, Section 6.3

GUIDE: TIA/EIA-603, Paragraph 2.2.13

TEST CONDITIONS: S. T. & H.

TEST EQUIPMENT: As per attached page

MEASUREMENT PROCEDURE

1. The emissions were measured for the worst case as follows:

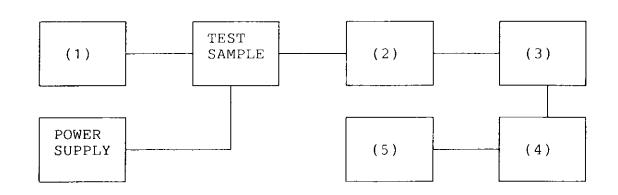
- (a): within a band of frequencies defined by the carrier frequency plus and minus one channel.
- (b): from the lowest frequency generated in the EUT and to at least the 10th harmonic of the carrier frequency, or 40 GHz, whichever is lower.
- 2. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.
- 3. MEASUREMENT RESULTS: ATTACHED FOR WORST CASE

FREQUENCY OF CARRIER, MHz = 460.1

SPECTRUM SEARCHED, GHz = 0 to 10 x F_C

MAXIMUM RESPONSE, Hz = 2510

ALL OTHER EMISSIONS = ≥ 20 dB BELOW LIMIT


LIMIT, dBc: $-(43 + 10 \text{ LOG P}_0) = -50 \text{ (5 Watts)} -57 \text{ (25 Watts)}$

MONTON FLOM, P. Eng.

TRANSMITTER SPURIOUS EMISSION

TEST A. OCCUPIED BANDWIDTH (IN-BAND SPURIOUS)

TEST B. OUT-OF-BAND SPURIOUS

(1)	AUDIO	OSCILLATOR	GENERATOR

HP 204D HP 8903A HP 3312A

______X___

(2) <u>COAXIAL ATTENUATOR</u>

NARDA 766-10 SIERRA 661A-30 BIRD 8329 (30 dB)

__<u>x</u>

(3) FILTERS; NOTCH, HP, LP, BP

CIRQTEL FHT EAGLE TNF-1 PHELPS DODGE PD-495-8 _____

(4) SPECTRUM ANALYZER

HP 8566B HP 8563E

__X

(5) <u>SCOPE</u>

HP 1741A HP 181T TEK 935 HP 54502A

<u>PAGE NO.</u> 10.1.

TRANSMITTER SPURIOUS EMISSIONS (CONDUCTED)

POWER: LOW

FREQUENCY TUNED, MHz	FREQUENCY EMISSION, MHz	LEVEL, đBm	LEVEL, dBc	LEVEL, μW
460.100	920.565	-42.2	-79.1	0
460.100	1380.497	-42.3	-79.2	0
460.100	1840.672	-41.1	-78.0	0
460.100	2300.079	-40.1	-77.0	0
460.100	2760.216	-43.2	-80.1	0
460.100	3220.716	-42.2	-79.1	0
460.100	3680.797	-43.6	-80.5	0
460.100	4140.478	-43.9	-80.8	0
460.100	4601.456	-40.9	-77.8	0
460.100	5061.356	-42.2	-79.1	0
460.100	5521.093	-42.8	-79.7	0
460.100	5981.364	-37.1	-74.0	0
460.100	6441.681	-36.9	-73.8	0
460.100	6901.952	-36.8	-73.7	0

<u>PAGE NO.</u> 10.2. G87K003

TRANSMITTER SPURIOUS EMISSIONS (CONDUCTED)

POWER: HIGH

FREQUENCY TUNED, MHz	FREQUENCY EMISSION, MHz	LEVEL, dBm	LEVEL, dBc	LEVEL, μW
460.100	919,995	-31.5	-75.4	
460.100	1380.600	-31.8	-75.7	1
460.100	1839.904	-29.8		1
460.100	2300.948	-30.5		1
460.100	2760.195	-32.4	-76.3	1
460.100	3220.697	-33.3	-77.2	0
460.100	3680.354	-32.8	-76.7	1
460.100	4141.036	-32.7	-76.6	1
460.100	4601.025	-32.7	-76.6	1
460.100	5061.169	-32.4	-76.3	1
460.100	5521.475	-31.4	-75.3	1
460.100	5981.088	-26.2	-70.1	2
460.100	6441.015	-27.1	-71.0	2
460.100	6901.951	-26.0	-69.9	3

PAGE NO. 11.1. CASTEL0010

NAME OF TEST: Field Strength of Spurious Radiation

SPECIFICATION: FCC: 47 CFR 2.993(a)

IC: N/A

GUIDE: TIA/EIA-603, Section 2.2.12

TEST CONDITIONS: S. T. & H.

TEST EQUIPMENT: AS PER ATTACHED PAGE

MEASUREMENT PROCEDURE

- 1. A description of the measurement facilities was filed with the FCC and was found to be in compliance with the requirements of Section 15.38, by letter from the FCC dated March 3, 1997, FILE 31040/SIT. All pertinent changes will be reported to the Commission by up-date prior to March 2000.
- 2. At first, in order to locate all spurious frequencies and approximate amplitudes, and to determine proper equipment functioning, the test sample was set up at a distance of three meters from the test instrument. Valid spurious signals were determined by switching the power on and off.
- 3. In the field, the test sample was placed on a wooden turntable above ground at three (or thirty) meters away from the search antenna. The test sample was connected to an R.F. Wattmeter and a 50 ohm dummy load, and adjusted to its rated output.

In order to obtain the maximum response at each spurious frequency, the turntable was rotated. Also, the Search Antennas were raised and lowered vertically, and all cables were oriented. Excess power lead was coiled near the power supply.

- 4. A signal generator, connected with a non-radiating cable to a vertically polarized half-wave antenna (for each frequency involved) was substituted for the transmitter. The Search Antenna was raised and lowered to obtain maximum indicated.
- The signal generator output was adjusted until a signal level indication equal to that from the transmitter was obtained.
- Steps 4 and 5 were repeated, using a horizontally polarized half-wave antenna. The higher of the two observations was noted.

PAGE NO.

11.2.

CASTEL0010

NAME OF TEST:

Field Strength of Spurious Radiation

SPECIFICATION:

FCC: 47 CFR 2.993(a)

IC: N/A

MEASUREMENT PROCEDURE (CONT.)

