

TEST REPORT

Report Number. : 13079833-E2V2

Applicant : SRAM LLC 1000 W Fulton Market 4th Floor Chicago, IL 60607, United States

- **Model :** 00020
- FCC ID : C9O-LSBB2
 - **ISED** : 10161A-LSBB2
- **EUT Description :** Left Shifter with AIREA and BLE Radios
- Test Standard(s) : FCC 47 CFR PART 15 SUBPART C ISED RSS-247 ISSUE 2 ISED RSS-GEN ISSUE 5

Date Of Issue: October 01, 2020

Prepared by: UL Verification Services Inc. 47173 Benicia Street Fremont, CA 94538 U.S.A. TEL: (510) 319-4000 FAX: (510) 661-0888

REPORT REVISION HISTORY

Rev.	lssue Date	Revisions	Revised By
V1	4/15/2020	Initial Issue	
V2	10/1/2020	Updated Section 9.3	Steven Tran

Page 2 of 42

TABLE OF CONTENTS

REF	POR	T REVISION HISTORY2
TAE	BLE	OF CONTENTS
1.	AT	TESTATION OF TEST RESULTS
2.	TES	ST METHODOLOGY7
3.	FA	CILITIES AND ACCREDITATION
4.	DE	CISION RULES AND MEASUREMENT UNCERTAINTY
	.1.	METROLOGICAL TRACEABILITY
4	.2.	DECISION RULES
4	.3.	MEASUREMENT UNCERTAINTY8
5.	EQ	UIPMENT UNDER TEST8
5	.1.	EUT DESCRIPTION
5	.2.	MAXIMUM OUTPUT POWER8
5	.3.	DESCRIPTION OF AVAILABLE ANTENNAS9
5	.4.	SOFTWARE AND FIRMWARE9
5	.5.	WORST-CASE CONFIGURATION AND MODE9
5	.6.	DESCRIPTION OF TEST SETUP10
6.	ME	ASUREMENT METHOD13
7.	TES	ST AND MEASUREMENT EQUIPMENT14
8.	AN	TENNA PORT TEST RESULTS15
8	.1.	ON TIME AND DUTY CYCLE15
8	.2.	99% BANDWIDTH16
8	.3.	6 dB BANDWIDTH17
8	.4.	OUTPUT POWER
8	.5.	AVERAGE POWER
8	.6.	POWER SPECTRAL DENSITY
8	.7.	CONDUCTED SPURIOUS EMISSIONS
9.	RA	DIATED TEST RESULTS23
9	.1.	LIMITS AND PROCEDURE
9	.2.	TRANSMITTER ABOVE 1 GHz25

Page 3 of 42

	RT NO: 13079833-E2V2): C9O-LSBB2	DATE: 10/1/2020 ISED: 10161A-LSBB2
9.3.	WORST CASE BELOW 30MHz	
9.4.	WORST CASE BELOW 1 GHz	
9.5.	WORST CASE 18-26 GHz	
10.	SETUP PHOTOS	40

Page 4 of 42

Complies

1. ATTESTATION OF TEST RESULTS

ISED RSS-GEN Issue 5

COMPANY NAME:	SRAM LLC 1000 W Fulton Market 4 th Floor Chicago, IL 60607, United States			
EUT DESCRIPTION:	Left Shifter with AIREA and BLE Radios			
MODEL:	00020			
SERIAL NUMBER:	Radiated: 1634040038 Conducted: 1634040003			
DATE TESTED:	January 30, 2020 – February 03, 2020			
	APPLICABLE STANDARDS			
ST	ANDARD	TEST RESULTS		
CFR 47 Pa	art 15 Subpart C	Complies		
ISED RS	S-247 Issue 2	Complies		

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of the U.S. government.

Approved & Released For UL Verification Services Inc. By:

LOOI

Dan Coronia Operations Leader Consumer Technology Division UL Verification Services Inc.

Reviewed By:

Prepared By:

Eric Yu Test Engineer Consumer Technology Division UL Verification Services Inc.

Steinfrantin

Steven Tran Project Engineer Consumer Technology Division UL Verification Services Inc.

Page 6 of 42

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, ANSI C63.10-2013, KDB 558074 D01 15.247 Meas Guidance v05r02, KDB 414788 D01 Radiated Test Site v01r01, RSS-GEN Issue 5, and RSS-247 Issue 2.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, and 47658 Kato Road, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street	47658 Kato Rd	
Chamber A	Chamber D	Chamber I	
Chamber B	Chamber E	🛛 Chamber J	
Chamber C	Chamber F	Chamber K	
	Chamber G	Chamber L	
	Chamber H	Chamber M	

The above test sites and facilities are covered under FCC Test Firm Registration # 208313. Chambers above are covered under Industry Canada company address and respective code: 2324A.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0

Page 7 of 42

4. DECISION RULES AND MEASUREMENT UNCERTAINTY

4.1. METROLOGICAL TRACEABILITY

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. DECISION RULES

The Decision Rule is based on Simple Acceptance in accordance with ISO Guide 98-4:2012 Clause 8.2 (Measurement uncertainty is not taken into account when stating conformity with a specified requirement.)

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	U _{Lab}
Conducted Disturbance, 9KHz to 0.15 MHz	3.84 dB
Conducted Disturbance, 0.15 to 30 MHz	3.65 dB
Radiated Disturbance, 9KHz to 30 MHz	2.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.88 dB
Radiated Disturbance, 1000 to 18000 MHz	4.24 dB
Radiated Disturbance, 18000 to 26000 MHz	4.37 dB
Radiated Disturbance, 26000 to 40000 MHz	5.17 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. EUT DESCRIPTION

The EUT is a Left Shifter with AIREA and BLE Radios, powered by CR2032, a coin cell battery.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum conducted output power as follows:

Frequency Range (MHz)		Pea	ak	Average	
	Mode	Output	Output	Output	Output
		Power	Power	Power	Power
		(dBm)	(mW)	(dBm)	(mW)
2405 - 2475	AIREA	3.81	2.40	3.71	2.35

Page 8 of 42

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a Pulse Electronics W3008C 2.45 GHz chip antenna, with maximum gain of 2.2dBi.

5.4. SOFTWARE AND FIRMWARE

The EUT firmware installed during testing was B-1.0.

The test utility software used during testing was nRF Connect version 3.3.0

5.5. WORST-CASE CONFIGURATION AND MODE

Radiated emissions below 1GHz and above 18GHz were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

Band edge and radiated emissions between 1GHz and 18GHz were performed with the EUT set to transmit at the highest power on low, middle and high channels.

The fundamental of the EUT was investigated in three orthogonal orientations X, Y, Z, it was determined that Y orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in Y orientation.

Worst-case data rate as provided by the client was 250kbps.

