

Nemko Korea Co., Ltd.

300-2, Osan-Ri, Mohyun-Myun, Cheoin-Gu, Yongin-City, Gyeonggi-Do, KOREA

TEL:+ 82 31 322 2333

FAX:+ 82 31 322 2332

FCC EVALUATION REPORT FOR CERTIFICATION

Applicant:

Daewoo Electronics Corporation

M/W oven R&D center

412-2, Cheongcheon2-Dong, Bupyeong-Gu,

Incheon, 403-032, KOREA

Attn: Mr. Seongok, Kim

Test Site: Nemko Korea Co., Ltd.

Test Report No.: NK10E191

Dates of Issue: March 05, 2010

EMC site, Korea

FCC ID

Brand Name

Contact Person

C5F7NF1NMO110N

DAEWOO, Frigidaire

Daewoo Electronics Corporation
M/W oven R&D center
412-2, Cheongcheon2-Dong, Bupyeong-Gu,
Incheon, 403-032, KOREA
Mr. Seongok, Kim

Telephone No. : + 82 32 510 7919

Applied Standard:

Part 18 & 2

Classification:

Consumer ISM equipment

EUT Type:

Microwave oven

The device bearing the brand name and FCC ID specified above has been shown to comply with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in MP-5:1986.

I attest to the accuracy of data and all measurements reported herein were performed by me or were made under my supervision a nd are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Tested By: B. J. Lim

the man os, 2010.

Engineer

Reviewed By : H. H. Kim

Manager & Chief Engineer

Daewoo Electronics Corporation FCC ID: C5F7NF1NMO110N

Page 1 of 91

TABLE OF CONTENTS

SCOPE	3
INTRODUCTION (Site Description)	4
EUT INFORMATION	5
DESCRIPTION OF TESTS (Radiation Hazard)	6
DESCRIPTION OF TESTS (Input Power Measurement)	6
DESCRIPTION OF TESTS (RF Output Power Measurement)	6
DESCRIPTION OF TESTS (Operating Frequency Measurements)	6
DESCRIPTION OF TESTS (Conducted Emissions)	7
DESCRIPTION OF TESTS (Radiated Emissions)	8
TEST DATA (Radiation Hazard)	9
TEST DATA (Input Power Measurement)	9
TEST DATA (RF Output Power Measurement)	10
TEST DATA (Operating Frequency Measurements)	11
TEST DATA (Conducted Emissions)	15
TEST DATA (Radiated Emissions)	16
PLOT OF EMISSIONS (Operating Frequency Measurements)	21
PLOT OF EMISSIONS (Conducted Emissions Diagram)	57
PLOT OF EMISSIONS (Radiated Emissions Diagram)	61
ACCURACY OF MEASUREMENT	68
LIST OF TEST EQUIPMENT	69
APPENDIX A - SAMPLE LABEL	70
APPENDIX B - PHOTOGRAPHS OF TEST SET-UP	71
APPENDIX C - EUT PHOTOGRAPHS	75
APPENDIX D - SCHEMATIC DIAGRAM	85
APPENDIX E - USER'S MANUAL	86
APPENDIX F - BI OCK DIAGRAM	87

SCOPE

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission under FCC part 18.

Responsible Party: Daewoo Electronics Corporation

Contact Person: Mr. Seongok, Kim

Tel No.: + 82 32 510 7919

Manufacturer : Daewoo Electronics Corporation

M/W oven R&D center

412-2, Cheongcheon2-Dong, Bupyeong-Gu, Incheon, 403-032,

KOREA

Factory: 1) Daewoo Electronics Corporation

981-1, Jangduck-Dong, Gwangsan-Gu, Gwangju-Shi,

506-251, KOREA

2) DAEWOO MICROWAVE OVEN CO., LTD.

Delta, Dagang District, Tianjin, China

FCC ID: C5F7NF1NMO110N

• Model: ¹⁾ KOR-1N1XB

Alternate Model: ¹⁾ KOR-1N0AB, KOR-1N4AB, ²⁾ FFCM1134LW, FFCM1134LB

Brand Name:
 DAEWOO, ²⁾ Frigidaire

• EUT Type: Microwave Oven

Applied Standard: FCC Part 18 & Part 2

Test Procedure(s): MP-5:1986

Dates of Test: February 10, 2010 to March 03, 2010
 Place of Tests: Nemko Korea Co., Ltd. EMC Site

Test Report No.: NK10E191

INTRODUCTION

The measurement procedure described in MP5:1986 for Methods of Measurement of radiated, powerline conducted radio noise, frequency and power output was used in determining emissions emanating from **Daewoo Electronics Corporation**.

