

# TEST REPORT

| <b>REPORT NUMBER</b> | : | AKL-399069                                     |
|----------------------|---|------------------------------------------------|
| APPLICANT            | : | FUJITSU LIMITED                                |
| MODEL NUMBER         | : | CA04339-C801                                   |
| FCC ID               | : | C9SDP050M33111Z1                               |
| REGULATION           | : | FCC Part15B Class B<br>Canada ICES-003 Class B |

Conducted Emission Test Radiated Emission Test



NVLAP accreditation is valid only FCC Part15(Digital Devices), CISPR22, and AS/NZS 3548 test reports.

Akzo Kashima Limited EMC Division Nagano Site

3226, Yokokawa, Tatsuno-machi, Kamiina-gun Nagano-ken, 399-0511 Japan Tel.: +81 266 47 5311 Fax.: +81 266 47 5540

# **TABLE OF CONTENTS**

|           |     | Page                                     |
|-----------|-----|------------------------------------------|
| SECTION   | 1.  | TEST CERTIFICATION                       |
| SECTION   | 2.  | CONCLUSION                               |
| SECTION   | 3.  | EQUIPMENT UNDER TEST                     |
| SECTION   | 4.  | SUPPORT EQUIPMENT USED6                  |
| SECTION   | 5.  | CABLE (S) USED                           |
| SECTION   | 6.  | CONSTRUCTION OF EQUIPMENT                |
| SECTION   | 7.  | OPERATING CONDITIONS                     |
| SECTION   | 8.  | TEST PROCEDURE(S)                        |
| SECTION   | 9.  | EVALUATION OF TEST RESULTS14             |
| SECTION 1 | 10. | PHOTOGRAPHS OF MAXIMUM EMISSION SET-UP17 |
| SECTION 1 | 11. | INSTRUMENTS USED FOR FINAL TEST          |
| SECTION 1 | 12. | UNCERTAINTY OF MEASUREMENT19             |
| SECTION 1 | 13. | VALIDITY OF TEST REPORT20                |
| SECTION 1 | 14. | DESCRIPTION OF TEST LABORATORY21         |

## SECTION 1. TEST CERTIFICATION

# – APPLICANT INFORMATION —

| JITSU LIMITED                                           |
|---------------------------------------------------------|
| runouchi Center Bldg. 6-1 Marunouchi 1-chome Chiyoda-ku |
| yo 100-0005 Japan                                       |
| $3\ 3215\ 5101$                                         |
| $3\ 3216\ 9352$                                         |
|                                                         |

## – DESCRIPTION OF TEST ITEM —

| Kind of equipment      | : | Serial interface board   |
|------------------------|---|--------------------------|
| Condition of equipment | : | Production               |
| Туре                   | : | Table-Top(Built-in type) |
| Trademark              | : | FUJITSU                  |
| FCC ID                 | : | C9SDP050M33111Z1         |
| Model number           | : | CA04339-C801             |
| Serial number          | : | None                     |

## – TEST PERFORMED –

| Location       | : Nagano No. 1 Test Site (FCC File No. : 31040/SIT)     |
|----------------|---------------------------------------------------------|
| Test started   | : April 13, 1999                                        |
| Test complete  | d : April 14, 1999                                      |
| Purpose of tes | t : FCC Docket 87-389                                   |
|                | and Canadian Interference-Causing Equipment Regulations |
| Regulation     | : FCC Part15B Class B and Canada ICES-003 Class B       |
|                | Unintentional Radiators                                 |
| Test setup     | : ANSI C63.4-1992                                       |
|                |                                                         |

| Report file number | : AKL-399069     |  |  |
|--------------------|------------------|--|--|
| Report issue date  | : April 20, 1999 |  |  |

Test engineer : Naohei Murakami

N. Munchami

Report approved by : Yoshio Kowase [Site Manager]

ale

This equipment complies with above standard or regulation under the test condition or test configuration shown on this test report.