Page 9 of 42

5.6. DESCRIPTION OF TEST SETUP

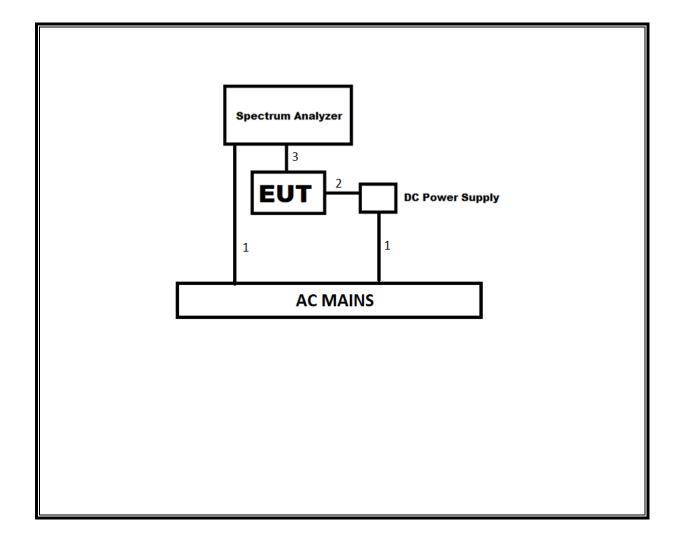
SUPPORT EQUIPMENT

Support Equipment List							
Description	Model	Serial Number					
Laptop	Lenovo	T450s	PC044FTD				
AC/DC Adapter	Lenovo	ADLX45NCC2A	N/A				
USB Dongle	Segger	E204460	680435024				
DC Power Supply	Kenwood Corporation	PA36-3A	7060074				

I/O CABLES (CONDUCTED EMISSIONS)

	I/O CABLE LIST								
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length (m)	Remarks			
1	AC	1	AC	Unshielded	1.5	AC Main to DC Supply, to Analyzer			
2	DC	1	DC	Unshielded	0.5	Power Supply to EUT			
3	Antenna Port	1	SMA	Unshielded	0.5	EUT to Analyzer			

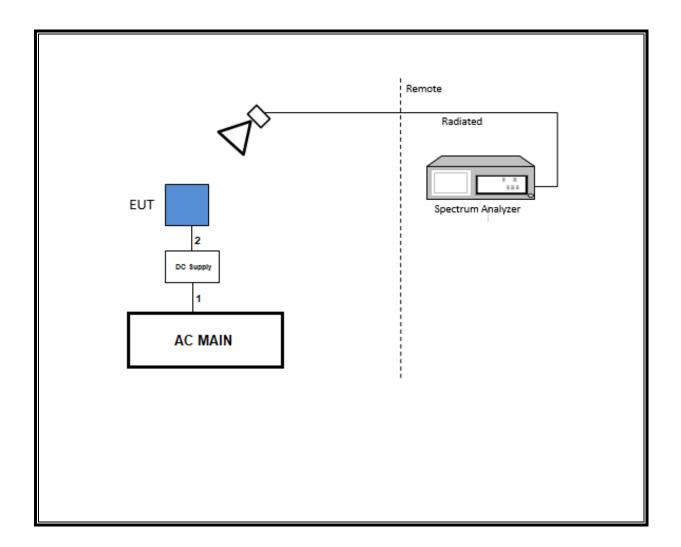
I/O CABLES (RADIATED EMISSIONS)


	I/O CABLE LIST								
					Cable Length (m)	Remarks			
1	AC	1	AC	Unshielded	1.5	AC Main to DC Supply			
2	DC	1	DC	Unshielded	0.5	Power Supply to EUT			

TEST SETUP

For the purposes of testing, the EUT was powered by a 3V DC Power supply. The EUT is normally powered by a CR2032 coin cell battery.

Page 10 of 42


SETUP DIAGRAM FOR CONDUCTED TESTS

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA TEL:(510) 319-4000 FAX:(510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 11 of 42

SETUP DIAGRAM FOR RADIATED TESTS

Page 12 of 42

6. MEASUREMENT METHOD

On Time and Duty Cycle: ANSI C63.10 Section -11.6.

6 dB BW: ANSI C63.10 Section -11.8.1 RBW ≥ DTS BW

Occupied BW (99%): ANSI C63.10-2013 Section 6.9.3

Output Power: ANSI C63.10 Section -11.9.1.3 Method PKPM1 Peak-reading power meter

Output Power: ANSI C63.10 Section -11.9.2.3.2 Method AVGPM-G (Measurement using a gated RF average-reading power meter)

PSD: ANSI C63.10 Section -11.10.2 Method PKPSD (peak PSD)

Radiated emissions non-restricted frequency bands: ANSI C63.10 Section -11.11

Radiated emissions restricted frequency bands: ANSI C63.10 Section -11.12.1

Conducted emissions in restricted frequency bands: ANSI C63.10 Section -11.12.2

Band-edge: ANSI C63.10 Section - 6.10

Radiated Spurious Emissions Below 30MHz: ANSI C63.10-2013 Section 6.4

Page 13 of 42

7. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST							
Description	Manufacturer	Model	Asset	Cal Due			
Antenna, Passive Loop 30Hz - 1MHz	ELECTRO METRICS	EM-6871	PRE0179466	05/31/2020			
Antenna, Passive Loop 100KHz - 30MHz	ELECTRO METRICS	EM-6872	PRE0179468	05/31/2020			
Antenna, Horn 1-18GHz	ETS-Lindgren	3117	T344	05/07/2020			
Amplifier, 1 to 18GHz, 35dB	AMPLICAL	AMP1G18-35	T1571	05/28/2020			
Antenna, Broadband Hybrid, 30MHz to 2000MHz	Sunol Sciences Corp.	JB3	T899	08/23/2020			
Amplifier, 9KHz to 1GHz, 32dB	SONOMA INSTRUMENT	310	PRE0180174	06/01/2020			
EMI TEST RECEIVER	Rohde & Schwarz	ESW44	PRE0179372	02/16/2020			
Antenna Horn, 18 to 26.5GHz	ARA	MWH-1826/B	T447	08/13/2020			
Pre-Amp 1-26.5 GHz	AMPLICAL	AMP18G26.5-60	PRE0181238	05/01/2020			
Spectrum Analyzer, PSA, 3Hz to 44GHz	Agilent (Keysight) Technologies	E4446A	T146	01/29/2021			
Power Meter, P-series single channel	Agilent (Keysight) Technologies	N1911A	T1269	01/21/2021			
Power Sensor, P-series, 50MHz to 18GHz, Wideband	Agilent (Keysight) Technologies	N1921A	T413	02/22/2020			
UL AUTOMATION SOFTWARE							
Radiated Software	UL	UL EMC	Ver 9.5, Sep	0 24, 2019			
Antenna Port Software	UL	UL RF	Ver 202	20.1.8			

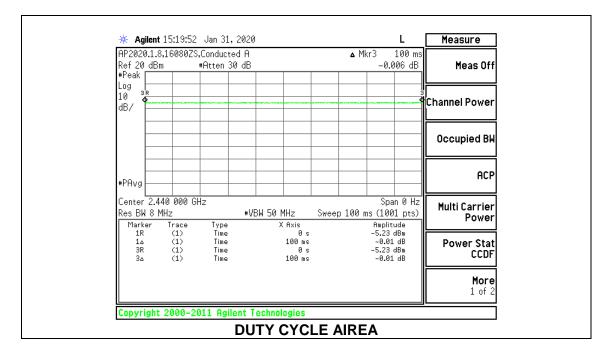
Page 14 of 42

8. ANTENNA PORT TEST RESULTS

8.1. ON TIME AND DUTY CYCLE

LIMITS

None; for reporting purposes only.