- 7. Power into the half-wave antenna was calculated from the characteristic impedance of the line, and the voltage output from the signal generator.
- 8. The level of each spurious radiation with reference to the transmitter power in dB, was calculated from:

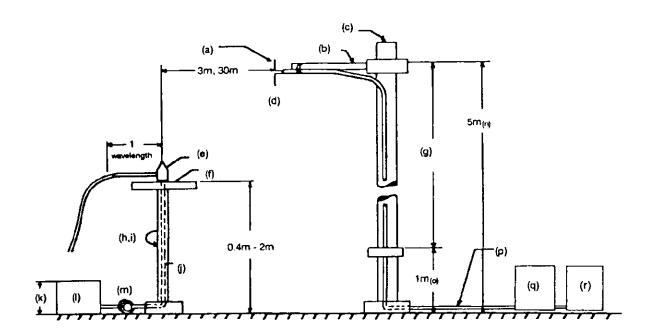
SPURIOUS LEVEL, dB = 10 LOG (Calculated Spurious Power)

[from para. 7].

Tx Power (Wattmeter)

- 9. The worst case for all channels is shown.
- 10. Measurement summary:

FREQUENCY OF CARRIER, MHz = 460.1


SPECTRUM SEARCHED, GHz = 0 to 10 x F_C

ALL OTHER EMISSIONS = ≥ 20 dB BELOW LIMIT

LIMIT, dBc = -57 (25 Watts) -50 (5 Watts)

11. Measurement results: ATTACHED FOR WORST CASE

RADIATED TEST SETUP

NOTES:

- (a) Search Antenna Rotatable on boom.
- (b) Non-metallic boom.
- (c) Non-metallic mast.
- (d) Adjustable horizontally.
- (e) Equipment Under Test.
- (f) Turntable.
- (g) Boom adjustable in height.
- (h) External control cables routed horizontally at least one wavelength.
- (i) Rotatable.
- (j) Cables routed through hollow turntable center.
- (k) 30 cm or less.
- (1) External power source.
- (m) 10 cm diameter coil of excess cable.
- (n) 25 cm (V), 1 m-7 m (V, H).
- (o) 25 cm from bottom end of 'V', 1 m normally.
- (p) Calibrated Cable at least 10 m in length.
- (q) Amplifier (optional).
- (r) Spectrum Analyzer.

TRANSMITTER SPURIOUS EMISSIONS (RADIATED FIELD STRENGTH)

ALL OTHER EMISSIONS	= ≥ 20 dB BELOW	LIMIT
EMISSION, MHz/HARMONIC	SPURIOUS LE Lo CARRIER,	
2nd to 10th	<-70	<-65

PAGE NO. 14. CASTEL0010

NAME OF TEST: Emission Masks (Occupied Bandwidth)

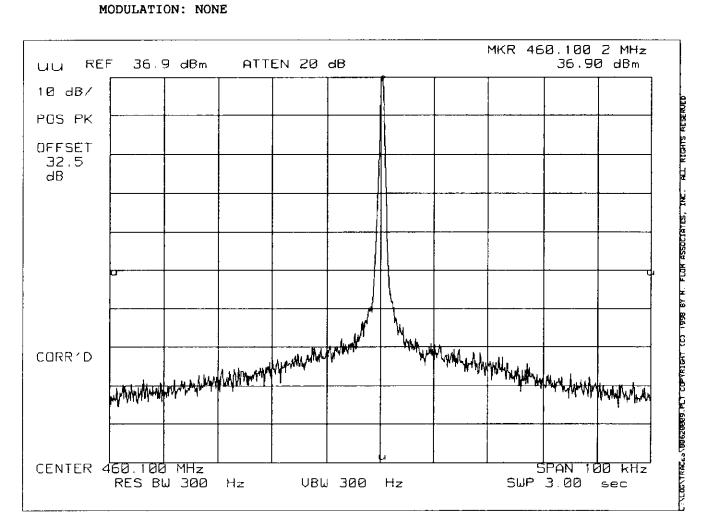
SPECIFICATION: FCC: 47 CFR 2.989(c)(1)

IC: RSS-119, Section 6.4

GUIDE: TIA/EIA-603, Paragraph 2.2.11

TEST CONDITIONS: S. T. & H.

TEST EQUIPMENT: As per previous page

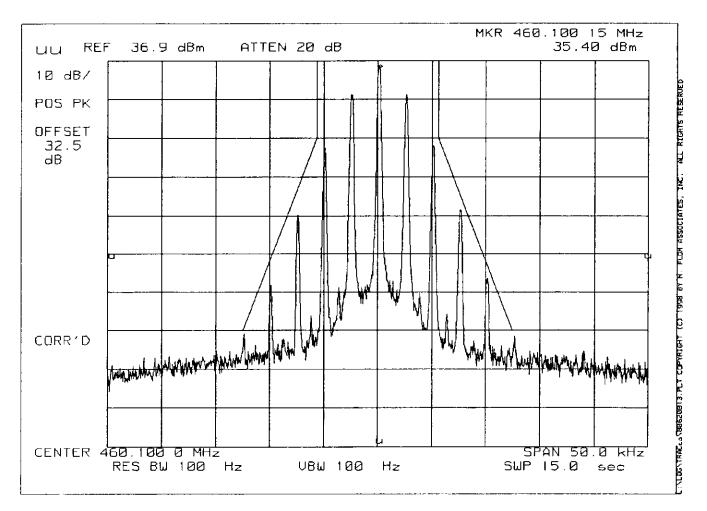

MEASUREMENT PROCEDURE

- The EUT and test equipment were set up as shown on the following page, with the Spectrum Analyzer connected.
- 2. For EUTs supporting audio modulation, the audio signal generator was adjusted to the frequency of maximum response and with output level set for ±2.5 kHz deviation (or 50% modulation). With level constant, the signal level was increased 16 dB.
- For EUTs supporting digital modulation, the digital modulation mode was operated to its maximum extent.
- 4. The Occupied Bandwidth was measured with the Spectrum Analyzer controls set as shown on the test results.
- 5. MEASUREMENT RESULTS: ATTACHED

PAGE 15.1. SPECTRUM ANALYZER PRESENTATION TAIT ELECTRONICS, T856-36-0000 (TX) 1998-JUL-20, 12:02, MON

POWER:

LOW

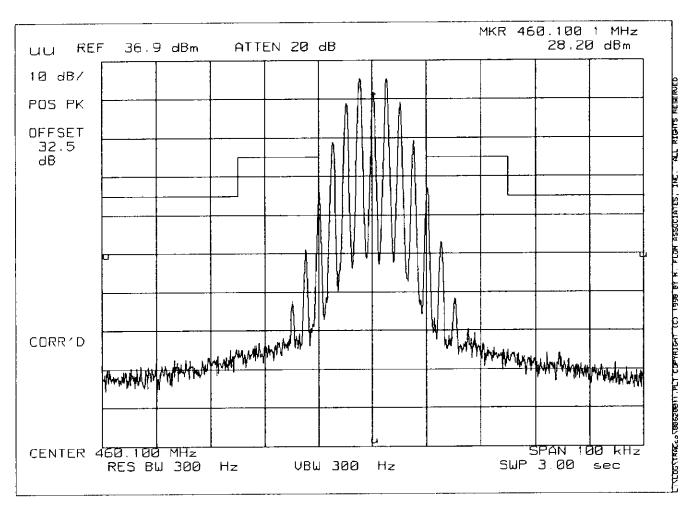


PAGE 15.2. SPECTRUM ANALYZER PRESENTATION TAIT ELECTRONICS, T856-36-0000 (TX) 1998-JUL-20, 12:12, MON

POWER:

LOW

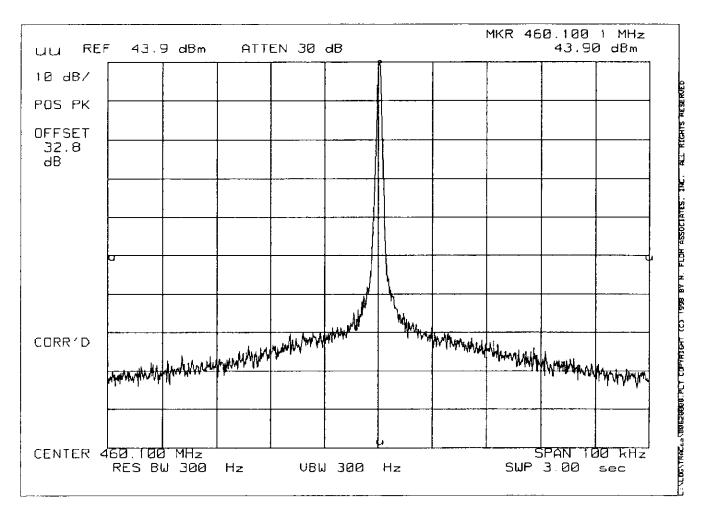
MODULATION: VOICE: 2500 Hz SINE WAVE MASK: D, VHF/UHF 12.5kHz BW



PAGE 15.3.
SPECTRUM ANALYZER PRESENTATION
TAIT ELECTRONICS, T856-36-0000 (TX)
1998-JUL-20, 12:05, MON

POWER:

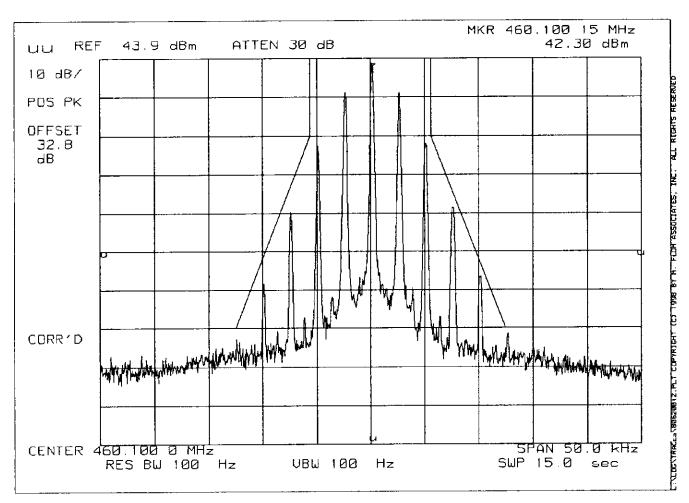
LOW


MODULATION: VOICE: 2500 Hz SINE WAVE MASK: B, VHF/UHF 25kHz, w/LPF

PAGE 15.4.

SPECTRUM ANALYZER PRESENTATION
TAIT ELECTRONICS, T856-36-0000 (TX)
1998-JUL-20, 11:59, MON

POWER: HIGH MODULATION: NONE



PAGE 15.5.
SPECTRUM ANALYZER PRESENTATION
TAIT ELECTRONICS, T856-36-0000 (TX)
1998-JUL-20, 12:09, MON

POWER:

HIGH

MODULATION: VOICE: 2500 Hz SINE WAVE MASK: D, VHF/UHF 12.5kHz BW

PAGE 15.6.

SPECTRUM ANALYZER PRESENTATION
TAIT ELECTRONICS, T856-36-0000 (TX)
1998-JUL-20, 12:04, MON

POWER:

HIGH

MODULATION: VOICE: 2500 Hz SINE WAVE MASK: B, VHF/UHF 25kHz, w/LPF

PAGE NO. 16. CASTEL0010

NAME OF TEST: Transient Frequency Behavior

SPECIFICATION: FCC: 47 CFR 90.214

IC: RSS-119, Section 6.5

GUIDE: TIA/EIA-603, Paragraph 2.2.19

TEST CONDITIONS: S. T. & H.

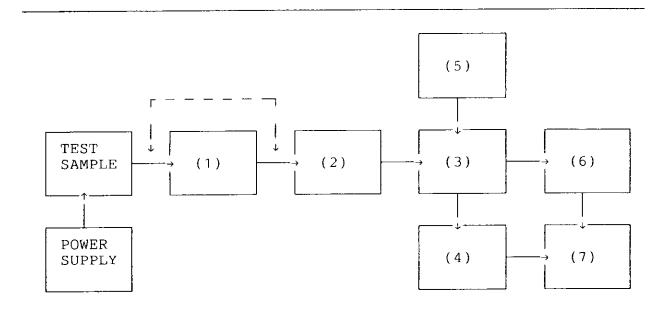
TEST EQUIPMENT: As per attached page

MEASUREMENT PROCEDURE

- 1. The EUT was setup as shown on the attached page, following ${\tt TIA/EIA-603}$ steps a, b, and c as a guide.
- 2. The transmitter was turned on.
- 3. Sufficient attenuation was provided so that the transmitter carrier level measured at the output of the combiner was 40 dB below the maximum input level of the test receiver. This level was recorded as $\underline{\text{step }f}$.
- 4. The transmitter was turned off.
- 5. An RF signal generator (1) modulated with a 1 kHz tone at either 25, 12.5, or 6.25 kHz deviation, and set to the same frequency as the assigned transmitter frequency, (2) was adjusted to a level -20 dB below the level recorded for step f, as measured at the output of the combiner. This level was then fixed for the remainder of the test and is recorded at step h.
- 6. The oscilloscope was setup using TIA/EIA-603 steps j and k as a guide, and to either 10 ms/div (UHF) or 5 ms/div (VHF).
- 7. The 30 dB attenuator was removed, the transmitter was turned on, and the level of the carrier at the output of the combiner was recorded as step $\underline{1}$.
- 8. The <u>carrier on-time</u> as referenced in TIA/EIA-603 steps m, n, and o was captured and plotted. The <u>carrier off-time</u> as referenced in TIA/EIA-603 steps p, q, r, and s was captured and plotted.

