PAGE NO. 4. CASTEL0008

Sub-part 2.983(e):

TEST AND MEASUREMENT DATA

All tests and measurement data shown were performed in accordance with FCC Rules and Regulations, Volume II; Part 2, Sub-part J, Sections 2.981, 2.983, 2.985, 2.987, 2.989, 2.991, 2.993, 2.995, 2.997, 2.999 and the following individual Parts:

,
21 - Domestic Public Fixed Radio Services 22 - Public Mobile Services 22 Subpart H - Cellular Radiotelephone Service 22.901(d) - Alternative technologies and auxiliary services 23 - International Fixed Public Radiocommunication services 24 - Personal Communications Services 74 Subpart H - Low Power Auxiliary Stations 80 - Stations in the Maritime Services 80 Subpart E - General Technical Standards 80 Subpart F - Equipment Authorization for Compulsory Ships
22.907(d) = Alternative technologies and annual results of the services 23 - International Fixed Public Radiocommunication services
74 Subpart H - Low Power Auxiliary Stations
80 Subpart E - General Technical Standards 80 Subpart E - Equipment Authorization for Compulsory Ships
80 Subpart K - Private Coast Stations and Marine Utility Stations
80 Subpart S - Compulsory Radiotelephone Installations for Small Passenger Boats
80 Subpart T - Radiotelephone Installation Required for
80 Subpart U - Radiotelephone Installations Required by the
80 Subpart V - Emergency Position Indicating Radiobeacons (EPIRB'S)
80 Subpart W - Global Maritime Distress and Safety System (GMDSS)
80 Subpart X - Voluntary Radio Installations 87 - Aviation Services
x 90 - Private Land Mobile Radio Services 94 - Private Operational-Fixed Microwave Service (CMPS)
95 Subpart A - General Mobile Radio Service (GMRS) 95 Subpart C - Radio Control (R/C) Radio Service
<pre>87 - Aviation Services 90 - Private Land Mobile Radio Services 94 - Private Operational-Fixed Microwave Service 95 Subpart A - General Mobile Radio Service (GMRS) 95 Subpart C - Radio Control (R/C) Radio Service 95 Subpart D - Citizens Band (CB) Radio Service 95 Subpart E - Family Radio Service 95 Subpart F - Interactive Video and Data Service (IVDS) 101 - Fixed Microwave Services</pre>

STANDARD TEST CONDITIONS and ENGINEERING PRACTICES

Except as noted herein, the following conditions and procedures were observed during the testing:

ROOM TEMPERATURE = 25 ± 5 °C

ROOM HUMIDITY = 20-50%

D.C. SUPPLY VOLTAGE, Vdc = N/A

A.C. SUPPLY VOLTAGE, Vac = 120

A.C. SUPPLY FREQUENCY, Hz = 60

Prior to testing, the EUT was tuned up in accordance with the manufacturer's alignment procedures. All external gain controls were maintained at the position of maximum and/or optimum gain throughout the testing.

Measurement results, unless otherwise noted, are worst case measurements.

PAGE NO.

6.

CASTEL0008

NAME OF TEST:

Carrier Output Power (Conducted)

SPECIFICATION:

FCC: 47 CFR 2.985(a)

IC: RSS-119, Section 6.2

GUIDE:

TIA/EIA-603, Paragraph 2.2.1

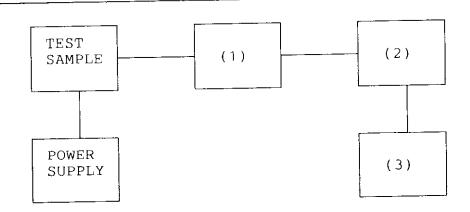
TEST CONDITIONS:

Standard Temperature and Humidity (S. T. & H.)

TEST EQUIPMENT: As per attached page

MEASUREMENT PROCEDURE

- The EUT was connected to a resistive coaxial attenuator of 1. normal load impedance, and the unmodulated output power was measured by means of an R. F. Power Meter.
- Measurement accuracy is ±3%. 2.


MEASUREMENT RESULTS

NOMINAL,	MHz	R.F. POWER OUTP	UT, WATTS
408		2	25

TRANSMITTER POWER CONDUCTED MEASUREMENTS

TEST 1: R. F. POWER OUTPUT TEST 2: FREQUENCY STABILITY

(1) COAXIAL ATTENUATOR

NARDA 766-10 SIERRA 661A-30 BIRD 8329 (30 dB)

(2) POWER METERS

HP 435A HP 436A HP 8901A POWER MODE

(3) FREQUENCY COUNTER

HP 5383A HP 5334B HP 8901A FREQUENCY MODE

8. PAGE NO.

CASTEL0008

NAME OF TEST:

Unwanted Emissions (Transmitter Conducted)

SPECIFICATION:

FCC: 47 CFR 2.991

IC: RSS-119, Section 6.3

GUIDE:

TIA/EIA-603, Paragraph 2.2.13

TEST CONDITIONS: S. T. & H.

TEST EQUIPMENT:

As per attached page

MEASUREMENT PROCEDURE

The emissions were measured for the worst case as follows: 1.

(a): within a band of frequencies defined by the carrier frequency plus and minus one channel.

(b): from the lowest frequency generated in the EUT and to at least the 10th harmonic of the carrier frequency, or 40 GHz, whichever is lower.

The magnitude of spurious emissions which are attenuated more 2. than 20 dB below the permissible value need not be specified.

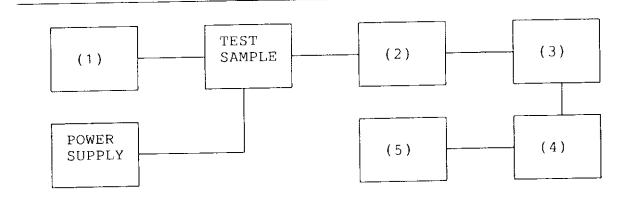
MEASUREMENT RESULTS: ATTACHED FOR WORST CASE 3.

FREQUENCY OF CARRIER, MHz = 408

SPECTRUM SEARCHED, GHz = 0 to 10 x F_C

= 2510 MAXIMUM RESPONSE, Hz

= ≥ 20 dB BELOW LIMIT ALL OTHER EMISSIONS


LIMIT, dBc: $-(43 + 10 \text{ LOG P}_0) = -46 (2 \text{ Watts})$ -57 (25 Watts)

SUPERVISED BY:

TRANSMITTER SPURIOUS EMISSION

TEST A. OCCUPIED BANDWIDTH (IN-BAND SPURIOUS)

TEST B. OUT-OF-BAND SPURIOUS

(1)	AUDIO OSCILLATOR/GENERATOR HP 204D HP 8903A HP 3312A	
(2)	COAXIAL ATTENUATOR NARDA 766-10 SIERRA 661A-30 BIRD 8329 (30 dB)	<u>x</u> <u>x</u>
(3)	FILTERS; NOTCH, HP, LP, BP CIRQTEL FHT EAGLE TNF-1 PHELPS DODGE PD-495-8	<u>x</u>
(4)	SPECTRUM ANALYZER HP 8566B HP 8563E	<u>×</u>
(5)	SCOPE HP 1741A HP 181T TEK 935 HP 54502A	

CASTEL0008

<u>PAGE NO.</u> 10.1. G87K002

TRANSMITTER SPURIOUS EMISSIONS (CONDUCTED)