## SECTION 2. CONCLUSION

This test report clearly shows that the EUT is in compliance with the <u>FCC Part 15B</u> <u>Class B</u> specification and the <u>Canada ICES-003 Class B</u> specification.

Traceability to national standards of test result is achieved by means of calibration traceability to national standards.

The minimum margins to the limits are as follows:

| Conduction measurement<br>M33111A02 mode | 7.4 dB | at | 0.4749 MHz |
|------------------------------------------|--------|----|------------|
| Radiation measurement<br>M33111A02 mode  | 6.1 dB | at | 47.60 MHz  |

Note : See Section 9 for details.

## SECTION 3. EQUIPMENT UNDER TEST

The equipment under test (EUT) consisted of the following equipment. Indication in the following left side column corresponds to Section 6.

| Symbol Item                  | Model No.    | Serial No. | FCC ID / DoC         | Manufacturer       | Remarks |
|------------------------------|--------------|------------|----------------------|--------------------|---------|
| A) Serial interface<br>board | CA04339-C801 | None       | C9SDP050M<br>33111Z1 | FUJITSU<br>LIMITED | EUT     |

Power ratings of EUT: DC 5V (Power for Printer AC 120V, 60 Hz)

DoC : Device for Declaration of Conformity

3.1 Port(s)/Connector(s) :

| Port name        | Connector type | Connector pin | Remarks |
|------------------|----------------|---------------|---------|
| Serial interface | D-sub          | 25 pin        | RS-232C |

#### 3.2 Oscillator(s)/Crystal(s) :

| Oscillator | Operating frequency | Board name | Remarks |  |
|------------|---------------------|------------|---------|--|
| None       |                     |            |         |  |

## SECTION 4. SUPPORT EQUIPMENT USED

| Symbol Item    | Model No. | Serial No. | FCC ID / DoC         | Manufacturer       | Remarks        |
|----------------|-----------|------------|----------------------|--------------------|----------------|
| B) Printer     | M33111A02 | 00065      | C9SDP050M33111<br>A1 | FUJITSU<br>LIMITED | Install<br>EUT |
| C) Computer    | 8550-031  | 90-5012094 | ANO9SA8550-S         | IBM                |                |
| D) Keyboard    | М         | 1391401    | N.A.                 | IBM                |                |
| E) CRT Display | 8512-001  | 72-0071350 | ANO7NF8512           | IBM                |                |
| F) Printer     | M3359A    | 002192     | C9S69NDP012A1        | FUJITSU<br>LIMITED |                |

The EUT was supported by the following equipment during the test. Indication in the following left side column corresponds to Section 6.

DoC: Device was tested and authorized under a Declaration of Conformity to the applicable FCC rules.

## SECTION 5. CABLE (S) USED

The following cable(s) was used for the test. Indication number in the following left side column corresponds to Section 6.

| Number Name                      | Length | Shield | Connector |
|----------------------------------|--------|--------|-----------|
| 1) Centronics cable              | 3.00 m | Yes    | Metal     |
| 2) RS-232C cable                 | 3.00 m | Yes    | Metal     |
| 3) Keyboard cable<br>(Curl cord) | 1.60 m | Yes    | Metal     |
| 4) CRT Display cable             | 1.60 m | Yes    | Metal     |
| 5) Power cord for Printer        | 3.00 m | None   |           |
| 6) Power cord for Computer       | 1.80 m | None   |           |
| 7) Power cord for CRT Display    | 1.80 m | None   |           |
| 8) Power cord for Printer        | 3.00 m | None   |           |
|                                  |        |        |           |

Note :

a. No ferrite core is attached to the outer cables.

## SECTION 6. CONSTRUCTION OF EQUIPMENT

The construction of EUT during the test was as follows.

System configuration

\* : EUT



Symbols or numbers assigned to equipment or cables on this diagram are corresponded to the symbols or numbers assigned to equipment or cables on tables in Sections 3 to 5.

