

TEST REPORT

Report Number: 14777250-E2V2

- Applicant : SRAM LLC 1000 W Fulton Market 4th Floor Chicago, IL 60607, United States
 - **Model :** 00022
 - Brand : SRAM
 - FCC ID : C9O-LSBB4
 - **IC** : 10161A-LSBB4
- EUT Description : Electronic Shifter Left
- Test Standard(s) : FCC 47 CFR PART 15 SUBPART C ISED RSS-247 ISSUE 3 ISED RSS-GEN ISSUE 5 + A1 + A2

Date Of Issue: 2023-12-14

Prepared by: UL VERIFICATION SERVICES 47173 Benicia Street Fremont, CA 94538 U.S.A. TEL: (510) 319-4000 FAX: (510) 661-0888

REPORT REVISION HISTORY

Rev.	lssue Date	Revisions	Revised By
V1	2023-7-14	Initial Issue	
V2	2023-12-14	Updated Section 10.2, 10.3 and 10.4	Kiya Kedida

Page 2 of 44

TABLE OF CONTENTS

TABLE OF CONTENTS 3 1. ATTESTATION OF TEST RESULTS 5 2. TEST RESULTS SUMMARY 7 3. TEST METHODOLOGY 8 4. FACILITIES AND ACCREDITATION 8 5. DECISION RULES AND MEASUREMENT UNCERTAINTY 9 5.1. METROLOGICAL TRACEABILITY 9 5.2. DECISION RULES 9 5.3. MEASUREMENT UNCERTAINTY 9 5.4. SAMPLE CALCULATION 10 6. EQUIPMENT UNDER TEST 11 6.1. EUT DESCRIPTION 11 6.2. MAXIMUM OUTPUT POWER 11 6.3. DESCRIPTION OF AVAILABLE ANTENNAS 11 6.4. SOFTWARE AND FIRMWARE 11 6.5. WORST-CASE CONFIGURATION AND MODE 11 6.6. DESCRIPTION OF TEST SETUP 12 7. MEASUREMENT METHOD 14 8. TEST AND MEASUREMENT EQUIPMENT 15 9. ANTENNA PORT TEST RESULTS 16 9.1. ON TIME AND DUTY CYCLE 16 9.2. 99% BANDWIDTH 18 9.4. OUTPUT POWER 19 9.5. AVERAGE POWER 20 9.6. POWER SPECTRAL DENSITY 21 9.7. CONDUCTED SPURIOUS EMISSIONS	REPORT REVISION HISTORY	2
2. TEST RESULTS SUMMARY 7 3. TEST METHODOLOGY 8 4. FACILITIES AND ACCREDITATION 8 5. DECISION RULES AND MEASUREMENT UNCERTAINTY 9 5.1. METROLOGICAL TRACEABILITY 9 5.2. DECISION RULES 9 5.3. MEASUREMENT UNCERTAINTY 9 5.4. SAMPLE CALCULATION 10 6. EQUIPMENT UNDER TEST 11 6.1. EUT DESCRIPTION 11 6.2. MAXIMUM OUTPUT POWER 11 6.3. DESCRIPTION OF AVAILABLE ANTENNAS 11 6.4. SOFTWARE AND FIRMWARE 11 6.5. WORST-CASE CONFIGURATION AND MODE 11 6.6. DESCRIPTION OF TEST SETUP 12 7. MEASUREMENT METHOD 14 8. TEST AND MEASUREMENT EQUIPMENT 15 9. ANTENNA PORT TEST RESULTS 16 9.1. ON TIME AND DUTY CYCLE 16 9.2. 99% BANDWIDTH 17 9.3. 6 dB BANDWIDTH 18 9.4. OUTPUT POWER 19 9.5. AVERAGE POWER 20 9.6. POWER SPECTRAL DENSITY 21 9.7. CONDUCTED SPURIOUS EMISSIONS 22 10. RADIATED TEST RESULTS <	TABLE OF CONTENTS	3
3. TEST METHODOLOGY 8 4. FACILITIES AND ACCREDITATION 8 5. DECISION RULES AND MEASUREMENT UNCERTAINTY 9 5.1. METROLOGICAL TRACEABILITY 9 5.2. DECISION RULES 9 5.3. MEASUREMENT UNCERTAINTY 9 5.4. SAMPLE CALCULATION 10 6. EQUIPMENT UNDER TEST 11 6.1. EUT DESCRIPTION 11 6.2. MAXIMUM OUTPUT POWER 11 6.3. DESCRIPTION OF AVAILABLE ANTENNAS 11 6.4. SOFTWARE AND FIRMWARE 11 6.5. WORST-CASE CONFIGURATION AND MODE 11 6.6. DESCRIPTION OF TEST SETUP 12 7. MEASUREMENT METHOD 14 8. TEST AND MEASUREMENT EQUIPMENT 15 9. ANTENNA PORT TEST RESULTS 16 9.1. ON TIME AND DUTY CYCLE 16 9.2. 99% BANDWIDTH 17 9.3. 6 dB BANDWIDTH 17 9.4. OUTPUT POWER 19 9.5. AVERAGE POWER 20 9.6. POWER SPECTRAL DENSITY 21 9.7. CONDUCTED SPURIOUS EMISSIONS 22 10. RADIATED TEST RESULTS 24	1. ATTESTATION OF TEST RESULTS	5
4. FACILITIES AND ACCREDITATION	2. TEST RESULTS SUMMARY7	7
5. DECISION RULES AND MEASUREMENT UNCERTAINTY	3. TEST METHODOLOGY	3
5.1. METROLOGICAL TRACEABILITY 9 5.2. DECISION RULES 9 5.3. MEASUREMENT UNCERTAINTY 9 5.4. SAMPLE CALCULATION 10 6. EQUIPMENT UNDER TEST 11 6.1. EUT DESCRIPTION 11 6.2. MAXIMUM OUTPUT POWER 11 6.3. DESCRIPTION OF AVAILABLE ANTENNAS 11 6.4. SOFTWARE AND FIRMWARE 11 6.5. WORST-CASE CONFIGURATION AND MODE 11 6.6. DESCRIPTION OF TEST SETUP 12 7. MEASUREMENT METHOD 14 8. TEST AND MEASUREMENT EQUIPMENT 15 9. ANTENNA PORT TEST RESULTS 16 9.1. ON TIME AND DUTY CYCLE 16 9.2. 99% BANDWIDTH 17 9.3. 6 dB BANDWIDTH 18 9.4. OUTPUT POWER 19 9.5. AVERAGE POWER 20 9.6. POWER SPECTRAL DENSITY 21 9.7. CONDUCTED SPURIOUS EMISSIONS 22 10. RADIATED TEST RESULTS	4. FACILITIES AND ACCREDITATION	3
5.2. DECISION RULES 9 5.3. MEASUREMENT UNCERTAINTY 9 5.4. SAMPLE CALCULATION 10 6. EQUIPMENT UNDER TEST 11 6.1. EUT DESCRIPTION 11 6.2. MAXIMUM OUTPUT POWER 11 6.3. DESCRIPTION OF AVAILABLE ANTENNAS 11 6.4. SOFTWARE AND FIRMWARE 11 6.5. WORST-CASE CONFIGURATION AND MODE 11 6.6. DESCRIPTION OF TEST SETUP 12 7. MEASUREMENT METHOD 14 8. TEST AND MEASUREMENT EQUIPMENT 15 9. ANTENNA PORT TEST RESULTS 16 9.1. ON TIME AND DUTY CYCLE 16 9.2. 99% BANDWIDTH 17 9.3. 6 dB BANDWIDTH 17 9.4. OUTPUT POWER 19 9.5. AVERAGE POWER 20 9.6. POWER SPECTRAL DENSITY 21 9.7. CONDUCTED SPURIOUS EMISSIONS 22 10. RADIATED TEST RESULTS 24	5. DECISION RULES AND MEASUREMENT UNCERTAINTY	•
5.3. MEASUREMENT UNCERTAINTY	5.1. METROLOGICAL TRACEABILITY	9
5.4. SAMPLE CALCULATION. 10 6. EQUIPMENT UNDER TEST 11 6.1. EUT DESCRIPTION 11 6.2. MAXIMUM OUTPUT POWER. 11 6.3. DESCRIPTION OF AVAILABLE ANTENNAS 11 6.4. SOFTWARE AND FIRMWARE 11 6.5. WORST-CASE CONFIGURATION AND MODE 11 6.6. DESCRIPTION OF TEST SETUP 12 7. MEASUREMENT METHOD 14 8. TEST AND MEASUREMENT EQUIPMENT 15 9. ANTENNA PORT TEST RESULTS 16 9.1. ON TIME AND DUTY CYCLE 16 9.2. 99% BANDWIDTH 17 9.3. 6 dB BANDWIDTH 18 9.4. OUTPUT POWER 19 9.5. AVERAGE POWER 20 9.6. POWER SPECTRAL DENSITY 21 9.7. CONDUCTED SPURIOUS EMISSIONS 22 10. RADIATED TEST RESULTS 24	5.2. DECISION RULES	9
6. EQUIPMENT UNDER TEST 11 6.1. EUT DESCRIPTION 11 6.2. MAXIMUM OUTPUT POWER 11 6.3. DESCRIPTION OF AVAILABLE ANTENNAS 11 6.4. SOFTWARE AND FIRMWARE 11 6.5. WORST-CASE CONFIGURATION AND MODE 11 6.6. DESCRIPTION OF TEST SETUP 12 7. MEASUREMENT METHOD 14 8. TEST AND MEASUREMENT EQUIPMENT 15 9. ANTENNA PORT TEST RESULTS 16 9.1. ON TIME AND DUTY CYCLE 16 9.2. 99% BANDWIDTH. 17 9.3. 6 dB BANDWIDTH. 17 9.5. AVERAGE POWER. 20 9.6. POWER SPECTRAL DENSITY 21 9.7. CONDUCTED SPURIOUS EMISSIONS. 22 10. RADIATED TEST RESULTS. 24	5.3. MEASUREMENT UNCERTAINTY	9
6.1. EUT DESCRIPTION	5.4. SAMPLE CALCULATION10)
6.2. MAXIMUM OUTPUT POWER	6. EQUIPMENT UNDER TEST11	I
6.3. DESCRIPTION OF AVAILABLE ANTENNAS 11 6.4. SOFTWARE AND FIRMWARE 11 6.5. WORST-CASE CONFIGURATION AND MODE 11 6.6. DESCRIPTION OF TEST SETUP 12 7. MEASUREMENT METHOD 14 8. TEST AND MEASUREMENT EQUIPMENT 15 9. ANTENNA PORT TEST RESULTS 16 9.1. ON TIME AND DUTY CYCLE 16 9.2. 99% BANDWIDTH 17 9.3. 6 dB BANDWIDTH 18 9.4. OUTPUT POWER 19 9.5. AVERAGE POWER 20 9.6. POWER SPECTRAL DENSITY 21 9.7. CONDUCTED SPURIOUS EMISSIONS 22 10. RADIATED TEST RESULTS 24	6.1. EUT DESCRIPTION1	1
6.4. SOFTWARE AND FIRMWARE 11 6.5. WORST-CASE CONFIGURATION AND MODE 11 6.6. DESCRIPTION OF TEST SETUP 12 7. MEASUREMENT METHOD 14 8. TEST AND MEASUREMENT EQUIPMENT 15 9. ANTENNA PORT TEST RESULTS 16 9.1. ON TIME AND DUTY CYCLE 16 9.2. 99% BANDWIDTH 17 9.3. 6 dB BANDWIDTH 18 9.4. OUTPUT POWER 19 9.5. AVERAGE POWER 20 9.6. POWER SPECTRAL DENSITY 21 9.7. CONDUCTED SPURIOUS EMISSIONS 22 10. RADIATED TEST RESULTS 24	6.2. MAXIMUM OUTPUT POWER1	1
6.5. WORST-CASE CONFIGURATION AND MODE	6.3. DESCRIPTION OF AVAILABLE ANTENNAS1	1
6.6. DESCRIPTION OF TEST SETUP. 12 7. MEASUREMENT METHOD 14 8. TEST AND MEASUREMENT EQUIPMENT 15 9. ANTENNA PORT TEST RESULTS 16 9.1. ON TIME AND DUTY CYCLE 16 9.2. 99% BANDWIDTH. 17 9.3. 6 dB BANDWIDTH 18 9.4. OUTPUT POWER 19 9.5. AVERAGE POWER 20 9.6. POWER SPECTRAL DENSITY 21 9.7. CONDUCTED SPURIOUS EMISSIONS 22 10. RADIATED TEST RESULTS 24	6.4. SOFTWARE AND FIRMWARE1	1
7. MEASUREMENT METHOD 14 8. TEST AND MEASUREMENT EQUIPMENT 15 9. ANTENNA PORT TEST RESULTS 16 9.1. ON TIME AND DUTY CYCLE 16 9.2. 99% BANDWIDTH 17 9.3. 6 dB BANDWIDTH 17 9.4. OUTPUT POWER 19 9.5. AVERAGE POWER 20 9.6. POWER SPECTRAL DENSITY 21 9.7. CONDUCTED SPURIOUS EMISSIONS 22 10. RADIATED TEST RESULTS 24	6.5. WORST-CASE CONFIGURATION AND MODE1	1
8. TEST AND MEASUREMENT EQUIPMENT 15 9. ANTENNA PORT TEST RESULTS 16 9.1. ON TIME AND DUTY CYCLE 16 9.2. 99% BANDWIDTH 17 9.3. 6 dB BANDWIDTH 17 9.4. OUTPUT POWER 19 9.5. AVERAGE POWER 20 9.6. POWER SPECTRAL DENSITY 21 9.7. CONDUCTED SPURIOUS EMISSIONS 22 10. RADIATED TEST RESULTS 24	6.6. DESCRIPTION OF TEST SETUP12	2
9. ANTENNA PORT TEST RESULTS 16 9.1. ON TIME AND DUTY CYCLE 16 9.2. 99% BANDWIDTH 17 9.3. 6 dB BANDWIDTH 17 9.4. OUTPUT POWER 19 9.5. AVERAGE POWER 20 9.6. POWER SPECTRAL DENSITY 21 9.7. CONDUCTED SPURIOUS EMISSIONS 22 10. RADIATED TEST RESULTS 24	7. MEASUREMENT METHOD14	ŧ
9.1. ON TIME AND DUTY CYCLE 16 9.2. 99% BANDWIDTH 17 9.3. 6 dB BANDWIDTH 18 9.4. OUTPUT POWER 19 9.5. AVERAGE POWER 20 9.6. POWER SPECTRAL DENSITY 21 9.7. CONDUCTED SPURIOUS EMISSIONS 22 10. RADIATED TEST RESULTS 24	8. TEST AND MEASUREMENT EQUIPMENT15	5
9.2. 99% BANDWIDTH	9. ANTENNA PORT TEST RESULTS	5
9.3. 6 dB BANDWIDTH 18 9.4. OUTPUT POWER 19 9.5. AVERAGE POWER 20 9.6. POWER SPECTRAL DENSITY 21 9.7. CONDUCTED SPURIOUS EMISSIONS 22 10. RADIATED TEST RESULTS 24	9.1. ON TIME AND DUTY CYCLE	3
9.4. OUTPUT POWER 19 9.5. AVERAGE POWER 20 9.6. POWER SPECTRAL DENSITY 21 9.7. CONDUCTED SPURIOUS EMISSIONS 22 10. RADIATED TEST RESULTS 24	9.2. 99% BANDWIDTH	7
9.5. AVERAGE POWER	9.3. 6 dB BANDWIDTH	3
9.6. POWER SPECTRAL DENSITY	9.4. OUTPUT POWER	9
9.7. CONDUCTED SPURIOUS EMISSIONS	9.5. AVERAGE POWER20)
10. RADIATED TEST RESULTS24	9.6. POWER SPECTRAL DENSITY27	1
	9.7. CONDUCTED SPURIOUS EMISSIONS	2
10.1. LIMITS AND PROCEDURE24	10. RADIATED TEST RESULTS24	ł
	10.1. LIMITS AND PROCEDURE24	4
Page 3 of 44	Page 3 of 44 UL VERIFICATION SERVICES	_