PROCEDURE

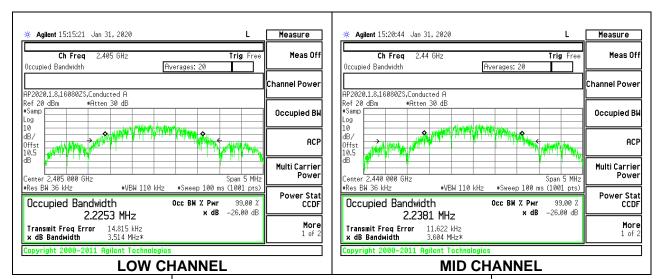
KDB 558074 Zero-Span Spectrum Analyzer Method.

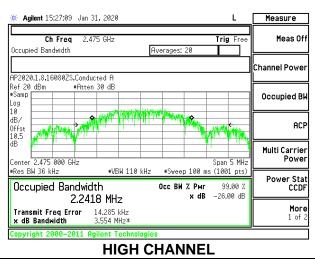
ON TIME AND DUTY CYCLE RESULTS

Mode	ON Time B (msec)	Period (msec)	Duty Cycle x (linear)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	1/B Minimum VBW (kHz)
2.4GHz Band						
AIREA	100	100	1.000	100	0.00	0.010

DUTY CYCLE PLOTS

Page 15 of 42


8.2. 99% **BANDWIDTH**


LIMITS

None; for reporting purposes only.

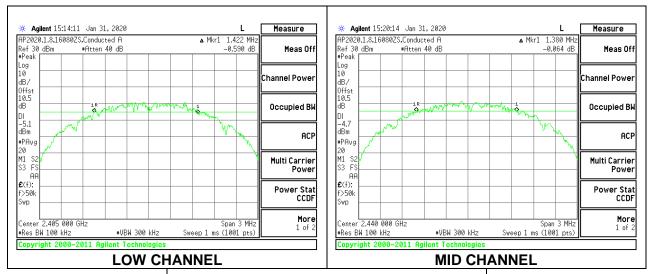
RESULTS

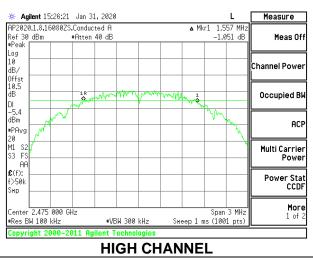
Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low 11	2405	2.2253
Middle 18	2440	2.2381
High 25	2475	2.2418

Page 16 of 42

8.3. 6 dB BANDWIDTH

LIMITS


FCC §15.247 (a) (2)


RSS-247 5.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

RESULTS

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)				
Low 11	2405	1.422	0.5				
Middle 18	2440	1.380	0.5				
High 25	2475	1.557	0.5				

8.4. OUTPUT POWER

LIMITS

FCC §15.247 (b) (3)

RSS-247 5.4 (d)

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss was entered as an offset in the power meter to allow for a gated peak reading of power.

<u>RESULTS</u>

Tested By:	20792 KN
Date:	1/30/2020

Channel	Frequency (MHz)	Peak Power Reading (dBm)	Limit (dBm)	Margin (dB)
Low 11	2402	3.81	30	-26.19
Middle 18	2440	3.80	30	-26.20
High 25	2475	3.64	30	-26.36

Page 18 of 42

8.5. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss was entered as an offset in the power meter to allow for a gated average reading of power.

<u>RESULTS</u>

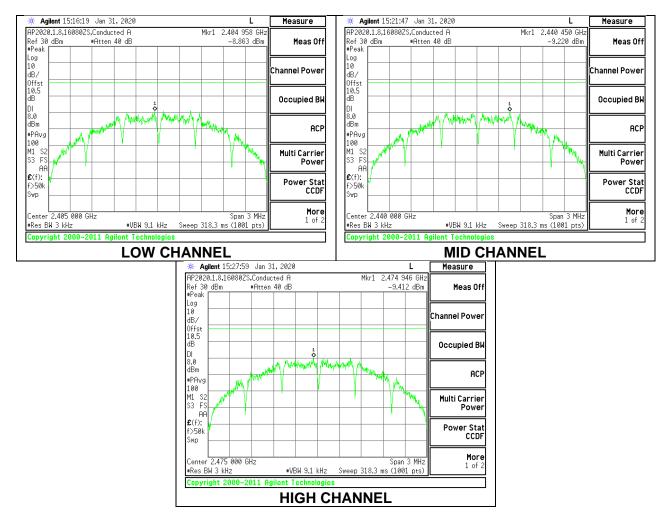
Tested By:	20792 KN
Date:	1/30/2020

Channel	Frequency	AV power				
	(MHz)	(dBm)				
Low 11	2402	3.69				
Middle 18	2440	3.71				
High 25	2475	3.54				

Page 19 of 42

8.6. POWER SPECTRAL DENSITY

LIMITS


FCC §15.247 (e)

RSS-247 (5.2) (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

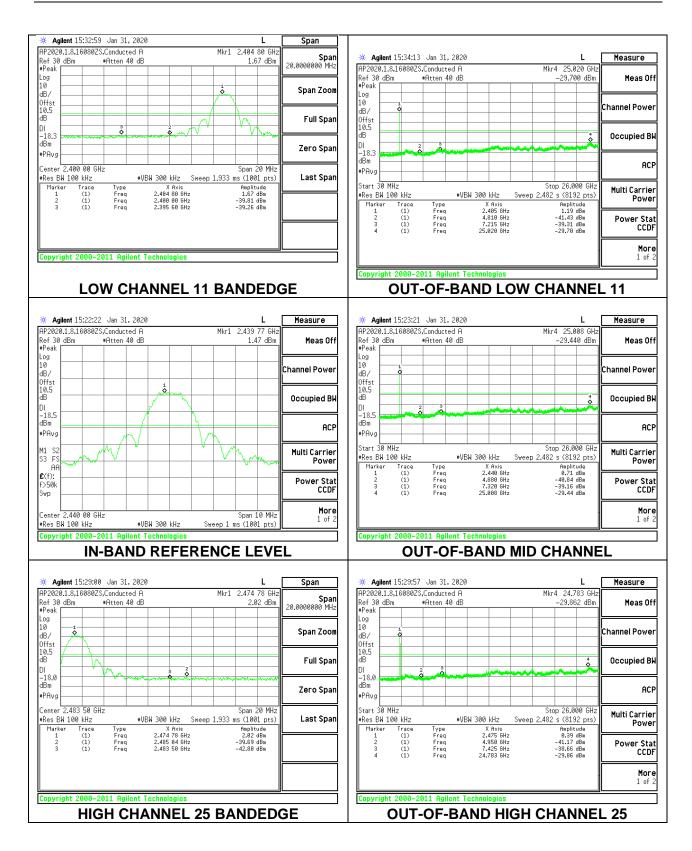
RESULTS

Channel	Frequency	PSD	Limit	Margin
	(MHz)	(dBm/3kHz)	(dBm/3kHz)	(dB)
Low 11	2405	-8.863	8	-16.86
Middle 18	2440	-9.220	8	-17.22
High 25	2475	-9.412	8	-17.41

Page 20 of 42

8.7. CONDUCTED SPURIOUS EMISSIONS

LIMITS


FCC §15.247 (d)

RSS-247 5.5

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

RESULTS

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA TEL:(510) 319-4000 FAX:(510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 22 of 42

9. RADIATED TEST RESULTS

9.1. LIMITS AND PROCEDURE

<u>LIMITS</u>

FCC §15.205 and §15.209

RSS-GEN, Section 8.9 and 8.10.