LEVELS MEASURED:

 $\begin{array}{lll} \underline{\text{step } f}, & \text{dBm} & = -18.6 \\ \underline{\text{step } h}, & \text{dBm} & = -39.1 \\ \underline{\text{step } 1}, & \text{dBm} & = 10.3 \end{array}$

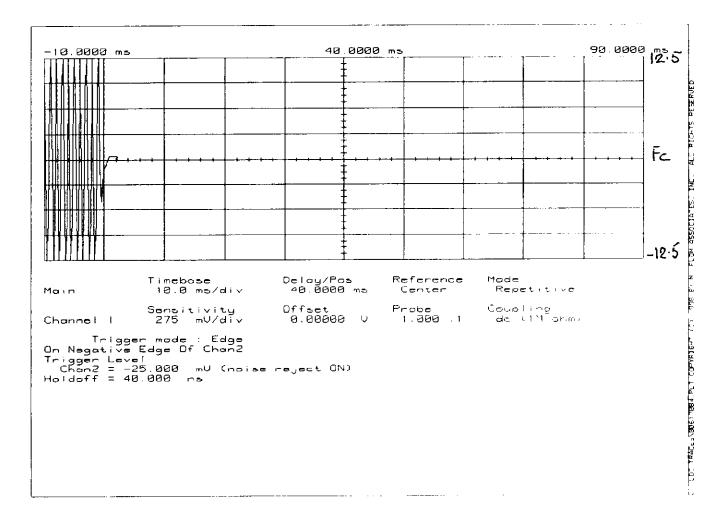

MONTON FLOM, P. Eng.

(7)

SCOPE

HP 54502A

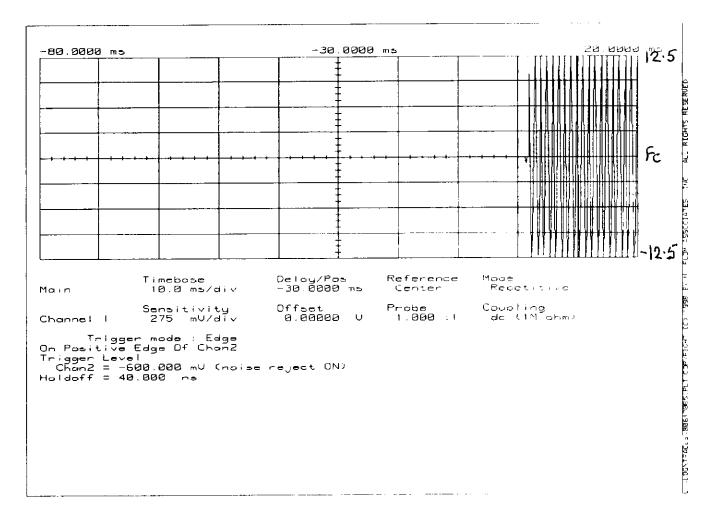
TRANSIENT FREQUENCY BEHAVIOR



X

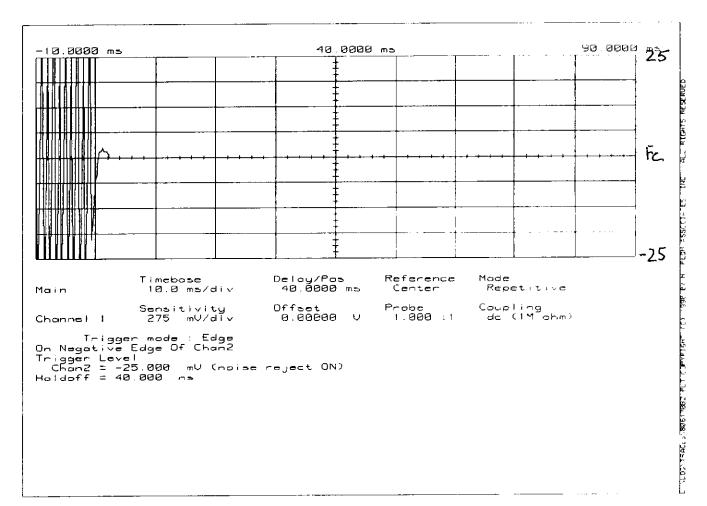
(1) <u>ATTENUATOR</u> (NOTE: Removed after 1st step) _X_ 30 dB (2) ATTENUATOR 30 dB 20 dB 10 dB KAY VARIABLE (3) <u>COMBINER</u> $4 \times 25 \Omega$ COMBINER __X__ (4) CRYSTAL DETECTOR HP 8470B _X_ (5) RF SIGNAL GENERATOR HP 8656A HP 8920A _X_ MODULATION ANALYZER (6) HP 8901A _X PAGE 18.1. OSCILLOSCOPE PRESENTATION TAIT ELECTRONICS, T856-36-0000 (TX) 1998-JUL-17, 15:01, FRI

MODULATION: Ref Gen=12.5 kHz Deviation


REMARK: CARRIER ON TIME

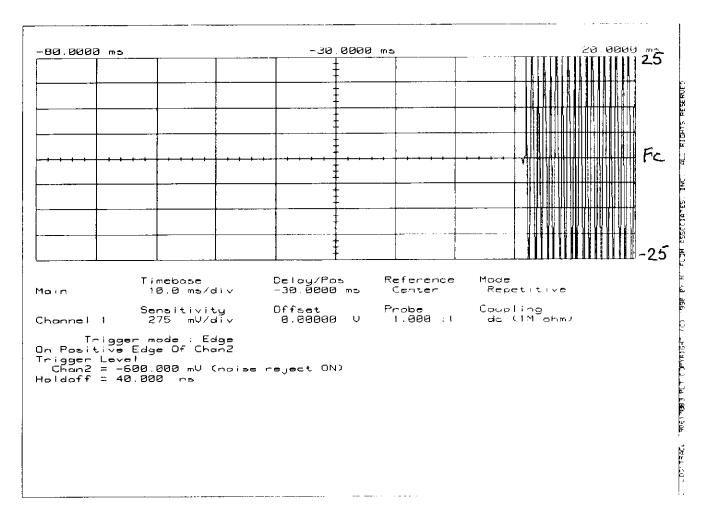
PAGE 18.2.
OSCILLOSCOPE PRESENTATION
TAIT ELECTRONICS, T856-36-0000 (TX)
1998-JUL-17, 15:03, FRI