47173 Benicia Street, Fremont, CA 94538; USA

TEL:(510) 319-4000

FAX:(510) 661-0888

REPORT NO: 14777250-E2V2 FCC ID: C9O-LSBB4		DATE: 2023-12-14 IC: 10161A-LSBB4
10.2.	TRANSMITTER ABOVE 1 GHz	
10.3.	WORST CASE BELOW 30MHz	
10.4.	WORST CASE BELOW 1 GHz	
10.5.	WORST CASE 18-26 GHz	
11. SE	IUP PHOTOS	

Page 4 of 44

TEL:(510) 319-4000

FAX:(510) 661-0888

Complies

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:			
EUT DESCRIPTION:	Electronic Shifter Left		
MODEL:	00022		
BRAND: SRAM			
SERIAL NUMBER:	Conducted: 1802595151 Radiated: 1802595149		
SAMPLE RECEIPT DATE:	2023-06-09		
DATE TESTED:	2023-06-16 to 2023-06-28		
	APPLICABLE STANDARDS		
S	TANDARD	TEST RESULTS	
FCC 47 CF	Complies		

ISED RSS-247 Issue 3

ISED RSS-GEN Issue 5 + A1 + A2

Complies UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the U.S. government. UL Verification Services Inc. will constitute fraud and shall nullify the document.

Page 5 of 44

Approved & Released For UL Verification Services Inc. By:

INO

Dan Coronia Operations Leader Consumer Technology Division UL Verification Services Inc.

1st Reviewed By:

Vien Tran Senior Laboratory Engineer Consumer Technology Division UL Verification Services Inc.

Prepared By:

Rolly Alegre Laboratory Engineer Consumer Technology Division UL Verification Services Inc.

2nd Reviewed By:

Kiya Kedida Senior Project Engineer Consumer Technology Division UL Verification Services Inc.

Page 6 of 44

TEL:(510) 319-4000

FAX:(510) 661-0888

2. TEST RESULTS SUMMARY

This report contains data provided by the customer which can impact the validity of results. UL Verification Services Inc. is only responsible for the validity of results after the integration of the data provided by the customer.

Below is a list of the data provided by the customer:

1) Antenna gain and type (see section 6.3)

FCC Clause	ISED Clause	Requirement	Result	Comment
See Comment		Duty Cycle	Reporting purposes only	ANSI C63.10 Section 11.6.
-	RSS-GEN 6.7	99% OBW	Reporting purposes only	ANSI C63.10 Section 6.9.3.
15.247 (a) (2)	RSS-247 5.2 (a)	6dB BW	Compliant	None.
15.247 (b) (3)	RSS-247 5.4 (d)	Output Power	Compliant	None.
See Comment		Average power	Reporting purposes only	Per ANSI C63.10, Section 11.9.2.3.2.
15.247 (e)	RSS-247 5.2 (b)	PSD	Compliant	None.
15.247 (d)	RSS-247 5.5	Conducted Spurious Emissions	Compliant	None.
15.209, 15.205	RSS-GEN 8.9, 8.10	Radiated Emissions	Compliant	None.
15.207	RSS-Gen 8.8	AC Mains Conducted Emissions	NA	A.C. line conducted was not evaluated because the E.U.T. uses the battery

Page 7 of 44

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC 47 CFR Part 2, FCC 47 CFR Part 15, ANSI C63.10-2013, KDB 558074 D01 15.247 Meas Guidance v05r02, KDB 414788 D01 Radiated Test Site v01r01, RSS-GEN Issue 5 + A1 + A2, and RSS-247 Issue 3.

4. FACILITIES AND ACCREDITATION

UL Verification Services Inc. is accredited by A2LA, Certificate Number 0751.05, for all testing performed within the scope of this report. Testing was performed at the locations noted below.

	Address	ISED CABID	ISED Company Number	FCC Registration
\boxtimes	Building 1: 47173 Benicia Street Fremont, CA 94538, U.S.A			
	Building 2: 47266 Benicia Street Fremont, CA 94538, U.S.A	US0104	2324A	550739
\boxtimes	Building 4: 47658 Kato Rd Fremont, CA 94538, U.S.A			

Page 8 of 44

5. DECISION RULES AND MEASUREMENT UNCERTAINTY

5.1. METROLOGICAL TRACEABILITY

All test and measuring equipment utilized to perform the tests documented in this report are calibrated on a regular basis, with a maximum time between calibrations of one year or the manufacturers' recommendation, whichever is less, and where applicable is traceable to recognized national standards.

5.2. DECISION RULES

The Decision Rule is based on Simple Acceptance in accordance with ISO Guide 98-4:2012 Clause 8.2. (Measurement uncertainty is not taken into account when stating conformity with a specified requirement.)

5.3. MEASUREMENT UNCERTAINTY

PARAMETER	U _{Lab}
Radio Frequency (Spectrum Analyzer)	141.16 Hz
Occupied Bandwidth	1.22%
Power Spectral Density	2.47 dB
RF Power Measurement Direct Method Using Power Meter	1.3 dB (PK) / 0.45 dB (AV)
Unwanted Emissions, Conducted	1.94 dB
Worst Case Conducted Disturbance, 9KHz to 0.15 MHz	3.78 dB
Worst Case Conducted Disturbance, 0.15 to 30 MHz	3.40 dB
Worst Case Radiated Disturbance, 9KHz to 30 MHz	2.87 dB
Worst Case Radiated Disturbance, 30 to 1000 MHz	6.01 dB
Worst Case Radiated Disturbance, 1000 to 18000 MHz	4.73 dB
Worst Case Radiated Disturbance, 18000 to 26000 MHz	4.51 dB
Worst Case Radiated Disturbance, 26000 to 40000 MHz	5.29 dB
Time Domain Measurements	3.39%
Temperature	0.57°C
Humidity	3.39%
DC Supply Voltages	0.57%

Uncertainty figures are valid to a confidence level of 95%.