POWER: LOW

FREQUENCY	FREQUENCY	LEVEL,	LEVEL,	LEVEL,
TUNED, MHz	EMISSION, MHz	dBm	dBc	μW
408.000 408.000 408.000 408.000 408.000 408.000 408.000 408.000 408.000 408.000 408.000 408.000 408.000	815.532 1224.318 1631.592 2039.817 2448.296 2855.753 3263.994 3672.178 4080.456 4488.103 4896.044 5304.353 5711.934 6120.318	-44.4 -46.4 -45.2 -43.8 -43.9 -46.2 -43.5 -46.2 -47.6 -46.7 -47.8 -47.1 -46.3 -41.1	-77.4 -79.4 -78.2 -76.8 -76.9 -79.2 -76.5 -79.2 -80.6 -79.7 -80.8 -80.1 -79.3 -74.1	0 0 0 0 0 0 0 0 0

<u>PAGE NO.</u> 10.2. G87K001

TRANSMITTER SPURIOUS EMISSIONS (CONDUCTED)

POWER: HIGH

FREQUENCY TUNED, MHz	FREQUENCY EMISSION, MHz	LEVEL, dBm	LEVEL, dBc	LEVEL,
408.000	816.401	-32.1	-76.0	1
408.000	1224.304	-31.9	-75.8	1
408.000	1631.944	-31.0	-74.9	1
408.000	2040.277	-30.3	-74.2	
408.000	2448.012	-30.0	-73.9	1
408.000	2856.116	-32.0	-75.9	1
408.000	3264.039	-31.6	-75.5	1
408.000	3672.464	-33.3	-77.2	0
408.000	4079.702	-32.5	-76.4	1
408.000	4488.367	-33.0	-76.9	1
408.000	4895.533	- 33.1	-77.0	0
408.000	5304.068	-32.8	-76.7	1
408.000	5711.972	-32.3	-76.2	1
408.000	6119.553	-26.7	-70.6	2

PAGE NO. 11.1. CASTEL0008

NAME OF TEST: Field Strength of Spurious Radiation

SPECIFICATION: FCC: 47 CFR 2.993(a)

IC: N/A

GUIDE: TIA/EIA-603, Section 2.2.12

TEST CONDITIONS: S. T. & H.

TEST EQUIPMENT: AS PER ATTACHED PAGE

MEASUREMENT PROCEDURE

- 1. A description of the measurement facilities was filed with the FCC and was found to be in compliance with the requirements of Section 15.38, by letter from the FCC dated March 3, 1997, FILE 31040/SIT. All pertinent changes will be reported to the Commission by up-date prior to March 2000.
- 2. At first, in order to locate all spurious frequencies and approximate amplitudes, and to determine proper equipment functioning, the test sample was set up at a distance of three meters from the test instrument. Valid spurious signals were determined by switching the power on and off.
- 3. In the field, the test sample was placed on a wooden turntable above ground at three (or thirty) meters away from the search antenna. The test sample was connected to an R.F. Wattmeter and a 50 ohm dummy load, and adjusted to its rated output.

In order to obtain the maximum response at each spurious frequency, the turntable was rotated. Also, the Search Antennas were raised and lowered vertically, and all cables were oriented. Excess power lead was coiled near the power supply.

- 4. A signal generator, connected with a non-radiating cable to a vertically polarized half-wave antenna (for each frequency involved) was substituted for the transmitter. The Search Antenna was raised and lowered to obtain maximum indicated.
- The signal generator output was adjusted until a signal level indication equal to that from the transmitter was obtained.
- 6. Steps 4 and 5 were repeated, using a horizontally polarized half-wave antenna. The higher of the two observations was noted.

PAGE NO. 11.2.

CASTEL0008

NAME OF TEST:

Field Strength of Spurious Radiation

SPECIFICATION:

FCC: 47 CFR 2.993(a)

IC: N/A

MEASUREMENT PROCEDURE (CONT.)

- 7. Power into the half-wave antenna was calculated from the characteristic impedance of the line, and the voltage output from the signal generator.
- 8. The level of each spurious radiation with reference to the transmitter power in dB, was calculated from:

SPURIOUS LEVEL, dB = 10 LOG (Calculated Spurious Power)

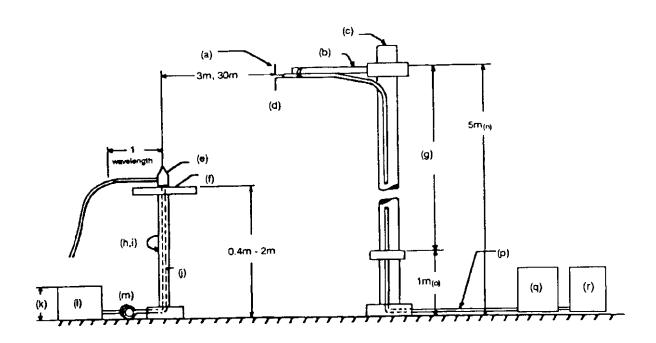
[from para. 7].

Tx Power (Wattmeter)

- 9. The worst case for all channels is shown.
- 10. Measurement summary:

FREQUENCY OF CARRIER, MHz = 408

SPECTRUM SEARCHED, GHz = 0 to 10 x F_C


ALL OTHER EMISSIONS = ≥ 20 dB BELOW LIMIT

LIMIT, dBc = -57 (25 Watts) -46 (2 Watts)

11. Measurement results: ATTACHED FOR WORST CASE

CASTEL0008 12. PAGE NO.

RADIATED TEST SETUP

NOTES:

- Search Antenna Rotatable on boom. (a)
- Non-metallic boom. (b)
- Non-metallic mast. (c)
- Adjustable horizontally. (d)
- Equipment Under Test. (e)
- Turntable. (f)
- Boom adjustable in height. (q)
- External control cables routed horizontally at least one (h) wavelength.
- Rotatable. (i)
- Cables routed through hollow turntable center. (j)
- 30 cm or less. (k)
- External power source. (1)
- 10 cm diameter coil of excess cable. (m)
- (n)
- 25 cm (V), 1 m-7 m (V, H). 25 cm from bottom end of 'V', 1 m normally. (\circ)
- Calibrated Cable at least 10 m in length. (p)
- Amplifier (optional). (q)
- Spectrum Analyzer. (r)

ALL OTHER EMISSIONS	= ≥ 20 dB BELOW LIM	IT
EMISSION, MHz/HARMONIC	SPURIOUS LEVEL I LO CARRIER, dBc	BELOW Hi
2nd to 10th	<-70	<-70

PAGE NO. 14.

