

CERTIFICATION TEST REPORT

Report Number. : 12509320-E2V2

- Applicant : SRAM LLC 1000 W Fulton Market 4th Floor Chicago, IL 60607 U.S.A.
 - **Model :** 12920
 - FCC ID : C9O-RDMB1
 - IC : 10161A-RDMB1
- EUT Description : Rear Derailleur with BLE, AIREA and ANT+ Radios
- Test Standard(s) : FCC 47 CFR PART 15 SUBPART C ISED RSS-247 ISSUE 2 ISED RSS-GEN ISSUE 5

Date Of Issue: November 05, 2018

Prepared by: UL Verification Services Inc. 47173 Benicia Street Fremont, CA 94538 U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

REPORT REVISION HISTORY

Rev.	lssue Date	Revisions	Revised By
V1	10/5/2018	Initial Issue	
V2	11/5/2018	Added channel 25 data	Glenn Escano

Page 2 of 46

TABLE OF CONTENTS

RE	POR	T REVISION HISTORY 2
TA	BLE	OF CONTENTS 3
1.	AT	TESTATION OF TEST RESULTS 5
2.	TES	ST METHODOLOGY 6
3.	FAG	CILITIES AND ACCREDITATION 6
4.	CA	LIBRATION AND UNCERTAINTY
4	[!] .1.	MEASURING INSTRUMENT CALIBRATION
4	.2.	SAMPLE CALCULATION
4	.3.	MEASUREMENT UNCERTAINTY
5.	EQ	UIPMENT UNDER TEST
5	5.1.	EUT DESCRIPTION
5	5.2.	MAXIMUM OUTPUT POWER
5	5.3.	DESCRIPTION OF AVAILABLE ANTENNAS
5	5.4.	SOFTWARE AND FIRMWARE
5	5.5.	WORST-CASE CONFIGURATION AND MODE
5	5.6.	DESCRIPTION OF TEST SETUP
5 6.	-	DESCRIPTION OF TEST SETUP
-	ME	
6.	ME. TES	ASUREMENT METHOD12
6. 7. 8.	ME. TES	ASUREMENT METHOD12 ST AND MEASUREMENT EQUIPMENT13
6. 7. 8. 8	ME TES	ASUREMENT METHOD
6. 7. 8. 8	ME. TES AN [*] 3.1.	ASUREMENT METHOD
6. 7. 8. 8 8	ME. TES AN 8.1. 8.2.	ASUREMENT METHOD
6. 7. 8. 8 8 8 8	ME. TES AN [®] 2.1. 2.2. 2.3.	ASUREMENT METHOD
6. 7. 8. 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ME. TES AN 8.1. 8.2. 8.3. 8.4.	ASUREMENT METHOD
 6. 7. 8. 9. 9. 9. 9. 9. 9. 9. <	ME. TES AN 3. 1. 3. 2. 3. 3. 3. 4. 3. 5.	ASUREMENT METHOD
 6. 7. 8. <	ME. TES AN 2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 2.7.	ASUREMENT METHOD
 6. 7. 8. 9. 9. 9. 9. 9. 9. 9	ME. TES AN 2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 2.7.	ASUREMENT METHOD
 6. 7. 8. 9. 9. 9. 9	ME. TES AN 2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 2.7. RA	ASUREMENT METHOD
 6. 7. 8. 9. 9. 9. 9	ME. TES AN 2.1. 2.2. 2.3. 2.4. 2.5. 2.5. 2.5. 2.6. 2.7. RA	ASUREMENT METHOD
 6. 7. 8. 9. 9. 9. 9	ME. TES AN 3.1. 3.2. 3.3. 3.4. 3.5. 3.6. 3.7. RAI 0.1. 0.2.	ASUREMENT METHOD

REPORT	T NO: 12509320-E2V2	DATE: 11/5/2018
FCC ID:	C9O-RDMB1	IC: 10161A-RDMB1
9.5.	Worst Case 18-26 GHz	41
10 5		43

Page 4 of 46

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	SRAM LLC 1000 W Fulton Market 4 th Floor Chicago, IL 60607 U.S.A.	
EUT DESCRIPTION:	T DESCRIPTION: Rear Derailleur with BLE, AIREA and ANT+ Radios	
MODEL:	12920	
SERIAL NUMBER:	NUMBER: Conducted: 1414020017, 1414020025 Radiated: 1314020025, 1314020053	
DATE TESTED:	SEPTEMBER 21 – OCTOBER 29, 2018	8
	APPLICABLE STANDARDS	
ST	ANDARD	TEST RESULTS
CFR 47 P	art 15 Subpart C	Complies
ISED RS	SS-247 Issue 2	Complies
ISED RS	S-GEN Issue 5	Complies

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of the U.S. government.

Approved & Released For UL Verification Services Inc. By:

Dan Coronia Operations Leader Consumer Technology Division UL Verification Services Inc. Reviewed By:

Steven Tran Project Engineer Consumer Technology Division UL Verification Services Inc.

Page 5 of 46

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, ANSI C63.10-2013, KDB 558074 D01 15.247 Meas Guidance v05, RSS-GEN Issue 5, and RSS-247 Issue 2.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, and 47658 Kato Road, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street	47658 Kato Rd
Chamber A (ISED:2324B-1)	Chamber D (ISED:22541-1)	Chamber I (ISED:2324A-5)
Chamber B (ISED:2324B-2)	Chamber E (ISED:22541-2)	Chamber J (ISED:2324A-6)
Chamber C (ISED:2324B-3)	Chamber F (ISED:22541-3)	Chamber K (ISED:2324A-1)
	Chamber G (ISED:22541-4)	Chamber L (ISED:2324A-3)
	Chamber H (ISED:22541-5)	

The above test sites and facilities are covered under FCC Test Firm Registration # 208313. Chambers above are covered under Industry Canada company address and respective code

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0

Page 6 of 46

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

RADIATED EMISSIONS

Where relevant, the following sample calculation is provided: Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB - 26.9 dB = 28.9 dBuV/m

MAINS CONDUCTED EMISSIONS

Where relevant, the following sample calculation is provided: Final Voltage (dBuV) = Measured Voltage (dBuV) + Cable Loss (dB) + Limiter Factor (dB) + LISN Insertion Loss. 36.5 dBuV + 0 dB + 10.1 dB + 0 dB = 46.6 dBuV

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Worst Case Conducted Disturbance, 9KHz to 0.15 MHz	3.84 dB
Worst Case Conducted Disturbance, 0.15 to 30 MHz	3.65 dB
Worst Case Radiated Disturbance, 9KHz to 30 MHz	3.15 dB
Worst Case Radiated Disturbance, 30 to 1000 MHz	5.36 dB
Worst Case Radiated Disturbance, 1000 to 18000 MHz	4.32 dB
Worst Case Radiated Disturbance, 18000 to 26000 MHz	4.45 dB
Worst Case Radiated Disturbance, 26000 to 40000 MHz	5.24 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. EUT DESCRIPTION

The EUT is a Rear Derailleur with BLE, AIREA and ANT+ Radios.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range (MHz)	Mode	Output Power (dBm)	Output Power (mW)
2405 - 2480	AIREA	3.97	2.49

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a chip antenna with a maximum gain of 0 dBi.