MODULATION: Ref Gen=12.5 kHz Deviation


REMARK: CARRIER OFF TIME

PAGE 18.3.
OSCILLOSCOPE PRESENTATION
TAIT ELECTRONICS, T856-36-0000 (TX)
1998-JUL-17, 14:59, FRI

MODULATION: Ref Gen=25 kHz Deviation


REMARK: CARRIER ON TIME

PAGE 18.4.
OSCILLOSCOPE PRESENTATION
TAIT ELECTRONICS, T856-36-0000 (TX)
1998-JUL-17, 15:00, FRI

MODULATION: Ref Gen=25 kHz Deviation

REMARK: CARRIER OFF TIME

PAGE NO. 19. CASTEL0010

NAME OF TEST: Audio Low Pass Filter (Voice Input)

SPECIFICATION: FCC: 47 CFR 2.987(a)

IC: RSS-119, Section 6.6

GUIDE: TIA/EIA-603, Paragraph 2.2.15

TEST CONDITIONS: S. T. & H.

TEST EQUIPMENT: As per attached page

MEASUREMENT PROCEDURE

 The EUT and test equipment were set up such that the audio input was connected at the input to the modulation limiter, and the modulated stage.

2. The audio output was connected at the output to the modulated stage.

3. MEASUREMENT RESULTS: ATTACHED

TRANSMITTER TEST SET-UP

TEST A. MODULATION CAPABILITY/DISTORTION

TEST B. AUDIO FREQUENCY RESPONSE

TEST C. HUM AND NOISE LEVEL

TEST D. RESPONSE OF LOW PASS FILTER

TEST E. MODULATION LIMITING

(1)	AUDIO	OSCILLATOR	GENERATOR
-----	-------	------------	-----------

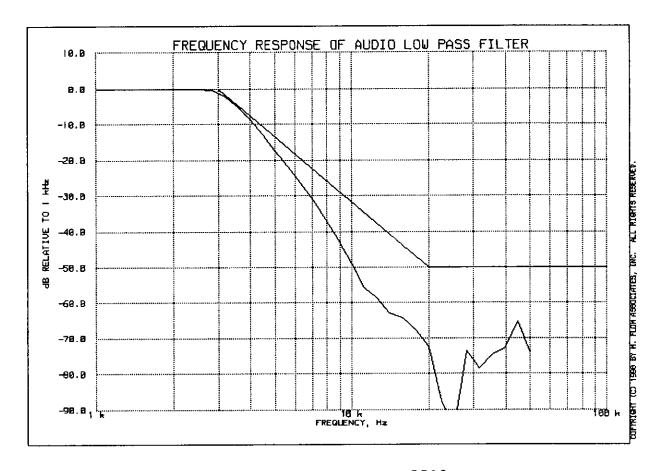
ΗP	204D	
ΗP	8903A	
ΗP	3312A	<u>X</u>
		v

(2) COAXIAL ATTENUATOR

NARDA 766-10	
SIERRA 661A-30	X
BIRD 8329 (30 dB)	

(3) MODULATION ANALYZER

ΗP	8901A		X
			·


(4) AUDIO ANALYZER

HP 89	903A		_X
		_	

(5) SCOPE

HP 1	741A
HP 1	81T
TEK	935

PAGE 21.
FREQUENCY RESPONSE OF AUDIO LOW PASS FILTER
TAIT ELECTRONICS, T856-36-0000 (TX)
20 JUL 1998, 10:09

PEAK AUDIO FREQUENCY, Hz: 2510

M. Ohn P. Eng

MORTON FLOM, P. Enq.

SUPERVISED BY:

PAGE_NO. 22. CASTEL0010

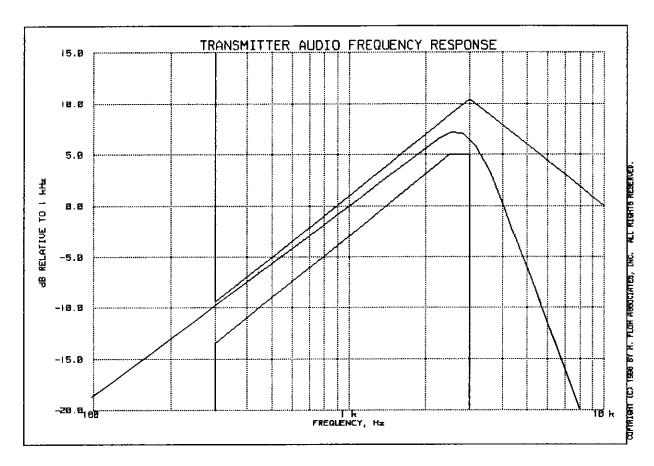
NAME OF TEST: Audio Frequency Response

SPECIFICATION: FCC: 47 CFR 2.987(a)

IC: N/A

GUIDE: TIA/EIA-603, Section 2.2.6

TEST CONDITIONS: S. T. & H.


TEST EQUIPMENT: As per previous page

MEASUREMENT PROCEDURE

 The EUT and test equipment were set up as shown on the following page.

- The audio signal generator was connected to the audio input circuit/microphone of the EUT.
- 3. The audio signal input was adjusted to obtain 20% modulation at 1 kHz, and this point was taken as the 0 dB reference level.
- 4. With input levels held constant and below limiting at all frequencies, the audio signal generator was varied from 100 Hz to $50~\mathrm{kHz}$.
- 5. The response in dB relative to 1 kHz was then measured, using the HP 8901A Modulation Analyzer.
- 6. MEASUREMENT RESULTS: ATTACHED

PAGE 23.
TRANSMITTER AUDIO FREQUENCY RESPONSE
TAIT ELECTRONICS, T856-36-0000 (TX)
20 JUL 1998, 10:03

PEAK AUDIO FREQUENCY, Hz: 2510

TABLE VALUES:

FREQUENCY,		FREQUENCY, Hz	 FREQUENCY, Hz	•
***	-9.7 -17.6	30000 50000		• •

SUPERVISED BY:

MORTON FLOM, P. Eng.

ON: Ouch 1: Eng

CASTEL0010

PAGE NO.

24.