Page 9 of 44

5.4. SAMPLE CALCULATION

RADIATED EMISSIONS

Where relevant, the following sample calculation is provided: Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

Page 10 of 44

6. EQUIPMENT UNDER TEST

6.1. EUT DESCRIPTION

The EUT is an Electronic Shifter Left.

6.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak and average conducted output powers as follows:

Frequency Range (MHz)		Peak		Average	
	Mode	Output Power	Output Power	Output Power	Output Power
		(dBm)	(mW)	(dBm)	(mW)
2405 - 2475	AIREA	8.04	6.37	7.94	6.22

6.3. DESCRIPTION OF AVAILABLE ANTENNAS

The antenna gain and type, as provided by the manufacturer, are as follows:

The radio utilizes a ceramic chip antenna, with a maximum gain of 1.3 dBi.

6.4. SOFTWARE AND FIRMWARE

The EUT firmware installed during testing was version B-1.0.

The test utility software used during testing was nRF Connect version 4.26.0.

6.5. WORST-CASE CONFIGURATION AND MODE

Radiated emissions below 1GHz and above 18GHz were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

Band edge and radiated emissions between 1GHz and 18GHz were performed with the EUT set to transmit at the highest power on low, middle, and high channels.

The fundamental of the EUT was investigated in three orthogonal orientations X,Y, & Z. It was determined that Y orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in Y orientation.

Worst-case data rate as provided by the client was 250kbps.

Page 11 of 44

TEL:(510) 319-4000

FAX:(510) 661-0888

6.6. DESCRIPTION OF TEST SETUP

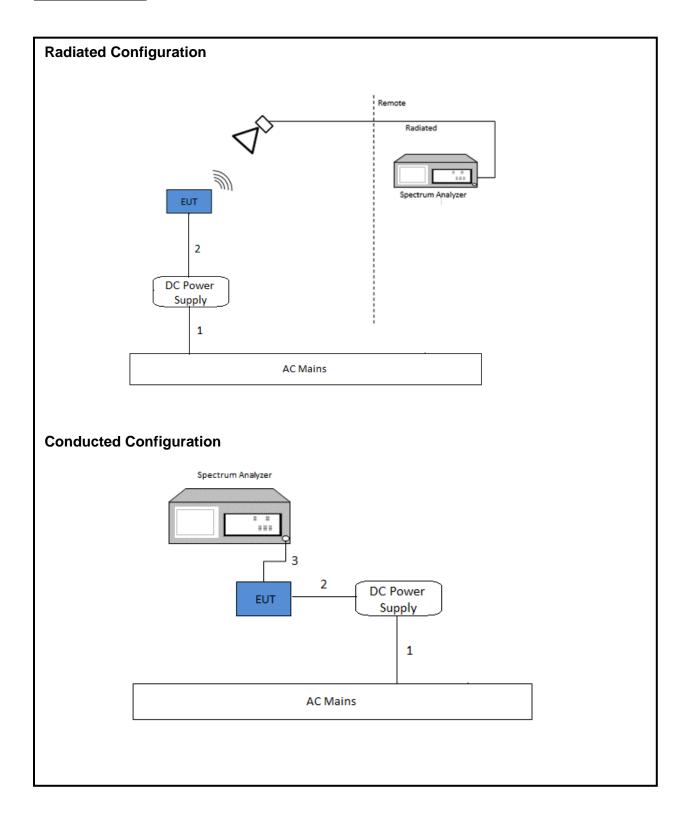
SUPPORT EQUIPMENT

Support Equipment List						
Description	Manufacturer	Model	Serial Number			
Phone	Apple	iPhone 6s	FK1TR0AVGRY1			
Phone	Apple	iPhone 8	F4GVG5FZJC67			
DC Power Supply	Kenwood Corporation	PA36-3A	7060074			
DC Power Supply	TDK.Lambda	ZUP36-6U	PRE0074768			

I/O CABLES (CONDUCTED EMISSIONS)

	I/O CABLE LIST								
Cable No.	Port Identical		Connector Type	Cable Type	Cable Length (m)	Remarks			
1	AC	1	AC	Unshielded	1.5	AC Main to DC Supply, to Analyzer			
2	DC	1	DC	Unshielded	0.5	Power Supply to EUT			
3	Antenna Port	1	SMA	Unshielded	0.1	EUT to Analyzer			

I/O CABLES (RADIATED EMISSIONS)


	I/O CABLE LIST							
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length (m)	Remarks		
1	AC	1	AC	Unshielded	1.5	AC Main to DC Supply		
2	DC	1	DC	Unshielded	0.5	Power Supply to EUT		

TEST SETUP

For the purposes of testing, the EUT is connected to a 3.0V DC Power supply for radiated emissions above 1GHz. The EUT is normally powered by a Li-Ion battery at 3.0V. The phone is used for setting up purposes and was removed during testing.

Page 12 of 44

SETUP DIAGRAM

Page 13 of 44

UL VERIFICATION SERVICES 47173 Benicia Street, Fremont, CA 94538; USA

TEL:(510) 319-4000

FAX:(510) 661-0888

7. MEASUREMENT METHOD

On Time and Duty Cycle: ANSI C63.10 Section 11.6.

6 dB BW: ANSI C63.10 Subclause -11.8.1 RBW ≥ DTS BW

Occupied BW (99%): ANSI C63.10-2013 Section 6.9.3

Output Power: ANSI C63.10 Subclause -11.9.1.3 Method PKPM1 Peak-reading power meter

Output Power: ANSI C63.10 Subclause -11.9.2.3.2 Method AVGPM-G (Measurement using a gated RF average-reading power meter)

PSD: ANSI C63.10 Subclause -11.10.2 Method PKPSD (peak PSD)

Radiated emissions non-restricted frequency bands: ANSI C63.10 Subclause -11.11

Radiated emissions restricted frequency bands: ANSI C63.10 Subclause -11.12.1

Conducted emissions in restricted frequency bands: ANSI C63.10 Subclause -11.12.2

Band-edge: ANSI C63.10 Section 6.10

Radiated Spurious Emissions Below 30MHz: ANSI C63.10-2013 Section 6.4

* A.C line conducted was not evaluated because the EUT is powered by a Li-Ion 3.0VDC battery.

Page 14 of 44

TEL:(510) 319-4000

8. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST								
Description	Manufacturer	Model	ID Num	Cal Due	Last Cal			
Antenna, Broadband Hybrid, 30MHz to 1GHz	Sunol Sciences Corp.	JB3	174374	2024-04-30	2023-04-05			
Link File, @3m, 30-1000MHz Hybrid Path Loss	UL-FR1	Port 0 Factors	211121	2023-08-20	2022-08-20			
Link File, @3m, 9KHz-30MHz Passive Loop Path Loss	UL-FR1	NA	211120	2023-08-21	2022-08-21			
Antenna, Horn 1-18GHz	ETS-Lindgren	3117	206806	2023-10-07	2022-10-07			
RF Filter Box, 1-18GHz	UL-FR1	n/a	171013	2023-06-24	2022-06-24			
EMI TEST RECEIVER, with B8 option	Rohde & Schwarz	ESW44	191429	2024-02-29	2023-02-15			
EMI TEST RECEIVER	Rohde & Schwarz	ESW44	225688 (chamber k)	2024-02-29	2023-02-14			
Antenna, Horn 18 to 26.5GHz	ARA	MWH-1826/B	199659	2023-12-06	2022-12-06			
Amplifier 18-26.5GHz, +5Vdc, -54dBm P1dB	AMPLICAL	AMP18G26.5- 60	234683	2024-03-29	2023-03-18			
Antenna, Passive Loop 100KHz - 30MHz	ELECTRO METRICS	EM-6872	170016	2023-07-19	2022-07-19			
Spectrum Analyzer, PXA, 3Hz to 44GHz	Agilent Technologies	N9030A	85201	2024-02-29	2023-02-02			
Power Meter, P-series single channel	Keysight Technologies Inc	N1911A	90719	2024-01-31	2023-01-25			
Power Sensor, P - series, 50MHz to 18GHz, Wideband	Keysight Technologies Inc	N1921A	81319	2024-01-31	2023-01-25			
10dB Fixed Attenuator	Pasternack Enterprises	PE7087-10	N/A	Verified	Verified			
	UL TEST SOFTWARE LIST							
Radiated Software	UL	UL EMC	Ver 2023-01-	18, 2023-03-03,	2023-05-01			
Antenna Port Software	UL	UL RF		Ver 2022.5.31				

NOTES:

- 1. Equipment listed above that calibrated during the testing period was set for test after the calibration.
- 2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

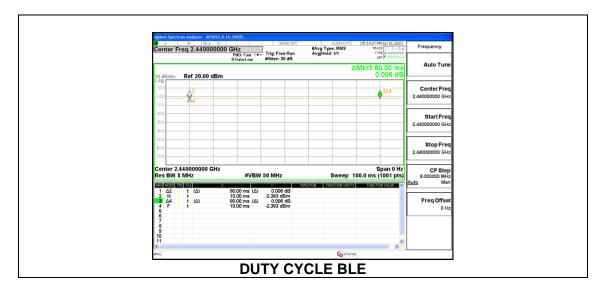
Page 15 of 44

9. ANTENNA PORT TEST RESULTS

9.1. ON TIME AND DUTY CYCLE

LIMITS

None; for reporting purposes only.


PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method.

ON TIME AND DUTY CYCLE RESULTS

Mode	ON Time B (msec)	Period (msec)	Duty Cycle x (linear)	Cycle Correction Facto		1/B Minimum VBW (kHz)
2.4GHz Band						
AIREA	80.000	80.000	1.000	100.00	0.00	0.010

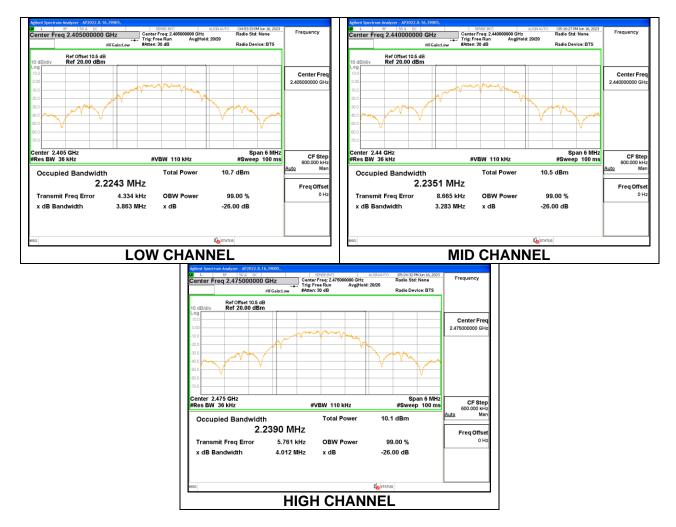
DUTY CYCLE PLOTS

Page 16 of 44

UL VERIFICATION SERVICES 47173 Benicia Street, Fremont, CA 94538; USA

TEL:(510) 319-4000

FAX:(510) 661-0888


9.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

RESULTS

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2405	2.2243
Middle	2440	2.2351
High	2475	2.2390