5.4. SOFTWARE AND FIRMWARE

The EUT firmware installed during testing was A-1.0. The test utility software used during testing was Lightblue v2.6.4

5.5. WORST-CASE CONFIGURATION AND MODE

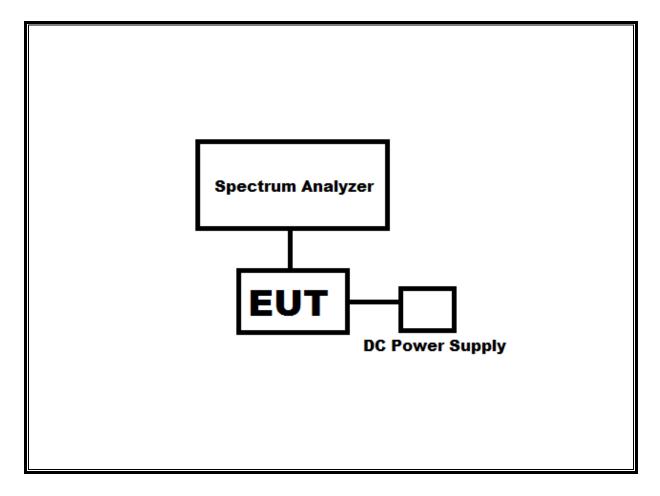
Radiated emissions below 1GHz, above 18GHz, and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

Band edge and radiated emissions between 1GHz and 18GHz were performed with the EUT set to transmit at the highest power on low, middle and high channels.

The fundamental of the EUT was investigated in three orthogonal orientations X,Y,Z, it was determined that X orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in X orientation.

5.6. DESCRIPTION OF TEST SETUP

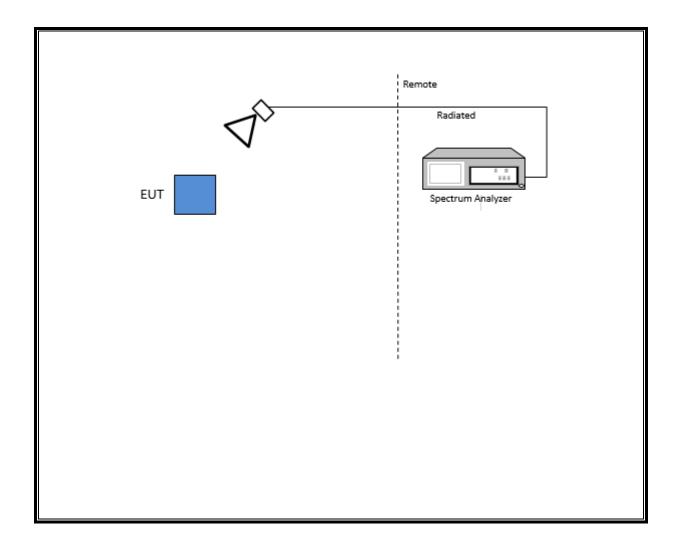
SUPPORT EQUIPMENT


	Support Equip	oment List	
Description	Manufacturer	Model	Serial Number
Ipod Touch	Apple	MKJ02LL/A	CCQVRHY2GGNL

TEST SETUP

The EUT is powered by 7.4v, 2.2wh Li-Ion battery. The iPod Touch wirelessly sends commands to the EUT.

Page 9 of 46


SETUP DIAGRAM FOR CONDUCTED TESTS

*Note – The DC power supply is used only during testing. During normal operation the EUT is powered by a supplied battery pack

Page 10 of 46

SETUP DIAGRAM FOR RADIATED TESTS

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA TEL:(510) 771-1000 FAX:(510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 11 of 46

6. MEASUREMENT METHOD

6 dB BW: ANSI C63.10 Subclause -11.8.1 RBW ≥ DTS BW

Occupied BW (99%): ANSI C63.10-2013 Section 6.9.3

Output Power: ANSI C63.10 Subclause -11.9.1.3 Method PKPM1 Peak-reading power meter

Output Power: ANSI C63.10 Subclause -11.9.2.3.2 Method AVGPM-G (Measurement using a gated RF average-reading power meter)

PSD: ANSI C63.10 Subclause -11.10.2 Method PKPSD (peak PSD)

Radiated emissions non-restricted frequency bands: ANSI C63.10 Subclause -11.11

Radiated emissions restricted frequency bands: ANSI C63.10 Subclause -11.12.1

Conducted emissions in restricted frequency bands: ANSI C63.10 Subclause -11.12.2

Band-edge: ANSI C63.10 Subclause -11.13.3.4

Integration method -Trace averaging across ON and OFF times DC correction

7. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

	TEST EQUIPMENT LIST				
Description	Manufacturer	Model	ID Number	Cal Due	Last Cal
Antenna, Broadband Hybrid, 30MHz to 2000MHz	Sunol Sciences Corp.	JB1	T130	10/16/2018	10/16/2017
Antenna, Horn 1-18GHz	ETS-Lindgren	3117	T345	04/25/2019	04/25/2018
Antenna, Horn, 1-18GHz	ETS Lindgren	3117	T862	05/24/18	05/24/19
RF Amplifier, 1-18GHz	MITEQ	AFS42-00101800- 25-S-42	T1165	11/25/2018	11/25/2017
RF Preamplifier, 1 - 18GHz	MITEQ	AFS42-00101800- 25-S-42	171460	08/01/18	08/01/19
Antenna, Active Loop 9kHz – 30MHz	Com-Power	AL-130R	T1866	10/10/2018	10/10/2017
Antenna, Horn, 18-26GHz	ARA	MWH-1826G	T89	01/18/2019	01/18/2018
Spectrum Analyzer	Keysight	N9030A	T1113	12/21/2018	12/21/2017
RF Preamplifier, 1-26GHz	Agilent	8449B	T404	03/09/2019	03/29/2018
Power Meter, P-series single channel	Agilent (Keysight) Technologies	N1911A	T1271	07/17/2019	07/17/2018
Power Sensor, P-series, 50MHz to 18GHz, Wideband	Agilent (Keysight) Technologies	N1921A	T1225	04/10/2019	04/10/2018
Spectrum Analyzer	Agilent (Keysight) Technologies	N9030A	T146	08/13/2019	08/13/2018
Spectrum Analyzer, PXA, 3Hz to 44GHz	Agilent (Keysight) Technologies	N9030A	T1466	04/16/2019	04/16/2018

	Test Software L	ist	
Description	Manufacturer	Model	Version
Radiated Software	UL	UL EMC	Ver. 9.5, Dec. 01, 2016
Antenna Port Software	UL	UL RF	Ver. 8.8.1, Sep. 26, 2018

Page 13 of 46

8. ANTENNA PORT TEST RESULTS

8.1. ON TIME AND DUTY CYCLE

<u>LIMITS</u>

None; for reporting purposes only.