FCC ID: C5F7NF1NMO110N, Microwave Oven.

These measurement tests were conducted at *Nemko Korea Co., Ltd. EMC Laboratory*. The site address is 300-2, Osan-Ri, Mohyun-Myun, Cheoin-Gu, Yongin-City, Gyeonggi-Do, KOREA

The area of Nemko Korea Corporation Ltd. EMC Test Site is located in a mountain area at 80 kilometers (48 miles) southeast and Incheon International Airport (Incheon Airport), 30 kilometers (18miles) south-southeast from central Seoul.

It is located in the valley surrounded by mountains in all directions where ambient radio signal conditions are quiet and a favorable area to measure the radio frequency interference on open field test site for the computing and ISM devices manufactures.

The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2003

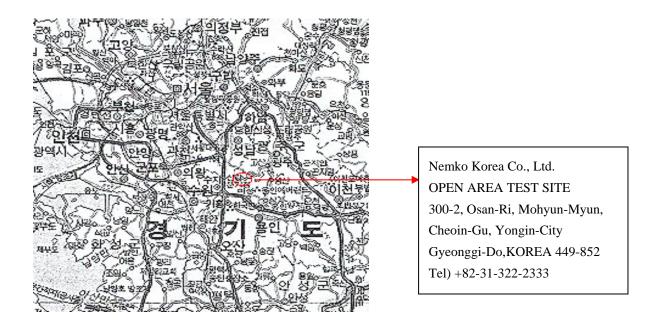


Fig. 1. The map above shows the Seoul in Korea vicinity area.

The map also shows Nemko Korea Corporation Ltd. EMC Lab and Incheon Airport.

EUT INFORMATION

EUT Information

Electric Rating: a.c. 120 V , 60 Hz	
Clock:	4 MHz
Magnetron Type :	① RM269 / Daewoo, ② RM259 / Daewoo
Operating Frequency:	2.45 GHz

DESCRIPTION OF TESTS

Radiation Hazard

A 700 ml water load was placed in the center of the oven.

The power setting was set to maximum power.

While the oven was operating, the Microwave Survey Meter probe was moved slowly around the door seams to check for leakage.

Input Power Measurement

The EUT was placed on a wooden table 0.8 m at 1 m distance Horn antenna.

A 700ml water load was placed in the center of the oven and the oven set to maximum power. A 700 ml water load was chosen for its compatibility.

Input power and current were measured using a Power Analyzer.

Manufacturers to determine their input ratings commonly use this procedure.

Output Power Measurement

The Caloric Method was used to determine maximum output power.

The initial temperature of a 1000 ml water load was measured. The water load was placed in the center of the oven. The oven was operated at maximum output power for 120 seconds. Then the temperature of the water re-measured.

Frequency Measurements

Following the above test, after operating the oven long enough to assure that stable operating temperature were obtained, the operating frequency was monitored as the input voltage was varied between 80 to 125 percent of the nominal rating.

And the load quantity was reduced by evaporation to approximately 20 % of the original quantity with nominal rating.

DESCRIPTION OF TESTS

Conducted Emissions

The Line conducted emission test facility is located inside a 4 x 7 x 2.5 meter shielded enclosure.

It is manufactured by EM engineering. The shielding effectiveness of the shielded room is in accordance with MIL-STD-285 or NSA 65-6.

A 1 m X 1.5 m wooden table 0.4 m height is placed 0.4 m away from the vertical wall and 1.5 m away from the side of wall of the shielded room

Rohde & Schwarz (ESH2-Z5) of the 50 ohm/50 uH Line Impedance Stabilization Network (LISN) is bonded to the shielded room.

The EUT is powered from the Rohde & Schwarz LISN.

Power to the LISN is filtered by high-current high insertion loss Power line filters.

The purpose of filter is to attenuate ambient signal interference and this filter is also bonded to shielded enclosure.