## SECTION 7. OPERATING CONDITIONS

The EUT was operated under the following conditions during the test.

7.1 Operating condition

The tests was carried out under M33111A02 mode. EUT was examined in the operating conditions that had maximum emissions.

7.2 Operating flow

Performed following operations continuously



## SECTION 8. TEST PROCEDURE(S)

Tests were carried out under the following conditions. Tests were carried out with no deviations from standards and test methods.

| Subject            | Test procedure                              | Measurement<br>software | Scan frequency |
|--------------------|---------------------------------------------|-------------------------|----------------|
| Conducted Emission | Akzo Kashima<br>Document number : 03-10-004 | emiT Ver. 1,3,5,0       | 0.45 - 30 MHz  |
| Radiated Emission  | Akzo Kashima<br>Document number : 03-10-003 | emiT Ver. 1,3,5,0       | 30 - 1000 MHz  |

Schema for the conducted measurement



Abbreviations : LISN = Line Impedance Stabilization Network Line Impedance Stabilization Network(LISN) = Artificial Mains Network(A.M.N.)

Abbreviations : ATT. = Attenuator

#### Schema for the radiated measurement



#### Summary;

- 8.1 Conducted Emission Test
- 8.1.1 Equipment Setup System configuration and Equipment setup are shown on Section 6 and Section 10.
- 8.1.1.1 Table-Top Equipment EUT is placed on the wooden table raised 0.8meter above the metal ground plane.
- 8.1.1.2 Interconnecting Cables

Excess part of the interconnecting cables longer than 1 meter are bundled in the center. Cables that hang closer than 40 cm to the ground plane is folded back and forth forming bundle 30 to 40 cm long, hanging approx, in the middle between ground plane and table.

8.1.1.3 AC Power Cord

AC power cord for EUT is connected to one LISN which is placed on top of ground plane. The LISN is placed in 80 cm from the nearest part of EUT chassis. The excess power cable is bundled in the center, or shortened to appropriate length. AC cables except from the EUT are connected second LISN.

#### 8.1.2 Measuring Instruments

Measuring instruments list and calibration schedule are shown on Section 11, and brief description are as follows;

8.1.2.1 Spectrum Analyzer The Spectrum analyzer is used for preliminary measurement.

#### 8.1.2.2 EMI Test Receiver

The Quasi-peak detector(Resolution bandwidth : 10 kHz) and average detector (Resolution bandwidth : 10 kHz) built in test receiver is used for final measurement. The test receiver is complied with the specification of the CISPR publication 16.

8.1.2.3 LISN

The 50uH/50ohm LISN is used. The chassis of the LISN is bonded to the ground plane by the copper blade.

The lead to be tested is selectable by switch, and the terminals which are not connected to the EUT are terminated in 500hm resistor termination.

#### 8.1.3 Test Procedure

#### 8.1.3.1 Preliminary Measurement

EUT is tested on all operating conditions.

The spectrum analyzer is controlled by the computer program to sweep regulation frequency, then spectrum chart are plotted out to detect the worst conditions in operating mode and/or configuration for the final test.

All leads other than safety ground are tested.

#### 8.1.3.2 Final Measurement

The EUT is operated in the worst condition where maximum emission is detected by the preliminary test. The equipment and cables are arranged or manipulated within the range of the test standard in the above condition.

The each spectrum to be tested are measured in quasi-peak using the test receiver. When the value in the quasi-peak mode is higher than the limit in the standard, the measurement in the average mode is done to compare to the value in the quasi-peak mode. If the value in the quasi-peak mode exceeds the value in the average mode by more than 6 dB, the value reducing 13 dB from the value in the quasi mode is used to compare to the limit.

#### 8.2 Radiated Emission Test

8.2.1 Equipment Setup

System configuration and Equipment setup are shown on Section 6 and Section 10.