PROCEDURE

ON TIME AND DUTY CYCLE RESULTS

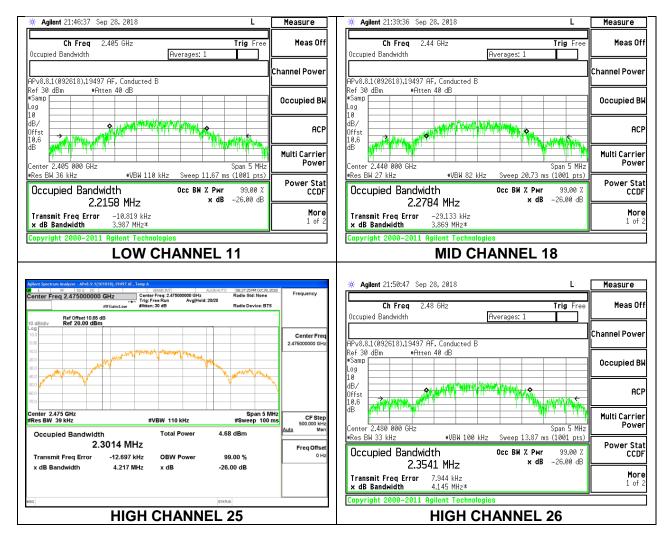
Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B
	В		x	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
2.4GHz Band						
AIREA	1.000	1.000	1.000	100.00%	0.00	0.010

Page 14 of 46

DUTY CYCLE PLOTS

Ref 30 #Peak	dBm		#Atten 40) dB						2.44000000 GH
Log 10 dB/ Offst 10.6 dB	;	1 3 								Start Free 2.44000000 GH Stop Free 2.44000000 GH
#PAvg Center	2 4 4 0	000 G						Sna	in 0 Hz	CF Stej 8.00000000 MH <u>Auto</u> Ma
Res BW			112	∗VBW 5	0 MHz	Sweep	o 1.015			Freq Offse
Mark 1		race (1)	Type Time		X Axis 95.72 m			Amplit 4.48	ude	Signal Traci

Page 15 of 46


8.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

RESULTS

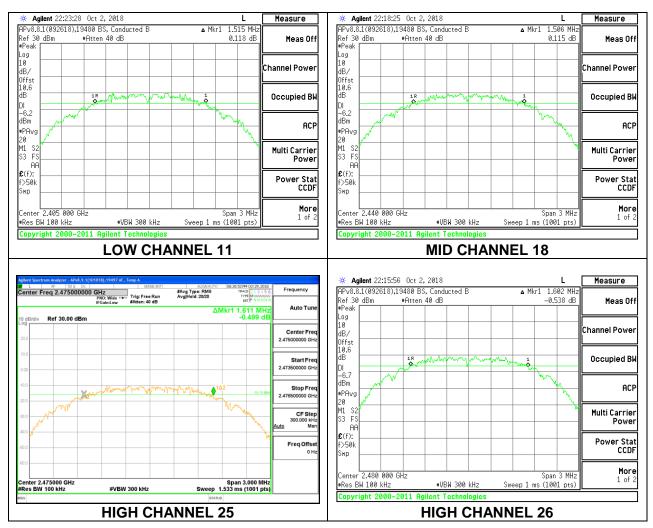
Channel	Frequency	99% Bandwidth			
	(MHz)	(MHz)			
Low 11	2405	2.2158			
Middle 18	2440	2.2784			
High 25	2475	2.3014			
High 26	2480	2.3541			

Page 16 of 46

8.3. 6 dB BANDWIDTH

DATE: 11/5/2018 IC: 10161A-RDMB1

LIMITS


FCC §15.407 (e)

RSS-247 5.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

RESULTS

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)			
Low 11	2405	1.515	0.5			
Middle 18	2440	1.506	0.5			
High 25	2475	1.611	0.5			
High 26	2480	1.602	0.5			

Page 17 of 46

8.4. OUTPUT POWER

LIMITS

FCC §15.247 (b) (3)

RSS-247 5.4 (d)

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

The transmitter output is connected to a power meter. The cable assembly insertion loss was entered as an offset in the power meter to allow for a gated peak reading of power.

RESULTS

Tested By:	19497 AF
Date:	9/26/2018

Channel	Frequency	Peak Power Reading	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low 11	2405	3.96	30	-26.040
Middle 18	2440	3.97	30	-26.030
High 25	2475	3.97	30	-26.030
High 26	2480	3.97	30	-26.030

Page 18 of 46

8.5. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter. The cable assembly insertion loss was entered as an offset in the power meter to allow for a gated average reading of power.

RESULTS

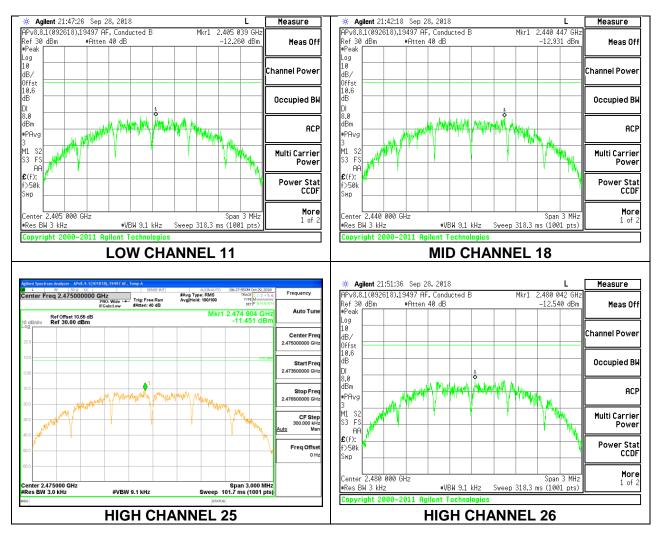
Tested By:	19497 AF
Date:	9/26/2018

Channel	Frequency	AV power
	(MHz)	(dBm)
Low 11	2405	3.65
Middle 18	2440	3.70
High 25	2475	3.70
High 26	2480	3.68

Page 19 of 46

8.6. POWER SPECTRAL DENSITY

LIMITS


FCC §15.247 (e)

RSS-247 (5.2) (b)

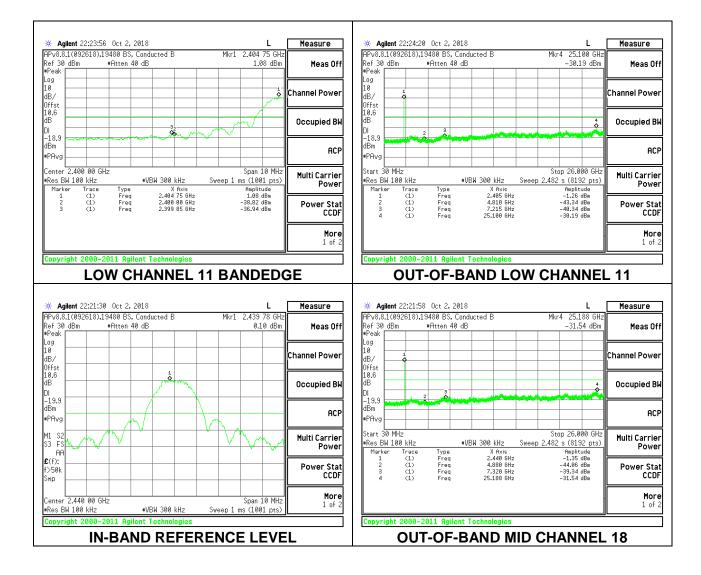
The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