All electrical cables are shielded by tinned copper zipper tubing with inner diameter of 1/2 ". If DC power device, power will be derived from the source power supply it normally will be powered from and this supply lines will be connected to the LISN,

All interconnecting cables more than 1 meter were shortened by non inductive bundling (serpentine fashion) to a 1 meter length.

Sufficient time for EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer to determine the frequency producing the maximum EME from the EUT. The spectrum was scanned from 150 kHz to 30 MHz with 20 msec sweep time.

The frequency producing the maximum level was re-examined using the EMI test receiver. (Rohde & Schwarz ESCS30).

The detector function were set to CISPR quasi-peak mode & average mode.

The bandwidth of receiver was set to 9 kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each EME emission.

Each EME reported was calibrated using the R&S signal generator.

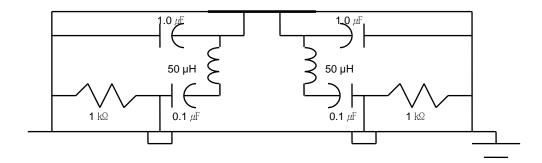


Fig. 2. LISN Schematic Diagram

DESCRIPTION OF TESTS

Radiated Emissions

Preliminary measurement were made indoors at 3 meter using broad band antennas, broadband amplifier, and spectrum analyzer to determine the frequency producing the maximum EME. Appropriate precaution was taken to ensure that all EME from the EUT were maximized and investigated. The Technology configuration, clock speed, mode of operation or video resolution, turntable azimuth with respect to the antenna was note for each frequency found. The spectrum was scanned from 0.15 to 30 MHz using Loop Antenna (EMCO/6502) and from 30 to 1000 MHz using Biconical log Antenna(ARA, LPB-2520/A).

Above 1 GHz, Double Ridged Broadband Horn antenna (Schwarzbeck, BBHA 9120 D) was used.

Final Measurements were made indoors at 3 m using Loop Antenna (EMCO/6502) for measurement from 0.15 to 30 MHz with RBW 9 kHz & VBW 9 kHz and made indoors at 3 m using Trilog-Broadband Antenna (Shwarzbeck, VULB9168) for measurement from 30 MHz to 1000 MHz with RBW 100 kHz & VBW 100 kHz and made indoors at 3 m using Double Ridged Broadband Horn antenna (Schwarzbeck, BBHA 9120 D) for measurement from 1 GHz to 25 GHz with RBW 1 MHz & VBW 1 MHz.

Each frequency found during pre-scan measurements was reexamined and investigated using EMI test receiver. (FSP40)

The detector function were set to CISPR quasi peak mode and the bandwidth of the receiver were set to 9 kHz, 100 kHz and peak mode 1 MHz depending on the frequency or type of signal.

The half wave dipole antenna was tuned to the frequency found during preliminary radiated measurements.

The EUT support equipment and interconnecting cables were re-configured to the setup producing the maximum emission for the frequency and were placed on top of a 0.8 m high non- metallic 1.0 X 1.5 meter table.

The EUT, support equipment and interconnecting cables were re-arranged and manipulated to maximize each EME emission.

The EUT is rotated about its vertical axis on the turntable, and the polarization and height of the receiving antenna are varied to obtain the highest field strength on the particular frequency under observation.

Each EME reported was calibrated using the R/S signal generator.

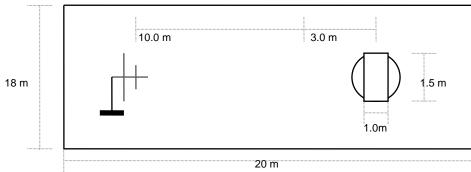
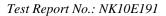



Fig. 3. Dimensions of Outdoor Test Site

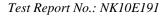
Radiation Hazard

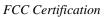
① Magnetron: RM269

Probe Location	Maximum Leakage [mW/Cm2]	Limit [mW/Cm2]
Α	0.07	1.00
В	0.06	1.00
C 0.05		1.00
D	0.03	1.00
All others	0.02	1.00

2 Magnetron: RM259

Probe Location	Maximum Leakage [mW/Cm2]	Limit [mW/Cm2]
Α	0.08	1.00
В	0.06	1.00
С	0.05	1.00
D	0.03	1.00
All others 0.02		1.00