8.2.1.1 Table-Top Equipment EUT is placed on the wooden table raised 0.8meter above the metal ground plane(turntable).

#### 8.2.1.2 Interconnecting Cables

Excess part of the interconnecting cables longer than 1 meter are bundled in the center. Cables that hang closer than 40 cm to the ground plane is folded back and forth forming bundle 30 to 40 cm long, hanging approx, in the middle between ground plane and table.

#### 8.2.2 Measuring Instruments

Measuring instruments list and calibration schedule are shown on Section 11, and brief description are as follows;

8.2.2.1 Antennas

The broadband Bi-cog antenna is used for measurement on the frequency range 30 1000 MHz.

If uncertain result was obtained, the broadband antenna is replaced by the half wave length dipole, then measurement is carried out over again.

#### 8.2.2.2 Pre-amplifier

The broadband pre-amplifier is used for radiated emission measurement. The signal to noise ratio is improved by using pre-amplifier.

#### 8.2.2.3 Spectrum Analyzer

The spectrum analyzer is used for preliminary measurement of frequency range 30 1000 MHz.

#### 8.2.2.4 EMI Test Receiver

The Quasi-peak detector(Resolution bandwidth : 120 kHz) built in test receiver is used for final measurement of the frequency 30 1000 MHz. The test receiver is complied with the specification of the CISPR publication 16.

#### 8.2.2.5 Turntable

The turntable is capable for EUT weight and rotatable 0 to 360 degree horizontally by remote control in the test room.

#### 8.2.2.6 Antenna Mast

The antenna mast is attachable to all antennas described on clause 8.2.2.1 and antenna height is adjustable 1 to 4 meters continuously by remote control at the test room, and antenna polarization is also changed by the remote control.

#### 8.2.3 Test Procedure

#### 8.2.3.1 Preliminary Measurement

EUT is tested on all operating conditions.

The spectrum analyzer is set max-hold mode and swept during turntable was rotated 0 to 360 degree. Then spectrum chart are plotted out to detect the worst conditions in configuration, operating mode, or ambient noise notation.

## 8.2.3.2 Final Measurement

The EUT operated in the condition where maximum emission is detected in the preliminary test.

The turntable azimuth(EUT direction) and antenna height are adjusted the position so that maximum field strength is obtained for each frequency spectrum to be measured. The equipment and cables are arranged or manipulated within the range of the test standard in the above condition.

When the uncertain result was obtained, the measurement is retried by using the half wave dipole antenna instead of the broadband antenna.

# SECTION 9. EVALUATION OF TEST RESULTS

9.1 Conducted Emission Test



| FR | EQUENCY | READING | 3           | FACTOR | 2     | EMISSIO | N           | LIMIT  | MAR   | GIN         |
|----|---------|---------|-------------|--------|-------|---------|-------------|--------|-------|-------------|
| NO | [MHZ]   | [αΒυν]  |             | [aB]   |       | [αΒυν]  |             | [dBuv] | Гав   | 月           |
| 1  |         | Line1   | Line2       | Line1  | Line2 | Line1   | Line2       |        | Line1 | Line2       |
| 1  | 0.4500  | 33.1    | 33.3        | 6.7    | 6.7   | 39.8    | 40.0        | 48.0   | 8.2   | 8.0         |
| 2  | 0.4749  | 31.7    | 34.0        | 6.6    | 6.6   | 38.3    | 40.6        | 48.0   | 9.7   | 7.4         |
| 3  | 0.6769  | 25.7    | <u>27.1</u> | 6.5    | 6.5   | 32.2    | <u>33.6</u> | 48.0   | 15.8  | <u>14.4</u> |
| 4  | 0.8717  | 23.3    | 23.7        | 6.5    | 6.5   | 29.8    | <u>30.2</u> | 48.0   | 18.2  | <u>17.8</u> |
| 5  | 1.0705  | 21.9    | 21.3        | 6.4    | 6.4   | 28.3    | 27.7        | 48.0   | 19.7  | 20.3        |
| 6  | 11.6832 | 17.6    | 18.1        | 6.7    | 6.7   | 24.3    | 24.8        | 48.0   | 23.7  | 23.2        |
| 7  | 17.5254 | 24.9    | <u>25.7</u> | 7.1    | 7.1   | 32.0    | <u>32.8</u> | 48.0   | 16.0  | <u>15.2</u> |
| 8  | 20.2587 | 24.0    | <u>24.1</u> | 7.3    | 7.3   | 31.3    | <u>31.4</u> | 48.0   | 16.7  | <u>16.6</u> |