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
0.009-0.490	2400/F(kHz) @ 300 m	-
0.490-1.705	24000/F(kHz) @ 30 m	-
1.705 - 30	30 @ 30m	-
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane for measurement below 1GHz; 1.5 m above the ground plane for measurement above 1GHz. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.10. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For pre-scans above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 30 KHz for peak measurements.

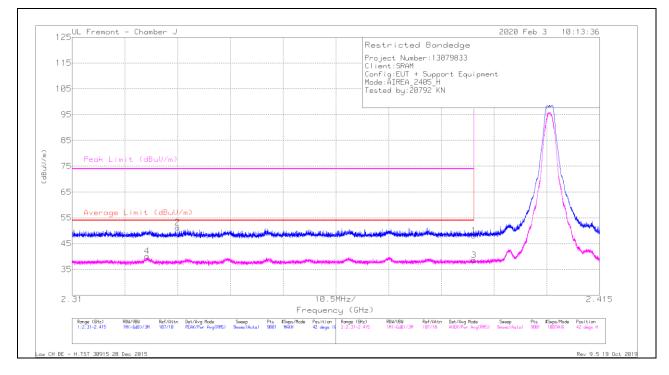
For final measurements above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 3 MHz for peak measurements and as applicable for average measurements.

The spectrum from 1 GHz to 18 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band. Below 1GHz and above 18GHz emissions, the channel with the highest output power was tested.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

2D antenna use - For below 30MHz testing, investigation was done on three antenna orientations (parallel, perpendicular, and ground-parallel), parallel and perpendicular are the worst orientations, therefore testing was performed on these two orientations only.

KDB 414788 Open Field Site(OFS) and Chamber Correlation Justification


Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field.

OFS and chamber correlation testing had been performed and chamber measured test result is the worst case test result.

Page 24 of 42

9.2. TRANSMITTER ABOVE 1 GHz

BANDEDGE (LOW CHANNEL 11)

HORIZONTAL RESULT

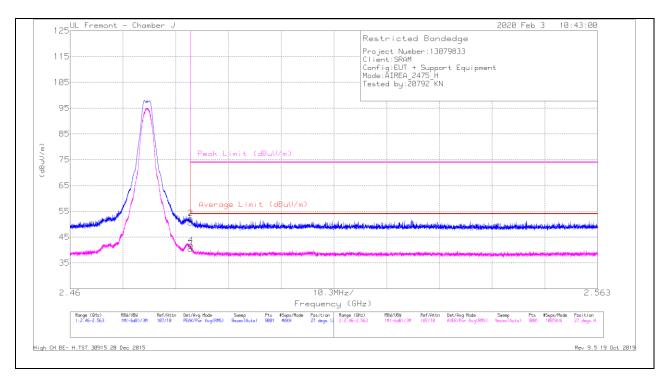

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T344 (dB/m)	Amp/Cbl/Flt r/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	2.38999	41.71	Pk	31.9	-25.5	48.11	-	-	74	-25.89	42	105	Н
2	2.33099	45.2	Pk	31.6	-25.6	51.2	-		74	-22.8	42	105	Н
3	2.38999	32.15	RMS	31.9	-25.5	38.55	54	-15.45	-	-	42	105	Н
4	2.32496	34.02	RMS	31.7	-25.6	40.12	54	-13.88	-	-	42	105	Н

Pk - Peak detector RMS - RMS detection

Page 25 of 42

VERTICAL RESULT


Trace Markers

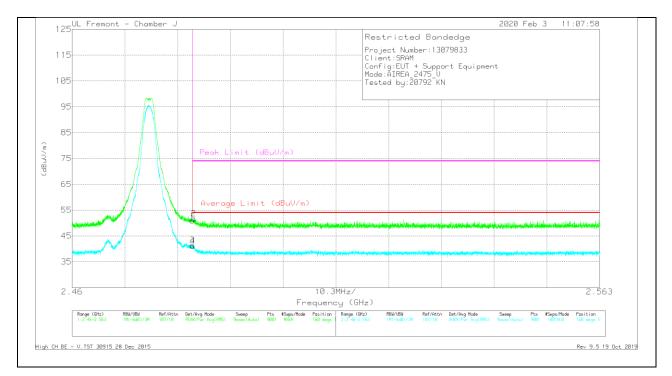
Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T344 (dB/m)	Amp/Cbl/Flt r/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	2.38999	41.76	Pk	31.9	-25.5	48.16	-	-	74	-25.84	169	116	V
2	2.34926	45.43	Pk	31.6	-25.5	51.53	-	-	74	-22.47	169	116	V
3	2.38999	31.81	RMS	31.9	-25.5	38.21	54	-15.79	-	-	169	116	V
4	2.37315	35.04	RMS	31.8	-25.5	41.34	54	-12.66	-	-	169	116	V

Pk - Peak detector RMS - RMS detection

Page 26 of 42

BANDEDGE (HIGH CHANNEL 25)

HORIZONTAL RESULT

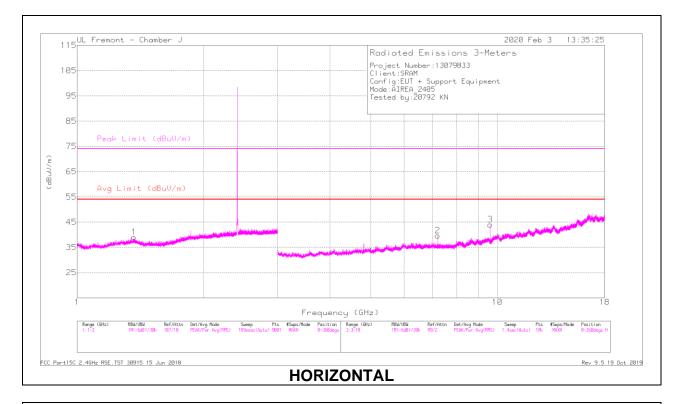

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T344 (dB/m)	Amp/Cbl/Flt r/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	2.48351	43.78	Pk	32.3	-25.5	50.58	-	-	74	-23.42	27	124	Н
2	2.48355	45.42	Pk	32.3	-25.5	52.22	-	-	74	-21.78	27	124	Н
3	2.48351	33.57	RMS	32.3	-25.5	40.37	54	-13.63	-	-	27	124	Н
4	2.48357	34.98	RMS	32.3	-25.5	41.78	54	-12.22	-	-	27	124	Н

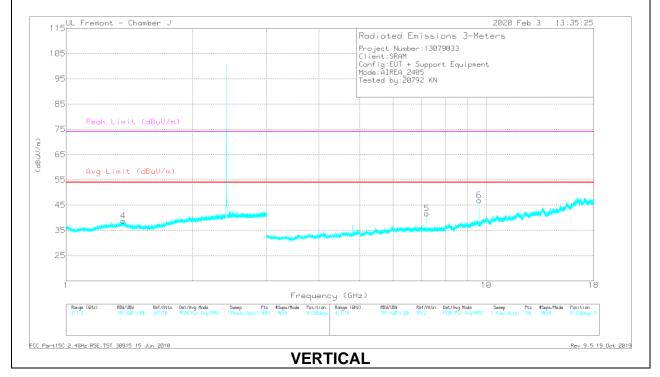
Pk - Peak detector RMS - RMS detection

Page 27 of 42

VERTICAL RESULT


Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T344 (dB/m)	Amp/Cbl/Flt r/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	2.48351	44.1	Pk	32.3	-25.5	50.9	-	-	74	-23.1	160	122	V
2	2.48371	44.83	Pk	32.3	-25.5	51.63	-	-	74	-22.37	160	122	V
3	2.48351	34.51	RMS	32.3	-25.5	41.31	54	-12.69	-	-	160	122	V
4	2.48356	34.3	RMS	32.3	-25.5	41.1	54	-12.9	-	-	160	122	V