RESULTS

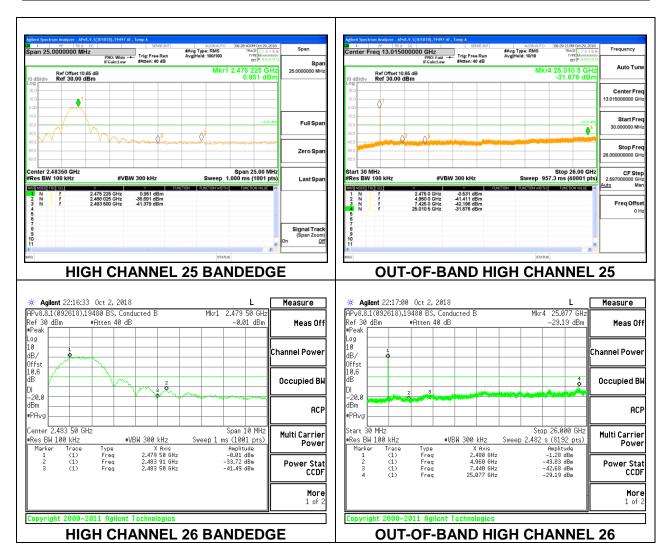
Channel	Frequency	PSD	Limit	Margin
	(MHz)	(dBm/3kHz)	(dBm/3kHz)	(dB)
Low 11	2405	-12.260	8	-20.26
Middle 18	2440	-12.931	8	-20.93
High 25	2475	-11.451	8	-19.45
High 26	2480	-12.540	8	-20.54

Page 20 of 46

8.7. CONDUCTED SPURIOUS EMISSIONS


LIMITS

FCC §15.247 (d)


RSS-247 5.5

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

RESULTS

Page 21 of 46

Page 22 of 46

9. RADIATED TEST RESULTS

9.1. LIMITS AND PROCEDURE

<u>LIMITS</u>

FCC §15.205 and §15.209

RSS-GEN, Section 8.9 and 8.10.

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
0.009-0.490	2400/F(kHz) @ 300 m	-
0.490-1.705	24000/F(kHz) @ 30 m	-
1.705 - 30	30 @ 30m	-
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

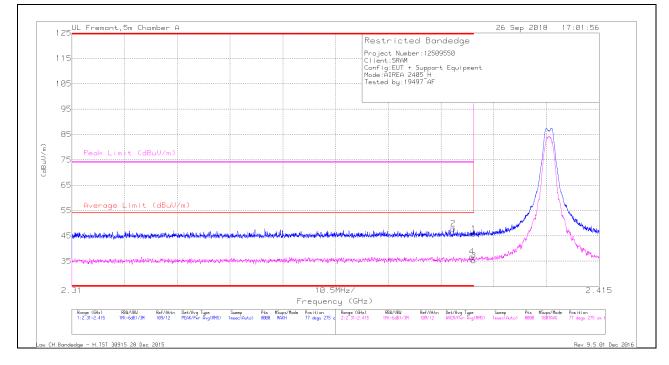
TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane for measurement below 1GHz; 1.5 m above the ground plane for measurement above 1GHz. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.10. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For pre-scans above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 30 KHz for peak measurements.

For final measurements above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 3 MHz for peak measurements and as applicable for average measurements.


The spectrum from 1 GHz to 18 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band. Below 1GHz and above 18GHz emissions, the channel with the highest output power was tested.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Page 23 of 46

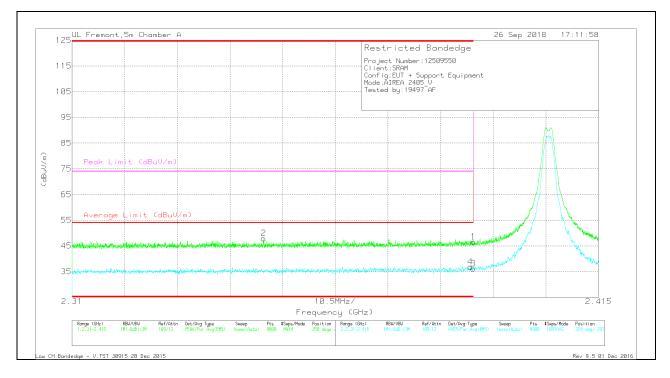
9.2. TRANSMITTER ABOVE 1 GHz

BANDEDGE (LOW CHANNEL 11)

HORIZONTAL RESULT

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Amp/Cbl/Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.39	37.06	Pk	31.8	-23	45.86	-	-	74	-28.14	77	275	н
2	* 2.386	39.07	Pk	31.8	-23	47.87	-	-	74	-26.13	77	275	н
3	* 2.39	26.52	RMS	31.8	-23	35.32	54	-18.68	-	-	77	275	н
4	* 2.39	27.97	RMS	31.8	-23	36.77	54	-17.23	-	-	77	275	Н


* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

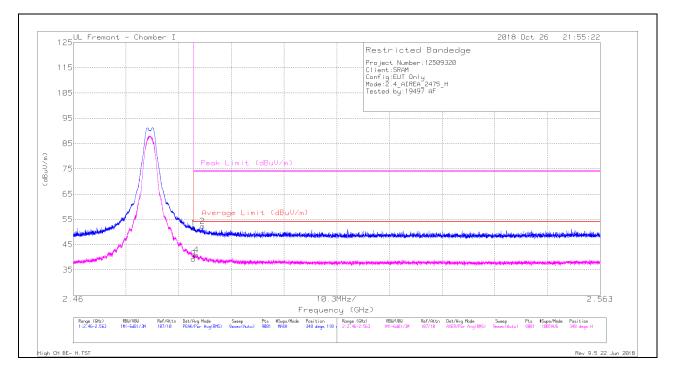
RMS - RMS detection

Page 24 of 46

VERTICAL RESULT

Trace Markers

Marker	Frequency	Meter	Det	AF T345	Amp/Cbl/Fltr/Pad	Corrected	Average Limit	Margin	Peak Limit	РК	Azimuth	Height	Polarity
	(GHz)	Reading		(dB/m)	(dB)	Reading	(dBuV/m)	(dB)	(dBuV/m)	Margin	(Degs)	(cm)	
		(dBuV)				(dBuV/m)				(dB)			
1	* 2.39	37.77	Pk	31.8	-23	46.57	-	-	74	-27.43	258	207	V
2	* 2.348	39.34	Pk	31.6	-23	47.94	-	-	74	-26.06	258	207	V
3	* 2.39	27.37	RMS	31.8	-23	36.17	54	-17.83	-	-	258	207	V
4	* 2.389	28.04	RMS	31.8	-23	36.84	54	-17.16	-	-	258	207	V