Page 17 of 44

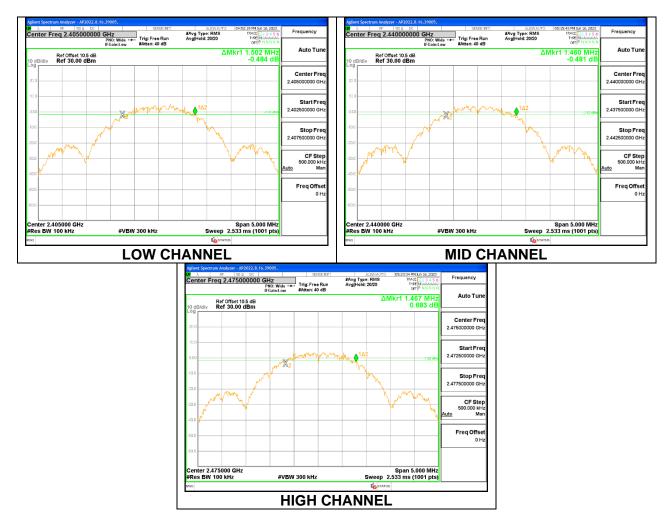
UL VERIFICATION SERVICES 47173 Benicia Street, Fremont, CA 94538; USA

TEL:(510) 319-4000

FAX:(510) 661-0888

9.3. 6 dB BANDWIDTH

LIMITS


FCC §15.247 (a) (2)

RSS-247 5.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

RESULTS

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2405	1.502	0.5
Middle	2440	1.460	0.5
High	2475	1.467	0.5

Page 18 of 44

UL VERIFICATION SERVICES 47173 Benicia Street, Fremont, CA 94538; USA

TEL:(510) 319-4000

FAX:(510) 661-0888

9.4. OUTPUT POWER

LIMITS

FCC §15.247 (b) (3)

RSS-247 5.4 (d)

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The power output was measured on the EUT antenna port using SMA cable with 10dB attenuator connected to a power meter via wideband power sensor. Peak output power was read directly from power meter.

RESULTS

Tested By:	RA 39005
Date:	2023-06-16

Channel	Frequency (MHz)	Peak Power Reading (dBm)	Limit (dBm)	Margin (dB)
Low	2405	8.04	30	-21.960
Middle	2440	7.86	30	-22.140
High	2475	7.63	30	-22.370

Page 19 of 44

9.5. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The power output was measured on the EUT antenna port using SMA cable with 10dB attenuator connected to a power meter via wideband power sensor. Average output power was read directly from power meter.

RESULTS

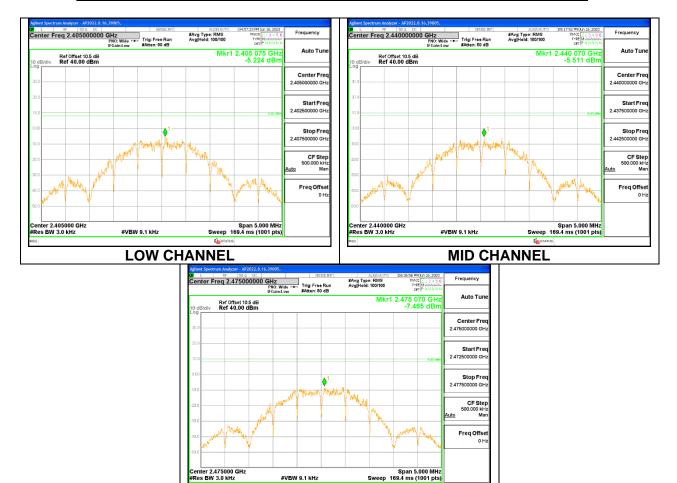
Tested By:	RA 39005
Date:	2023-06-16

Channel	Frequency	AV power
	(MHz)	(dBm)
Low	2405	7.94
Middle	2440	7.77
High	2475	7.55

Page 20 of 44

9.6. POWER SPECTRAL DENSITY

LIMITS


FCC §15.247 (e)

RSS-247 (5.2) (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

RESULTS

Channel	Frequency	PSD	Limit	Margin
	(MHz)	(dBm/3kHz)	(dBm/3kHz)	(dB)
Low	2405	-5.224	8	-13.22
Middle	2440	-5.511	8	-13.51
High	2475	-7.465	8	-15.47

Page 21 of 44

HIGH CHANNEL

UL VERIFICATION SERVICES 47173 Benicia Street, Fremont, CA 94538; USA

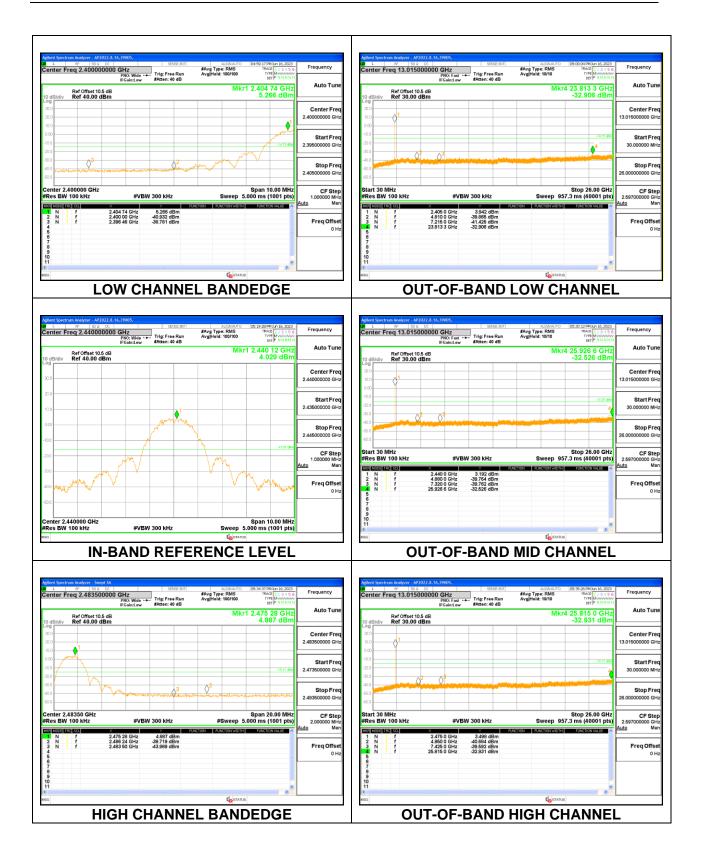
TEL:(510) 319-4000

FAX:(510) 661-0888

9.7. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)


RSS-247 5.5

Output power was measured based on the use of a peak measurement; therefore, the required attenuation is 20 dB.

RESULTS

Page 22 of 44

TEL:(510) 319-4000

Page 23 of 44

UL VERIFICATION SERVICES 47173 Benicia Street, Fremont, CA 94538; USA

TEL:(510) 319-4000

FAX:(510) 661-0888

10. RADIATED TEST RESULTS

10.1. LIMITS AND PROCEDURE

<u>LIMITS</u>

FCC §15.205 and §15.209

RSS-GEN, Section 8.9 and 8.10.

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
0.009-0.490	2400/F(kHz) @ 300 m	-
0.490-1.705	24000/F(kHz) @ 30 m	-
1.705 - 30	30 @ 30m	-
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane for measurement below 1GHz; 1.5 m above the ground plane for measurement above 1GHz. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.10. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements in the 30-1000MHz range, 9kHz for peak and/or quasi-peak detection measurements in the 0.15-30MHz range and 200Hz for peak and/or quasi-peak detection measurements in the 9 to 150kHz range. Peak detection is used unless otherwise noted as quasi-peak or average (9-90kHz and 110-490kHz).

For pre-scans above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 30 KHz for peak measurements.

For final measurements above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 3 MHz for peak measurements and as applicable for average measurements.

The spectrum from 1 GHz to 18 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band. Below 1GHz and above 18GHz emissions, the channel with the highest output power was tested.

Page 24 of 44

TEL:(510) 319-4000

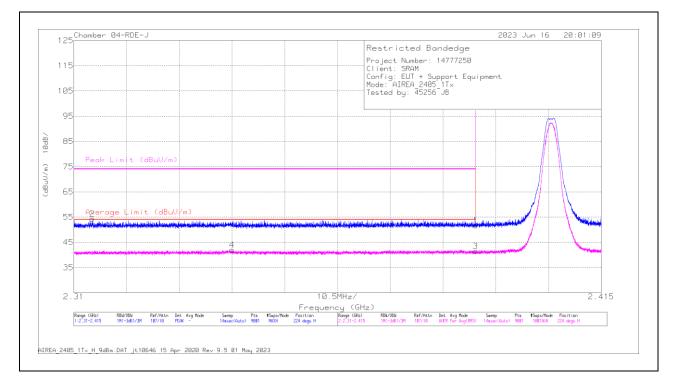
FAX:(510) 661-0888

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

For below 30MHz testing, investigation was done on three antenna orientations (parallel, perpendicular, and ground-parallel), parallel and perpendicular are the worst orientations, therefore testing was performed on these two orientations only.

Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field.

KDB 414788 Open Field Site (OFS) and Chamber Correlation Justification


OFS and chamber correlation testing had been performed and chamber measured test result is the worst-case test result.

NOTE: The limits in CFR 47, Part 15, Subpart C, paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table), using the free space impedance of 377 Ohms. For example, the measurement at frequency X kHz resulted in a level of Y dBuV/m, which is equivalent to Y - 51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-Gen Table 6 limit as it has to 15.209(a) limit.