Pk - Peak detector RMS - RMS detection

Page 28 of 42

HARMONICS AND SPURIOUS EMISSIONS

LOW CHANNEL 11 RESULTS

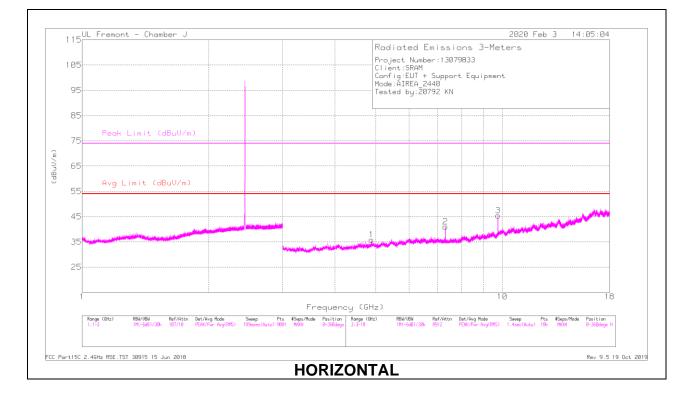
Page 29 of 42

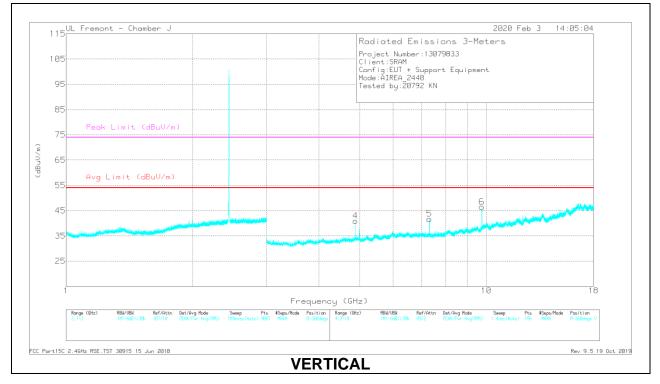
RADIATED EMISSIONS

Radiated Emissions

Frequency (GHz)	Meter Reading (dBuV)	Det	AF T344 (dB/m)	Amp/Cbl/Fltr/P ad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
* 1.36516	42.15	PK2	29.4	-25.8	45.75	-	-	74	-28.25	294	319	Н
* 1.36697	32.66	MAv1	29.4	-25.8	36.26	54	-17.74	-	-	294	319	Н
* 1.36895	42.48	PK2	29.4	-25.9	45.98	-	-	74	-28.02	44	200	V
* 1.36786	32.2	MAv1	29.4	-25.8	35.8	54	-18.2	-	-	44	200	V
7.21359	37.1	PK2	35.5	-27.2	45.4	-	-	-	-	5	116	Н
9.62211	40.2	PK2	36.8	-24.5	52.5	-	-	-	-	101	229	Н
7.21656	39.93	PK2	35.6	-27.2	48.33	-	-	-	-	128	195	V
9.61812	39.44	PK2	36.8	-24.4	51.84	-	-	-	-	185	104	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band


PK2 - KDB558074 Method: Maximum Peak


MAv1 - KDB558074 Option 1 Maximum RMS Average

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA TEL:(510) 319-4000 FAX:(510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

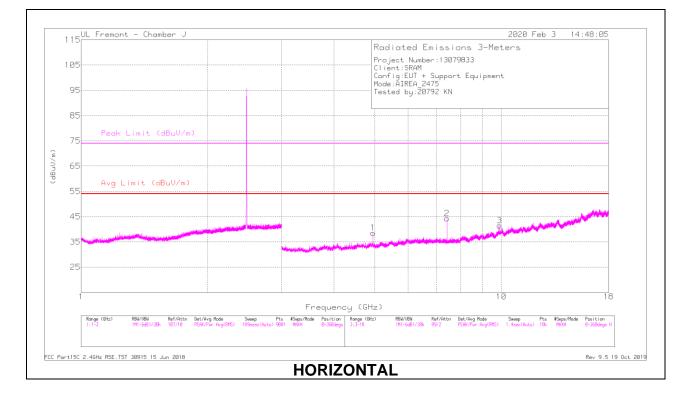
Page 30 of 42

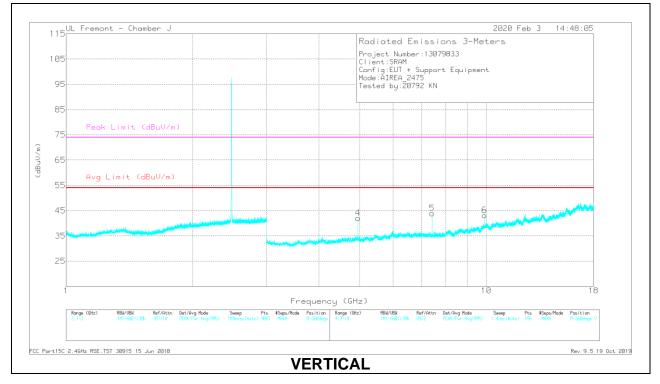
MID CHANNEL 18 RESULTS

Page 31 of 42

RADIATED EMISSIONS

Frequency (GHz)	Meter Reading (dBuV)	Det	AF T344 (dB/m)	Amp/Cbl/Fltr/P ad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
* 4.8789	41.35	PK2	34.1	-31	44.45	-	-	74	-29.55	305	173	Н
* 4.87915	32.5	MAv1	34.1	-31	35.6	54	-18.4	-	-	305	173	Н
* 7.32156	40.67	PK2	35.5	-27.1	49.07	-		74	-24.93	127	231	Н
* 7.32133	32.05	MAv1	35.5	-27.1	40.45	54	-13.55	-	-	127	231	Н
9.76211	39.75	PK2	36.9	-23.5	53.15	-	-	-	-	101	232	Н
* 4.87864	44.44	PK2	34.1	-31	47.54	-	-	74	-26.46	123	223	V
* 4.87864	35.49	MAv1	34.1	-31	38.59	54	-15.41	-	-	123	223	V
* 7.32154	41.28	PK2	35.5	-27.1	49.68	-	-	74	-24.32	345	389	V
* 7.32133	33.78	MAv1	35.5	-27.1	42.18	54	-11.82	-	-	345	389	V
9.758	38.19	PK2	36.9	-23.5	51.59	-	-	-	-	115	305	V


* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band


PK2 - KDB558074 Method: Maximum Peak

MAv1 - KDB558074 Option 1 Maximum RMS Average

Page 32 of 42

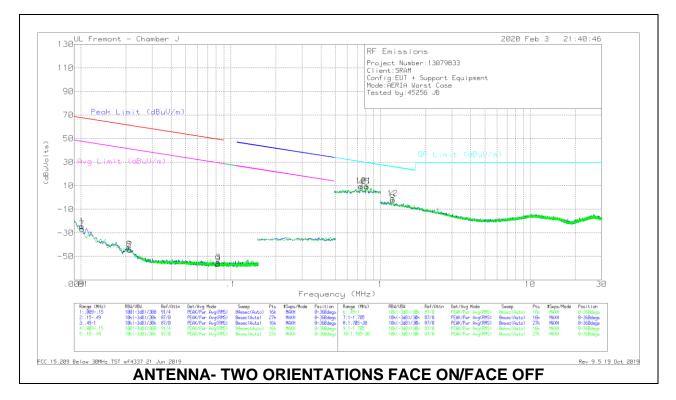
HIGH CHANNEL 25 RESULTS

Page 33 of 42

RADIATED EMISSIONS

Frequency (GHz)	Meter Reading (dBuV)	Det	AF T344 (dB/m)	Amp/Cbl/Fltr/P ad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
* 4.9491	42.68	PK2	34.1	-30	46.78	-	-	74	-27.22	271	396	Н
* 4.94907	34.85	MAv1	34.1	-30	38.95	54	-15.05	-	-	271	396	Н
* 7.42353	42.19	PK2	35.5	-27.1	50.59	-	-	74	-23.41	103	263	Н
* 7.42372	34.79	MAv1	35.5	-27.1	43.19	54	-10.81	-	-	103	263	Н
9.89816	37.44	PK2	37	-24.5	49.94	-	-	-	-	112	215	Н
* 4.951	44.87	PK2	34.1	-30	48.97	-	-	74	-25.03	113	209	V
* 4.94907	37.87	MAv1	34.1	-30	41.97	54	-12.03	-	-	113	209	V
* 7.42658	43.06	PK2	35.5	-27.1	51.46	-	-	74	-22.54	337	239	V
* 7.42631	36.05	MAv1	35.5	-27.1	44.45	54	-9.55	-	-	337	239	V
9.89796	37.92	PK2	37	-24.5	50.42	-	-	-	-	110	201	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band


PK2 - KDB558074 Method: Maximum Peak

MAv1 - KDB558074 Option 1 Maximum RMS Average

Page 34 of 42

9.3. WORST CASE BELOW 30MHz

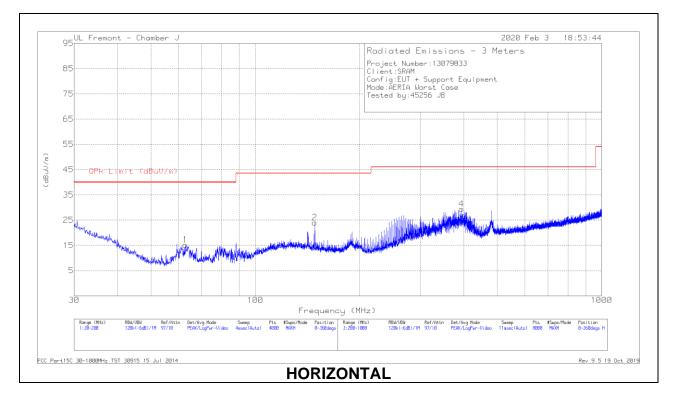
SPURIOUS EMISSIONS BELOW 30 MHz (WORST-CASE CONFIGURATION)

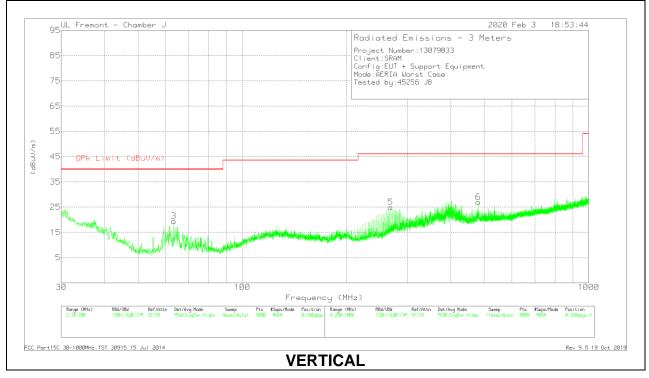
Below 30MHz Data

Marker	Frequenc y (MHz)	Meter Reading (dBuV)	Det	Loop Antenna (ACF)	Amp/Cbl (dB)	Dist Corr 300m	Corrected Reading (dBuVolts)	Peak Limit (dBuV/m)	Margin (dB)	Avg Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)
1	.01013	23.9	Pk	60.2	-28.5	-80	-24.4	67.47	-91.87	47.47	-71.87	0-360
2	.02122	5.32	Pk	58.7	-28.5	-80	-44.48	61.05	-105.53	41.05	-85.53	0-360
3	.08269	-2.02	Pk	55.5	-28.6	-80	-55.12	49.24	-104.36	29.24	-84.36	0-360
7	.01017	21.51	Pk	60.2	-28.5	-80	-26.79	67.44	-94.23	47.44	-74.23	0-360
8	.02094	5.79	Pk	58.7	-28.5	-80	-44.01	61.16	-105.17	41.16	-85.17	0-360
9	.0821	-3.26	Pk	55.5	-28.6	-80	-56.36	49.3	-105.66	29.3	-85.66	0-360

Pk - Peak detector

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	Loop Antenna (ACF)	Amp/Cbl (dB)	Dist Corr 30m (dB) 40Log	Corrected Reading (dBuVolts)	QP Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)
4	.74373	20.82	Pk	56.1	-28.5	-40	8.42	30.19	-21.77	0-360
5	.81178	21.52	Pk	56.1	-28.5	-40	9.12	29.43	-20.31	0-360
10	.74106	22.18	Pk	56.1	-28.5	-40	9.78	30.22	-20.44	0-360
11	.80837	22.01	Pk	56.1	-28.5	-40	9.61	29.46	-19.85	0-360
6	1.21164	20.45	Pk	45.7	-28.4	-40	-2.25	25.96	-28.21	0-360
12	1.20709	21.77	Pk	45.7	-28.4	-40	93	25.99	-26.92	0-360


Pk - Peak detector


Note: The Limits in CRF 47, Part 15, Subpart C, Paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 Ohms. For example, the measurement at frequency X kHz resulted in a level of Y dBuV/m, which is equivalent to Y -51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-Gen Table 6 limit as it has to 15.209(a) limit.