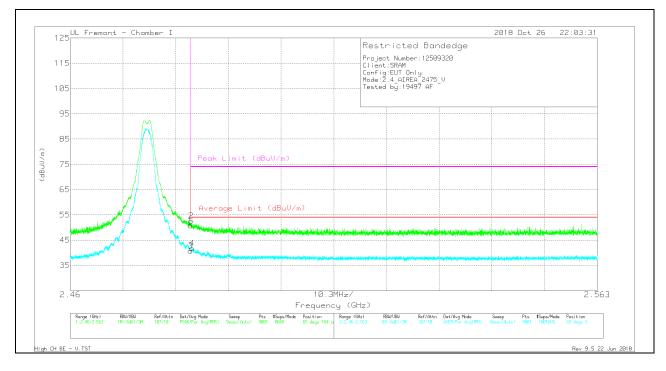

 * - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector

RMS - RMS detection

Page 25 of 46

BANDEDGE (HIGH CHANNEL 25)

HORIZONTAL RESULT


Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T862 (dB/m)	Amp/Cbl/Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.484	40.86	Pk	32.4	-21.7	51.56	-	-	74	-22.44	348	110	Н
2	* 2.485	41.7	Pk	32.4	-21.8	52.3	-	-	74	-21.7	348	110	н
3	* 2.484	28.7	RMS	32.4	-21.7	39.4	54	-14.6	-	-	348	110	н
4	* 2.484	30.33	RMS	32.4	-21.7	41.03	54	-12.97	-	-	348	110	н

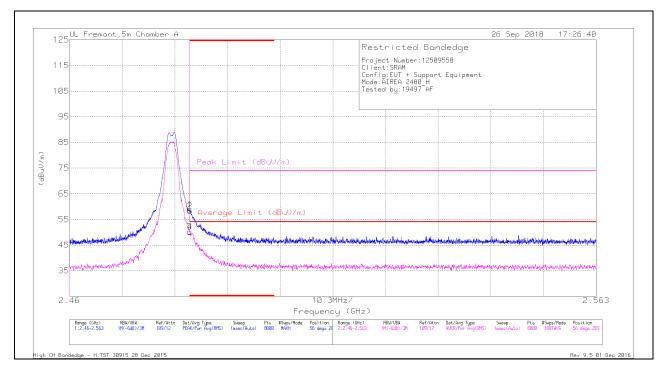
* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector RMS - RMS detection

Page 26 of 46

VERTICAL RESULT

Trace Markers

Marker	Frequency	Meter	Det	AF T862	Amp/Cbl/Fltr/Pad	Corrected	Average Limit	Margin	Peak Limit	РК	Azimuth	Height	Polarity
	(GHz)	Reading		(dB/m)	(dB)	Reading	(dBuV/m)	(dB)	(dBuV/m)	Margin	(Degs)	(cm)	
		(dBuV)				(dBuV/m)				(dB)			
1	* 2.484	40.11	Pk	32.4	-21.7	50.81	-	-	74	-23.19	65	184	V
2	* 2.484	42	Pk	32.4	-21.7	52.7	-	-	74	-21.3	65	184	V
3	* 2.484	30.03	RMS	32.4	-21.7	40.73	54	-13.27	-	-	65	184	V
4	* 2.484	30.98	RMS	32.4	-21.7	41.68	54	-12.32	-	-	65	184	V

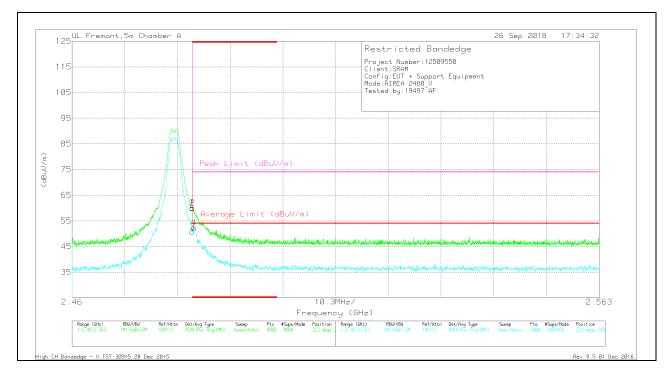

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector

RMS - RMS detection

Page 27 of 46

BANDEDGE (HIGH CHANNEL 26)

HORIZONTAL RESULT


Trace Markers

Marker	Frequency (GHz)	Meter Reading	Det	AF T345 (dB/m)	Amp/Cbl/Fltr/Pad (dB)	Corrected Reading	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin	Azimuth (Degs)	Height (cm)	Polarity
	(0112)	(dBuV)		(42))	(00)	(dBuV/m)	(4547))	(42)	(4547))	(dB)	(2080)	(0)	
1	* 2.484	49.34	Pk	32.3	-22.9	58.74	-	-	74	-15.26	56	209	н
2	* 2.484	48.88	Pk	32.3	-22.9	58.28	-	-	74	-15.72	56	209	н
3	* 2.484	40.76	RMS	32.3	-22.9	50.16	54	-3.84	-	-	56	209	н
4	* 2.484	40.77	RMS	32.3	-22.9	50.17	54	-3.83	-	-	56	209	н

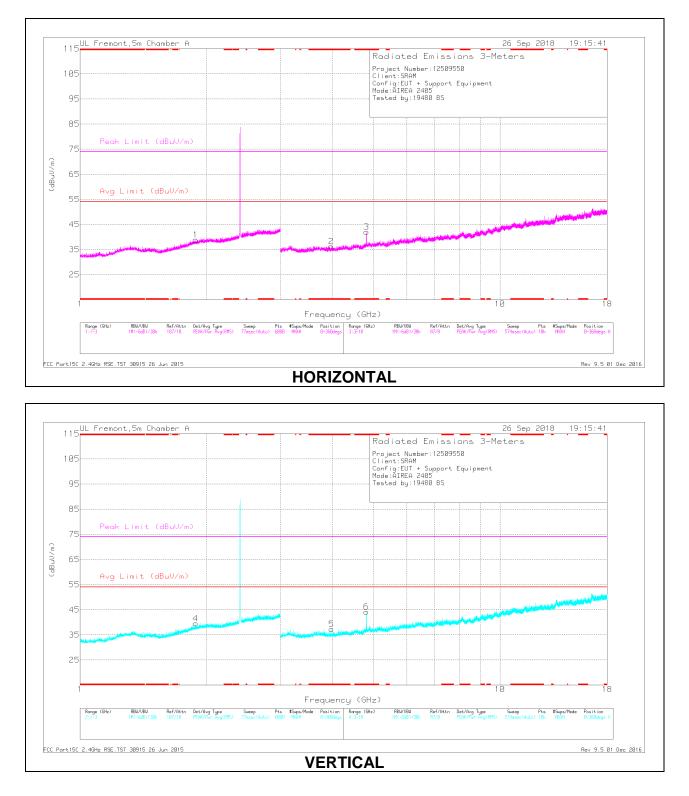
* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector RMS - RMS detection