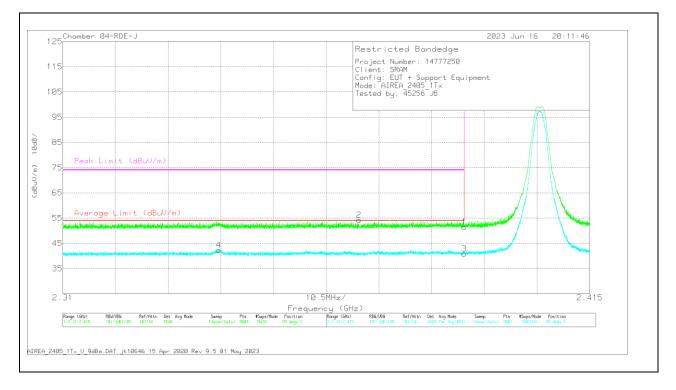
Page 25 of 44

10.2. TRANSMITTER ABOVE 1 GHz

BANDEDGE (LOW CHANNEL)

HORIZONTAL RESULT

Trace Markers


Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	206806 ACF (dB/m)	AMP/CBL	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.39	38.48	Pk	32	-18.8	51.68	-	-	74	-22.32	224	221	н
2	* 2.313698	41.39	Pk	31.9	-19	54.29	-	-	74	-19.71	224	221	Н
3	* 2.39	28.29	RMS	32	-18.8	41.49	54	-12.51	-	-	224	221	Н
4	* 2.341478	28.87	RMS	32	-18.9	41.97	54	-12.03	-	-	224	221	Н

 * - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector

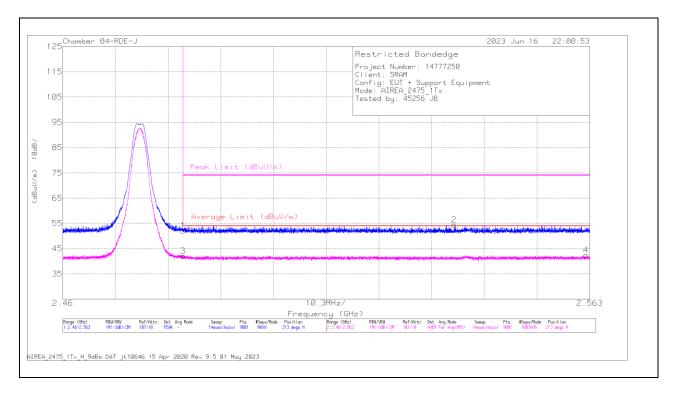
RMS - RMS detection

Page 26 of 44

VERTICAL RESULT

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	206806 ACF (dB/m)	AMP/CBL	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.39	38.25	Pk	32	-18.8	51.45	-	-	74	-22.55	89	134	V
2	* 2.369012	41.12	Pk	32	-18.9	54.22	-	-	74	-19.78	89	134	V
3	* 2.39	27.68	RMS	32	-18.8	40.88	54	-13.12	-	-	89	134	V
4	* 2.341058	29.3	RMS	32	-18.9	42.4	54	-11.6	-	-	89	134	V


* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

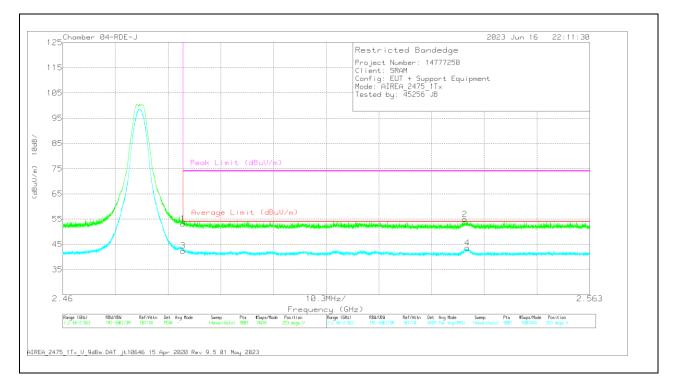
RMS - RMS detection

Page 27 of 44

BANDEDGE (HIGH CHANNEL)

HORIZONTAL RESULT

Trace Markers


Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	206806 ACF (dB/m)	AMP/CBL	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.4835	38.63	Pk	32	-18.6	52.03	-	-	74	-21.97	213	120	н
2	2.536515	40.92	Pk	32	-18.5	54.42	-	-	74	-19.58	213	120	н
3	* 2.4835	28.67	RMS	32	-18.6	42.07	54	-11.93	-	-	213	120	Н
4	2.562264	28.95	RMS	31.9	-18.4	42.45	54	-11.55	-	-	213	120	н

 * - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector

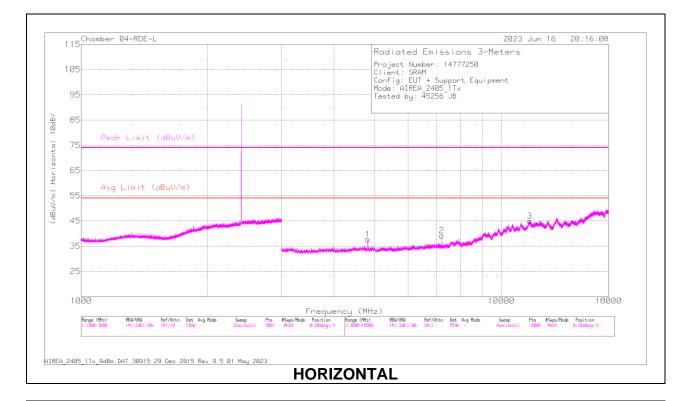
RMS - RMS detection

Page 28 of 44

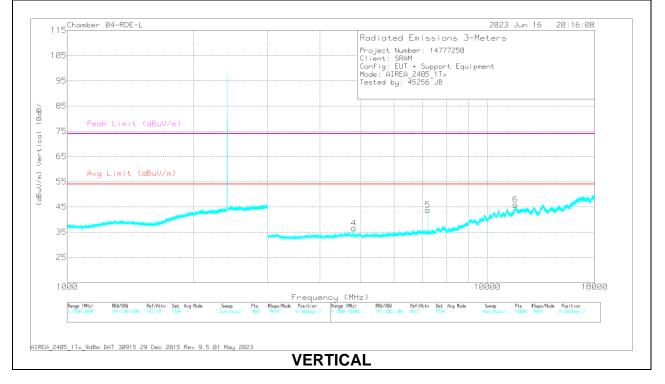
VERTICAL RESULT

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	206806 ACF (dB/m)	AMP/CBL	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.4835	39.76	Pk	32	-18.6	53.16	-	-	74	-20.84	253	142	V
2	2.538586	41.39	Pk	32	-18.5	54.89	-	-	74	-19.11	253	142	V
3	* 2.4835	29.01	RMS	32	-18.6	42.41	54	-11.59	-	-	253	142	V
4	2.539078	30.04	RMS	32	-18.5	43.54	54	-10.46	-	-	253	142	V


* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector


RMS - RMS detection

Page 29 of 44

HARMONICS AND SPURIOUS EMISSIONS

LOW CHANNEL RESULTS

Page 30 of 44

UL VERIFICATION SERVICES 47173 Benicia Street, Fremont, CA 94538; USA

TEL:(510) 319-4000

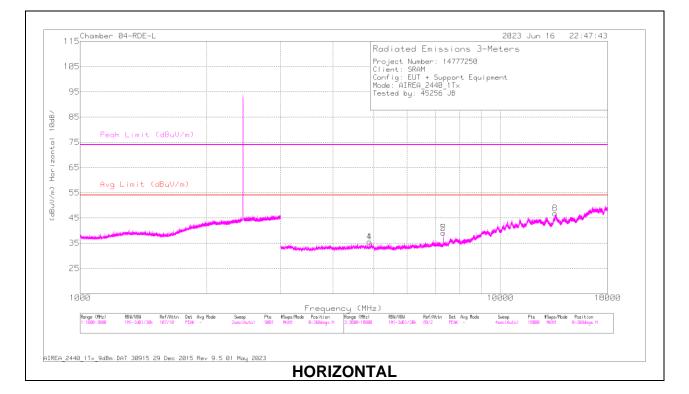
FAX:(510) 661-0888

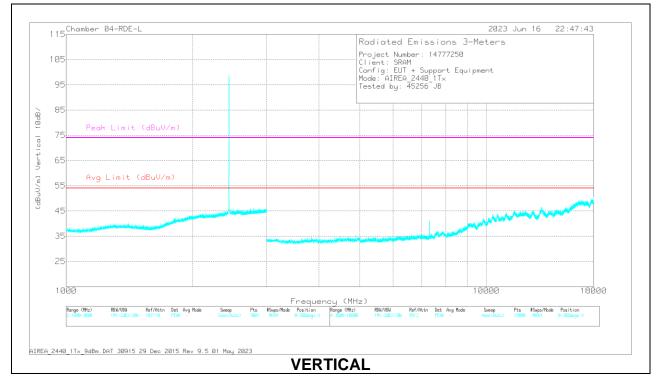
RADIATED EMISSIONS

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	206806 ACF (dB/m)	AMP/CBL	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 4809.273	38.34	PK2	33.9	-25.2	47.04	-	-	74	-26.96	42	116	Н
	* 4810.978	29.19	MAv1	33.9	-25.2	37.89	54	-16.11	-	-	42	116	Н
2	7216.474	37.15	PK2	35.6	-21.7	51.05	-	-	74	-22.95	43	250	Н
	7216.301	30.21	MAv1	35.6	-21.7	44.11	54	-9.89	-	-	43	250	Н
3	* 11687.741	32.65	PK2	38.3	-15.7	55.25	-	-	74	-18.75	239	130	Н
	* 11686.371	20.58	MAv1	38.3	-15.6	43.28	54	-10.72	-	-	239	130	Н
4	* 4809.14	27.89	MAv1	33.9	-25.2	36.59	54	-17.41	-	-	255	102	V
	* 4810.826	37.72	PK2	33.9	-25.2	46.42	-	-	74	-27.58	255	102	V
5	7216.387	30.01	MAv1	35.6	-21.7	43.91	54	-10.09	-	-	268	103	V
	7216.352	37.04	PK2	35.6	-21.7	50.94	-	-	74	-23.06	268	103	V
6	* 11666.308	20.55	MAv1	38.3	-15.7	43.15	54	-10.85	-	-	240	129	V
	* 11663.052	32.59	PK2	38.3	-15.8	55.09	-	-	74	-18.91	240	129	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

PK2 - KDB558074 Method: Maximum Peak


MAv1 - KDB558074 Option 1 Maximum RMS Average


Page 31 of 44

TEL:(510) 319-4000

FAX:(510) 661-0888

MID CHANNEL RESULTS

Page 32 of 44

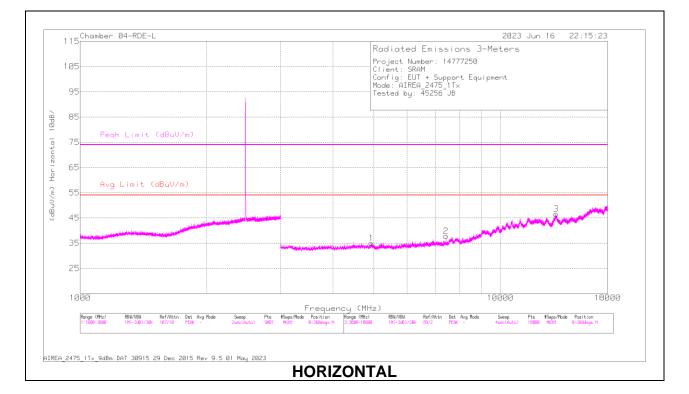
UL VERIFICATION SERVICES 47173 Benicia Street, Fremont, CA 94538; USA

