

TEST REPORT

Report Number: 14954500-E2V1

Applicant: SRAM LLC

1000 W Fulton Market 4th Floor Chicago, IL 60607, United States

Model: 12300

Brand: SRAM

FCC ID : C9O-HKB1

IC: 10161A-HKB1

EUT Description: BICYCLE HEAD UNIT

Test Standard(s): FCC 47 CFR PART 15 SUBPART C

ISED RSS-247 ISSUE 3

ISED RSS-GEN ISSUE 5 + A1 + A2

Date Of Issue:

2023-11-09

Prepared by:

UL VERIFICATION SERVICES 47173 Benicia Street Fremont, CA 94538 U.S.A. TEL: (510) 319-4000

FAX: (510) 661-0888

REPORT REVISION HISTORY

Rev.	Issue Date	Revisions	Revised By
V1	2023-11-09	Initial Issue	

TABLE OF CONTENTS

RE	POR	T REVISION HIS	ORY	
TAI	BLE	OF CONTENTS		
1.	ΑT	ESTATION OF T	EST RESULTS	
2.	TES	ST RESULTS SU	ΛΜΔRY	
3.				
4.	FAC	CILITIES AND AC	CREDITATION	
5.	DE	CISION RULES A	ND MEASUREMENT UN	CERTAINTY
5	5.1.	METROLOGICA	L TRACEABILITY	
5	5.2.	DECISION RULI	ES	
5	5.3.	MEASUREMEN [®]	UNCERTAINTY	
5	5.4.	SAMPLE CALCU	ILATION	10
6.	EQ	JIPMENT UNDER	TEST	1 ¹
6	5.1.	EUT DESCRIPT	ON	1
6	5.2.	MAXIMUM OUT	PUT POWER	1
	6.2.			1
_	6.2.			1
	5.3.			1S1
	5.4.			1
6	5.5.			ODE12
6	6.6.	DESCRIPTION ()F TEST SETUP	1
7.	ME	ASUREMENT ME	THOD	1
8.	TES	ST AND MEASUR	EMENT EQUIPMENT	10
9.	AN ⁻	ΓENNA PORT TE	ST RESULTS	1
9).1.	ON TIME AND D	UTY CYCLE	1
				18
9	9.2. 9.2.			
	-			20
9				2
J	9.3.	1. QUALCOM	1 RADIO	2!
				20
9	.4.	OUTPUT POWE		3
			Page 3 of 1	55

DATE: 2023-11-09

FCC ID: C90-HKB1	IC: 10161A-HKB1
9.4.1. QUALCOMM RADIO	30
9.5. AVERAGE POWER	
9.5.1. QUALCOMM RADIO	
9.5.2. RIGHT NORDIC RADIO:	
9.6. POWER SPECTRAL DENSITY	34
9.6.1. QUALCOMM RADIO	
9.6.2. RIGHT NORDIC RADIO	36
9.7. CONDUCTED SPURIOUS EMISSIONS	40
9.7.1. QUALCOMM RADIO	
9.7.2. RIGHT NORDIC RADIO	42
10. RADIATED TEST RESULTS	46
10.1. LIMITS AND PROCEDURE	46
10.2. TRANSMITTER ABOVE 1 GHz	_
10.2.1. QUALCOMM RADIO	
10.2.2. LEFT NORDIC RADIO:	
10.2.3. RIGHT NORDIC RADIO:	
10.3. WORST CASE BELOW 30MHz	138
10.3.1. QUALCOMM RADIO	
10.3.2. RIGHT NORDIC RADIO	139
10.4. WORST CASE BELOW 1 GHz	140
10.4.1. QUALCOMM RADIO	140
10.4.2. RIGHT NORDIC RADIO	142
10.5. WORST CASE 18-26 GHz	144
10.5.1. QUALCOMM RADIO	144
10.5.2. RIGHT NORDIC RADIO	146
11. AC POWER LINE CONDUCTED EMISSIONS	148
11.1. AC Power Line Norm	149
11.1.1. QUALCOMM RADIO	
11.1.2. RIGHT NORDIC RADIO	151
12. SETUP PHOTOS	153

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: SRAM LLC

1000 W Fulton Market 4th Floor Chicago, IL 60607, United States

EUT DESCRIPTION: Bicycle Head Unit

MODEL: 12300

BRAND: SRAM

SERIAL NUMBER: Radiated: 00416GA23270005 and 00416GA23270009

Conducted: 00413PA232960044 and 00413PA232960035

SAMPLE RECEIPT DATE: 2023-09-22 and 2023-09-28

DATE TESTED: 2023-09-29 to 2023-10-31

APPLICABLE STANDARDS

STANDARDTEST RESULTSFCC 47 CFR Part 15 Subpart CCompliesISED RSS-247 Issue 3CompliesISED RSS-GEN Issue 5 + A1 + A2Complies

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by A2LA, NIST, any agency of the Federal Government, or any agency of the U.S. government.

Approved & Released For UL Verification Services Inc. By:

Prepared By:

Dan Coronia
Operations Leader
Consumer Technology Division
UL Verification Services Inc.

Glenn Escano Senior Test Engineer Consumer Technology Division UL Verification Services Inc.

1st Reviewed By:

2nd Reviewed By:

Vien Tran Senior Laboratory Engineer Consumer Technology Division UL Verification Services Inc. Kiya Kedida Senior Project Engineer Consumer Technology Division UL Verification Services Inc.