Page 28 of 46

VERTICAL RESULT

Trace Markers

Marker	Frequency	Meter	Det	AF T345	Amp/Cbl/Fltr/Pad	Corrected	Average Limit	Margin	Peak Limit	РК	Azimuth	Height	Polarity
	(GHz)	Reading		(dB/m)	(dB)	Reading	(dBuV/m)	(dB)	(dBuV/m)	Margin	(Degs)	(cm)	
		(dBuV)				(dBuV/m)				(dB)			
1	* 2.484	50.54	Pk	32.3	-22.9	59.94	-	-	74	-14.06	223	240	V
2	* 2.484	50.67	Pk	32.3	-22.9	60.07	-	-	74	-13.93	223	240	V
3	* 2.484	41.45	RMS	32.3	-22.9	50.85	54	-3.15	-	-	223	240	V
4	* 2.484	42.98	RMS	32.3	-22.9	52.38	54	-1.62	-	-	223	240	V


 * - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector

RMS - RMS detection

Page 29 of 46

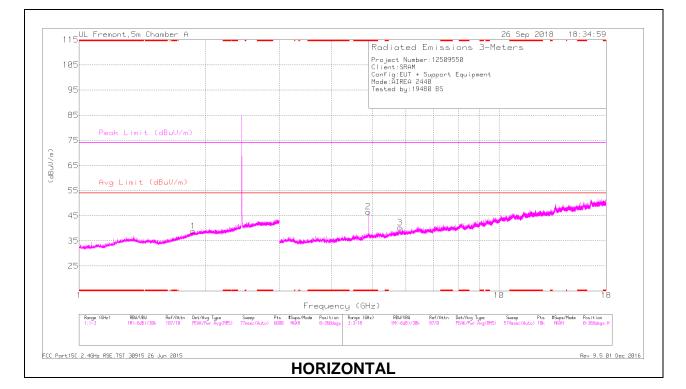
HARMONICS AND SPURIOUS EMISSIONS

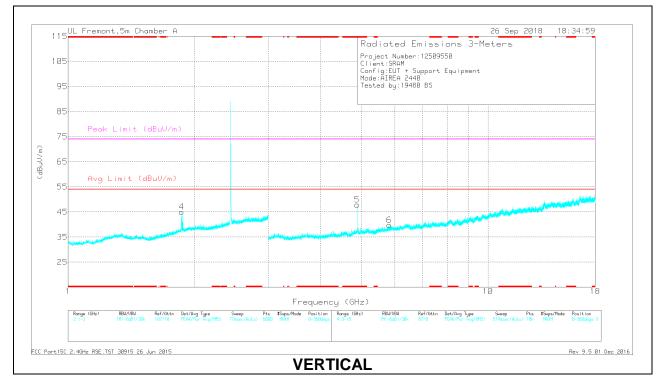
LOW CHANNEL 11 RESULTS

Page 30 of 46

RADIATED EMISSIONS

Marker	Frequency	Meter	Det	AF T345	Amp/Cbl/Fltr/Pad	Corrected	Avg Limit	Margin	Peak Limit	РК	Azimuth	Height	Polarity
	(GHz)	Reading		(dB/m)	(dB)	Reading	(dBuV/m)	(dB)	(dBuV/m)	Margin	(Degs)	(cm)	
		(dBuV)				(dBuV/m)				(dB)			
2	* 3.966	37.68	PK2	33.3	-27.8	43.18	-	-	74	-30.82	166	141	н
	* 3.967	25.26	MAv1	33.3	-27.8	30.76	54	-23.24	-	-	166	141	н
3	* 4.809	39.45	PK2	34.2	-26	47.65	-	-	74	-26.35	191	102	н
	* 4.809	30.31	MAv1	34.2	-26	38.51	54	-15.49	-	-	191	102	н
5	* 3.969	36.93	PK2	33.3	-27.7	42.53	-	-	74	-31.47	32	315	V
	* 3.972	25.23	MAv1	33.3	-27.8	30.73	54	-23.27	-	-	32	315	V
6	* 4.809	40.97	PK2	34.2	-26	49.17	-	-	74	-24.83	332	234	V
	* 4.809	33.07	MAv1	34.2	-26	41.27	54	-12.73	-	-	332	234	V
1	1.886	36.17	PK2	31	-22.9	44.27	-	-	-	-	316	307	н
4	1.886	36.69	PK2	31	-22.9	44.79	-	-	-	-	63	339	V


 * - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band


PK2 - KDB558074 Method: Maximum Peak

MAv1 - KDB558074 Option 1 Maximum RMS Average

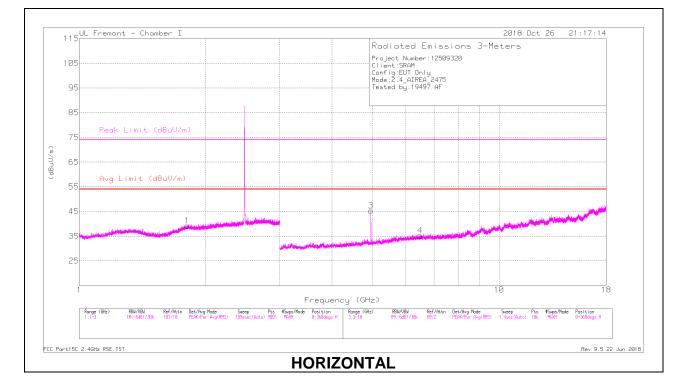
Page 31 of 46

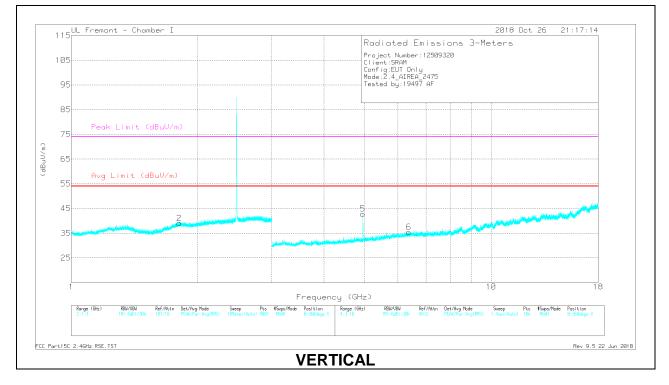
MID CHANNEL 18 RESULTS

Page 32 of 46

RADIATED EMISSIONS

Marker	Frequency	Meter	Det	AF T345	Amp/Cbl/Fltr/Pad	Corrected	Avg Limit	Margin	Peak Limit	РК	Azimuth	Height	Polarity
	(GHz)	Reading		(dB/m)	(dB)	Reading	(dBuV/m)	(dB)	(dBuV/m)	Margin	(Degs)	(cm)	
		(dBuV)				(dBuV/m)				(dB)			
2	* 4.881	44.06	PK2	34.1	-26	52.16	-	-	74	-21.84	175	103	Н
	* 4.881	37.21	MAv1	34.1	-26	45.31	54	-8.69	-	-	175	103	Н
5	* 4.881	44.08	PK2	34.1	-26	52.18	-	-	74	-21.82	315	194	V
	* 4.881	36.99	MAv1	34.1	-26	45.09	54	-8.91	-	-	315	194	V
4	1.864	36.73	PK2	30.9	-22.9	44.73	-	-	-	-	315	185	V
1	1.869	36.15	PK2	31	-22.9	44.25	-	-	-	-	70	139	Н
3	5.812	35.64	PK2	35.1	-24.7	46.04	-	-	-	-	307	320	Н
6	5.816	35.18	PK2	35.1	-24.7	45.58	-	-	-	-	140	102	V


* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK2 - KDB558074 Method: Maximum Peak


MAv1 - KDB558074 Option 1 Maximum RMS Average

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA TEL:(510) 771-1000 FAX:(510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 33 of 46

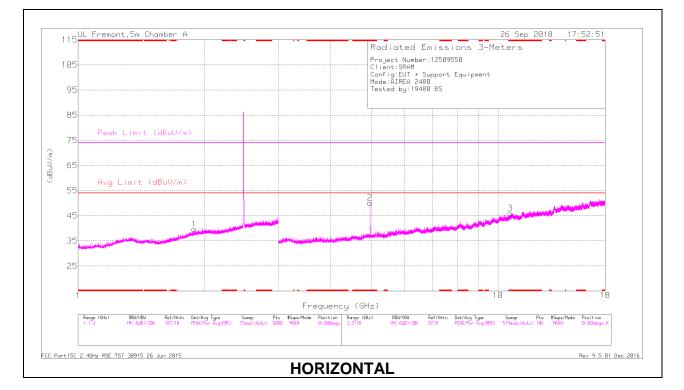
HIGH CHANNEL 25 RESULTS

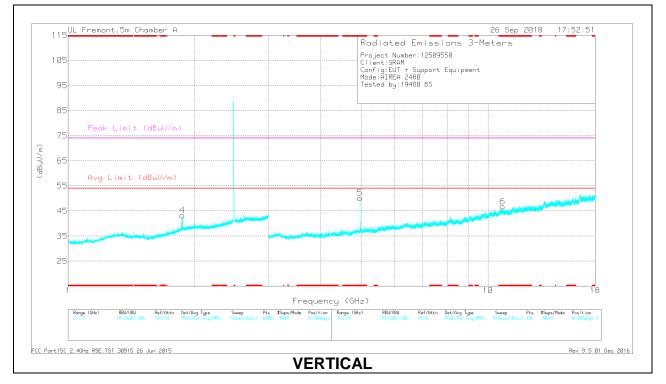
Page 34 of 46

RADIATED EMISSIONS

Marker	Frequency	Meter	Det	AF T862	Amp/Cbl/Fltr/Pad	Corrected	Avg Limit	Margin	Peak Limit	РК	Azimuth	Height	Polarity
	(GHz)	Reading		(dB/m)	(dB)	Reading	(dBuV/m)	(dB)	(dBuV/m)	Margin	(Degs)	(cm)	
		(dBuV)				(dBuV/m)				(dB)			
1	1.806	38.13	PK2	30.6	-22.2	46.53	-	-	-		159	196	Н
2	1.809	37.24	PK2	30.6	-22.2	45.64	-	-	-		146	376	V
3	* 4.951	45.89	PK2	34.2	-29.1	50.99	-	-	74	-23.01	284	246	Н
	* 4.951	38.85	MAv1	34.2	-29.1	43.95	54	-10.05	-	-	284	246	Н
4	6.495	33.38	PK2	35.7	-26.4	42.68	-	-	-	•	226	388	Н
5	* 4.949	42.68	PK2	34.2	-29.1	47.78	-	-	74	-26.22	20	184	V
	* 4.949	35.7	MAv1	34.2	-29.1	40.8	54	-13.2	-		20	184	V
6	6.371	33.24	PK2	35.7	-27.2	41.74	-	-	-	-	130	344	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK2 - KDB558074 Method: Maximum Peak


MAv1 - KDB558074 Option 1 Maximum RMS Average

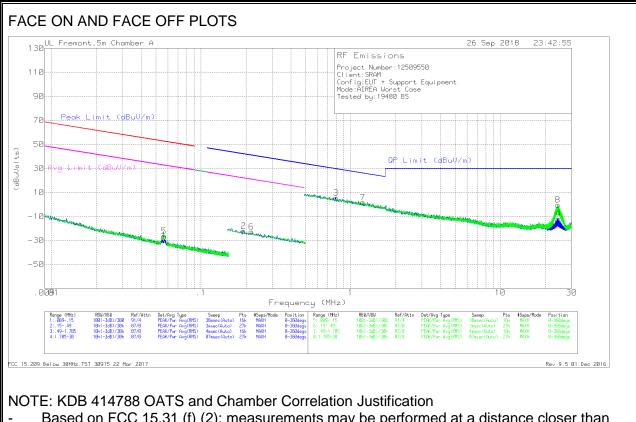

FCC Part15C 2.4GHz RSE.TST 30915 26 Jun 2015

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA TEL:(510) 771-1000 FAX:(510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 35 of 46

HIGH CHANNEL 26 RESULTS

Page 36 of 46


RADIATED EMISSIONS

Marker	Frequency	Meter	Det	AF T345	Amp/Cbl/Fltr/Pad	Corrected	Avg Limit	Margin	Peak Limit	РК	Azimuth	Height	Polarity
	(GHz)	Reading		(dB/m)	(dB)	Reading	(dBuV/m)	(dB)	(dBuV/m)	Margin	(Degs)	(cm)	
		(dBuV)				(dBuV/m)				(dB)			
2	* 4.959	47.32	PK2	34.2	-26.6	54.92	-	-	74	-19.08	175	116	н
	* 4.959	41.05	MAv1	34.2	-26.6	48.65	54	-5.35	-	-	175	116	н
3	* 10.701	32.2	PK2	37.8	-18.6	51.4	-	-	74	-22.6	46	145	н
	* 10.7	20.55	MAv1	37.8	-18.6	39.75	54	-14.25	-	-	46	145	н
5	* 4.959	47.47	PK2	34.2	-26.6	55.07	-	-	74	-18.93	313	207	V
	* 4.959	41.39	MAv1	34.2	-26.6	48.99	54	-5.01	-	-	313	207	V
6	* 10.842	31.29	PK2	37.9	-18.1	51.09	-	-	74	-22.91	221	127	V
	* 10.84	20.23	MAv1	37.9	-18.1	40.03	54	-13.97	-	-	221	127	V
4	1.874	36.43	PK2	31	-22.9	44.53	-	-	-	-	357	199	V
1	1.891	36.18	PK2	31	-22.9	44.28	-	-	-	-	243	227	Н

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK2 - KDB558074 Method: Maximum Peak MAv1 - KDB558074 Option 1 Maximum RMS Average