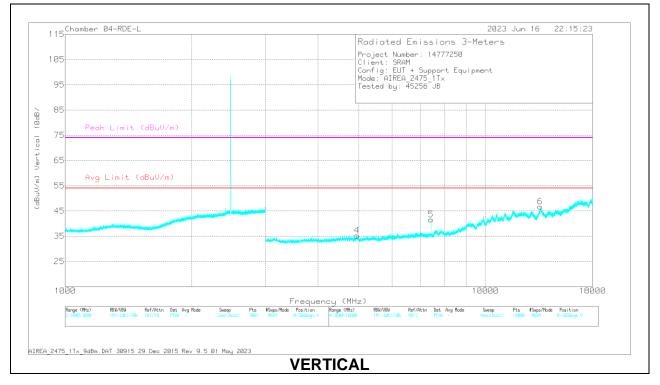
TEL:(510) 319-4000

FAX:(510) 661-0888

RADIATED EMISSIONS

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	206806 ACF (dB/m)	AMP/CBL	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 4879.005	38.8	PK2	33.9	-25	47.7	-	-	74	-26.3	42	391	Н
	* 4879.192	28.85	MAv1	33.9	-25	37.75	54	-16.25	-	-	42	391	Н
2	* 7318.51	32.31	PK2	35.6	-21.3	46.61	-	-	74	-27.39	45	132	Н
	* 7318.541	22.47	MAv1	35.6	-21.3	36.77	54	-17.23	-	-	45	132	Н
3	13500.462	33.83	PK2	38.6	-16	56.43	-	-	74	-17.57	39	147	Н
	13497.644	21.92	MAv1	38.6	-16.1	44.42	54	-9.58	-	-	39	147	Н
4	* 4880.77	36.2	PK2	33.9	-25	45.1	-	-	74	-28.9	44	119	Н
	* 4879.11	25.96	MAv1	33.9	-25	34.86	54	-19.14	-	-	44	119	Н
5	* 7318.394	36.85	PK2	35.6	-21.4	51.05	-	-	74	-22.95	41	332	Н
	* 7318.622	28.83	MAv1	35.6	-21.3	43.13	54	-10.87	-	-	41	332	Н
6	13496.826	33.76	PK2	38.6	-16.1	56.26	-	-	74	-17.74	5	262	Н
	13497.083	21.6	MAv1	38.6	-16.1	44.1	54	-9.9	-	-	5	262	Н


* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band


PK2 - KDB558074 Method: Maximum Peak

MAv1 - KDB558074 Option 1 Maximum RMS Average

Page 33 of 44

HIGH CHANNEL RESULTS

Page 34 of 44

UL VERIFICATION SERVICES 47173 Benicia Street, Fremont, CA 94538; USA

TEL:(510) 319-4000

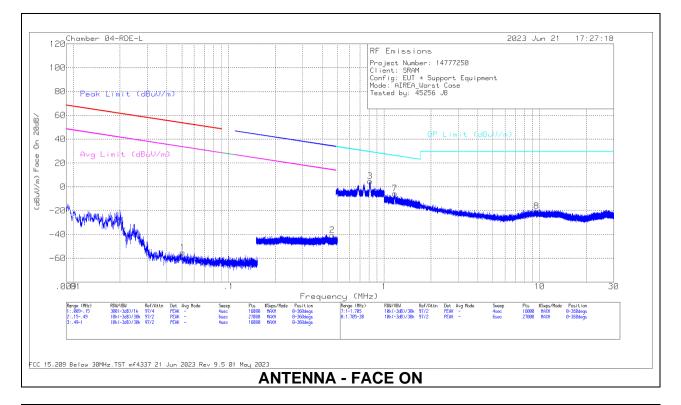
RADIATED EMISSIONS

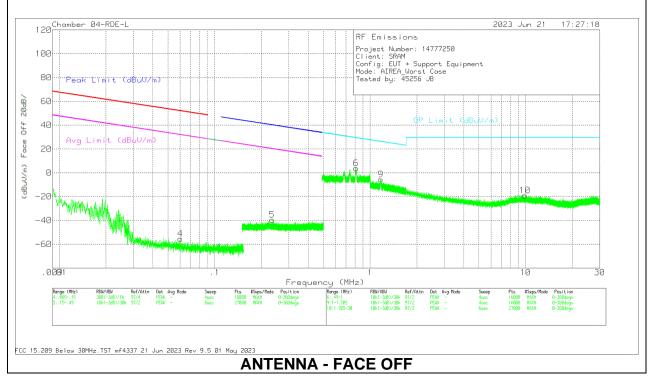
Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	206806 ACF (dB/m)	AMP/CBL	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 4932.275	35.16	PK2	33.9	-24	45.06	-	-	74	-28.94	265	192	Н
	* 4932.48	23.63	MAv1	33.9	-24	33.53	54	-20.47	-	-	265	192	Н
2	* 7423.647	32.49	PK2	35.6	-21.1	46.99	-	-	74	-27.01	199	106	Н
	* 7423.462	22.81	MAv1	35.6	-21.1	37.31	54	-16.69	-	-	199	106	Н
3	13565.621	32.68	PK2	38.5	-15.7	55.48	-	-	74	-18.52	105	271	Н
	13566.871	21.16	MAv1	38.5	-15.7	43.96	54	-10.04	-	-	105	271	Н
4	* 4940.457	34.34	PK2	33.9	-23.8	44.44	-	-	74	-29.56	288	133	V
	* 4941.737	22.51	MAv1	33.9	-23.8	32.61	54	-21.39	-	-	288	133	V
5	* 7423.591	26.03	MAv1	35.6	-21.1	40.53	54	-13.47	-	-	224	160	V
	* 7423.639	34.49	PK2	35.6	-21.1	48.99	-	-	74	-25.01	224	160	V
6	13498.223	22.11	MAv1	38.6	-16.1	44.61	54	-9.39	-	-	128	136	V
	13500.754	33.53	PK2	38.6	-16	56.13	-	-	74	-17.87	128	136	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

PK2 - KDB558074 Method: Maximum Peak

MAv1 - KDB558074 Option 1 Maximum RMS Average


Page 35 of 44


TEL:(510) 319-4000

FAX:(510) 661-0888

10.3. WORST CASE BELOW 30MHz

SPURIOUS EMISSIONS BELOW 30 MHz (WORST-CASE CONFIGURATION)