Input Power Measurement


① Magnetron: RM269

Operation mode	P rated (W)	P (W)	dP (%)	Required dP (%)
Power Input	1600	1650	3.12	+ 15 %

② Magnetron: RM259

Operation mode	P rated (W)	P (W)	dP (%)	Required dP (%)
Power Input	1600	1635	2.18	+ 15 %

RF Output Power Measurement

① Magnetron: RM269

Quantity of Water [ml]	Starting Temperature [Centigrade]	Final Temperature [Centigrade]	Temp. Rise	Elapsed Time [seconds]	RF Power [watts]
1000	9.9	37.9	28	120	977

② Magnetron: RM259

Quantity of Water	Starting Temperature	Final Temperature	Temp. Rise	Elapsed Time	RF Power
[ml]	[Centigrade]	[Centigrade]		[seconds]	[watts]
1000	9.8	37.9	28.1	120	980

RF Power = (4.187 Joules/Cal) x (Volume in ml) x (Temp. Rise)
Time in seconds

Operating Frequency measurements

► Frequency vs Line Voltage Variation Test

① Magnetron: RM269

		[F	Room Temperature : 24.3 ೆ
Line Voltage Variation (a.c. V)	*)Pole	Frequency [MHz]	Allowed Tolerance for the ISM Band
	Н	Lower : 2416.4	
00 (00%)	Н	Upper : 2445.2	
96 (80%)	V	Lower : 2417.6	
	V	Upper : 2446.0	
108 (90%)	Н	Lower : 2466.4	
	Н	Upper : 2484.8	
	V	Lower : 2467.2	
	V	Upper : 2486.0	Lower : 2400 MHz
	Н	Lower : 2463.6	Upper : 2500 MHz
400 (4400()	Н	Upper : 2484.4	
132 (110%)	V	Lower : 2424.8	
	V	Upper : 2479.6	
150 (125%)	Н	Lower : 2459.2	
	Н	Upper : 2479.6	
	V	Lower : 2464.8	

Upper: 2483.2

② Magnetron: RM259

[Room Temperature : 24.3 ℃]

Line Voltage Variation (a.c. V)	*)Pole	Frequency [MHz]	Allowed Tolerance for the ISM Band
	Н	Lower : 2468.4	
00 (00%)	Н	Upper : 2492.4	
96 (80%)	V	Lower : 2464.0	
	V	Upper : 2492.8	
	Н	Lower : 2464.0	
400 (000()	Н	Upper : 2486.4	
108 (90%)	V	Lower : 2465.2	
	V	Upper : 2488.4	Lower : 2400 MHz
	Н	Lower : 2466.8	Upper : 2500 MHz
400 (4400)	Н	Upper : 2485.2	
132 (110%)	V	Lower : 2468.4	
	V	Upper : 2485.2	
	Н	Lower : 2465.2	
450 (4350/)	Н	Upper : 2485.2	
150 (125%)	V	Lower : 2466.8	
	V	Upper : 2485.6	

NOTE:

1. *Pol. H = Horizontal V = Vertical

2. Initial load: 1000 ml of water in the beaker.

3. Line voltage varied from a.c. 96 V to a.c. 150 V.

4. ISM Frequency : 2450 MHz, Tolerance : \pm 50 MHz

RESULT: Pass

▶ Frequency vs Load Variation Test

① Magnetron: RM269

[Room Temperature : 24.3 ℃]

[Noom Temperature . 2-				
Volume of water (ml)	*)Pole	Frequency [MHz]	Allowed Tolerance for the ISM Band	
	Н	Lower : 2470.8		
4000	Н	Upper : 2487.6		
1000	V	Lower : 2468.8		
	V	Upper : 2486.4		
	Н	Lower : 2471.6		
800	Н	Upper : 2484.8		
800	V	Lower : 2469.2		
	V	Upper : 2490.0		
	Н	Lower : 2423.6		
600	Н	Upper : 2487.6	Lower : 2400 MHz	
600	V	Lower : 2475.2	Upper : 2500 MHz	
	V	Upper : 2489.6		
	Н	Lower : 2470.0		
400	Н	Upper : 2487.2		
400	V	Lower : 2462.4		
	V	Upper : 2483.6		
	Н	Lower : 2474.8		
200	Н	Upper : 2487.6		
200	V	Lower : 2417.2		
	V	Upper : 2489.2		