CASTEL0008

NAME OF TEST:

Emission Masks (Occupied Bandwidth)

SPECIFICATION:

FCC: 47 CFR 2.989(c)(1)
IC: RSS-119, Section 6.4

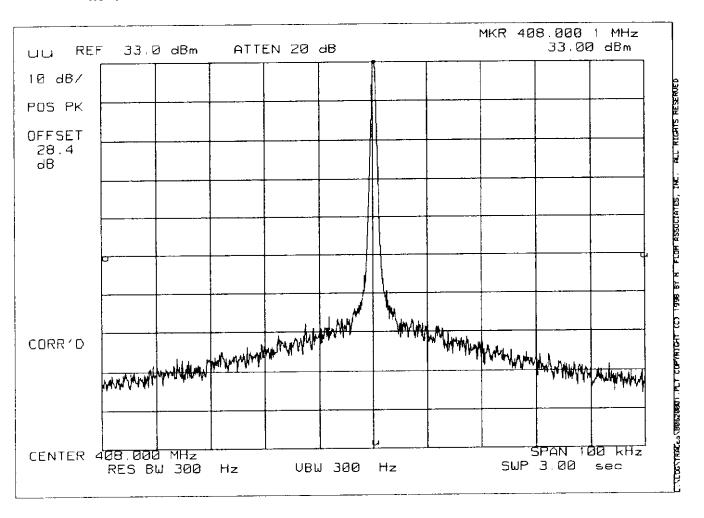
GUIDE:

TIA/EIA-603, Paragraph 2.2.11

TEST CONDITIONS:

S. T. & H.

TEST EQUIPMENT:


As per previous page

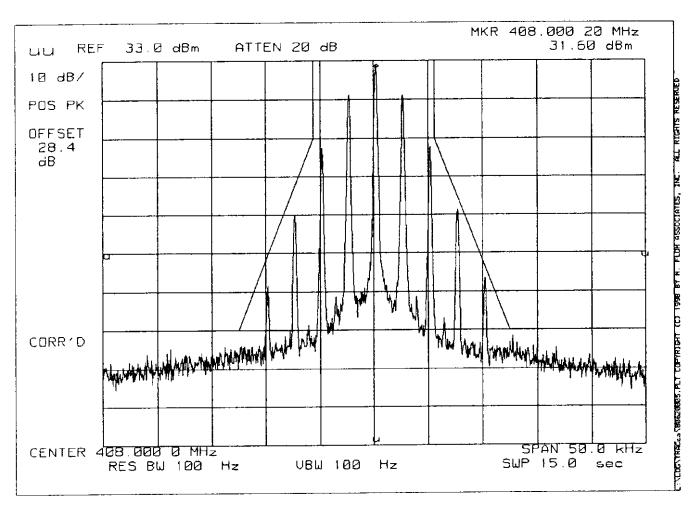
MEASUREMENT PROCEDURE

- The EUT and test equipment were set up as shown on the following page, with the Spectrum Analyzer connected.
- 2. For EUTs supporting audio modulation, the audio signal generator was adjusted to the frequency of maximum response and with output level set for ± 2.5 kHz deviation (or 50% modulation). With level constant, the signal level was increased 16 dB.
- 3. For EUTs supporting digital modulation, the digital modulation mode was operated to its maximum extent.
- 4. The Occupied Bandwidth was measured with the Spectrum Analyzer controls set as shown on the test results.
- 5. MEASUREMENT RESULTS: ATTACHED

PAGE 15.1.
SPECTRUM ANALYZER PRESENTATION
TAIT ELECTRONICS, T856-16-0000 (TX)
1998-JUL-20, 08:20, MON

POWER: LOW MODULATION: NONE

CASTEL0008


PAGE 15.2.

SPECTRUM ANALYZER PRESENTATION
TAIT ELECTRONICS, T856-16-0000 (TX)
1998-JUL-20, 08:29, MON

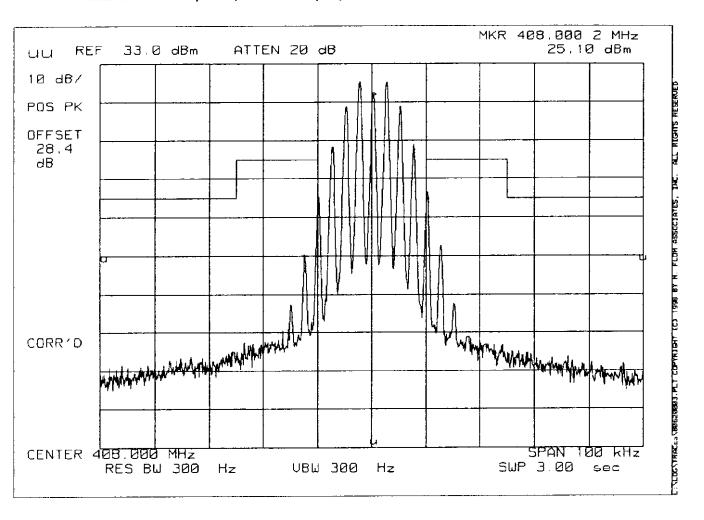
POWER:

LOW

MODULATION: VOICE: 2500 Hz SINE WAVE MASK: D, VHF/UHF 12.5kHz BW

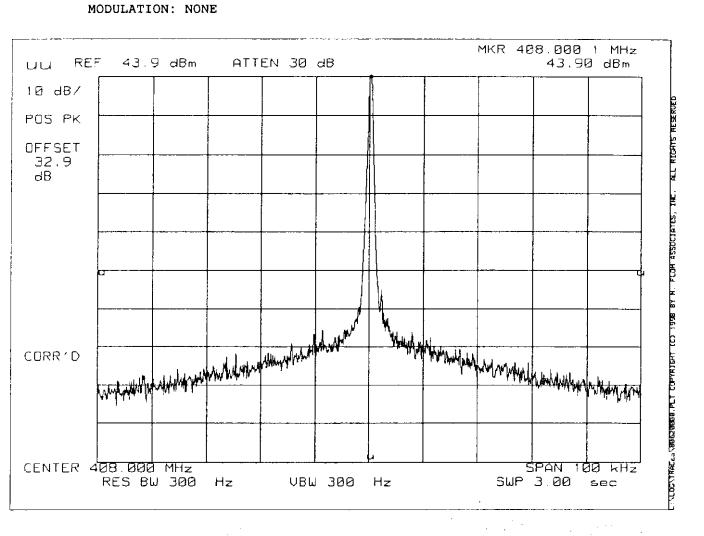
CASTEL0008

PAGE 15.3.


SPECTRUM ANALYZER PRESENTATION TAIT ELECTRONICS, T856-16-0000 (TX) 1998-JUL-20, 08:23, MON

POWER:

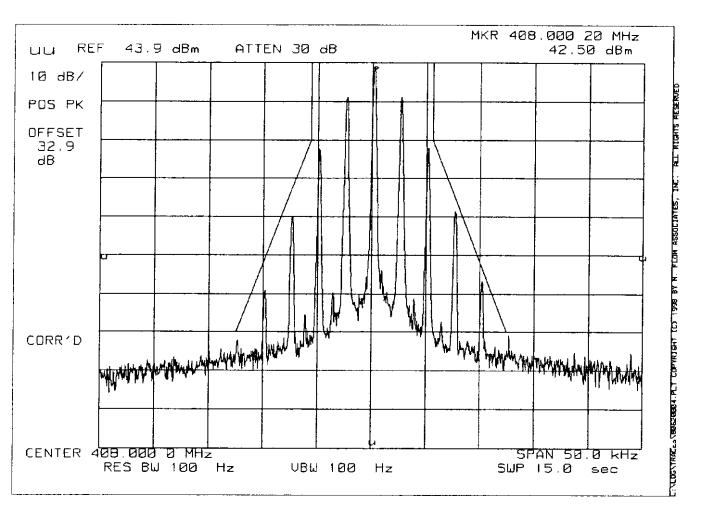
LOW


MODULATION: VOICE: 2500 Hz SINE WAVE

MASK: B, VHF/UHF 25kHz, w/LPF

PAGE 15.4. SPECTRUM ANALYZER PRESENTATION TAIT ELECTRONICS, T856-16-0000 (TX) 1998-JUL-20, 08:17, MON

POWER: HIGH

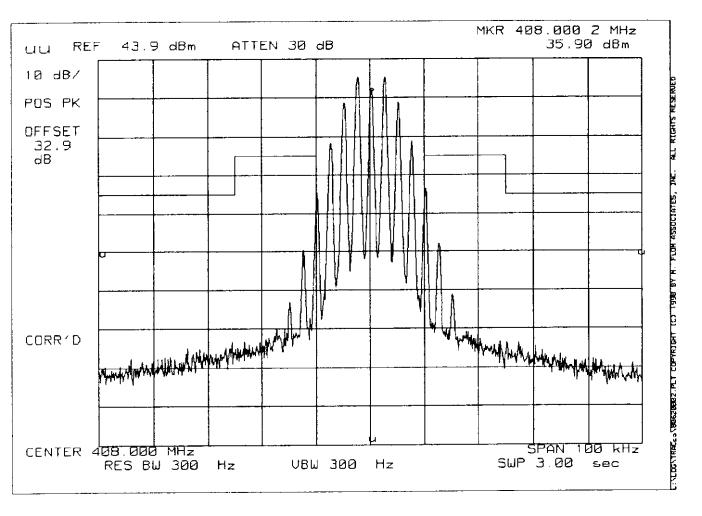

PAGE 15.5. CASTEL0008

SPECTRUM ANALYZER PRESENTATION
TAIT ELECTRONICS, T856-16-0000 (TX)
1998-JUL-20, 08:27, MON

POWER:

HIGH

MODULATION: VOICE: 2500 Hz SINE WAVE MASK: D, VHF/UHF 12.5kHz BW


CASTEL0008

PAGE 15.6.
SPECTRUM ANALYZER PRESENTATION
TAIT ELECTRONICS, T856-16-0000 (TX)
1998-JUL-20, 08:22, MON

POWER:

HIGH

MODULATION: VOICE: 2500 Hz SINE WAVE MASK: B, VHF/UHF 25kHz, w/LPF

PAGE NO. 16.

CASTEL0008

NAME OF TEST:

Transient Frequency Behavior

SPECIFICATION:

FCC: 47 CFR 90.214

IC: RSS-119, Section 6.5

GUIDE:

TIA/EIA-603, Paragraph 2.2.19

TEST CONDITIONS:

S. T. & H.

TEST EQUIPMENT:

As per attached page

MEASUREMENT PROCEDURE

- 1. The EUT was setup as shown on the attached page, following ${\tt TIA/EIA-603}$ steps a, b, and c as a guide.
- 2. The transmitter was turned on.
- 3. Sufficient attenuation was provided so that the transmitter carrier level measured at the output of the combiner was 40 dB below the maximum input level of the test receiver. This level was recorded as $\underline{\text{step }f}$.
- 4. The transmitter was turned off.
- 5. An RF signal generator (1) modulated with a 1 kHz tone at either 25, 12.5, or 6.25 kHz deviation, and set to the same frequency as the assigned transmitter frequency, (2) was adjusted to a level -20 dB below the level recorded for $\underline{\text{step } f}$, as measured at the output of the combiner. This level was then fixed for the remainder of the test and is recorded at $\underline{\text{step } h}$.
- 6. The oscilloscope was setup using TIA/EIA-603 steps j and k as a guide, and to either 10 ms/div (UHF) or 5 ms/div (VHF).
- 7. The 30 dB attenuator was removed, the transmitter was turned on, and the level of the carrier at the output of the combiner was recorded as $\underline{\text{step } 1}$.
- 8. The <u>carrier on-time</u> as referenced in TIA/EIA-603 steps m, n, and o was captured and plotted. The <u>carrier off-time</u> as referenced in TIA/EIA-603 steps p, q, r, and s was captured and plotted.

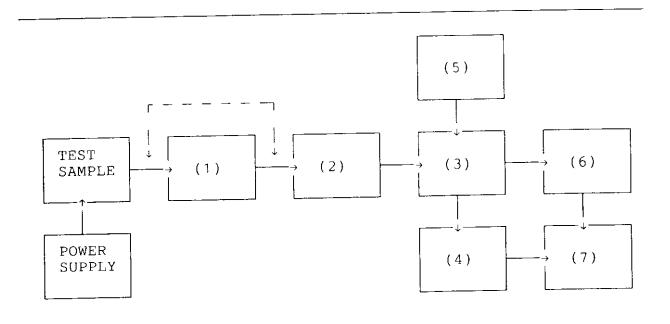
LEVELS MEASURED:

 $\underline{\mathsf{step}}\ \underline{\mathsf{f}},\ \mathsf{dBm}$

= -17.9

<u>step h</u>, dBm

= -38.9

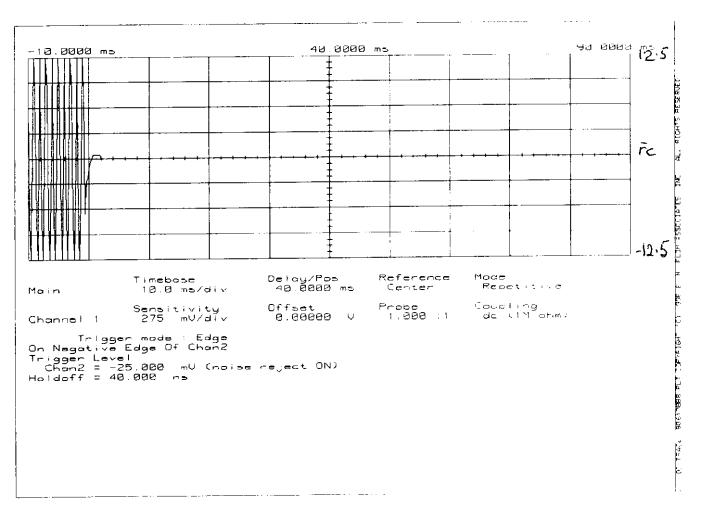

step 1, dBm

= 11.3

SUPERVISED BY:

MORTON FLOM, P. Eng.

TRANSIENT FREQUENCY BEHAVIOR

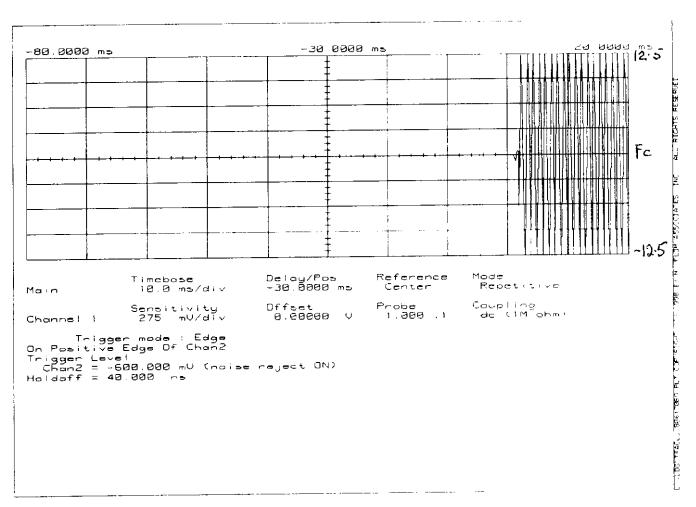

(1)	ATTENUATOR (NOTE: Removed after 1st step) 30 dB	X_
(2)	30 dB —	×
(3)	$\frac{\text{COMBINER}}{4 \times 25 \Omega}$ COMBINER —	<u>x_</u>
(4)	CRYSTAL DETECTOR HP 8470B	×
(5)	RF SIGNAL GENERATOR HP 8656A HP 8920A	<u>x</u>
(6)	MODULATION ANALYZER HP 8901A	X
(7)	SCOPE HP 54502A -	X

PAGE 18.1.