Page 35 of 42

9.4. WORST CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)

Page 36 of 42

Below 1GHz Data

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	AF T899 (dB/m)	Amp Cbl (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	QPk Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	62.861	32.5	Pk	14	-31.3	0	15.2	40	-24.8	0-360	298	Н
2	148.5207	36.21	Pk	18.5	-30.7	0	24.01	43.52	-19.51	0-360	398	Н
3	63.4562	36.73	Pk	14	-31.3	0	19.43	40	-20.57	0-360	101	V
4	393.9252	37.92	Pk	21.2	-29.7	0	29.42	46.02	-16.6	0-360	101	Н
5	268.2089	36.23	Pk	18.9	-30.2	0	24.93	46.02	-21.09	0-360	198	V
6	480.2364	33.12	Pk	23.4	-29.5	0	27.02	46.02	-19	0-360	101	V

Pk - Peak detector

Radiated Emissions

Frequency (MHz)	Meter Reading (dBuV)	Det	AF T899 (dB/m)	Amp Cbl (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	QPk Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
393.8777	39.79	Pk	21.2	-29.7	0	31.29	46.02	-14.73	94	102	Н
393.8777	31.59	Qp	21.2	-29.7	0	23.09	46.02	-22.93	94	102	Н

Pk - Peak detector

Qp - Quasi-Peak detector

Page 37 of 42

Г

9.5. WORST CASE 18-26 GHz

SPURIOUS EMISSIONS 18-26 GHz (WORST-CASE CONFIGURATION)

105-	JL Fremont - Chamber J	2020 Feb 3 22:51:23
		RF Emissions
0		Order Number:13079833
95		Client:SRAM
		Configuration:EUT + Support Equipment Mode:AERIA Worst Case
85		Tested by / SN:45256 JB
75	Peak Limit (dBuV/m)	
15		
65		
55	Avg Limit (dBuV/m)	
45		
35		2. Junior State
- N		
25		
20		
15		
L		
18	3	26.
	Range (GHz) RBW/UBW Ref/Attn Det/Avg No I:18-26.5 1H(-3d8)/3H 89/2 PEFK/LogPar	Frequency (GHz) de Sweep Pts Napa/Node Label Range (Bitz) RBW/UBW Ref/Ritin Det/Nrg Mode Sweep Pts Napa/Node Label
tz Test	Range (Sitz) RBV/IBU Ref/Rtin Det/Avg No. 1:18-26-5 11K-3d8/J3H 897/2 PER/Lagher t.TST 38915 6 Jan 2015	de Sweep Pts fSwps/Mode Label -Uideo 34wsec(Auto) 3881 PKMt fbrizontal Range (Giz) RBW/UBW Ref/Attn Det/Avg Mode Sweep Pts fSwps/Node Label -Rev 9.5
tz Test		de Sweep Pits HSwps/Node Label -Undeo 3MaadEC(Auto) 9081 PM01 http://control -Undeo 3MaadEC(Auto) 9081 PM01 http://control
	t.TST 38915 6 Jan 2015	Seeage Pits Hoppenhode Label **01deo 348xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
		te Seege Pis figer/fide Leter Parge (Sitz) #88//888 Ref/ittn Det/itvg Kode Sweep Pis Hisps/fide Label Rev 9.5 HORIZONTAL 2020 Feb 3 22:51:23
	t.TST 38915 6 Jan 2015	Seeage Pits Hoppe/Node Label Pitabe 3Meed2(Auto) 9881 Molti Range (Sitz) RBV/UBW Ref/Rttn Det/Nvg Mode Sweep Pts Msps:/Node Label Rev 9.5 CO200 Feb 3 22:51:23 RF Emissions
	t.TST 38915 6 Jan 2015	te Sweep Pis floep.//tode Label Profes Sweep Pis floep.//tode Label Range (Bib) RBV/IBW Ref/Ritin Det/Rvg Kode Sweep Pis floeps/Node Label Rev 9.5 HORIZONTAL 2020 Feb 3 22:51:23 RF Em issions Order Number:13079833
105	t.TST 38915 6 Jan 2015	Seeage -Uitdeo Pits HSperificide Label Range (Sitz) R8W/880 Ref/Rttn Det/Rvg Mode Sweep Pts Msper/Rode Label Rev 9.5 HORIZONTAL 2020 Feb 3 22:51:23 Order Number: 13079833 Order Number: 13079833
105 95-	t.TST 38915 6 Jan 2015	te Sweep Pits HSupu/Node Label Protec Stando (Nuto) 9881 MMH terizontal Range (9tb) KBU/UBW Ref/Kitn Det/Nog Kode Sweep Pits KSups/Node Label Rev 9.5 HORIZONTAL 2020 Feb 3 22:51:23 RF Em issions Order Number:13079833 Client:SRAM Configuration:EUT + Support Equipment Mode: AERIA Worst Case
105	t.TST 38915 6 Jan 2015	Seeage -Uitdeo Pits HSperificide Label Range (Sitz) R8W/880 Ref/Rttn Det/Rvg Mode Sweep Pts Msper/Rode Label Rev 9.5 HORIZONTAL 2020 Feb 3 22:51:23 Order Number: 13079833 Order Number: 13079833
105- 95- 85-	t.TST 38915 6 Jan 2015 JL Fremont - Chamber J	te Sweep Pits HSupu/Node Label Protec Stando (Nuto) 9881 MMH terizontal Range (9tb) KBU/UBW Ref/Kitn Det/Nog Kode Sweep Pits KSups/Node Label Rev 9.5 HORIZONTAL 2020 Feb 3 22:51:23 RF Em issions Order Number:13079833 Client:SRAM Configuration:EUT + Support Equipment Mode: AERIA Worst Case
105 95-	t.TST 38915 6 Jan 2015	te Sweep Pits HSupu/Node Label Protec Stando (Nuto) 9881 MMH terizontal Range (9tb) KBU/UBW Ref/Kitn Det/Nog Kode Sweep Pits KSups/Node Label Rev 9.5 HORIZONTAL 2020 Feb 3 22:51:23 RF Em issions Order Number:13079833 Client:SRAM Configuration:EUT + Support Equipment Mode: AERIA Worst Case
105- 95- 85-	t.TST 38915 6 Jan 2015 JL Fremont - Chamber J	te Sweep Pits HSupu/Node Label Protec Stando (Nuto) 9881 MMH terizontal Range (9tb) KBU/UBW Ref/Kitn Det/Nog Kode Sweep Pits KSups/Node Label Rev 9.5 HORIZONTAL 2020 Feb 3 22:51:23 RF Em issions Order Number:13079833 Client:SRAM Configuration:EUT + Support Equipment Mode: AERIA Worst Case
105 95 85 75	t.TST 38915 6 Jan 2015 JL Fremont - Chamber J	te Sweep Pits HSupu/Node Label Protec Stando (Nuto) 9881 MMH terizontal Range (9tb) KBU/UBW Ref/Kitn Det/Nog Kode Sweep Pits KSups/Node Label Rev 9.5 HORIZONTAL 2020 Feb 3 22:51:23 RF Em issions Order Number:13079833 Client:SRAM Configuration:EUT + Support Equipment Mode: AERIA Worst Case
105- 95- 85-	t.TST 38915 6 Jan 2015 JL Fremont - Chamber J	te Sweep Pits HSupu/Node Label Protec Stando (Nuto) 9881 MMH terizontal Range (9tb) KBU/UBW Ref/Kitn Det/Nog Kode Sweep Pits KSups/Node Label Rev 9.5 HORIZONTAL 2020 Feb 3 22:51:23 RF Em issions Order Number:13079833 Client:SRAM Configuration:EUT + Support Equipment Mode: AERIA Worst Case
105- 95- 85- 75 <u>-</u> 65-	t.TST 30915 6 Jan 2015 JL Fremont - Chamber J Peak Limit (dBuU/m)	te Sweep Pits HSupu/Node Label Protec Stando (Nuto) 9881 MMH terizontal Range (9tb) KBU/UBW Ref/Kitn Det/Nog Kode Sweep Pits KSups/Node Label Rev 9.5 HORIZONTAL 2020 Feb 3 22:51:23 RF Em issions Order Number:13079833 Client:SRAM Configuration:EUT + Support Equipment Mode: AERIA Worst Case
105 95 85 75	t.TST 38915 6 Jan 2015 JL Fremont - Chamber J	te Sweep Pits HSupu/Node Label Protec Stando (Nuto) 9881 MMH terizontal Range (9tb) KBU/UBW Ref/Kitn Det/Nog Kode Sweep Pits KSups/Node Label Rev 9.5 HORIZONTAL 2020 Feb 3 22:51:23 RF Em issions Order Number:13079833 Client:SRAM Configuration:EUT + Support Equipment Mode: AERIA Worst Case
105- 95- 85- 75 <u>-</u> 65-	t.TST 30915 6 Jan 2015 JL Fremont - Chamber J Peak Limit (dBuU/m)	te Sweep Pits HSupu/Node Label Protec Stando (Nuto) 9881 MMH terizontal Range (9tb) KBU/UBW Ref/Kitn Det/Nog Kode Sweep Pits KSups/Node Label Rev 9.5 HORIZONTAL 2020 Feb 3 22:51:23 RF Em issions Order Number:13079833 Client:SRAM Configuration:EUT + Support Equipment Mode: AERIA Worst Case
105- 95- 85- 65- 55-	t.TST 30915 6 Jan 2015 JL Fremont - Chamber J Peak Limit (dBuU/m)	te Sweep Pits HSupu/Node Label Protec Stando (Nuto) 9881 MMH terizontal Range (9tb) KBU/UBW Ref/Kitn Det/Nog Kode Sweep Pits KSups/Node Label Rev 9.5 HORIZONTAL 2020 Feb 3 22:51:23 RF Em issions Order Number:13079833 Client:SRAM Configuration:EUT + Support Equipment Mode: AERIA Worst Case
105- 95- 85- 75 <u>-</u> 65-	t.TST 30915 6 Jan 2015 JL Fremont - Chamber J Peak Limit (dBuU/m)	te Sweep Pits HSupu/Node Label Protec Stando (Nuto) 9881 MMH terizontal Range (9tb) KBU/UBW Ref/Kitn Det/Nog Kode Sweep Pits KSups/Node Label Rev 9.5 HORIZONTAL 2020 Feb 3 22:51:23 RF Em issions Order Number:13079833 Client:SRAM Configuration:EUT + Support Equipment Mode: AERIA Worst Case
105 95	t.TST 30915 6 Jan 2015 JL Fremont - Chamber J Peak Limit (dBuU/m)	te Sweep Pis Hoppe/Node Label Perger (SH2) 9891 PMM Perger (SH2) PERVISU Ref/Rttn Det/Nrg Node Sweep Pis Hoppe/Node Label Rev 9.5 HORIZONTAL 2020 Feb 3 22:51:23 Order Number: 13079833 Client:SRAM Configuration:EUT + Support Equipment Mode: APERIA Morst Case Tested by / SN:45256 JB
105- 95- 85- 65- 55-	t.TST 30915 6 Jan 2015 JL Fremont - Chamber J Peak Limit (dBuV/m) Avg Limit (dBuV/m)	te Sweet Pts 1000-Node Label Parge (9tz) 188/188/ Ref/Rtin Det/Reg Node Sweet Pts 10000-Node Label Rev 9,5 HORIZONTAL 2020 Feb 3 22:51:23 RF Em issions Drder Number: 13079833 Client:SR4M Configuration:EUT + Support Equipment Mode: AERIA Worst Case Tested by / SN:45256 JB
105 95	t.TST 30915 6 Jan 2015 JL Fremont - Chamber J Peak Limit (dBuU/m) Avg Limit (dBuU/m)	te Sweep Pits HSupu/Node Label Protec Stando (Nuto) 9881 MMH terizontal Range (9tb) KBU/UBW Ref/Kitn Det/Nog Kode Sweep Pits KSups/Node Label Rev 9.5 HORIZONTAL 2020 Feb 3 22:51:23 RF Em issions Order Number:13079833 Client:SRAM Configuration:EUT + Support Equipment Mode: AERIA Worst Case
105 95 85 65 55 45 35	t.TST 30915 6 Jan 2015 JL Fremont - Chamber J Peak Limit (dBuV/m) Avg Limit (dBuV/m)	te Sweet Pts 1000-Node Label Parge (9tz) 188/188/ Ref/Rtin Det/Reg Node Sweet Pts 10000-Node Label Rev 9,5 HORIZONTAL 2020 Feb 3 22:51:23 RF Em issions Drder Number: 13079833 Client:SR4M Configuration:EUT + Support Equipment Mode: AERIA Worst Case Tested by / SN:45256 JB
105 95	t.TST 30915 6 Jan 2015 JL Fremont - Chamber J Peak Limit (dBuV/m) Avg Limit (dBuV/m)	te Sweet Pts 1000-Node Label Parge (9tz) 188/188/ Ref/Rtin Det/Reg Node Sweet Pts 10000-Node Label Rev 9,5 HORIZONTAL 2020 Feb 3 22:51:23 RF Em issions Drder Number: 13079833 Client:SR4M Configuration:EUT + Support Equipment Mode: AERIA Worst Case Tested by / SN:45256 JB
105 95 85 65 55 45 35	t.TST 30915 6 Jan 2015 JL Fremont - Chamber J Peak Limit (dBuV/m) Avg Limit (dBuV/m)	te Sweet Pts 1000-Node Label Parge (9tz) 188/188/ Ref/Rtin Det/Reg Node Sweet Pts 10000-Node Label Rev 9,5 HORIZONTAL 2020 Feb 3 22:51:23 RF Em issions Drder Number: 13079833 Client:SR4M Configuration:EUT + Support Equipment Mode: AERIA Worst Case Tested by / SN:45256 JB