2. TEST RESULTS SUMMARY

This report contains data provided by the customer which can impact the validity of results. UL Verification Services Inc. is only responsible for the validity of results after the integration of the data provided by the customer.

Below is a list of the data provided by the customer:

1) Antenna gain and type (see section 6.3)

FCC Clause	ISED Clause	Requirement	Result	Comment
See Comment		Duty Cycle	Reporting	ANSI C63.10 Section
See Comment		Duty Cycle	purposes only	11.6.
	RSS-GEN 6.7	99% OBW	Reporting	ANSI C63.10 Section
_		99 % OBW	purposes only	6.9.3.
15.247 (a) (2)	RSS-247 5.2 (a)	6dB BW	Compliant	None.
15.247 (b) (3)	RSS-247 5.4 (d)	Output Power	Compliant	None.
See Comment		Average power	Reporting	Per ANSI C63.10,
			purposes only	Section 11.9.2.3.2.
15.247 (e)	RSS-247 5.2 (b)	PSD	Compliant	None.
15.247 (d)	RSS-247 5.5	Conducted Spurious Emissions	Compliant	None.
15.209, 15.205	RSS-GEN 8.9, 8.10	Radiated Emissions	Compliant	None.
15.207	RSS-Gen 8.8	AC Mains Conducted Emissions	Compliant	None

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC 47 CFR Part 2, FCC 47 CFR Part 15, ANSI C63.10-2013, KDB 558074 D01 15.247 Meas Guidance v05r02, KDB 414788 D01 Radiated Test Site v01r01, RSS-GEN Issue 5 + A1 + A2, and RSS-247 Issue 3.

4. FACILITIES AND ACCREDITATION

UL Verification Services Inc. is accredited by A2LA, Certificate Number 0751.05, for all testing performed within the scope of this report. Testing was performed at the locations noted below.

	Address	ISED CABID	ISED Company Number	FCC Registration
\boxtimes	Building 1: 47173 Benicia Street Fremont, CA 94538, U.S.A	US0104	2324A	550739
	Building 2: 47266 Benicia Street Fremont, CA 94538, U.S.A	US0104	2324A	550739
\boxtimes	Building 4: 47658 Kato Rd Fremont, CA 94538, U.S.A	US0104	2324A	550739

5. DECISION RULES AND MEASUREMENT UNCERTAINTY

5.1. METROLOGICAL TRACEABILITY

All test and measuring equipment utilized to perform the tests documented in this report are calibrated on a regular basis, with a maximum time between calibrations of one year or the manufacturers' recommendation, whichever is less, and where applicable is traceable to recognized national standards.

5.2. DECISION RULES

The Decision Rule is based on Simple Acceptance in accordance with ISO Guide 98-4:2012 Clause 8.2. (Measurement uncertainty is not taken into account when stating conformity with a specified requirement.)

5.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	U _{Lab}
Radio Frequency (Spectrum Analyzer)	141.16 Hz
Occupied Bandwidth	1.22%
Power Spectral Density	2.47 dB
RF Power Measurement Direct Method Using Power Meter	1.3 dB (PK) / 0.45 dB (AV)
Unwanted Emissions, Conducted	1.94 dB
Worst Case Conducted Disturbance, 9KHz to 0.15 MHz	3.78 dB
Worst Case Conducted Disturbance, 0.15 to 30 MHz	3.40 dB
Worst Case Radiated Disturbance, 9KHz to 30 MHz	2.87 dB
Worst Case Radiated Disturbance, 30 to 1000 MHz	6.01 dB
Worst Case Radiated Disturbance, 1000 to 18000 MHz	4.73 dB
Worst Case Radiated Disturbance, 18000 to 26000 MHz	4.51 dB
Worst Case Radiated Disturbance, 26000 to 40000 MHz	5.29 dB
Time Domain Measurements	3.39%
Temperature	0.57°C
Humidity	3.39%
DC Supply Voltages	0.57%

Uncertainty figures are valid to a confidence level of 95%.

5.4. SAMPLE CALCULATION

RADIATED EMISSIONS

Where relevant, the following sample calculation is provided:
Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB)
36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

MAINS CONDUCTED EMISSIONS

Where relevant, the following sample calculation is provided:
Final Voltage (dBuV) = Measured Voltage (dBuV) + Cable Loss (dB) + Limiter Factor (dB) + LISN Insertion Loss.
36.5 dBuV + 0 dB +10.1 dB+ 0 dB = 46.6 dBuV

6. EQUIPMENT UNDER TEST

6.1. EUT DESCRIPTION

The EUT is a Bicycle Head Unit.

6.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak and average conducted output powers as follows:

6.2.1. QUALCOMM RADIO

Fraguency Banga		Pe	eak	Average		
Frequency Range (MHz)	Mode	Mode Output Power		Output Power	Output Power	
(1711 12)		(dBm)	(mW)	(dBm)	(mW)	
2402 - 2480	BLE (1Mbps)	1.83	1.52	0.80	1.20	

6.2.2. RIGHT NORDIC RADIO

Fraguency Banga		Pe	eak	Average		
Frequency Range (MHz)	Mode	Output Power (dBm)	Output Power (mW)	Output Power (dBm)	Output Power (mW)	
2402 - 2480	BLE (1Mbps)	6.54	4.51	6.47	4.44	
2402 - 2480	BLE (2Mbps)	6.66	4.63	6.59	4.56	
2402 - 2480	BLE (125kbps)	6.65	4.62	6.57	4.54	
2402 - 2480	BLE (500kbps)	6.66	4.63	6.57	4.54	

6.3. DESCRIPTION OF AVAILABLE ANTENNAS

The antenna(s) gain and type, as provided by the manufacturer' are as follows:

The Qualcomm Radio utilizes a PIFA antenna, with a maximum gain of 2.08 dBi.