OSCILLOSCOPE PRESENTATION
TAIT ELECTRONICS, T856-16-0000 (TX)
1998-JUL-17, 15:40, FRI

MODULATION: Ref Gen=12.5 kHz Deviation

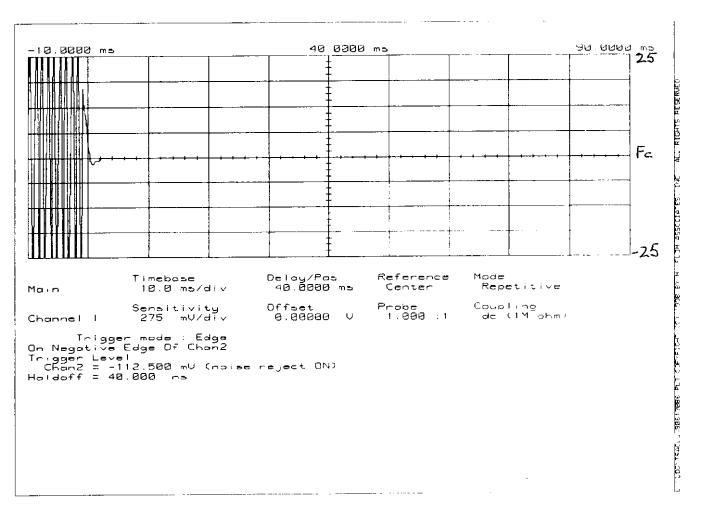
REMARK: CARRIER ON TIME


CASTEL0008

PAGE 18.2.

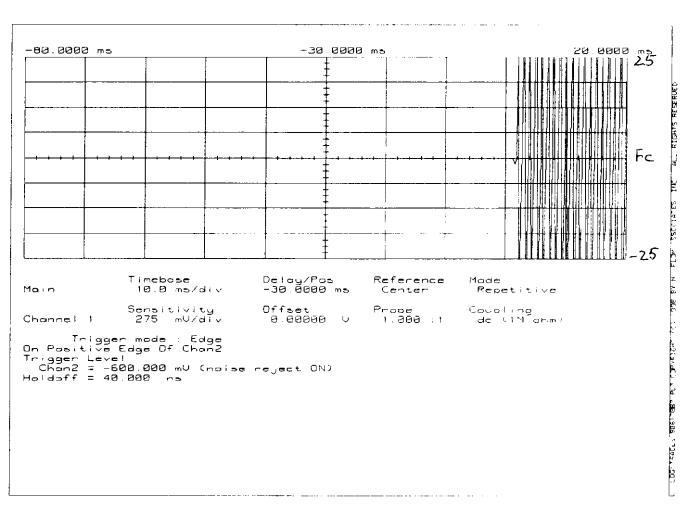
OSCILLOSCOPE PRESENTATION
TAIT ELECTRONICS, T856-16-0000 (TX)
1998-JUL-17, 15:41, FRI

MODULATION: Ref Gen=12.5 kHz Deviation


REMARK: CARRIER OFF TIME

OSCILLOSCOPE PRESENTATION
TAIT ELECTRONICS, T856-16-0000 (TX)
1998-JUL-17, 15:38, FRI

MODULATION: Ref Gen=25 kHz Deviation


REMARK: CARRIER ON TIME

OSCILLOSCOPE PRESENTATION
TAIT ELECTRONICS, T856-16-0000 (TX)
1998-JUL-17, 15:39, FRI

MODULATION: Ref Gen=25 kHz Deviation

REMARK: CARRIER OFF TIME

PAGE NO. 19. CASTEL0008

NAME OF TEST: Audio Low Pass Filter (Voice Input)

SPECIFICATION: FCC: 47 CFR 2.987(a)

IC: RSS-119, Section 6.6

GUIDE: TIA/EIA-603, Paragraph 2.2.15

TEST CONDITIONS: S. T. & H.

TEST EQUIPMENT: As per attached page

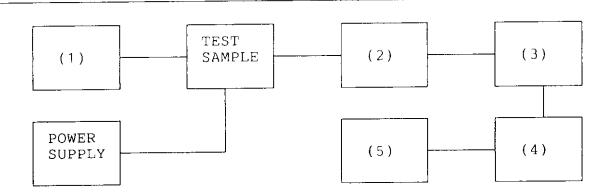
MEASUREMENT PROCEDURE

 The EUT and test equipment were set up such that the audio input was connected at the input to the modulation limiter, and the modulated stage.

2. The audio output was connected at the output to the modulated stage.

3. MEASUREMENT RESULTS: ATTACHED

TRANSMITTER TEST SET-UP


TEST A. MODULATION CAPABILITY/DISTORTION

TEST B. AUDIO FREQUENCY RESPONSE

TEST C. HUM AND NOISE LEVEL

TEST D. RESPONSE OF LOW PASS FILTER

TEST E. MODULATION LIMITING

(1) AUDIO OSCILLATOR/GENERATOR

HP 204D HP 8903A

HP 3312A

×

(2) COAXIAL ATTENUATOR

NARDA 766-10 SIERRA 661A-30 BIRD 8329 (30 dB)

Х

(3) MODULATION ANALYZER

HP 8901A

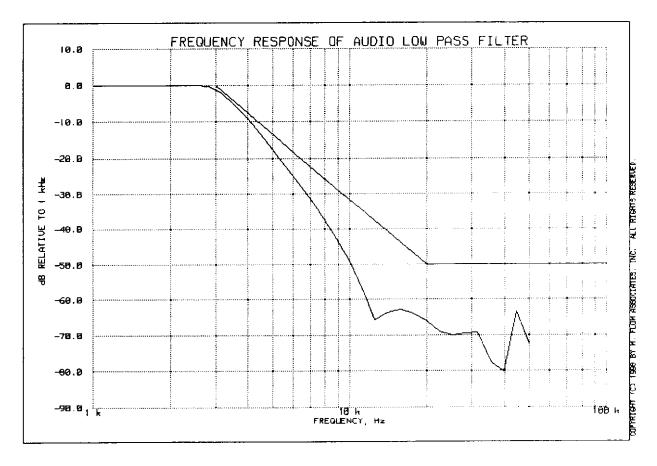
X

(4) AUDIO ANALYZER

HP 8903A

<u>X</u>

(5) <u>SCOPE</u>


HP 1741A

HP 181T

TEK 935

PAGE 21.
FREQUENCY RESPONSE OF AUDIO LOW PASS FILTER
TAIT ELECTRONICS, T856-16-0000 (TX)
17 JUL 1998, 16:08

PEAK AUDIO FREQUENCY, Hz: 2510

M. Oher P. Eng

MORTON FLOM, P. Eng.