Page 36 of 44

UL VERIFICATION SERVICES 47173 Benicia Street, Fremont, CA 94538; USA

TEL:(510) 319-4000

FAX:(510) 661-0888

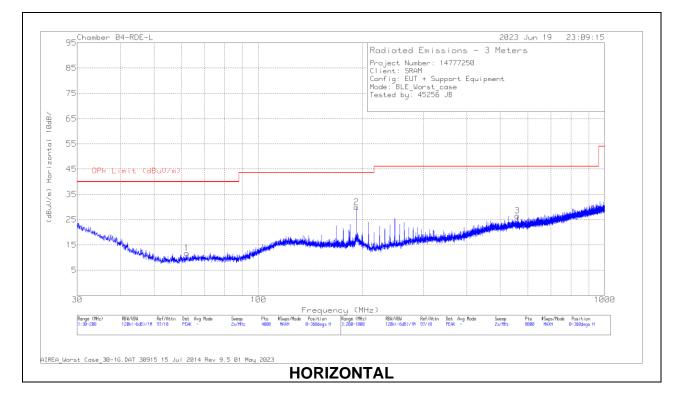
Below 30MHz Data

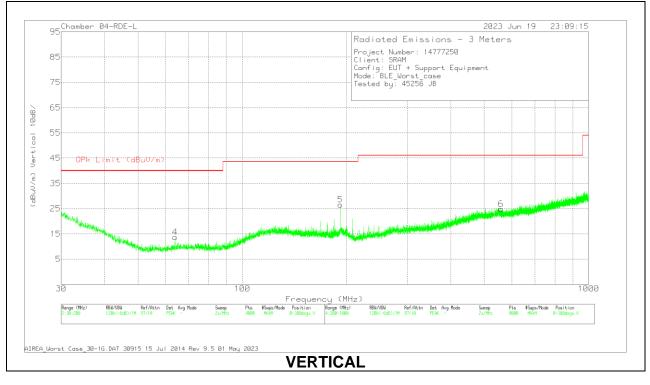
Marker	Frequency	Meter	Det	Loop	Amp/C	bl Dist	Corrected	Peak	Margin	Avg	Marg	in Azim	uth Pola
	(MHz)	Reading (dBuV)	Det	Antenna E ACF	(dB)	Corr 300m	Reading (dBuV/m)	Limit (dBuV/m)	(dB)	Limit (dBuV	(dB		
1	.0506	22	Pk	(dB/m) 57	-31.9	-80	-55.12	53.5	-108.62	m) 33.5	-88.6	62 0-3	0 0 0
I	0000.	22	PK	57	-31.9	-80	-33.12	53.5	-108.62	33.5	-88.6	52 0-3	60 0-c
	Face On .15												
Marker	Frequency	Meter	Det	Loop	Amp/C		Corrected	Peak	Margin	Avg	Marg		
	(MHz)	Reading (dBuV)		Antenna E ACF	(dB)	Corr 300m	Reading (dBuV/m)	Limit (dBuV/m)	(dB)	Limit (dBuV/m	(dB	5) (De	gs) (de
		(ubuv)		(dB/m)		300111	(abu v/m)	(abav/iii)		(abav/iii	,		
2	.4644	15.07	Pk	56.2	-31.9	-80	-40.63	34.27	-74.9	14.27	-54.	9 0-3	60 0-d
Range 3:	Face On .49 -	1MHz											
Marker	Frequency	Meter	Det	Loop Anten	na E	Amp/Cbl	Dist Corr	Corrected	d QPI	imit	Margin	Azimuth	Polarit
	(MHz)	Reading (dBuV)		ACF (dB/i		(dB)	30m (dB) 40Log	Reading (dBuV/m		ıV/m)	(dB)	(Degs)	(degs)
3	.8112	20.32	Pk	56.4		-31.9	-40	4.82	29	.43	-24.61	0-360	0-deg
Rance 4.	Face Off .009	.15MHz											
Marker	Frequency	Meter	Det	Loop	Amp/C	bl Dist	Corrected	Peak	Margin	Avg	Marg	jin Azim	uth Pola
	(MHz)	Reading		Antenna	(dB)	Corr	Reading	Limit	(dB)	Limit			
		(dBuV)		E ACF		300m	(dBuV/m)	(dBuV/m)		(dBuV	/		
4	.0601	.19	Pk	(dB/m) 56.2	-31.9	-80	-55.51	52.01	-107.52	m) 32.01	-87.5	52 0-3	60 90-0
	Face Off .15 -								1				
Marker	Frequency (MHz)	Meter Reading	Det	Loop Antenna	Amp/C (dB)	bl Dist Corr	Corrected Reading	Peak Limit	Margin (dB)	Avg Limit	Marg (dB		
	(11112)	(dBuV)		EACF	(05)	300m	(dBuV/m)	(dBuV/m)	(05)	(dBuV/m			33) (ue
				(dB/m)			· ·	, ,					
5	.2338	16.14	Pk	56.2	-32	-80	-39.66	40.24	-79.9	20.24	-59.	9 0-3	60 90-c
Range 6:	Face Off .49 -	1MHz						1	•				
Range 6: Marker	Frequency	Meter	Det	Loop Anten		Amp/Cbl	Dist Corr	Corrected		_imit	Margin	Azimuth	Polarit
		Meter Reading	Det	Loop Anten ACF (dB/		Amp/Cbl (dB)	30m (dB)	Reading	(dBu	∟imit IV/m)	Margin (dB)	Azimuth (Degs)	Polarit (degs
	Frequency (MHz)	Meter Reading (dBuV)	Det Pk	ACF (dB/i		(dB)	30m (dB) 40Log	Reading (dBuV/m	(dBu)	ıV/m)	(dB)	(Degs)	(degs)
Marker 6	Frequency (MHz) .8132	Meter Reading (dBuV) 19.52					30m (dB)	Reading	(dBu)				
Marker 6 Range 7:	Frequency (MHz) .8132 Face On 1 - 1.	Meter Reading (dBuV) 19.52 705MHz	Pk	ACF (dB/i	m)	(dB) -31.9	30m (dB) 40Log -40	Reading (dBuV/m 4.02	(dBu) 29	.41	(dB) -25.39	(Degs) 0-360	(degs) 90-deg
Marker 6	Frequency (MHz) .8132 Face On 1 - 1. Frequency	Meter Reading (dBuV) 19.52 705MHz Meter		ACF (dB/i	m) na E	(dB) -31.9 Amp/Cbl	30m (dB) 40Log -40 Dist Corr	Reading (dBuV/m 4.02	(dBu) 29 d QPI	.41 _imit	(dB) -25.39 Margin	(Degs) 0-360 Azimuth	(degs) 90-deg Polarit
Marker 6 Range 7:	Frequency (MHz) .8132 Face On 1 - 1.	Meter Reading (dBuV) 19.52 705MHz	Pk	ACF (dB/i	m) na E	(dB) -31.9	30m (dB) 40Log -40	Reading (dBuV/m 4.02	(dBu 29 d QP I (dBu	.41	(dB) -25.39	(Degs) 0-360	(degs) 90-deg
Marker 6 Range 7:	Frequency (MHz) .8132 Face On 1 - 1. Frequency	Meter Reading (dBuV) 19.52 705MHz Meter Reading	Pk	ACF (dB/i	m) na E	(dB) -31.9 Amp/Cbl	30m (dB) 40Log -40 Dist Corr 30m (dB)	Reading (dBuV/m 4.02 Corrected Reading	(dBu) 29 d QP I (dBu	.41 _imit	(dB) -25.39 Margin	(Degs) 0-360 Azimuth	(degs) 90-deg Polarit
Marker 6 Range 7: Marker 7	Frequency (MHz) .8132 Face On 1 - 1. Frequency (MHz) 1.1702	Meter Reading (dBuV) 19.52 705MHz Meter Reading (dBuV) 20.27	Pk Det	ACF (dB/r 56.4 Loop Anten ACF (dB/r	m) na E	(dB) -31.9 Amp/Cbl (dB)	30m (dB) 40Log -40 Dist Corr 30m (dB) 40Log	Reading (dBuV/m 4.02 Corrected Reading (dBuV/m	(dBu) 29 d QP I (dBu	.41 Limit	(dB) -25.39 Margin (dB)	(Degs) 0-360 Azimuth (Degs)	(degs) 90-deg Polarit (degs)
Marker 6 Range 7: Marker 7	Frequency (MHz) .8132 Face On 1 - 1. Frequency (MHz)	Meter Reading (dBuV) 19.52 705MHz Meter Reading (dBuV) 20.27	Pk Det	ACF (dB/r 56.4 Loop Anten ACF (dB/r	m) na E m)	(dB) -31.9 Amp/Cbl (dB)	30m (dB) 40Log -40 Dist Corr 30m (dB) 40Log	Reading (dBuV/m 4.02 Corrected Reading (dBuV/m	(dBu 29 d QP I (dBu) 26	.41 Limit	(dB) -25.39 Margin (dB)	(Degs) 0-360 Azimuth (Degs)	(degs) 90-deg Polarit (degs)
Marker 6 Range 7: Marker 7 Range 8:	Frequency (MHz) .8132 Face On 1 - 1. Frequency (MHz) 1.1702 Face On 1.705	Meter Reading (dBuV) 19.52 705MHz Meter Reading (dBuV) 20.27 - 30MHz Meter Reading	Pk Det Pk	ACF (dB/r 56.4 Loop Anten ACF (dB/r 45.9	m)	(dB) -31.9 Amp/Cbl (dB) -31.8	30m (dB) 40Log -40 Dist Corr 30m (dB) 40Log -40 Dist Corr 30m (dB)	Reading (dBuV/m 4.02 Corrected Reading (dBuV/m -5.63	(dBu 29 d QPI (dBu) 26 d QPI (dBu (dBu	.41 Limit V/m) .26	(dB) -25.39 Margin (dB) -31.89	(Degs) 0-360 Azimuth (Degs) 0-360	(degs) 90-deg Polarit (degs) 0-deg
Marker 6 Range 7: Marker 7 Range 8: Marker	Frequency (MHz) .8132 Face On 1 - 1. Frequency (MHz) 1.1702 Face On 1.705 Frequency (MHz)	Meter Reading (dBuV) 19.52 705MHz Meter Reading (dBuV) 20.27 - 30MHz Meter Reading (dBuV)	Pk Det Pk Det	ACF (dB/r 56.4 Loop Anten ACF (dB/r 45.9 Loop Anten ACF (dB/r	m)	(dB) -31.9 Amp/Cbl (dB) -31.8 Amp/Cbl (dB)	30m (dB) 40Log -40 Dist Corr 30m (dB) 40Log Dist Corr 30m (dB) 40Log	Reading (dBuV/m 4.02 Corrected Reading (dBuV/m -5.63	(dBu) 29 d QP I (dBu) 26 d QP I (dBu	.41	(dB) -25.39 Margin (dB) -31.89 Margin (dB)	(Degs) 0-360 Azimuth (Degs) 0-360 Azimuth (Degs)	(degs 90-deg Polarit (degs 0-deg Polarit (degs
Marker 6 Range 7: Marker 7 Range 8:	Frequency (MHz) .8132 Face On 1 - 1. Frequency (MHz) 1.1702 Face On 1.705 Frequency	Meter Reading (dBuV) 19.52 705MHz Meter Reading (dBuV) 20.27 - 30MHz Meter Reading	Pk Det Pk	ACF (dB/r 56.4 Loop Anten ACF (dB/r 45.9 Loop Anten	m)	(dB) -31.9 Amp/Cbl (dB) -31.8 Amp/Cbl	30m (dB) 40Log -40 Dist Corr 30m (dB) 40Log -40 Dist Corr 30m (dB)	Reading (dBuV/m 4.02 Corrected Reading (dBuV/m -5.63	(dBu) 29 d QP I (dBu) 26 d QP I (dBu	.41 .imit .V/m) .26 .imit	(dB) -25.39 Margin (dB) -31.89 Margin	(Degs) 0-360 Azimuth (Degs) 0-360 Azimuth	(degs) 90-deg Polarit (degs) 0-deg
Marker 6 Range 7: Marker 7 Range 8: Marker 8 Range 9:	Frequency (MHz) .8132 Face On 1 - 1. Frequency (MHz) 1.1702 Face On 1.705 Frequency (MHz) 9.5629 Face Off 1 - 1.	Meter Reading (dBuV) 19.52 705MHz Meter Reading (dBuV) 20.27 - 30MHz Meter Reading (dBuV) 16.22 705MHz	Pk Det Pk Pk Pk	ACF (dB/s 56.4 Loop Anten ACF (dB/s 45.9 Loop Anten ACF (dB/s 34.8	m)	(dB) -31.9 Amp/Cbl (dB) -31.8 Amp/Cbl (dB) -31.5	30m (dB) 40Log -40 Dist Corr 30m (dB) 40Log -40 Dist Corr 30m (dB) 40Log -40	Reading (dBuV/m 4.02 Corrected Reading (dBuV/m -5.63 Corrected Reading (dBuV/m -20.48	(dBu) 29 4 QP I (dBu) 26 4 QP I (dBu) 26 26	V/m) .41 .imit V/m) .26 .imit V/m) .0.5 .	(dĒ) -25.39 Margin (dB) -31.89 Margin (dB) -49.98	(Degs) 0-360 Azimuth (Degs) 0-360 Azimuth (Degs) 0-360	(degs) 90-deg Polarit (degs) 0-deg Polarit (degs) 0-deg 0-deg
Marker 6 Range 7: Marker 7 Range 8: Marker 8	Frequency (MHz) .8132 Face On 1 - 1. Frequency (MHz) 1.1702 Face On 1.705 Frequency (MHz) 9.5629 Face Off 1 - 1. Frequency	Meter Reading (dBuV) 19.52 705MHz Meter Reading (dBuV) 20.27 - 30MHz Meter Reading (dBuV) 16.22 705MHz Meter	Pk Det Pk Det	ACF (dB/i 56.4 Loop Anten ACF (dB/i 45.9 Loop Anten ACF (dB/i 34.8 Loop Anten	m)	(dB) -31.9 Amp/Cbl (dB) -31.8 Amp/Cbl (dB) -31.5 Amp/Cbl	30m (dB) 40Log -40 Dist Corr 30m (dB) 40Log -40 Dist Corr 30m (dB) 40Log -40 -40	Reading (dBuV/m 4.02 Corrected Reading (dBuV/m -5.63 Corrected Reading (dBuV/m -20.48	(dBu 29 d QP I (dBu) d QP I (dBu) 26 26 26 26 26 26 26 26 26 26 26 26 26	.41	(dĒ) -25.39 Margin (dB) -31.89 Margin (dB) -49.98 Margin	(Degs) 0-360 Azimuth (Degs) 0-360 Azimuth (Degs) 0-360 Azimuth	(degs) 90-deg Polarit (degs) 0-deg Polarit (degs) 0-deg 0-deg 0-deg Polarit Polarit Polarit
Marker 6 Range 7: Marker 7 Range 8: Marker 8 Range 9:	Frequency (MHz) .8132 Face On 1 - 1. Frequency (MHz) 1.1702 Face On 1.705 Frequency (MHz) 9.5629 Face Off 1 - 1.	Meter Reading (dBuV) 19.52 705MHz Meter Reading (dBuV) 20.27 - 30MHz Meter Reading (dBuV) 16.22 705MHz Meter Reading	Pk Det Pk Pk Pk	ACF (dB/s 56.4 Loop Anten ACF (dB/s 45.9 Loop Anten ACF (dB/s 34.8	m)	(dB) -31.9 Amp/Cbl (dB) -31.8 Amp/Cbl (dB) -31.5	30m (dB) 40Log -40 Dist Corr 30m (dB) 40Log -40 Dist Corr 30m (dB) 40Log -40 Dist Corr 30m (dB)	Reading (dBuV/m 4.02 Corrected Reading (dBuV/m -5.63 Corrected Reading (dBuV/m -20.48	(dBu 29 	V/m) .41 .imit V/m) .26 .imit V/m) .0.5 .	(dĒ) -25.39 Margin (dB) -31.89 Margin (dB) -49.98	(Degs) 0-360 Azimuth (Degs) 0-360 Azimuth (Degs) 0-360	(degs) 90-deg Polarit (degs) 0-deg Polarit (degs) 0-deg 0-deg
Marker 6 Range 7: Marker 7 Range 8: Marker 8 Range 9:	Frequency (MHz) .8132 Face On 1 - 1. Frequency (MHz) 1.1702 Face On 1.705 Frequency (MHz) 9.5629 Face Off 1 - 1. Frequency	Meter Reading (dBuV) 19.52 705MHz Meter Reading (dBuV) 20.27 - 30MHz Meter Reading (dBuV) 16.22 705MHz Meter	Pk Det Pk Pk Pk	ACF (dB/i 56.4 Loop Anten ACF (dB/i 45.9 Loop Anten ACF (dB/i 34.8 Loop Anten	m)	(dB) -31.9 Amp/Cbl (dB) -31.8 Amp/Cbl (dB) -31.5 Amp/Cbl	30m (dB) 40Log -40 Dist Corr 30m (dB) 40Log -40 Dist Corr 30m (dB) 40Log -40 -40	Reading (dBuV/m 4.02 Corrected Reading (dBuV/m -5.63 Corrected Reading (dBuV/m -20.48	(dBu) (dBu) (dQPI (dBu) 26 26 26 26 26 26 26 26 26 26	.41	(dĒ) -25.39 Margin (dB) -31.89 Margin (dB) -49.98 Margin	(Degs) 0-360 Azimuth (Degs) 0-360 Azimuth (Degs) 0-360 Azimuth	(degs) 90-deg Polarit (degs) 0-deg Polarit (degs) 0-deg 0-deg 0-deg Polarit Polarit Polarit
Marker 6 Range 7: Marker 7 Range 8: Marker 8 Range 9: Marker 9	Frequency (MHz) .8132 Face On 1 - 1. Frequency (MHz) 1.1702 Face On 1.705 Frequency (MHz) 9.5629 Face Off 1 - 1. Frequency (MHz) 1.1696	Meter Reading (dBuV) 19.52 705MHz Meter Reading (dBuV) 20.27 - 30MHz Meter Reading (dBuV) 16.22 705MHz Meter Reading (dBuV) 20.38	Pk Det Pk Det Pk Det	ACF (dB/r 56.4 Loop Anten ACF (dB/r 45.9 Loop Anten ACF (dB/r 34.8	m)	(dB) -31.9 Amp/Cbl (dB) -31.8 Amp/Cbl (dB) -31.5 Amp/Cbl (dB)	30m (dB) 40Log -40 Dist Corr 30m (dB) 40Log -40 Dist Corr 30m (dB) 40Log Dist Corr 30m (dB) 40Log	Reading (dBuV/m 4.02 Corrected Reading (dBuV/m -5.63 Corrected Reading (dBuV/m -20.48 Corrected Reading (dBuV/m	(dBu) (dBu) (dQPI (dBu) 26 26 26 26 26 26 26 26 26 26	V/m)	(dB) -25.39 Margin (dB) -31.89 Margin (dB) -49.98 Margin (dB)	(Degs) 0-360 Azimuth (Degs) 0-360 Azimuth (Degs) 0-360 Azimuth (Degs)	(degs) 90-deg Polarit (degs) 0-deg Polarit (degs) 0-deg Polarit (degs) 0-deg
Marker 6 Range 7: Marker 7 Range 8: Marker 8 Range 9: Marker 9 Range 10	Frequency (MHz) .8132 Face On 1 - 1. Frequency (MHz) 1.1702 Face On 1.705 Frequency (MHz) 9.5629 Face Off 1 - 1. Frequency (MHz) 1.1696 E Face Off 1.70	Meter Reading (dBuV) 19.52 705MHz Meter Reading (dBuV) 20.27 - 30MHz Meter Reading (dBuV) 16.22 705MHz Meter Reading (dBuV) 20.38	Pk Det Pk Det Pk Pk Pk Pk Pk Pk	ACF (dB/i 56.4 Loop Anten ACF (dB/i 45.9 Loop Anten ACF (dB/i 34.8 Loop Anten ACF (dB/i 34.8	m)	(dB) -31.9 Amp/Cbl (dB) -31.8 Amp/Cbl (dB) -31.5 Amp/Cbl (dB) -31.8	30m (dB) 40Log -40 Dist Corr 30m (dB) 40Log -40 Dist Corr 30m (dB) 40Log -40 Dist Corr 30m (dB) 40Log -40	Reading (dBuV/m 4.02 Corrected Reading (dBuV/m -5.63 Corrected Reading (dBuV/m -20.48 Corrected Reading (dBuV/m -5.52	(dBu) 29 (dBu) 26 26 26 26 26 26 26 25 25 25 25 25 25 25 25 25 25 25 25 25	V/m) .41 .imit .imit .26 .imit .V/m) .25 .imit .v/m) .26	(dB) -25.39 Margin (dB) -31.89 Margin (dB) -49.98 Margin (dB) -31.78	(Degs) 0-360 Azimuth (Degs) 0-360 Azimuth (Degs) 0-360 Azimuth (Degs) 0-360	(degs) 90-deg Polarit (degs) 0-deg 0-deg 0-deg 0-deg 0-deg 0-deg 90-deg 90-deg 90-deg
Marker 6 Range 7: Marker 7 Range 8: Marker 8 Range 9: Marker 9	Frequency (MHz) .8132 Face On 1 - 1. Frequency (MHz) 1.1702 Face On 1.705 Frequency (MHz) 9.5629 Face Off 1 - 1. Frequency (MHz) 1.1696	Meter Reading (dBuV) 19.52 705MHz Meter Reading (dBuV) 20.27 - 30MHz Meter Reading (dBuV) 16.22 705MHz Meter Reading (dBuV) 20.38	Pk Det Pk Det Pk Det	ACF (dB/r 56.4 Loop Anten ACF (dB/r 45.9 Loop Anten ACF (dB/r 34.8	m)	(dB) -31.9 Amp/Cbl (dB) -31.8 Amp/Cbl (dB) -31.5 Amp/Cbl (dB)	30m (dB) 40Log -40 Dist Corr 30m (dB) 40Log -40 Dist Corr 30m (dB) 40Log Dist Corr 30m (dB) 40Log	Reading (dBuV/m 4.02 Corrected Reading (dBuV/m -5.63 Corrected Reading (dBuV/m -20.48 Corrected Reading (dBuV/m	(dBu) (dBu) (dBu) (dBu (dBu) (dBu) (dBu (dBu) (dBu (dBu) (dBu))(dBu)) (dBu)) (dBu)) (dBu)) (dBu))(dBu)	V/m)	(dB) -25.39 Margin (dB) -31.89 Margin (dB) -49.98 Margin (dB)	(Degs) 0-360 Azimuth (Degs) 0-360 Azimuth (Degs) 0-360 Azimuth (Degs)	(degs) 90-deg Polarit (degs) 0-deg Polarit (degs) 0-deg Polarit (degs) 0-deg