The Left Nordic Radio utilizes a Monopole antenna, with a maximum gain of 0.66 dBi.

The Right Nordic Radio utilizes a PIFA antenna, with a maximum gain of 2.23 dBi.

6.4. SOFTWARE AND FIRMWARE

The EUT firmware installed, and the test utility software used during testing was FVIN: H-2.0.

6.5. WORST-CASE CONFIGURATION AND MODE

Radiated emissions below 1GHz, above 18GHz, and power line conducted emission were performed on (Right) radio with the EUT set to transmit at the channel with highest output power as worst-case scenario.

Band edge and radiated emissions between 1GHz and 18GHz were performed with the EUT set to transmit at the highest power on low, middle, and high channels.

The fundamental of the EUT was investigated in three orthogonal orientations X,Y,Z, it was determined that X(Flatbed) orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in X orientation.

Left and Right Nordic Radio are identical the same except antenna type and gain. Full conducted data was performed on (Right) radio and full radiated testing was performed on both Left and Right Nordic radios.

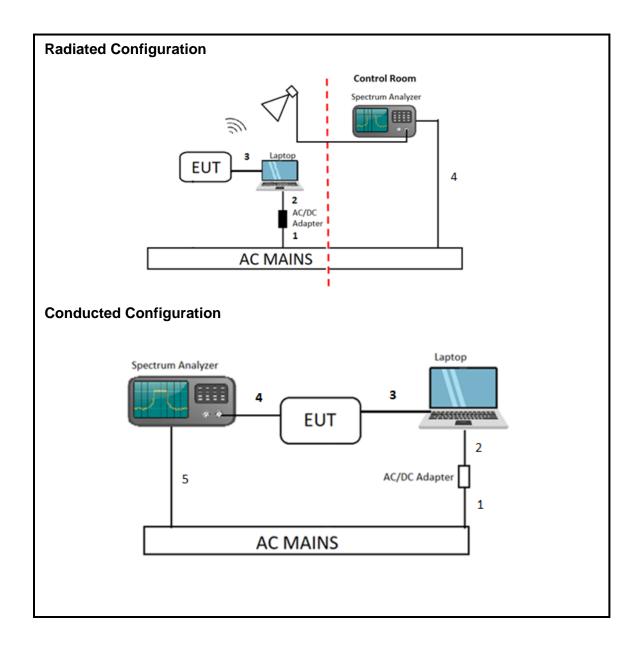
The worst-case data rate provided by the client were:

Qualcomm Radio:

- BLE: 1Mbps

Left / Right Nordic Radio:

- BLE: 1Mbps - BLE: 2Mbps - BLE: 125kbps - BLE: 500kbps


6.6. DESCRIPTION OF TEST SETUP

SUPPORT TEST EQUIPMENT								
Desc	ription	Manufacturer	Model	Serial N	Number	FCC ID/ DoC		
La	ptop	Lenovo	ThinkPad P15s Gen 2	PF-2\	PF-2YV2K6 DoC			
	o AC/DC apter	Lenovo	ADLX65Y	8SSA10R16875	C1SG09PRSHT	DoC		
			I/O CABLES (C	ONDUCTED TE	ST)			
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length (m)	Remarks		
1	AC	1	2-Prong	Un-shielded	1	AC Mains to LT AC/DC Adapter		
2	DC	1	DC	Un-shielded	1.5	AC/DC Adapter to Laptop		
3	USB	1	USB A to USB C	Un-shielded	1	Laptop to EUT		
4	SMA	1	SMA	Un-shielded	0.1	EUT to Spectrum Analyzer		
5	AC	1	3-Prong	Un-shielded	1.5	AC Mains to Spectrum Analyzer		
		I/O	CABLES (RADIA	TED TEST EMI	SSIONS)			
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length (m)	Remarks		
1	AC	1	2-Prong	Un-shielded	1	AC Mains to LT AC/DC Adapter		
2	DC	1	DC	Un-shielded	1.5	AC/DC Adapter to Laptop		
3	USB	1	USB A to USB C	Un-shielded	1	Laptop to EUT		
4	AC	1	3-Prong	Un-shielded	1.5	AC Mains to Spectrum Analyzer		

TEST SETUP

For the purposes of testing, the EUT is connected to a laptop via USB A to USB C for radiated emissions above 1GHz. The EUT is normally powered by a Li-Ion battery at 3.85V. The laptop is used for setting up purposes and was used during testing.

SETUP DIAGRAMS

DATE: 2023-11-09 IC: 10161A-HKB1

7. MEASUREMENT METHOD

On Time and Duty Cycle: ANSI C63.10 Section 11.6.