Higher six points are underlined. Other frequencies : Below the FCC Part15B CLASS B limit Emisson Level = Read + Factor(LISN,Pad,Cable)

<sup>9.2</sup> Radiated Emission Test



| FF<br>No | REQUENCY<br>[MHz] | ANT. | READING<br>[dBuV] | 3           | FACTO | र     | EMISSIO<br>[dBuV/m] | N<br>1      | LIMIT<br>[dBuV/m] | MARC<br>[dB | 3IN<br>1    |
|----------|-------------------|------|-------------------|-------------|-------|-------|---------------------|-------------|-------------------|-------------|-------------|
|          |                   |      | Hori              | Vert        | Hori  | Vert  | Hori                | Vert        |                   | Hori        | Vert        |
| 1        | 47.60             | BBA  | -                 | 38.7        | -4.8  | -4.8  | -                   | 33.9        | 40.0              | -           | <u>6.1</u>  |
| 2        | 77.95             | BBA  | -                 | <u>45.3</u> | -12.2 | -12.2 | -                   | <u>33.1</u> | 40.0              | -           | <u>6.9</u>  |
| 3        | 100.24            | BBA  | -                 | <u>42.0</u> | -8.5  | -8.5  | -                   | <u>33.5</u> | 43.5              | -           | <u>10.0</u> |
| 4        | 120.00            | BBA  | -                 | 38.6        | -6.7  | -6.7  | -                   | 31.9        | 43.5              | -           | 11.6        |
| 5        | 144.00            | BBA  | -                 | 38.7        | -9.3  | -9.3  | -                   | 29.4        | 43.5              | -           | 14.1        |
| 6        | 159.62            | BBA  | -                 | 41.0        | -9.7  | -9.7  | -                   | 31.3        | 43.5              | -           | 12.2        |
| 7        | 168.00            | BBA  | 41.8              | <u>43.1</u> | -8.3  | -8.3  | 33.5                | <u>34.8</u> | 43.5              | 10.0        | <u>8.7</u>  |
| 8        | 171.03            | BBA  | 40.6              | <u>40.9</u> | -7.9  | -7.9  | 32.7                | <u>33.0</u> | 43.5              | 10.8        | <u>10.5</u> |
| 9        | 180.00            | BBA  | -                 | <u>40.6</u> | -8.1  | -8.1  | -                   | <u>32.5</u> | 43.5              | -           | <u>11.0</u> |
| 10       | 359.99            | BBA  | 35.2              | -           | -1.8  | -1.8  | 33.4                | -           | 46.0              | 12.6        | -           |
| 11       | 552.00            | BBA  | 31.6              | -           | 1.5   | 1.5   | 33.1                | -           | 46.0              | 12.9        | -           |

Higher six points are underlined.