NAME OF TEST:

Modulation Limiting

SPECIFICATION:

IC: RSS-119, Section 6.6

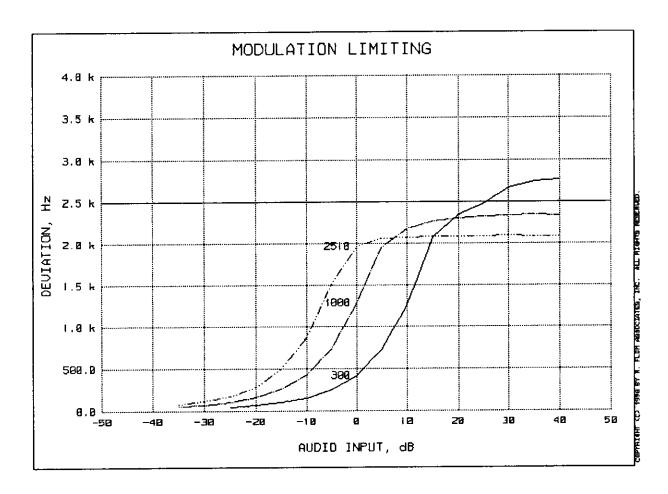
FCC: 47 CFR 2.987(b)

GUIDE:

TIA/EIA-603, Paragraph 2.2.3

TEST CONDITIONS:

S. T. & H.


TEST EQUIPMENT:

As per attached page

MEASUREMENT PROCEDURE

- The signal generator was connected to the input of the EUT as for "Frequency Response of the Modulating Circuit."
- The modulation response was measured for each of three frequencies (one of which was the frequency of maximum response), and the input voltage was varied and was observed on an HP 8901A Modulation Analyzer.
- 3. The input level was varied from 30% modulation ($\pm 1.5~\mathrm{kHz}$ deviation) to at least 20 dB higher than the saturation point.
- 4. Measurements were performed for both negative and positive modulation and the respective results were recorded.
- 5. MEASUREMENT RESULTS: ATTACHED

PAGE 25.1.
MODULATION LIMITING
TAIT ELECTRONICS, T856-36-0000 (TX)
1998-JUL-20, 10:16

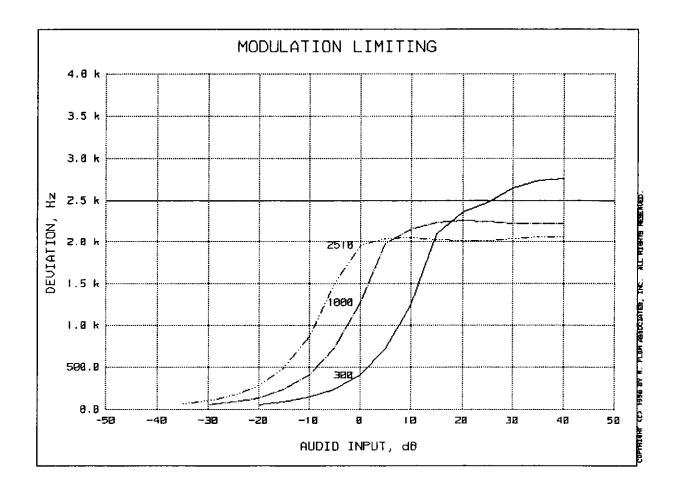
REFERENCE DEVIATION, kHz

= 1.25

REFERENCE MODULATION, Hz

= 1000

PEAKS

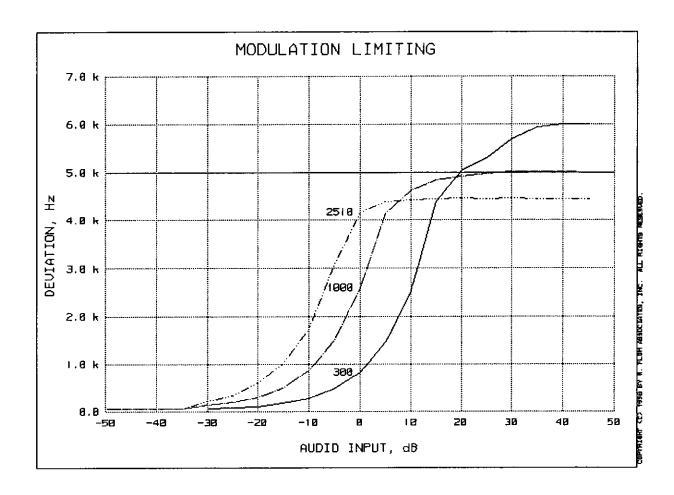

= POSITIVE

AUDIO AMPLITUDE, mV

= 35.82

SUPERVISED BY:

PAGE 25.2.
MODULATION LIMITING
TAIT ELECTRONICS, T856-36-0000 (TX)
1998-JUL-20, 10:16

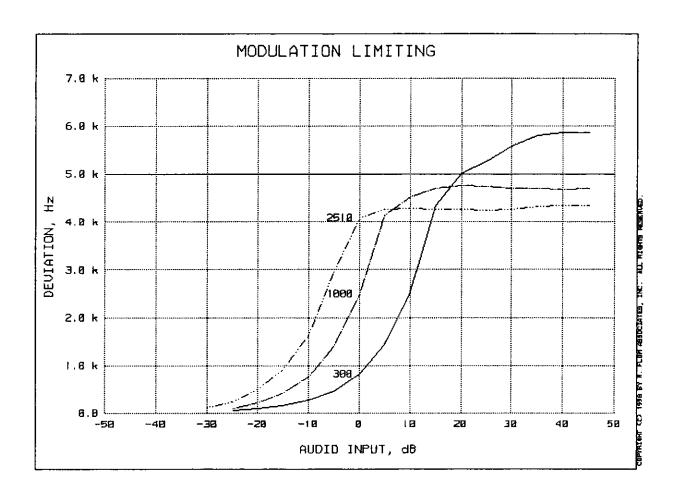

REFERENCE DEVIATION, kHz = 1.25

REFERENCE MODULATION, Hz = 1000

PEAKS = NEGATIVE

AUDIO AMPLITUDE, mV = 35.82

SUPERVISED BY:


REFERENCE DEVIATION, kHz = 2.5

REFERENCE MODULATION, Hz = 1000

PEAKS = POSITIVE

AUDIO AMPLITUDE, mV = 33.43

SUPERVISED BY:

REFERENCE DEVIATION, kHz = 2.5

REFERENCE MODULATION, Hz = 1000

PEAKS = NEGATIVE

AUDIO AMPLITUDE, mV = 33.43

SUPERVISED BY:

PAGE NO. CASTEL0010

NAME OF TEST: Frequency Stability (Temperature Variation)

SPECIFICATION: FCC: 47 CFR 2.995(a)(1)
IC: RSS-119, Section 7.0

10. 100 117, 000 1 = 110 110

GUIDE: TIA/EIA-602, Section 2.2.2

TEST CONDITIONS: As indicated

TEST EQUIPMENT: As per attached page

MEASUREMENT PROCEDURE

 The EUT and test equipment were set up as shown on the following page.