6 dB BW: ANSI C63.10 Subclause -11.8.1 RBW ≥ DTS BW

Occupied BW (99%): ANSI C63.10-2013 Section 6.9.3

Output Power: ANSI C63.10 Subclause -11.9.1.3 Method PKPM1 Peak-reading power meter

Output Power: ANSI C63.10 Subclause -11.9.2.3.2 Method AVGPM-G (Measurement using a gated RF average-reading power meter)

PSD: ANSI C63.10 Subclause -11.10.2 Method PKPSD (peak PSD)

Radiated emissions non-restricted frequency bands: ANSI C63.10 Subclause -11.11

Radiated emissions restricted frequency bands: ANSI C63.10 Subclause -11.12.1

Conducted emissions in restricted frequency bands: ANSI C63.10 Subclause -11.12.2

Band-edge: ANSI C63.10 Section 6.10

Radiated Spurious Emissions Below 30MHz: ANSI C63.10-2013 Section 6.4

8. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

	TEST EQUIPMENT LIST									
Description	Manufacturer	Model	ID Num	Cal Due	Last Cal					
Antenna, Broadband Hybrid, 30MHz to 1GHz	Sunol Sciences Corp.	JB3	232075	2024-03-31	2023-03-13					
Antenna, Horn 1-18GHz	ETS-Lindgren	3117	223083	2023-10-31	2022-10-25					
RF Filter Box, 1-18GHz	UL-FR1	n/a	197920	2024-05-31	2023-05-17					
EMI TEST RECEIVER, with B8 option	Rohde & Schwarz	ESW44	191429	2024-02-29	2023-02-15					
EMI TEST RECEIVER	Rohde & Schwarz	ESW44	225688 (chamber K)	2024-02-29	2023-02-14					
Antenna, Horn 18 to 26.5GHz	ARA	MWH-1826/B	199659	2023-12-06	2022-12-06					
Amplifier 18-26.5GHz, +5Vdc, -54dBm P1dB	AMPLICAL	AMP18G26.5- 60	234683	2024-03-29	2023-03-18					
Antenna, Passive Loop 100KHz - 30MHz	ELECTRO METRICS	EM-6872	170015	2024-07-31	2022-07-28					
Antenna, Passive Loop 30Hz - 1MHz	ELECTRO METRICS	EM-6871	170013	2024-07-31	2022-07-28					
Spectrum Analyzer, PXA, 3Hz to 44GHz	Agilent Technologies	N9030A	80396	2024-01-31	2023-01-27					
Power Meter, P-series single channel	Keysight Technologies Inc	N1911A	90754	2024-01-31	2023-01-24					
Power Sensor, P - series, 50MHz to 18GHz, Wideband	Keysight Technologies Inc	N1921A	81319	2024-01-25	2023-01-25					
10dB Fixed Attenuator	Pasternack Enterprises	PE7087-10	N/A	Verified	Verified					
	AC Lin	e Conducted								
LISN	Fischer Custom Communications, Inc	FCC-LISN- 50/250-25-2-01- 480V	175765	2024-01-31	2023-01-27					
EMI TEST RECEIVER	Rohde & Schwarz	ESR	171646	2024-02-29	2023-02-20					
Transient Limiter	TE	TBFL1	207996	2024-08-31	2023-08-10					
	UL TEST	SOFTWARE LIST								
Radiated Software	UL	UL EMC	Ver 2023-01-	18, 2023-03-03,	2023-05-01					
Antenna Port Software	UL	UL RF		/er 2022-08-16						
AC Line Conducted Software	UL	UL EMC	Rev	/ 9.5, 2022-02-1	17					

NOTES:

- Equipment listed above that calibrated during the testing period was set for test after the calibration.
- 2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

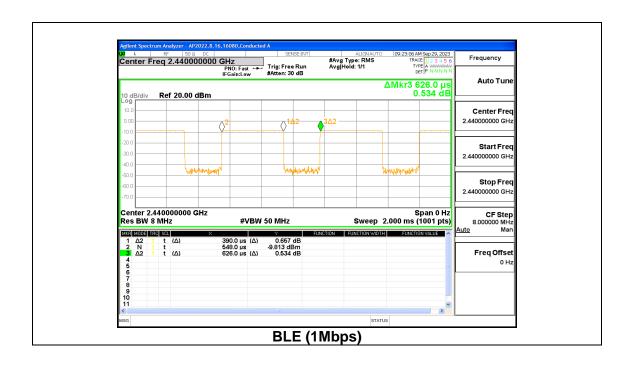
Page 16 of 155

9. ANTENNA PORT TEST RESULTS

9.1. ON TIME AND DUTY CYCLE

LIMITS

None; for reporting purposes only.


PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method.

ON TIME AND DUTY CYCLE RESULTS

9.1.1. QUALCOMM RADIO

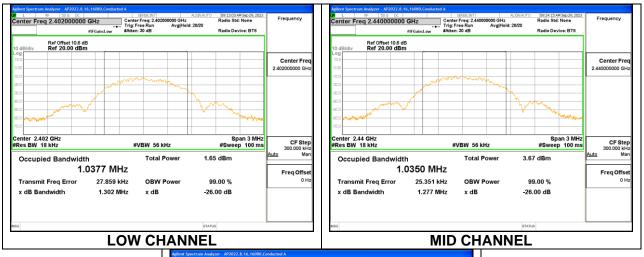
Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B
	В		x	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
2.4GHz Band						
BLE	0.390	0.626	0.623	62.30	2.06	2.564

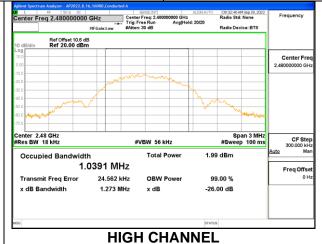
9.1.2. RIGHT NORDIC RADIO

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B
	В		x	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
2.4GHz Band						
BLE (1Mbps)	88.3	88.3	1.000	100.00%	0.00	0.010
BLE (2Mbps)	88.0	88.0	1.000	100.00%	0.00	0.010
BLE (125kbps)	85.9	85.9	1.000	100.00%	0.00	0.010
BLE (500kbps)	87.3	87.3	1.000	100.00%	0.00	0.010

9.2. 99% BANDWIDTH

LIMITS

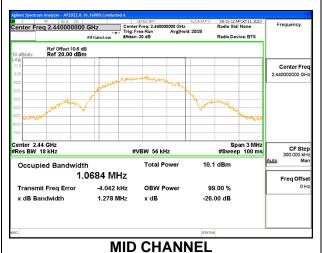

None; for reporting purposes only.