Other frequencies : Below the FCC Part15B CLASS B limit

Emisson Level = Read + Factor(Antenna,Antenna Pad,Cable,Preamp)

ANT. : Used antenna(BBA = Broadband antenna, DIP = Dipole antenna)

## 9.3 Sample Calculations

## 9.3.1 Conducted Emission

|                |                             | Example @ 0.4749                                       | MHz                       |
|----------------|-----------------------------|--------------------------------------------------------|---------------------------|
| Emission Level | = Meter Reading<br>+ Factor | $\frac{34.0}{+ 6.6} = 40.6$                            | dBuV<br><u>dB</u><br>dBuV |
| Margin         | = Limit<br>- Emission Leve  | $\begin{array}{r} 48.0 \\ - 40.6 \\ = 7.4 \end{array}$ | dBuV<br><u>dBuV</u><br>dB |

Factor = LISN Factor + Cable Loss + Pad Loss

## 9.3.2 Radiated Emission

|                |                                                    | Example @ 47.60                                          | MHz                           |
|----------------|----------------------------------------------------|----------------------------------------------------------|-------------------------------|
| Emission Level | = Meter Reading<br>+ Factor                        | 38.7<br>- 4.8                                            | dBuV<br>dB                    |
|                |                                                    | = 33.9                                                   | dBuV/m                        |
| Margin         | <ul><li>= Limit</li><li>- Emission Level</li></ul> | $ \begin{array}{r} 40.0 \\ - 33.9 \\ = 6.1 \end{array} $ | dBuV/m<br><u>dBuV/m</u><br>dB |

Factor = Antenna Factor + Cable Loss - Amplifier Gain + Pad Loss Distance Conversion Factor

## SECTION 10. PHOTOGRAPHS OF MAXIMUM EMISSION SET-UP

10.1 Conducted Emission Test

Test setup in accordance with ANSI C63.4-1992



Front view



Rear view

## 10.2 Radiated Emission Test

Test setup in accordance with ANSI C63.4-1992



Front view



Rear view

Note: Maintaining 10cm spacing between all the equipment cabinets.

| <br>Instrument     | Model No.         | Serial No. | Manufacturer    | Last cal.<br>date | Period |
|--------------------|-------------------|------------|-----------------|-------------------|--------|
| LISN               | ESH2-Z5           | 881493/016 | ROHDE & SCHWARZ | Jul. 8, 98        | 1 Year |
|                    | ESH3-Z5           | 844982/001 | ROHDE & SCHWARZ | Oct.13, 98        | 1 Year |
| 6dB Attenuator     | CFA-01            | N1         | TAMAGAWA        | May.28, 98        | 1 Year |
| Coaxial cable      | 5D-2W<br>(4.0 m)  | C1         | AKZO            | Nov. 5, 98        | 1 Year |
| Coaxial cable      | 5D-2W<br>(3.0 m)  | C2         | AKZO            | Nov. 5, 98        | 1 Year |
| Coaxial cable      | 5D-2W<br>(0.2 m)  | C3         | AKZO            | Nov. 5, 98        | 1 Year |
| Coaxial cable      | 5D-2W<br>(2.0 m)  | C4         | AKZO            | Nov. 5, 98        | 1 Year |
| Broad Band antenna | LPB-2513/A        | 1089       | A.R.A.          | Jun. 4, 98        | 1 Year |
| 6dB Attenuator     | MP721B            | M58224     | ANRITSU         | Jan. 5, 99        | 1 Year |
| Step Attenuator    | 8494B             | 2812A15953 | HEWLETT PACKARD | Nov. 5, 98        | 1 Year |
| Amplifier          | 8447D             | 2648A04721 | HEWLETT PACKARD | Jan. 5, 99        | 1 Year |
| Coaxial cable      | 5D-2W<br>(15.0 m) | R1         | AKZO            | Nov. 5, 98        | 1 Year |
| Coaxial cable      | 5D-2W<br>(3.0 m)  | R2         | AKZO            | Nov. 5, 98        | 1 Year |
| Coaxial cable      | 5D-2W<br>(0.3 m)  | R3         | AKZO            | Nov. 5, 98        | 1 Year |
| Coaxial cable      | 5D-2W<br>(1.0 m)  | R4         | AKZO            | Nov. 5, 98        | 1 Year |
| Coaxial cable      | 5D-2W<br>(0.2 m)  | R5         | AKZO            | Nov. 5, 98        | 1 Year |
| Coaxial cable      | 5D-2W<br>(2.0 m)  | R6         | AKZO            | Nov. 5, 98        | 1 Year |
| Test receiver      | ESS               | 842886/009 | ROHDE & SCHWARZ | May.16, 98        | 1 Year |
| RF Switch          | ACX-150-1         | C01301501  | AKZO            | Nov. 5, 98        | 1 Year |
| Site Attenuation   |                   |            |                 | Mar.31, 99        | 1 Year |
|                    |                   |            |                 |                   |        |

