

DESCRIPTION OF TESTS

Radiation Hazard

A 700 ml water load was placed in the center of the oven. The power setting was set to maximum power. While the oven was operating, the Microwave Survey Meter probe was moved slowly around the door seams to check for leakage.

Input Power Measurement

A 700 mℓ water load was placed in the center of the oven and the oven set to maximum power. A 700 mℓ water load was chosen for its compatibility. Input power and current were measured using a Power Analyzer. Manufacturers to determine their input ratings commonly use this procedure.

Output Power Measurement

The Caloric Method was used to determine maximum output power. The initial temperature of a 1000 $m\ell$ water load was measured. The water load was placed in the center of the oven. The oven was operated at maximum output power for 47 seconds. Then the temperature of the water re-measured.

Frequency Measurements

Following the above test, after operating the oven long enough to assure that stable operating temperature were obtained, the operating frequency was monitored as the input voltage was varied between 80 percent to 125 percent of the nominal rating. And the load quantity was reduced by evaporation to approximately 20 % of the original quantity with nominal rating.

DESCRIPTION OF TESTS

Conducted Emissions

The Line conducted emission test facility is located inside a $4 \times 7 \times 2.5$ m shielded enclosure.

It is manufactured by EM engineering. The shielding effectiveness of the shielded room is in accordance with MIL-STD-285 or NSA 65-6.

A 1 m x 1.5 m wooden table 0.8 m height is placed 0.4 m away from the vertical wall and 0.5 m away from the side of wall of the shielded room Rohde & Schwarz (ENV216) and Rohde & Schwarz (ESH2-Z5) of the 50 ohm / 50 uH Line Impedance Stabilization Network(LISN) are bonded to the shielded room.

The EUT is powered from the Rohde & Schwarz (ENV216) LISN and the support equipment is powered from the Rohde & Schwarz (ESH2-Z5) LISN.

Power to the LISN s are filtered by high-current high insertion loss power line filters.

The purpose of filter is to attenuate ambient signal interference and this filter is also bonded to shielded enclosure. All electrical cables are shielded by tinned copper zipper tubing with inner diameter of 1/2".

If d.c. power device, power will be derived from the source power supply it normally will be powered from and this supply lines will be connected to the LISNs,

All interconnecting cables more than 1 m were shortened by non-inductive bundling (serpentine fashion) to a 1 m length.

Sufficient time for EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer to determine the frequency producing the maximum EME from the EUT. The spectrum was scanned from 150 klz to 30 Mlz with 15 s sweep time.

The frequency producing the maximum level was re-examined using the EMI test receiver. (Rohde & Schwarz ESCI).

The detector functions were set to quasi-peak mode & CISPR average mode.

The bandwidth of receiver was set to 9 klz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each EME emission.

Each emission was maximized by; switching power lines; varying the mode of operation or resolution; clock or data exchange speed; scrolling H pattern to the EUT and of support equipment, and powering the monitor from the floor mounted outlet box and computer aux a.c. outlet, if applicable; whichever determined the worst case emission.

Each EME reported was calibrated using the R&S signal generator.

Fig. 2. LISN Schematic Diagram

WINIA Electronics Co., Ltd. FCC ID: C5F7NF9GMO900N

DESCRIPTION OF TESTS

Radiated Emissions

Measurement were made indoors at 10 m & 3 m using antenna, signal conditioning unit and EMI test receiver to determine the frequency producing the maximum EME.

Appropriate precaution was taken to ensure that all EME from the EUT were maximized and investigated. The Technology configuration, clock speed, mode of operation or video resolution, turntable azimuth with respect to the antenna was note for each frequency found. The spectrum was scanned from 0.15 Mb to 30 Mb using Loop Antenna

(ROHDE & SCHWARZ/HFH2-Z2)

and from 30 Mz to 1000 Mz using TRILOG Broadband Test Antenna (Schwarzbeck, VULB 9163).

Above 1 GHz, Double Ridged Broadband Horn antenna (Schwarzbeck, HF907) was used. Final Measurements were made indoors at 3 m using Loop Antenna

(ROHDE & SCHWARZ/HFH2-Z2) for measurement from 0.15 to 30 Mb with RBW 9 kb and made indoor at 10 m using TRILOG Broadband Test Antenna (Schwarzbeck, VULB 9163) for measurement from 30 Mb to 1000 Mb with RBW 120 kb and made indoors at 3 m using Double Ridged Broadband Horn antenna (Schwarzbeck, HF907) for measurement from 1 Gb to 18 Gb with RBW 1 Mb.

The detector function were set to quasi peak mode and the bandwidth of the receiver were set to 9 kHz, 120 kHz and peak mode 1 MHz depending on the frequency or type of signal.

The Double Ridged Broadband Horn antenna was tuned to the frequency found during preliminary radiated measurements.

The EUT support equipment and interconnecting cables were re-configured to the setup producing the maximum emission for the frequency and were placed on top of a 0.8 m high non- metallic 1.0 X 1.5 meter table.

The EUT, support equipment and interconnecting cables were re-arranged and manipulated to maximize each EME emission.

The EUT is rotated about its vertical axis on the turntable, and the polarization and height of the receiving antenna are varied to obtain the highest field strength on the particular frequency under observation.

Each EME reported was calibrated using the R/S signal generator.

Fig. 3. Dimensions of 10 semi anechoic chamber

WINIA Electronics Co., Ltd. FCC ID: C5F7NF9GMO900N