RESULTS

9.2.1. QUALCOMM RADIO

BLE (1Mbps):

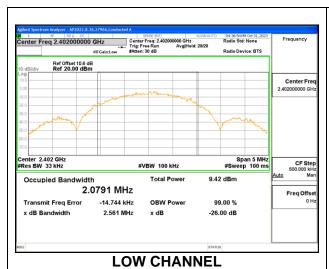
Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2402	1.0377
Middle	2440	1.0350
High	2480	1.0391

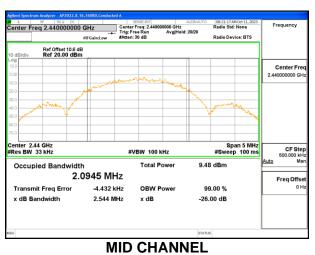


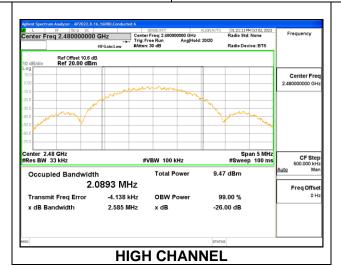
9.2.2. RIGHT NORDIC RADIO

BLE (1Mbps):

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2402	1.0706
Middle	2440	1.0684
High	2480	1.0765

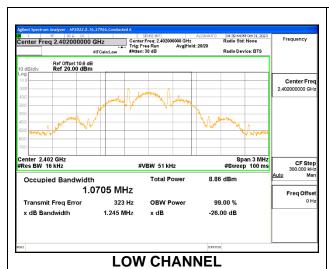


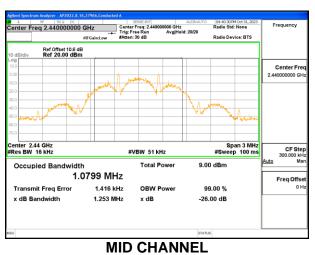

LOW CHANNEL

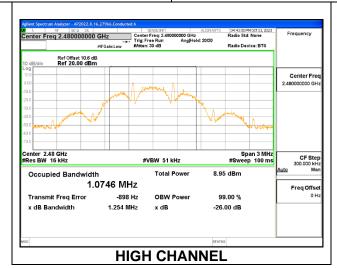

Radio Std: None Center Free CF Ste 300.000 kH #VBW 56 kHz Occupied Bandwidth **Total Power** 9.78 dBm 1.0765 MHz Freq Offse OBW Power Transmit Freq Error -3.776 kHz 99.00 % x dB Bandwidth 1.292 MHz -26.00 dB **HIGH CHANNEL**

BLE (2Mbps):

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2402	2.0791
Middle	2440	2.0945
High	2480	2.0893

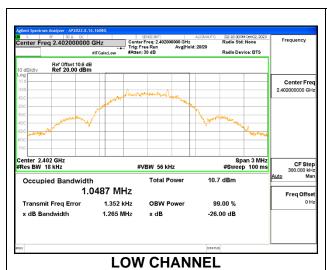


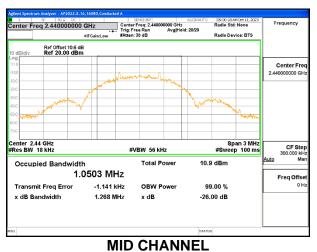


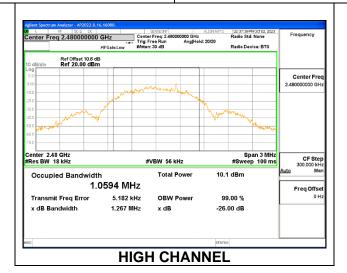


BLE (125kbps):

Channel	Frequency 99% Bandwid	
	(MHz)	(MHz)
Low	2402	1.0705
Middle	2440	1.0799
High	2480	1.0746







BLE (500kbps):

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2402	1.0487
Middle	2440	1.0503
High	2480	1.0594

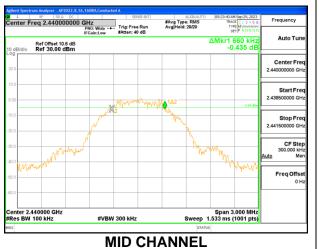
9.3. 6 dB BANDWIDTH

LIMITS

FCC §15.247 (a) (2)

RSS-247 5.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

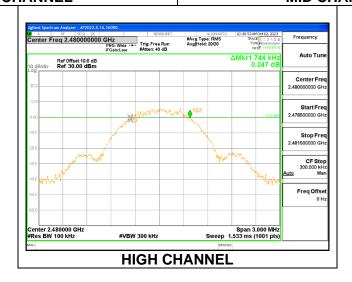

RESULTS

9.3.1. QUALCOMM RADIO

BLE (1Mbps):