# SECTION 11. INSTRUMENTS USED FOR FINAL TEST

Test instruments are calibrated according to Quality Manual and Calibration Rules of EMC division. Note :

## SECTION 12. UNCERTAINTY OF MEASUREMENT

Uncertainty of measurement

The uncertainty of the measurements performed for this report lies: Radiated emission at 3m 30 MHz 1000 MHz +/- 3.6 dB Conducted emission 9 kHz 30 MHz +/- 1.8 dB

These figures indicate the uncertainty of the measurements when the same staff performs the test with the same testing equipment and facility. The uncertainty of the measurements when a different staff with different equipment

and facility are under study.

Please note that these uncertainty are not reflected to the compliance judgement of the test results in this report.

## SECTION 13. VALIDITY OF TEST REPORT

- 13.1 The test result of this report is effective for equipment under test itself and under the test configuration described on the report.
- 13.2 This test report does not assure that whether the test result taken in other testing laboratory is compatible or reproducible to the test result on this report or not.
- 13.3 Copying of this report without permission is prohibited.

#### SECTION 14. DESCRIPTION OF TEST LABORATORY

#### 14.1 Outline of Akzo Kashima Limited, EMC Division

Akzo Kashima Ltd. was established in 1975 for manufacturing specialty chemicals. The shares are owned by Akzo Nobel KK (70%), the country organization in Japan for Akzo Novel nv., and TOSOH Corporation (30%), one of the leading petrochemical manufacturers in Japan. Akzo Nobel, headquartered in the Netherlands, is one of the world's leading companies in selected areas of chemicals, coatings, healthcare products and fibers with work force of approximately 70,000 people in over 50 countries.

In 1984, in order to respond to the growing testing demand, in particular, for FCC filing, Akzo Kashima started EMI testing business, installing the first open air test site in Kashima, Ibaraki prefecture. Further the business has been expanded by installing additional testing facilities not only in Kashima but also in other areas such as Shizuoka, Nagano, Kanagawa and Tochigi. As results, Akzo Kashima has now 16 open air test sites and 4 anechoic chambers for EMI/EMC testing. As the largest EMC testing laboratory in number of testing facilities and staffs, EMC Division has been organized separately in the company and independently operated in conformity with the requirements of ISO Guide 25 (EN 45000) for its competency as a testing laboratory.

Akzo Kashima EMC Division is the first foreign private laboratory accredited by NVLAP, National Voluntary Laboratory Accreditation Program-NIST, USA. The division has been certified, authorized and/or filed as a competent testing laboratory by various testing organizations/authorities as described below.

14.2 Filing, certification, authorization and accreditation list

| EMI/EMC testin | <u>lg</u>         | Telecommunications terminal testing |             |  |
|----------------|-------------------|-------------------------------------|-------------|--|
| FCC            | (USA)             | FCC                                 | (USA)       |  |
| NVLAP          | (USA)             | NVLAP                               | (USA)       |  |
| NEMKO          | (Norway)          | NATA                                | (Australia) |  |
| VCCI           | (Japan)           | IC                                  | (Canada)    |  |
| NMi            | (The Netherlands) |                                     |             |  |
| TÜV PRODUCT    | SERVICE (Germany) |                                     |             |  |

Note : NVLAP accreditation does not constitute any product endorsement by NVLAP or any agent of the U.S. Government.