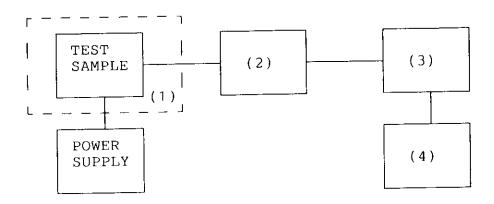
- 2. With all power removed, the temperature was decreased to -30°C and permitted to stabilize for three hours. Power was applied and the maximum change in frequency was noted within one minute.
- 3. With power OFF, the temperature was raised in 10°C steps. The sample was permitted to stabilize at each step for at least one-half hour. Power was applied and the maximum frequency change was noted within one minute.
- The temperature tests were performed for the worst case.
- 5. MEASUREMENT RESULTS: ATTACHED

TRANSMITTER TEST SET-UP

TEST A. OPERATIONAL STABILITY

TEST B. CARRIER FREQUENCY STABILITY

TEST C. OPERATIONAL PERFORMANCE STABILITY


TEST D. HUMIDITY

TEST E. VIBRATION

TEST F. ENVIRONMENTAL TEMPERATURE

TEST G. FREQUENCY STABILITY: TEMPERATURE VARIATION

TEST H. FREQUENCY STABILITY: VOLTAGE VARIATION

(1) TEMPERATURE, HUMIDITY, VIBRATION

TENNEY TEMPERATURE CHAMBER WEBER HUMIDITY CHAMBER L.A.B. RVH 18-100

X

(2) COAXIAL ATTENUATOR

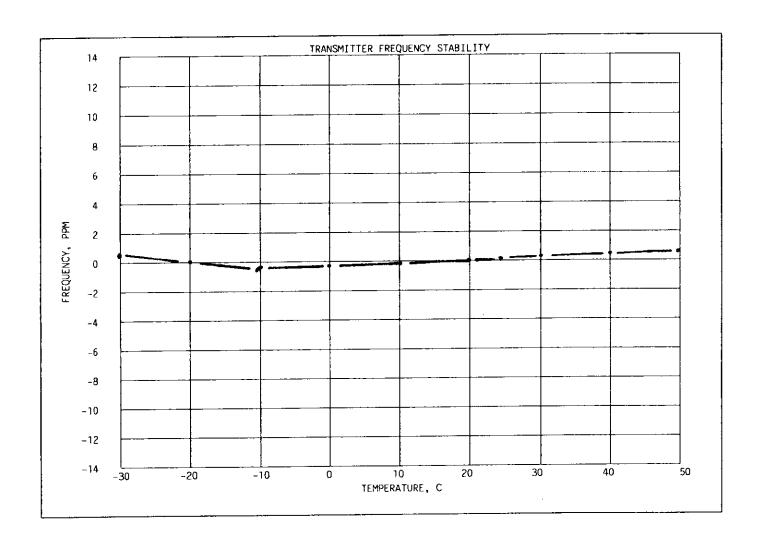
NARDA 766-10 SIERRA 661A-30 BIRD 8329 (30 dB)

__<u>x__</u>

(3) R.F. POWER

HP 435A POWER METER HP 436A POWER METER HP 8901A POWER MODE

×


(4) FREQUENCY COUNTER

HP 5383A HP 5334B

<u>X</u>

HP 8901A

. . . .

FREQUENCY OF CARRIER, MHz = 480.1

LIMIT, ppm = ± 1.5

LIMIT, Hz = 690

Morton Flom, P. Eng.

an Omer P. Eng

SUPERVISED BY:

CASTEL0010 29. PAGE NO.

Frequency Stability (Voltage Variation) NAME OF TEST:

FCC: 47 CFR 2.995 (b)(1) SPECIFICATION:

IC: RSS-119, Section 7.0

TIA/EIA-602, Section 2.2.2 GUIDE:

As indicated TEST CONDITIONS:

As per attached page TEST EQUIPMENT:

MEASUREMENT PROCEDURE

- The EUT was placed in a temperature chamber at $25\pm5\,^{\circ}\text{C}$ and 1. connected as for "Frequency Stability - Temperature Variation" test.
- The power supply voltage to the EUT was varied from 85% to 2. 115% of the nominal value measured at the input to the EUT.
- The variation in frequency was measured for the worst case. 3.

MEASUREMENT RESULTS

= 1.5LIMIT, ppm = 690 LIMIT, Hz

STV, %	Vdc	CHANGE IN FREQU	ENCY, Hz	
85	102	480.100010	10	
100	120	480.100000	0	
115	138	480.100000	0	

PAGE NO. CASTEL0010

NAME OF TEST: Necessary Bandwidth and Emission Bandwidth

PARAGRAPH: 47 CFR 2.202(g)

MODULATION = 16K0F3E

NECESSARY BANDWIDTH CALCULATION:

MAXIMUM MODULATION (M), kHz = 3

MAXIMUM DEVIATION (D), kHz = 5

CONSTANT FACTOR (K) = 1

NECESSARY BANDWIDTH (B_N), kHz = (2 x M) + (2 x D x K)

= 16.0

MODULATION = 11K0F3E

NECESSARY BANDWIDTH CALCULATION:

MAXIMUM MODULATION (M), kHz = 3

MAXIMUM DEVIATION (D), kHz = 2.5

CONSTANT FACTOR (K) = 1

NECESSARY BANDWIDTH (B_N), kHz = (2 x M) + (2 x D x K)

= 11.0

TESTIMONIAL AND STATEMENTOF CERTIFICATION

CASTEL0010

THIS IS TO CERTIFY:

- THAT the application was prepared either by, or under the direct supervision of, the undersigned.
- 2. THAT the technical data supplied with the application was taken under my direction and supervision.
- THAT the data was obtained on representative units, randomly selected.
- 4. THAT, to the best of my knowledge and belief, the facts set forth in the application and accompanying technical data are true and correct.

STATEMENT OF QUALIFICATIONS

EDUCATION:

- 1. B. ENG. in ENGINEERING PHYSICS, 1949, McGill University, Montreal, Canada.
- 2. Post Graduate Studies, McGill University & Sir George Williams University, Montreal.

PROFESSIONAL AFFILIATIONS:

- 1. ARIZONA SOCIETY OF PROFESSIONAL ENGINEERS (NSPE), #026 031 821.
- 2. ORDER OF ENGINEERS (QUEBEC) 1949. #4534.
- 3. ASSOCIATION OF PROFESSIONAL ENGINEERS, GEOPHYSICISTS & GEOLOGISTS OF ALBERTA #5916.
- 4. REGISTERED ENGINEERING CONSULTANT GOVERNMENT OF CANADA, DEPARTMENT OF COMMUNICATIONS. Radio Equipment Approvals.
- 5. IEEE, Lifetime Member No. 0417204 (member since 1947).