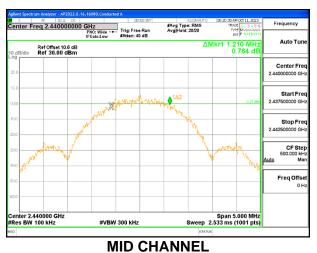
Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2402	0.657	0.5
Middle	2440	0.660	0.5
High	2480	0.678	0.5

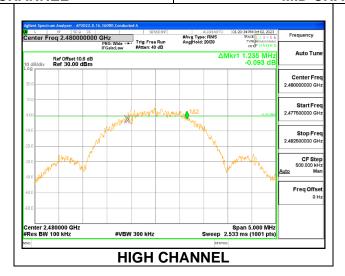



9.3.2. RIGHT NORDIC RADIO

BLE (1Mbps):

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2402	0.735	0.5
Middle	2440	0.699	0.5
High	2480	0.744	0.5





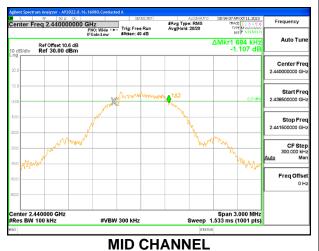
BLE (2Mbps):

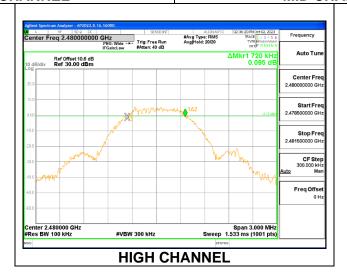
Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2402	1.310	0.5
Middle	2440	1.210	0.5
High	2480	1.235	0.5



BLE (125kbps):

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2402	0.711	0.5
Middle	2440	0.720	0.5
High	2480	0.726	0.5





BLE (500kbps):

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2402	0.753	0.5
Middle	2440	0.684	0.5
High	2480	0.720	0.5

9.4. OUTPUT POWER

LIMITS

FCC §15.247 (b) (3)

RSS-247 5.4 (d)

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The power output was measured on the EUT antenna port using SMA cable with 10dB attenuator connected to a power meter via wideband power sensor. Peak output power was read directly from the power meter.

RESULTS

Tested By:	ZS 16080	
Date:	2023-10-05	

9.4.1. QUALCOMM RADIO

BLE (1Mbps):

Channel	Frequency	Peak Power Reading	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	-0.08	30	-30.08
Middle	2440	1.83	30	-28.17
High	2480	0.26	30	-29.74

9.4.2. RIGHT NORDIC RADIO

BLE (1Mbps):

Channel	Frequency (MHz)	Peak Power Reading (dBm)	Limit (dBm)	Margin (dB)
Low	2402	6.46	30	-23.54
Middle	2440	6.54	30	-23.46
High	2480	6.50	30	-23.50

BLE (2Mbps):

Channel	Frequency	Peak Power	Limit	Margin
		Reading		
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	6.60	30	-23.40
Middle	2440	6.66	30	-23.34
High	2480	6.62	30	-23.38

BLE (125kbps):

Channel	Frequency (MHz)	Peak Power Reading (dBm)	Limit (dBm)	Margin (dB)
Low	2402	6.58	30	-23.42
Middle	2440	6.65	30	-23.35
High	2480	6.60	30	-23.40

BLE (500kbps):

Channel	Frequency (MHz)	Peak Power Reading (dBm)	Limit (dBm)	Margin (dB)
Low	2402	6.60	30	-23.40
Middle	2440	6.66	30	-23.34
High	2480	6.60	30	-23.40

9.5. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The power output was measured on the EUT antenna port using SMA cable with 10dB attenuator connected to a power meter via wideband power sensor. Gated average output power was read directly from the power meter.

RESULTS

Tested By:	ZS 16080
Date:	2023-10-05

9.5.1. QUALCOMM RADIO

BLE (1Mbps):

Channel	Frequency	AV power
	(MHz)	(dBm)
Low	2402	-0.76
Middle	2440	0.80
High	2480	-0.32

9.5.2. RIGHT NORDIC RADIO:

BLE (1Mbps):

Channel	Frequency	AV power
	(MHz)	(dBm)
Low	2402	6.39
Middle	2440	6.47
High	2480	6.43

BLE (2Mbps):

Channel	Frequency	AV power
	(MHz)	(dBm)
Low	2402	6.45
Middle	2440	6.59
High	2480	6.54

BLE (125kbps):

Channel	Frequency	AV power
	(MHz)	(dBm)
Low	2402	6.49
Middle	2440	6.57
High	2480	6.52

BLE (500kbps):

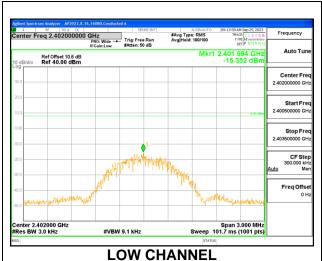
Channel	Frequency	AV power
	(MHz)	(dBm)
Low	2402	6.52
Middle	2440	6.57
High	2480	6.54

9.6. POWER SPECTRAL DENSITY

LIMITS

FCC §15.247 (e)

RSS-247 (5.2) (b)