② Magnetron: RM259

[Room Temperature : 24.3 ℃]

Volume of water (ml)	*)Pole	Frequency [MHz]	Allowed Tolerance for the ISM Band
	Н	Lower : 2468.0	
4000	Н	Upper : 2484.4	
1000	V	Lower : 2462.0	
	V	Upper : 2488.4	
	Н	Lower : 2474.0	
000	Н	Upper : 2488.0	
800	V	Lower : 2467.2	
	V	Upper : 2492.0	
	Н	Lower : 2458.0	
200	Н	Upper : 2483.2	Lower : 2400 MHz
600	V	Lower : 2459.6	Upper : 2500 MHz
	V	Upper : 2487.6	
	Н	Lower : 2472.4	
400	Н	Upper : 2483.6	
400	V	Lower : 2458.0	
	V	Upper : 2485.2	
	Н	Lower : 2474.4	
200	Н	Upper : 2486.4	
200	V	Lower : 2470.8	
	V	Upper : 2489.2	

NOTE:

- 1. *Pol. H = Horizontal, V = Vertical
- 2. The water load was varied between 200 ml to 1000 ml.
- 3. Frequency was measured by using nominal voltage (a.c. 120 V).
- 4. ISM Frequency : 2450 MHz, Tolerance : \pm 50 MHz

RESULT: Pass

Conducted Emissions

FCC ID: C5F7NF1NMO110N

① Magnetron: RM269

[Room Temperature : 24.8 ℃]

							•	-
Frequency	Level(dB <i>µ</i> V)		Factor	Line	Limit(dBµV)		Margin(dB)	
(MHz)	Q-Peak	Average	(dB)		Q-Peak	Average	Q-Peak	Average
0.15	47.4	20.8	0.2	L	66.0	56.0	18.6	35.2
0.18	46.7	18.1	0.2	L	64.5	54.5	17.8	36.4
0.23	47.8	19.7	0.2	L	624	52.4	14.6	32.7
0.26	49.0	20.9	0.2	N	61.4	51.4	124	30.5
0.38	52.1	22.3	0.1	N	58.3	48.3	6.2	26.0
0.42	42.1	16.8	0.1	N	57.4	47.4	15.3	30.6

2 Magnetron: RM259

[Room Temperature : 24.8 ℃]

Frequency	Level(dB <i>µ</i> ∛)		Factor	Line	Limit(dB <i>µ</i> V)		Margin(dB)	
(MHz)	Q-Peak	Average	(dB)		Q-Peak	Average	Q-Peak	Average
0.15	44.8	17.4	0.2	L	66.0	56.0	21.2	38.6
0.17	44.3	17.8	0.2	L	65.0	55.0	20.7	37.2
0.25	51.0	22.3	0.2	L	61.8	51.8	10.8	29.5
0.28	53.1	24.1	0.2	L	60.8	50.8	7.7	26.7
0.34	42.5	18.1	0.2	L	59.2	49.2	16.7	31.1
0.40	41.0	16.6	0.1	N	57.9	47.9	16.9	31.3

NOTES:

- 1. Measurements using CISPR quasi-peak mode & average mode.
- 2. If no frequencies are specified in the tables, no measurement for quasi-peak or average was necessary.
- 3. See attached Plots.
- 4. Line : L = Line , N = Neutral
- 5. The limit for consumer device is on the FCC Part section 18.307(b).

Radiated Emissions

FCC ID: C5F7NF1NMO110N

▶ 0.15 MHz ~ 30 MHz

① Magnetron: RM269

[Room Temperature : 24.9 °C]

Frequency	Reading	Pol*	AF+CL+Amp	Result	Limit	Margin			
(MHz)	(dB <i>μ</i> V)	(H/V)	(dB)**	(dB <i>μ</i> ∛/m)	(dB <i>μ</i> ∛/m)	(dB)			
The level was under 20 dB below limit.									