FCC Part15C 2.4GHz RSE.TST 30915 26 Jun 2015

Page 37 of 46

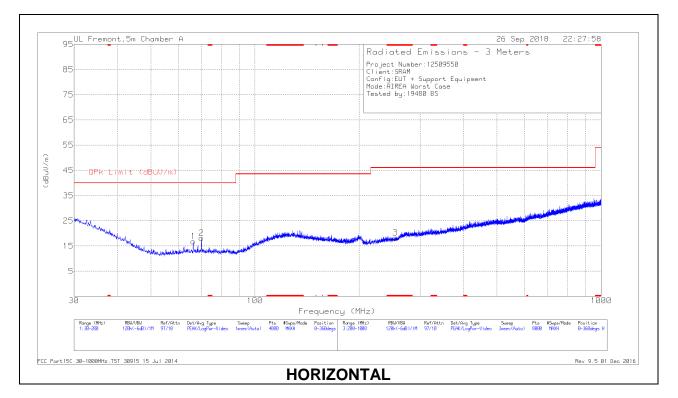
9.3. Worst Case Below 30MHz

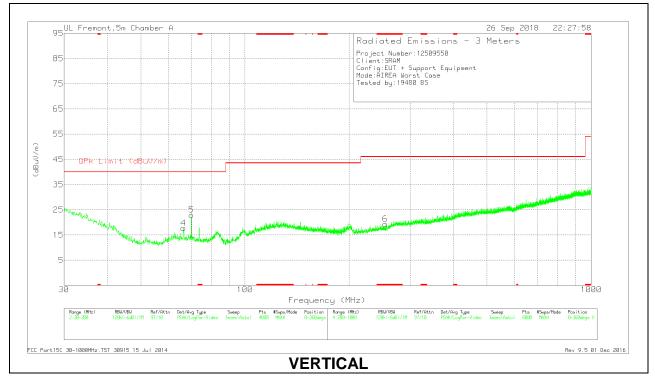
- Based on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field.

- OATs and chamber correlation testing had been performed and chamber measured test result is the worst case test result.

Below 30MHz DATA

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	Loop Antenna (dB/m)	Cbl (dB)	Dist Corr 300m	Corrected Reading (dBuVolts)	Peak Limit (dBuV/m)	Margin (dB)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Avg Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)
5	.05661	41.47	Pk	11.8	.1	-80	-26.63	52.53	-79.16	32.53	-59.16	-	-	-	-	0-360
1	.05681	38.38	Pk	11.8	.1	-80	-29.72	52.5	-82.22	32.5	-62.22	-	-	-	-	0-360
2	.19233	46.75	Pk	11	.1	-80	-22.15	-	-	-	-	41.94	-64.09	21.94	-44.09	0-360
6	.21744	46.13	Pk	11	.1	-80	-22.77		-	-	-	40.87	-63.64	20.87	-43.64	0-360


Pk - Peak detector


Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	Loop Antenna (dB/m)	Cbl (dB)	Dist Corr 30m	Corrected Reading (dBuVolts)	QP Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Avg Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)
3	.79689	34.37	Pk	11	.1	-40	5.47	29.59	-24.12	-	-	-	-	0-360
7	1.20752	29.98	Pk	11.3	.2	-40	1.48	25.99	-24.51	-	-	-	-	0-360
8	24.23386	28.3	Pk	10.5	.7	-40	5	29.5	-30	-	-	-	-	0-360
4	24.47752	16.85	Pk	10.5	.7	-40	-11.95	29.5	-41.45	-	-	-	-	0-360

Pk - Peak detector

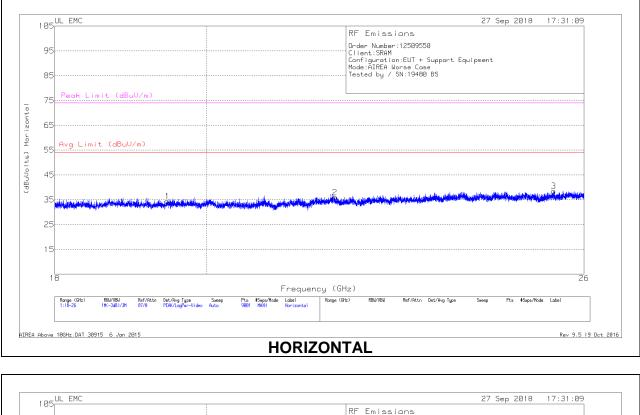
9.4. Worst Case Below 1 GHz

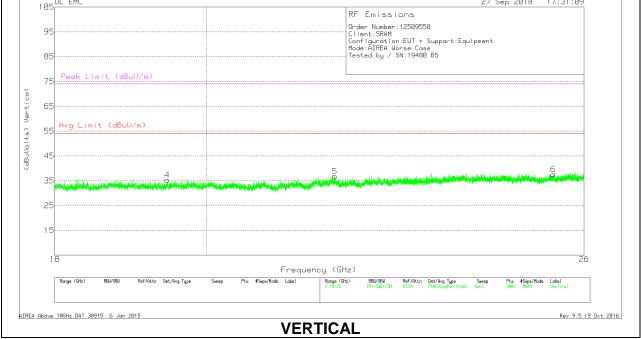
SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)

Page 39 of 46

Below 1GHz Data

Marker	Frequency	Meter	Det	AF T130 (dB/m)	Amp/Cbl (dB/m)	Corrected	QPk Limit (dBuV/m)	Margin	Azimuth	Height	Polarity
	(MHz)	Reading				Reading		(dB)	(Degs)	(cm)	
		(dBuV)				(dBuV/m)					
3	* 254.107	27.72	Pk	15.4	-24.8	18.32	46.02	-27.7	0-360	101	н
6	* 254.107	28.76	Pk	15.4	-24.8	19.36	46.02	-26.66	0-360	200	V
1	66.3894	31.52	Pk	12.1	-26.8	16.82	40	-23.18	0-360	100	н
4	66.4319	32.43	Pk	12.1	-26.8	17.73	40	-22.27	0-360	100	V
2	70.0454	32.75	Pk	12.1	-26.7	18.15	40	-21.85	0-360	100	н
5	70.0454	37.56	Pk	12.1	-26.7	22.96	40	-17.04	0-360	100	V


* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band


Pk - Peak detector

Page 40 of 46

9.5. Worst Case 18-26 GHz

SPURIOUS EMISSIONS 18-26 GHz (WORST-CASE CONFIGURATION)

Page 41 of 46

18 – 26GHz DATA

Marker	Frequency	Meter	Det	T89 AF	Amp/Cbl	Dist Corr	Corrected	Avg Limit	Margin	Peak Limit	РК
	(GHz)	Reading		(dB/m)	(dB)	(dB)	Reading	(dBuV/m)	(dB)	(dBuV/m)	Margin
		(dBuV)					(dBuVolts)				(dB)
1	19.464	35.99	Pk	32.5	-24.6	-9.5	34.39	54	-19.61	74	-39.61
2	21.866	36.75	Pk	33.3	-24.6	-9.5	35.95	54	-18.05	74	-38.05
3	25.455	38.68	Pk	33.8	-24.5	-9.5	38.48	54	-15.52	74	-35.52
4	19.462	36.88	Pk	32.5	-24.6	-9.5	35.28	54	-18.72	74	-38.72
5	21.865	37.57	Pk	33.3	-24.6	-9.5	36.77	54	-17.23	74	-37.23
6	25.452	37.78	Pk	33.8	-24.5	-9.5	37.58	54	-16.42	74	-36.42

Pk - Peak detector

Page 42 of 46