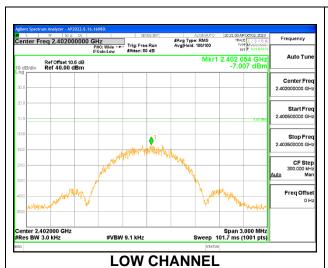

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

RESULTS

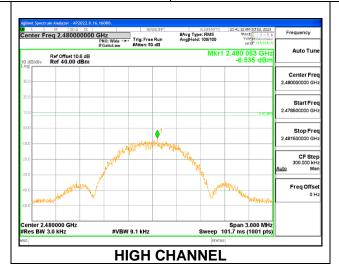
9.6.1. QUALCOMM RADIO

BLE (1Mbps):

Channel	Frequency	PSD	Limit	Margin
	(MHz)	(dBm/3kHz)	(dBm/3kHz)	(dB)
Low	2402	-15.352	8	-23.352
Middle	2440	-13.322	8	-21.322
High	2480	-15.043	8	-23.043

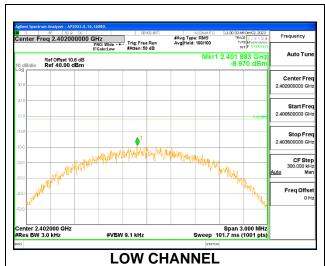


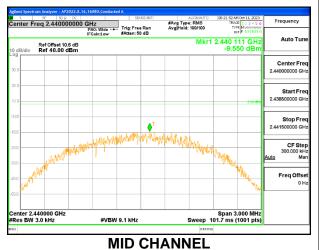

| April | September | Apri

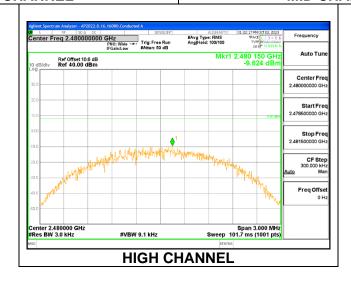

9.6.2. RIGHT NORDIC RADIO

BLE (1Mbps):

Channel	Frequency	PSD	Limit	Margin
	(MHz)	(dBm/3kHz)	(dBm/3kHz)	(dB)
Low	2402	-7.007	8	-15.007
Middle	2440	-6.760	8	-14.760
High	2480	-6.535	8	-14.535

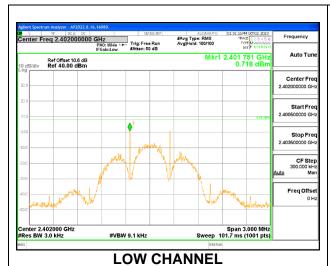






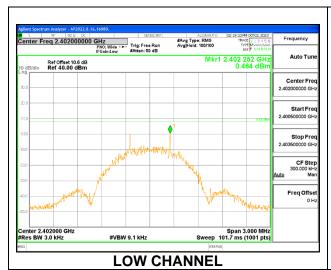
BLE (2Mbps):

Channel	Frequency	PSD	Limit	Margin
	(MHz)	(dBm/3kHz)	(dBm/3kHz)	(dB)
Low	2402	-8.970	8	-16.970
Middle	2440	-9.550	8	-17.550
High	2480	-9.624	8	-17.624



BLE (125kbps):

Channel	Frequency	PSD	Limit	Margin
	(MHz)	(dBm/3kHz)	(dBm/3kHz)	(dB)
Low	2402	0.72	8	-7.28
Middle	2440	0.85	8	-7.15
High	2480	0.75	8	-7.25



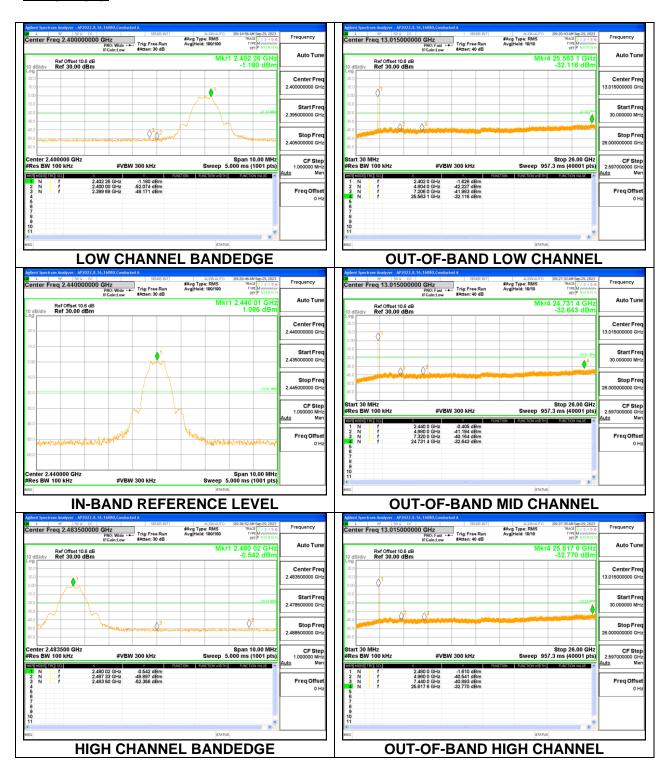
BLE (500kbps):

Channel	Frequency	PSD	Limit	Margin
	(MHz)	(dBm/3kHz)	(dBm/3kHz)	(dB)
Low	2402	0.464	8	-7.536
Middle	2440	0.590	8	-7.410
High	2480	0.489	8	-7.511