<Radiated Measurements at 3 meters>

2 Magnetron: RM259

[Room Temperature : 24.9 ℃]

Frequency	Reading	Pol*	AF+CL+Amp	Result	Limit	Margin			
(MHz)	(dB <i>µ</i> V)	(H/V)	(dB)**	(dB <i>μ</i> ∛/m)	(dB <i>µ</i> ∛/m)	(dB)			
The level was under 20 dB below limit.									

<Radiated Measurements at 3 meters>

NOTES:

- 1. *Pol. H = Horizontal V = Vertical
- 2. **AF + CL + Amp. = Antenna Factor + Cable Loss + Amplifier.
- 3. Distance Correction factor : 20 * log (300 / 3) = 40 dBuV/m
- 4. The limit at 300 meters is 20 * log (25 * SQRT (RF Power / 500))
- 5. All other emissions were measured while a 700 ml load was placed in the center of the oven.
- 6. See attached Plots.
- 7. The limit for consumer device is on the FCC Part section 18.305.

Radiated Emissions

FCC ID: C5F7NF1NMO110N

 $(dB\mu V/m)$

Pol*

(H/V)

Antena

Heights (cm)

▶ 30 MHz ~ 1 GHz

① Magnetron: RM269

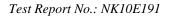
Frequency Reading

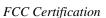
(MHz)

[Room Temperature : 20.8 ℃] Limit Turntable AF+CL+Amp Result Margin (dB)** (dB*μ*V/m) $(dB\mu V/m)$ (dB) 17.3 70.8 53.5 70.8 20.1 50.7

192.96 30.4 130 90 -13.1 251.16 ٧ 33.7 190 300 -13.6 457.77 29.6 Н 130 90 -8.6 21.0 70.8 49.8 471.35 29.8 Н 160 30 -8.4 21.4 70.8 49.4 510.15 28.1 Н 130 0 -8.2 19.9 70.8 50.9 846.74 27.7 Н 130 150 -3.0 24.7 70.8 46.1

Angles (°)


<Radiated Measurements at 3 meters>


② Magnetron: RM259

[Room Temperature : 20.8 °C1

						Nooiii Teii		<u> </u>
Frequency	Reading	Pol*	Antena	Turntable	AF+CL+Amp	Result	Limit	Margin
(MHz)	(dB <i>µ</i> V/m)	(H/V)	Heights(cm)	Angles (°)	(dB)**	(dB <i>⊭</i> V/m)	(dB <i>⊭</i> V/m)	(dB)
232.73	31.9	Н	160	90	-13.4	18.5	70.8	52.3
277.35	31.5	Н	130	210	-12.5	19.0	70.8	51.8
332.64	30.5	Н	190	180	-11.2	19.3	70.8	51.5
449.04	30.7	Н	130	0	-8.8	21.9	70.8	48.9
455.83	32.0	Н	130	0	-8.6	23.4	70.8	47.4
497.54	30.2	Н	190	30	-8.2	22.0	70.8	48.8

<Radiated Measurements at 3 meters>

NOTES:

- 1. *Pol. H = Horizontal V = Vertical
- 2. **AF + CL + Amp. = Antenna Factor + Cable Loss + Amplifier.
- 3. Distance Correction factor : 20 * log (300/3) ≒ 40 dBuV/m
- 4. The limit at 300 meters is 20 * log (25 * SQRT (RF Power/500))
- 5. All other emissions were measured while a 700 ml load was placed in the center of the oven.
- 6. If no frequencies are specified in the tables, no measurement for peak with RBW 120 kHz & VBW 10 Hz.
- 7. The limit for consumer device is on the FCC Part section 18.305.

Radiated Emissions

FCC ID: C5F7NF1NMO110N

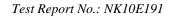
► Above 1 GHz

① Magnetron: RM269

[Room Temperature : 23.7 $\,^{\circ}\mathbb{C}$]

	[.teem.remperatare.rem o]									
Frequency	Pol*	Antena Heights	Turntable Angles	Reading Level	Total Loss**	Result at 3 m		к	Results at 300 m	Limits at 300 m
(MHz)	(H/V)	(cm)	(°)	(dB ⁄⊮)	(dB)	(dB <i>⊭</i> l/m)	(<i>⊭</i> V/m)		(<i>⊭</i> V/m)	(<i>⊭</i> V/m)
4966.07	٧	130	15	38.5	8.6	47.1	226.5	0.01	2.3	34.9
6930.00	Н	160	300	45.8	13.3	59.1	901.6	0.01	9.0	34.9
9918.67	٧	160	255	39.2	19.1	58.3	822.2	0.01	8.2	34.9
10185.80	٧	130	330	29.2	19.8	49.0	281.8	0.01	2.8	34.9
14885.23	Н	160	15	33.2	25.6	58.8	871.0	0.01	8.7	34.9
17376.55	٧	130	30	32.4	30.9	63.3	1462.2	0.01	14.6	34.9