18																í	26.5
							F	reque	ncy (GHz)								
Ran	nge (GHz)	RBW/UBW	Ref/Attn	Det/Avg Mode	Ѕѡеер	Pts	#Swps/Node	Label	Range (GHz) 2:18-26.5	RBW/VBW 1H(-3dB)/3H	Ref/Attn 89/2	Det/Avg Made PEAK/LogPur-Video	Sweep 34nsec (Auto)	Pts 9001	#Sxps/Node MRXH	Label Ventical	
Test. I	ST 309	5 6 Jan 2015														Rev	9.5.21

Page 38 of 42

18 – 26GHz DATA

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	T447 AF (dB/m)	Amp/Cbl (dB)	Dist Corr (dB)	Corrected Reading (dBuVolts)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)
1	19.67828	65.81	Pk	32.8	-57	-9.5	32.11	54	-21.89	74	-41.89
2	20.95044	67.29	Pk	33.2	-57.1	-9.5	33.89	54	-20.11	74	-40.11
3	22.23016	67.11	Pk	33.6	-57.7	-9.5	33.51	54	-20.49	74	-40.49
4	19.97767	66.83	Pk	32.8	-56.9	-9.5	33.23	54	-20.77	74	-40.77
5	21.24039	66	Pk	33.1	-57	-9.5	32.6	54	-21.4	74	-41.4
6	22.62683	66.79	Pk	33.6	-57.7	-9.5	33.19	54	-20.81	74	-40.81

Pk - Peak detector

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA TEL:(510) 319-4000 FAX:(510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 39 of 42