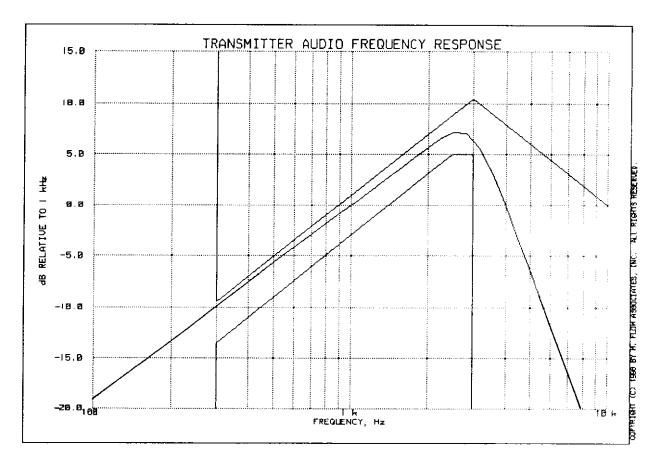
SUPERVISED BY:

PAGE_NO. 22. CASTEL0008

NAME OF TEST: Audio Frequency Response

SPECIFICATION: FCC: 47 CFR 2.987(a)

IC: N/A


GUIDE: TIA/EIA-603, Section 2.2.6

TEST CONDITIONS: S. T. & H.

TEST EQUIPMENT: As per previous page

MEASUREMENT PROCEDURE

- The EUT and test equipment were set up as shown on the following page.
- 2. The audio signal generator was connected to the audio input circuit/microphone of the EUT.
- 3. The audio signal input was adjusted to obtain 20% modulation at 1 kHz, and this point was taken as the 0 dB reference level.
- 4. With input levels held constant and below limiting at all frequencies, the audio signal generator was varied from 100 Hz to $50\ \mathrm{kHz}$.
- 5. The response in dB relative to 1 kHz was then measured, using the HP 8901A Modulation Analyzer.
- 6. MEASUREMENT RESULTS: ATTACHED

PEAK AUDIO FREQUENCY, Hz: 2510

TABLE VALUES:

FREQUENCY, Hz	•	FREQUENCY, LEV Hz	/EL, dB	FREQUENCY,	
	-9.7 -17.9	30000 -1 50000 -1			

SUPERVISED BY:

MORTON FLOM, P. Eng.

and the second s

M. Thuch P. Eng

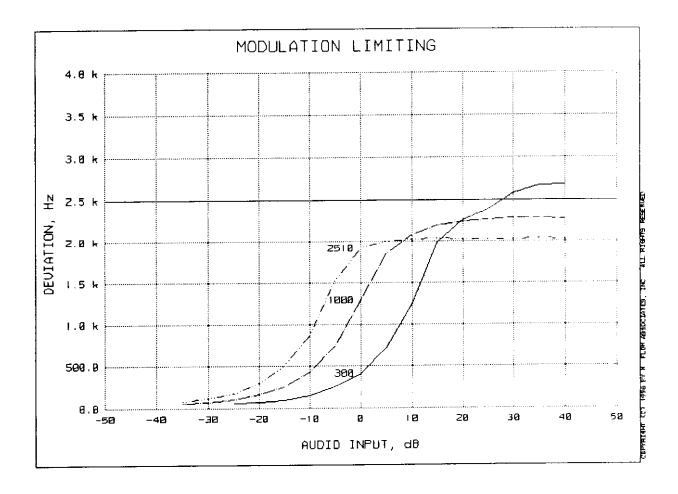
PAGE NO. 24. CASTEL0008

NAME OF TEST: Modulation Limiting

SPECIFICATION: IC: RSS-119, Section 6.6

FCC: 47 CFR 2.987(b)

GUIDE: TIA/EIA-603, Paragraph 2.2.3


TEST CONDITIONS: S. T. & H.

TEST EQUIPMENT: As per attached page

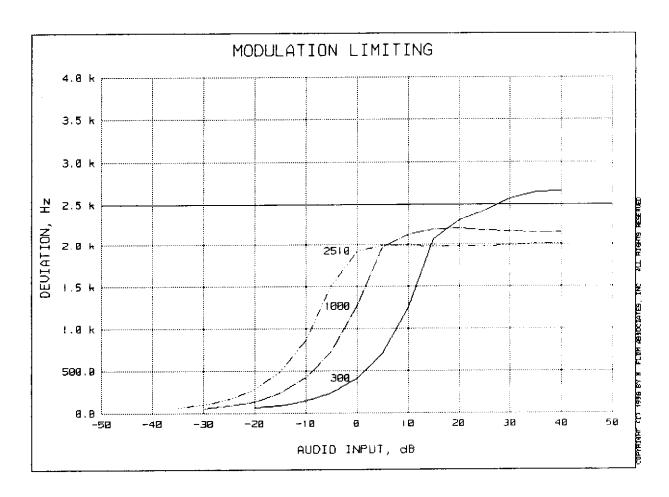
MEASUREMENT PROCEDURE

- 1. The signal generator was connected to the input of the EUT as for "Frequency Response of the Modulating Circuit."
- 2. The modulation response was measured for each of three frequencies (one of which was the frequency of maximum response), and the input voltage was varied and was observed on an HP 8901A Modulation Analyzer.
- 3. The input level was varied from 30% modulation ($\pm 1.5~\mathrm{kHz}$ deviation) to at least 20 dB higher than the saturation point.
- 4. Measurements were performed for both negative and positive modulation and the respective results were recorded.
- 5. MEASUREMENT RESULTS: ATTACHED

PAGE 25.1.
MODULATION LIMITING
TAIT ELECTRONICS, T856-16-0000 (TX)
1998-JUL-17, 16:17

REFERENCE DEVIATION, kHz = 1.25

REFERENCE MODULATION, Hz = 1000


PEAKS = POSITIVE

AUDIO AMPLITUDE, mV = 35.82

SUPERVISED BY:

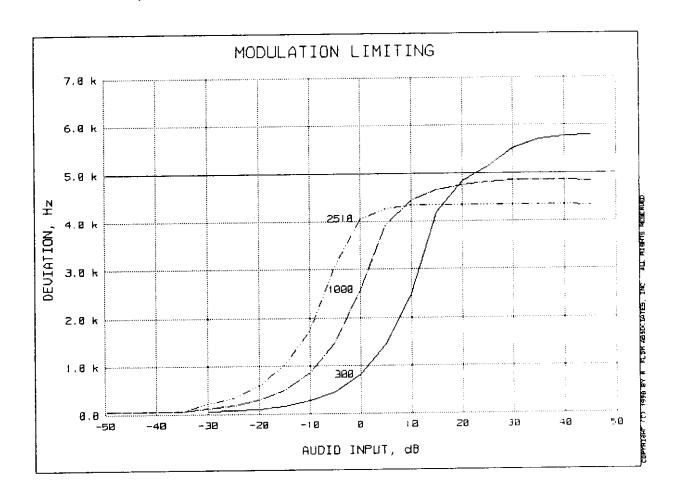
MORTON FLOM, P. Eng.

PAGE 25.2.
MODULATION LIMITING
TAIT ELECTRONICS, T856-16-0000 (TX)
1998-JUL-17, 16:17

REFERENCE DEVIATION, kHz = 1.25

REFERENCE MODULATION, Hz = 1000

PEAKS = NEGATIVE


AUDIO AMPLITUDE, mV = 35.82

SUPERVISED BY:

MORTON FLOM, P. Eng.