Pk - Peak detector

Note: The Limits in FCC 47 CRF, Part 15, Subpart C, Paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 Ohms. For example, the measurement at frequency X kHz resulted in a level of Y dBuV/m, which is equivalent to Y -51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-Gen Table 6 limit as it has to 15.209(a) limit.

Page 37 of 44


UL VERIFICATION SERVICES 47173 Benicia Street, Fremont, CA 94538; USA


TEL:(510) 319-4000

FAX:(510) 661-0888

10.4. WORST CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)

Page 38 of 44

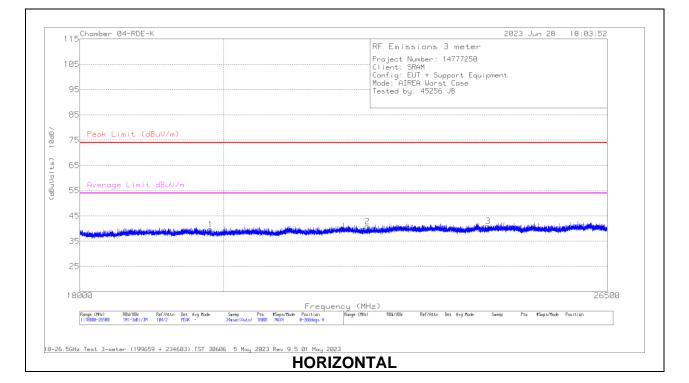
UL VERIFICATION SERVICES 47173 Benicia Street, Fremont, CA 94538; USA

TEL:(510) 319-4000

FAX:(510) 661-0888

Below 1GHz Data

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	174374 ANSI ACF (dB/m)	CBL/AMP	Corrected Reading (dBuV/m)	QPk Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	62.2233	28.91	Pk	13.6	-30.8	11.71	40	-28.29	0-360	100	Н
2	192.009	42	Pk	17.4	-29.5	29.9	43.52	-13.62	0-360	100	Н
	191.993	41.65	Qp	17.4	-29.5	29.55	43.52	-13.97	239	131	Н
4	64.0088	30.79	Pk	13.7	-30.8	13.69	40	-26.31	0-360	100	V
5	192.009	38.66	Pk	17.4	-29.5	26.56	43.52	-16.96	0-360	100	V
3	559.447	30.56	Pk	24.4	-28.4	26.56	46.02	-19.46	0-360	100	Н
6	558.747	28.87	Pk	24.4	-28.4	24.87	46.02	-21.15	0-360	100	V


Pk - Peak detector

Qp - Quasi-Peak detector

Page 39 of 44

10.5. WORST CASE 18-26 GHz

SPURIOUS EMISSIONS 18-26 GHz (WORST-CASE CONFIGURATION)

Page 40 of 44

UL VERIFICATION SERVICES 47173 Benicia Street, Fremont, CA 94538; USA

TEL:(510) 319-4000

FAX:(510) 661-0888

18 – 26GHz DATA

Marker	Frequency	Meter	Det	Horn ACF (dB/m)	234683 Amp/Cbl (dB)	Cables (dB)	Corrected	Peak Limit (dBuV/m)	PK Margin	Average Limit dBuV/m	Margin	Azimuth	Height	Polarity
	(MHz)	Reading (dBuV)					Reading (dBuV/m)		(dB)		(dB)	(Degs)	(cm)	
1	* 19811.444	50.92	Pk	32.7	-62.6	18.6	39.62	74	-34.38	54	-14.38	0-360	199	Н
2	* 22229.22	50.37	Pk	33.3	-62.6	19.7	40.77	74	-33.23	54	-13.23	0-360	100	н
3	24281.969	49.23	Pk	33.8	-62.7	20.6	40.93	74	-33.07	54	-13.07	0-360	100	н
4	* 19803.888	53.3	Pk	32.7	-62.6	18.6	42	74	-32	54	-12.0	0-360	200	V
5	* 22211.748	50.3	Pk	33.3	-62.6	19.7	40.7	74	-33.3	54	-13.3	0-360	100	V
6	24215.386	50.47	Pk	33.8	-62.5	20.6	42.37	74	-31.63	54	-11.63	0-360	200	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

Page 41 of 44

UL VERIFICATION SERVICES 47173 Benicia Street, Fremont, CA 94538; USA

TEL:(510) 319-4000

FAX:(510) 661-0888