EXPERIENCE:

- Research/Development/Senior Project Engineer, R.C.A. LIMITED (4 years).
- Owner/Chief Engineer of Electronics.
 Design/Manufacturing & Cable TV Companies (10 years).
- CONSULTING ENGINEER (over 25 years).

TEST INSTRUMENTATION LIST

All equipment calibrated within last 90 days

ADAPTER

HP X281 (Coaxia) waveguide); HP S281; HP 85659 (Quasi peak)

AMPLIFIER

Pre-amp. HP 10885A (2-1300 MHz); HP 8447D, HP 8447E, HP 8449A

ANTENNA See end

ATTENUATOR

Kay 432D; Power, Sierra 661A-30; Narda 76610; Narda 4779-3, -6, -10 d8

AUDIO OSCILLATOR

HP 204D; AIEC DTC-1; Motorola S-1333B; HP 3312A; HP 8903A

BATTERY

Sears Diehard, Stock #4341

Oscilloscope, Tektronix C5A; Polaroid Impulse AF; Kodak DC-50

Feed-Thru, 10 µF, Solar 6512-106R; Solar 7525-1

CLOSE FIELD PROBE HP 11940A, 11941A, HP 11945A

COMPUTER

HP 332; HP Vectra 486/25VL; Various PC COmpatables

CONVERTOR, Down HP 117 10B

COUPLER

Narda 1080, Waveguide; HP S750E (Cross guide): Waveline 274/40; Solar 7415-3; Solar 7835-891 &

CURRENT PROBE

Solar 6741-1

DETECTOR HP 8470B

DIGITAL MULTIMETER HP 3476A w/H.F. Probe; Fluke 8030A-01; HP 3478A

DISTORTION ANALYZER HP 334A; HP 8903A

ELECTRONIC COUNTER

HP 5383A; HP 5334B

FILTER

Cirqtel FHT/7-50-57/ 50-1A/1B (HP); Jerrold TLB-1; THB-1, Piezo 5064; Eagle TNF-I Series, Krohn-Hite 3202: Phelps-Dodge #PD-495-8: Newtone #PD6000 Line Protector; 870-890 MHz (Lab Design); 900 MHz (Lab Design); Solar High-Pass s/n 882029

FREQ. DEV. METER HP 8901A

FREQ. DOUBLER HP 11721A

FREQUENCY METER HP 537A; HP 536A

GENERATOR

Solar 6550-1 (power sweep); HP 8640B, GAW 1012, HP 8656A (signal); Solar 8282-1 (spike)

HUMIDITY CHAMBER

Embem Co FW30; Bowser 0

LIMITER, R.F.

HP 11867A; HP 11693A; HP 10509A

LISN

Singer 91221-1; Ailtech 94641-1 (50µH)

LOAD, POWER

Telewave TLW-25; Bird 8329

MILLIAMETER HP 428B

MIXER

HP 10514A; Mini-Circuits TAK-1H

OPEN FIELD SITE

As filed with FCC & IC and kept up-dated. TURNTABLES: Up to 2000# capacity GROUND SCREEN: Complies with docket 80-284 ANTENNA MAST: Complies as above

OSCILLOSCOPE

HP 1741A; HP 181T; Tektronix T935; HP 54502A

M.F.A. Labs Left and Right human head

PLOTTER

HP 7470; HP7475A

POWER METER

AF GR 1840A; HP 435A with 8481A & 8482H Power Sensors; HP 436A; HP 8901A

POWER SUPPLY

HP 6286A; Heathkit 1P 2711; 1P 5220; Honda EM400 (portable gas gen.); HP 6012

PRINTER

Brother HL-8; Brother HL-10V; HP DeskJet 640C

R. F. PRESELECTOR

HP 85685A

RADIATION METER

Narda 8717 w/8010 Amp. 80218 and 8760 probes

RESISTOR, PRECISION

Solar 7144-1.0, 7144-10.0; Solar 8525-1

Weigh-Tronix 3632T-50

SCANNER

HP 9190A Scanjet

SCREEN ROOM

Lindgren 22-2/2-0

SIGNAL LEVEL METER

Jerrold 704B

SIGNAL SAMPLER

R. F. Bird 4273-030, 4275-030

SINAD/VOLTMETER

Helper Sinadder

SPECTRUM ANALYZER

HP 85588, 8557; HP 8563E; HP 853A; HP 8566B/8568B

TEMPERATURE CHAMBER

Tenney, Jr

TEMPERATURE PROBE

Fluke 80T-150C

TERMINATION

Narda 320B Waveguide. Waveline #281

TEST SET

Semi-Automatic: HP 8953A; HP 8954A Interface: Computer / Controller; P.S. Programmer; HP 59501A; RF Communications: HP 8920A

TRANSFORMERS

Audio Isolation: Solar 6220-1A; Impedance: HP 11694A; Isolation: Solar 7032-1; Matching: Solar 7033-1

TRANSMISSION & NOISE

MEASURING SET

VIBRATION CHAMBER

Unholtz-Dickie T 500; Unholtz-Dickie T 4000

VOLTMETER

HP 410C; HP 3478A

WATTMETER

Bird 43, Sierra 174A-2

ANTENNAS

<u>30 - 50 Hz</u> Emco 7603 M-Field; Emco

7604 M-Field

20 - 200 MHz

Aprel Biconical Model AAB20200

20 - 300 MHz

Emco Biconical H-Field

25 - 1000 MHz

Singer DM-105A; EMCO 3121C

200 - 1000 MHz

Aprel Log Periodic, Model

AALP 2001

10 kHz - 30 MHz

Emco 3107B, E-Field; Emco

3101B/1, Rod E-Field

10 kHz - 32 MHz

Singer 94593-1 (Loop) 150 kHz - 32 MHz

Singer 92197-1 (41")

150 kHz - 32 MHz Singer 93049-1 (9')

1 - 10 GHz

Singer 90794-A Discone

1 - 18 GHz Horn: Aprel Model AAH-118

18 - <u>40 GHz</u>

Emco 3116, Horn

40 - 60 GHz Horn: HP 11970U, HP 11971U.

HP 11975A (Lo Drive

Amplifier)

50 - 75 GHz Mixer, HP 11970V, HP 11971V

75 - 110 GHz

Mixer, HP 11970W