M. There P. Eng

PAGE 25.3.
MODULATION LIMITING
TAIT ELECTRONICS, T856-16-0000 (TX)
1998-JUL-17, 16:12

REFERENCE DEVIATION, kHz = 2.5

REFERENCE MODULATION, Hz = 1000

PEAKS = POSITIVE

AUDIO AMPLITUDE, mV = 33.43

SUPERVISED BY:

MORTON FLOM, P. Eng.

PAGE 25.4.
MODULATION LIMITING
TAIT ELECTRONICS, T856-16-0000 (TX)
1998-JUL-17, 16:12

REFERENCE DEVIATION, kHz = 2.5

REFERENCE MODULATION, Hz = 1000

PEAKS = NEGATIVE

AUDIO AMPLITUDE, mV = 33.43

SUPERVISED BY:

MORTON FLOM, P. Eng.

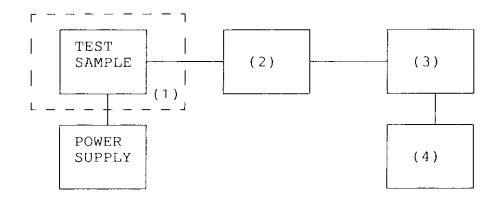
PAGE NO. 26. CASTEL0008

NAME OF TEST: Frequency Stability (Temperature Variation)

<u>SPECIFICATION</u>: FCC: 47 CFR 2.995(a)(1)
IC: RSS-119, Section 7.0

GUIDE: TIA/EIA-602, Section 2.2.2

TEST CONDITIONS: As indicated


TEST EQUIPMENT: As per attached page

MEASUREMENT PROCEDURE

- The EUT and test equipment were set up as shown on the following page.
- 2. With all power removed, the temperature was decreased to $-30\,^{\circ}\text{C}$ and permitted to stabilize for three hours. Power was applied and the maximum change in frequency was noted within one minute.
- 3. With power OFF, the temperature was raised in 10°C steps. The sample was permitted to stabilize at each step for at least one-half hour. Power was applied and the maximum frequency change was noted within one minute.
- 4. The temperature tests were performed for the worst case.
- 5. MEASUREMENT RESULTS: ATTACHED

TRANSMITTER TEST SET-UP

- TEST A. OPERATIONAL STABILITY
- TEST B. CARRIER FREQUENCY STABILITY
- TEST C. OPERATIONAL PERFORMANCE STABILITY
- TEST D. HUMIDITY
- TEST E. VIBRATION
- TEST F. ENVIRONMENTAL TEMPERATURE
- TEST G. FREQUENCY STABILITY: TEMPERATURE VARIATION
- TEST H. FREQUENCY STABILITY: VOLTAGE VARIATION

(1) TEMPERATURE, HUMIDITY, VIBRATION

TENNEY TEMPERATURE CHAMBER
WEBER HUMIDITY CHAMBER
L.A.B. RVH 18-100

(2) COAXIAL ATTENUATOR

NARDA 766-10

SIERRA 661A-30

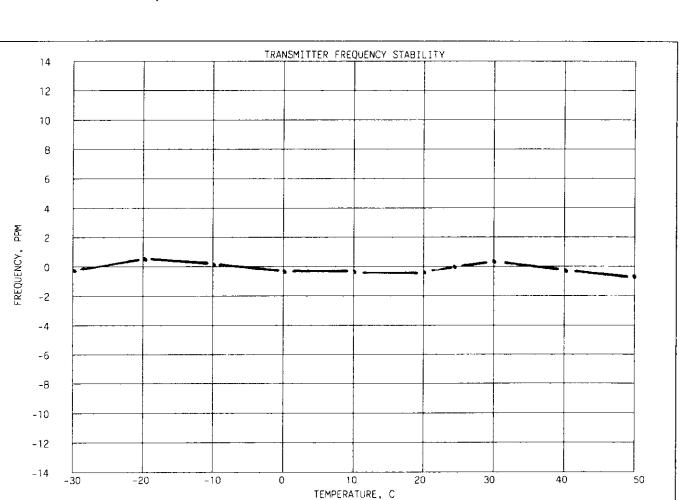
BIRD 8329 (30 dB)

x

(3) R.F. POWER

 HP 435A POWER METER

 HP 436A POWER METER
 X


 HP 8901A POWER MODE
 X

(4) FREQUENCY COUNTER

HP 5383A HP 5334B HP 8901A <u>x</u>

PAGE 28.
TRANSMITTER FREQUENCY STABILITY
TAIT ELECTRONICS, T856-16-0000 (TX)

CASTEL0008

FREQUENCY OF CARRIER, MHz = 408

LIMIT, ppm = ± 1.5

LIMIT, Hz = 612

SUPERVISED BY:

Morton Flom, P. Eng.

PAGE NO. 29. CASTEL0008

NAME OF TEST: Frequency Stability (Voltage Variation)

SPECIFICATION: FCC: 47 CFR 2.995 (b)(1)
IC: RSS-119, Section 7.0

GUIDE: TIA/EIA-602, Section 2.2.2

TEST CONDITIONS: As indicated

TEST EQUIPMENT: As per attached page

MEASUREMENT PROCEDURE

- 1. The EUT was placed in a temperature chamber at 25±5°C and connected as for "Frequency Stability Temperature Variation" test.
- 2. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value measured at the input to the EUT.
- 3. The variation in frequency was measured for the worst case.

MEASUREMENT RESULTS

LIMIT, ppm = 1.5LIMIT, Hz = 612

STV, %	Vac	CHANGE IN FREQUENCY, Hz
85	408.000000	0
100	408.000000	0
115	408.000010	1
115	408.000010	

CASTEL0008 30. PAGE NO.

Necessary Bandwidth and Emission Bandwidth NAME OF TEST:

47 CFR 2.202(g) PARAGRAPH:

MODULATION = 16K0F3E

NECESSARY BANDWIDTH CALCULATION:

MAXIMUM MODULATION (M), kHz - 3 MAXIMUM DEVIATION (D), kHz = 5 CONSTANT FACTOR (K) = 1

NECESSARY BANDWIDTH (B_N) , kHz = $(2 \times M) + (2 \times D \times K)$ = 16.0

MODULATION = 11K0F3E

NECESSARY BANDWIDTH CALCULATION:

MAXIMUM MODULATION (M), kHz = 3 MAXIMUM DEVIATION (D), kHz = 2.5 **=** 1 CONSTANT FACTOR (K) NECESSARY BANDWIDTH (B_N) , kHz = $(2 \times M) + (2 \times D \times K)$ = 11.0

The second secon

TESTIMONIAL AND STATEMENTOF CERTIFICATION

CASTEL0008

THIS IS TO CERTIFY:

- THAT the application was prepared either by, or under the direct supervision of, the undersigned.
- 2. THAT the technical data supplied with the application was taken under my direction and supervision.
- THAT the data was obtained on representative units, randomly selected.
- 4. THAT, to the best of my knowledge and belief, the facts set forth in the application and accompanying technical data are true and correct.

TESTIMONIAL AND STATEMENTOF CERTIFICATION

CASTEL0008

THIS IS TO CERTIFY:

- THAT the application was prepared either by, or under the direct supervision of, the undersigned.
- 2. THAT the technical data supplied with the application was taken under my direction and supervision.
- THAT the data was obtained on representative units, randomly selected.
- 4. THAT, to the best of my knowledge and belief, the facts set forth in the application and accompanying technical data are true and correct.