9.7. CONDUCTED SPURIOUS EMISSIONS

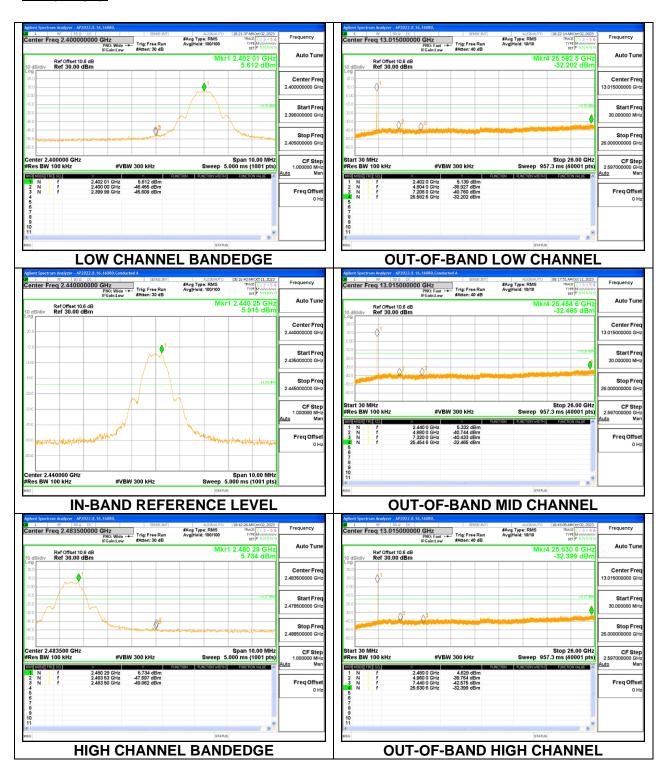
LIMITS

FCC §15.247 (d)

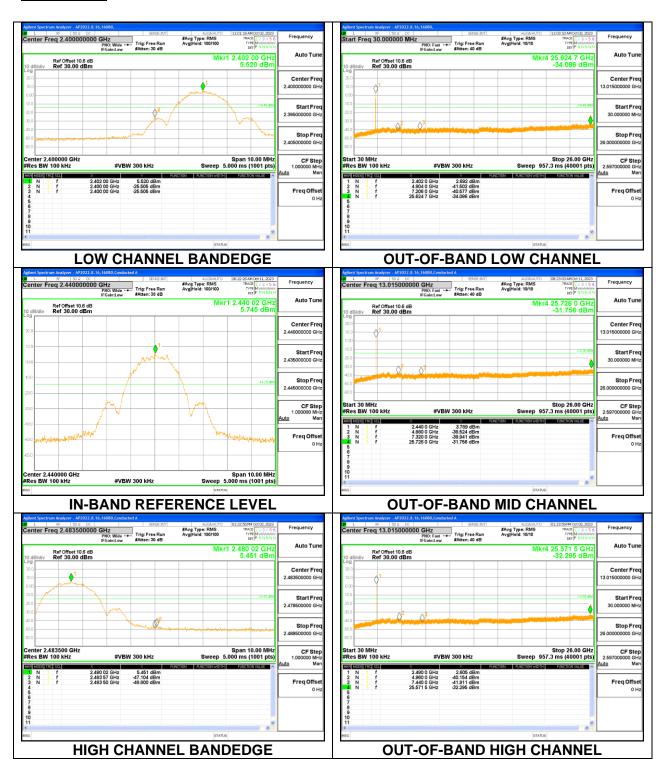

RSS-247 5.5

Output power was measured based on the use of a peak measurement; therefore the required attenuation is 20 dB.

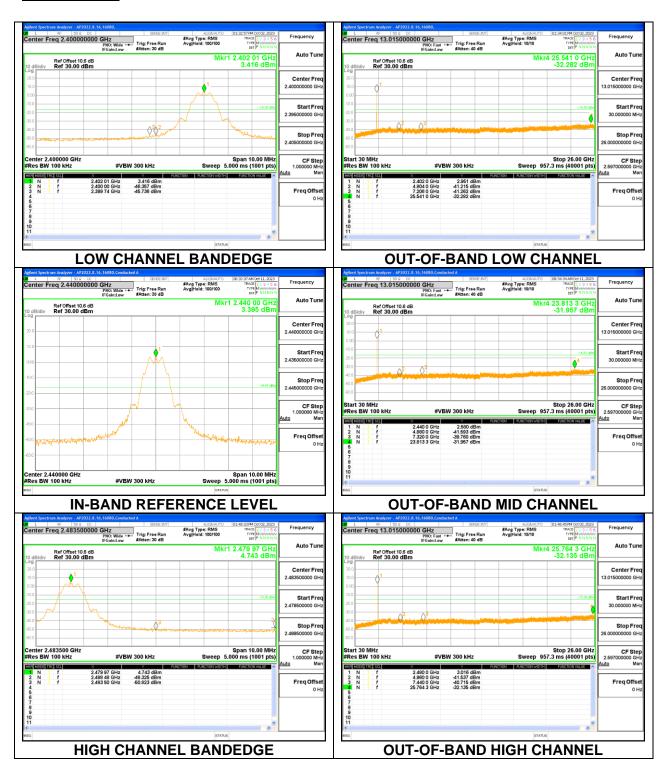
RESULTS


9.7.1. QUALCOMM RADIO

BLE (1Mbps):


9.7.2. RIGHT NORDIC RADIO

BLE (1Mbps):


DATE: 2023-11-09

BLE (2Mbps):


DATE: 2023-11-09

BLE (125kbps):

DATE: 2023-11-09

BLE (500kbps):

DATE: 2023-11-09