STATEMENT OF QUALIFICATIONS

EDUCATION:

- 1. B. ENG. in ENGINEERING PHYSICS, 1949, McGill University, Montreal, Canada.
- 2. Post Graduate Studies, McGill University & Sir George Williams University, Montreal.

PROFESSIONAL AFFILIATIONS:

- 1. ARIZONA SOCIETY OF PROFESSIONAL ENGINEERS (NSPE), #026 031 821.
- 2. ORDER OF ENGINEERS (QUEBEC) 1949. #4534.
- 3. ASSOCIATION OF PROFESSIONAL ENGINEERS, GEOPHYSICISTS & GEOLOGISTS OF ALBERTA #5916.
- 4. REGISTERED ENGINEERING CONSULTANT GOVERNMENT OF CANADA, DEPARTMENT OF COMMUNICATIONS. Radio Equipment Approvals.
- 5. IEEE, Lifetime Member No. 0417204 (member since 1947).

EXPERIENCE:

- 1. Research/Development/Senior Project Engineer, R.C.A. LIMITED (4 years).
- Owner/Chief Engineer of Electronics.
 Design/Manufacturing & Cable TV Companies (10 years).
- 3. CONSULTING ENGINEER (over 25 years).

MORTON FLOM, P. Eng.

TEST INSTRUMENTATION LIST

All equipment calibrated within last 90 days

ADAPTER
HP X281 (Coaxial
waveguide); HP S281; HP
85659 (Quasi peak)

AMPLIFIER
Pre-amp. HP 10885A (2-1300 MHz); HP 8447D, HP 8447E, HP 8449A

ANTENNA See end

<u>ATTENUATOR</u>
Kay 432D; Power, Sierra
661A-30; Narda 76610; Narda
4779-3, -6, -10 dB

AUDIO OSCILLATOR
HP 204D; AIEC DTC-1;
Motorola S-1333B; HP 3312A;
HP 8903A

BATTERY Sears Diehard, Stock #4341

CAMERA
Oscilloscope, Tektronix
C5A; Polaroid Impulse AF;
Kodak DC-50

CAPACITOR Feed-Thru, 10 μF, Solar 6512-106R; Solar 7525-1

CLOSE FIELD PROBE HP 11940A, 11941A, HP 11945A

COMPUTER
HP 332; HP Vectra 486/25VL;
Various PC COmpatables

CONVERTOR, Down

COUPLER
Narda 1080, Waveguide; HP
S750E (Cross guide);
Waveline 274/40; Solar
7415-3; Solar 7835-891 &
-896

CURRENT PROBE Solar 6741-1

DETECTOR HP 8470B

DIGITAL MULTIMETER
HP 3476A w/H.F. Probe;
Fluke 8030A-01; HP 3478A

DISTORTION ANALYZER
HP 334A; HP 8903A

ELECTRONIC COUNTER HP 5383A; HP 5334B

FILTER
Cirqte1 FHT/7-50-57/
50-1A/1B (HP); Jerrold
TLB-1; THB-1, Piezo 5064;
Eagle TNF-I Series,
Krohn-Hite 3202;
Phelps-Dodge #PD-495-8;
Newtone #PD6000 Line
Protector; 870-890 MHz (Lab
Design); 900 MHz (Lab
Design); Solar High-Pass
s/n 882029

FREQ. DEV. METER

FREQ. DOUBLER HP 11721A

FREQUENCY METER HP 537A; HP 536A

<u>GENERATOR</u>
Solar 6550-1 (power sweep);
HP 8640B, GAW 1012, HP
8656A (signal); Solar
8282-1 (spike)

HUMIDITY CHAMBER Embem Co FW30; Bowser 0

<u>LIMITER, R.F</u> HP 11867A; HP 11693A; HP 10509A

LISN Singer 91221-1; Ailtech 94641-1 (50µH)

LOAD, POWER Telewave TLW-25; Bird 8329

MILLIAMETER HP 428B

MIXER
HP 10514A; Mini-Circuits
TAK-1H

OPEN FIELD SITE
As filed with FCC & IC and kept up-dated.
TURNTABLES:
Up to 2000# capacity
GROUND SCREEN:
Complies with docket 80-284
ANTENNA MAST:
Complies as above

OSCILLOSCOPE HP 1741A; HP 181T; Tektronix T935; HP 54502A PHANIOM
M.F.A. Labs Left and Right
human head

PLOTTER HP 7470; HP7475A

<u>POWER METER</u> AF GR 1840A; HP 435A with 8481A & 8482H Power Sensors; HP 436A; HP 8901A

POWER SUPPLY
HP 6286A; Heathkit 1P 2711;
1P 5220; Honda EM400
(portable gas gen.); HP
6012

PRINTER
Brother HL-8; Brother
HL-10V; HP DeskJet 640C

R. F. PRESELECTOR HP 85685A

RADIATION METER Narda 8717 w/8010 Amp, 8021B and 8760 probes

RESISTOR, PRECISION Solar 7144-1.0, 7144-10.0; Solar 8525-1

SCALE Weigh-Tronix 3632T-50

SCANNER HP 9190A Scanjet

SCREEN ROOM Lindgren 22-2/2-0

SIGNAL LEVEL METER Jerrold 704B

SIGNAL SAMPLER R. F. Bird 4273-030, 4275-030

SINAD/VOLTMETER Helper Sinadder

<u>SPECTRUM ANALYZER</u> HP 8558B, 8557; HP 8563E; HP 853A; HP 8566B/8568B

TEMPERATURE CHAMBER Tenney, Jr

TEMPERATURE PROBE Fluke 80T-150C

TERMINATION
Narda 320B Waveguide.
Waveline #281

IEST SET Semi-Automatic: HP 8953A; HP 8954A Interface: Computer / Controller; P.S. Programmer; HP 59501A; RF Communications: HP 8920A

TRANSFORMERS
Audio Isolation: Solar
6220-1A; Impedance: HP
11694A; Isolation: Solar
7032-1; Matching: Solar
7033-1

MEASURING SET
HP 3555B

VIBRATION CHAMBER

TRANSMISSION & NOISE

Unholtz-Dickie T 500; Unholtz-Dickie T 4000

VOLTMETER
HP 410C; HP 3478A

<u>WATTMETER</u> Bird 43, Sierra 174A-2

ANTENNAS 30 - 50 Hz Emco 7603 M-Field; Emco

7604 M-Field
20 - 200 MHz
Aprel Biconical Model
AAB20200
20 - 300 MHz
Emco Biconical H-Field
25 - 1000 MHz
Singer DM-105A; EMCO 3121C
200 - 1000 MHz
Aprel Log Periodic, Model

Aprel Log Periodic, Model
AALP 2001
10 kHz - 30 MHz
Emco 31078, E-Field; Emco
31018/1, Rod E-Field
10 kHz - 32 MHz
Singer 94593-1 (Loop)
150 kHz - 32 MHz
Singer 92197-1 (4!")
150 kHz - 32 MHz
Singer 93049-1 (9')

1 - 10 GHz Singer 90794-A Discone 1 - 18 GHz Horn: Aprel Model AAH-118 18 - 40 GHz Emco 3116, Horn 40 - 60 GHz Horn: HP 11970U, HP 11971U,

HP 11975A (Lo Drive Amplifier) 50 - 75 GHz Mixer, HP 11970V, HP 11971V 75 - 110 GHz Mixer, HP 11970W