<Radiated Measurements at 3 meters>

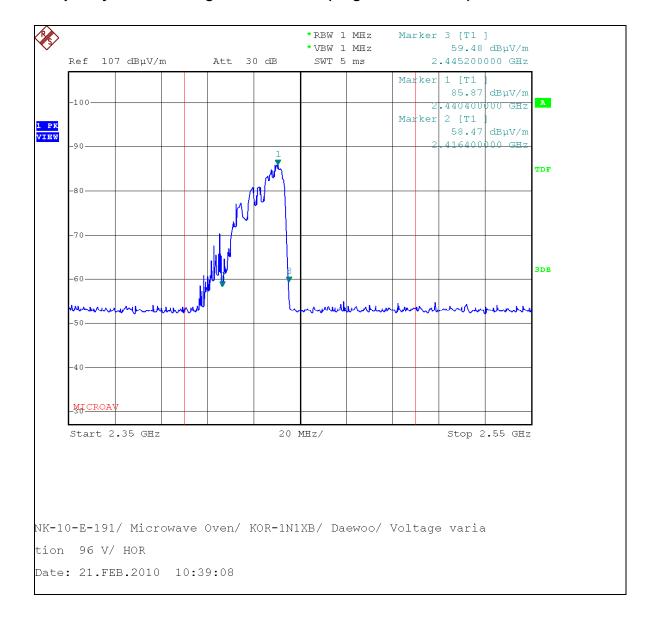

② Magnetron: RM259

[Room Temperature : 23.7 ℃]

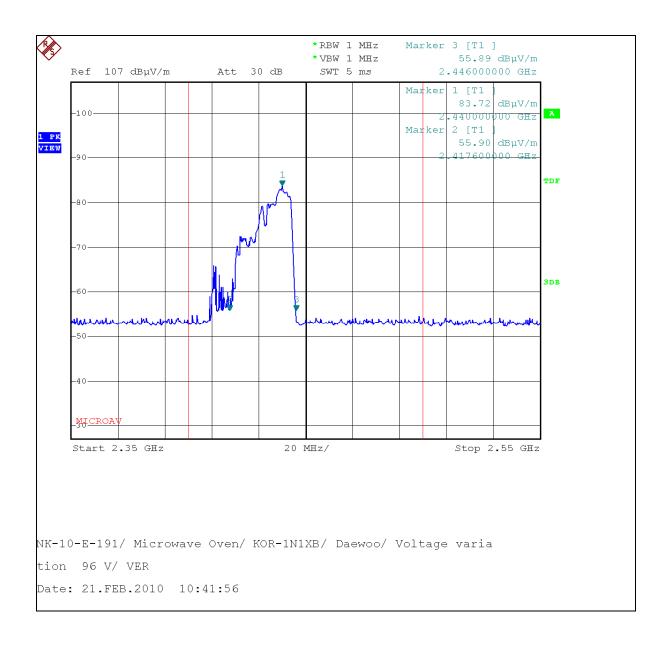
Frequency	Pol*	Antena Heights	Turntable Angles	Reading Level	Total Loss**	Result at 3 m		к	Results at 300 m	Limits at 300 m
(MHz)	(H/V)	(cm)	(°)	(dB ⊭V)	(dB)	(dB <i>⊭</i> l/m)	(<i>⊭</i> V/m)		(<i>⊭</i> ∛/m)	(<i>⊭</i> V/m)
4957.32	Н	160	240	33.8	8.6	42.4	131.8	0.01	1.3	35.0
7447.27	Н	130	30	34.3	15.0	49.3	291.7	0.01	2.9	35.0
9942.21	Н	130	60	42.8	19.2	62.0	1258.9	0.01	12.6	35.0
12398.41	٧	160	345	28.3	23.6	51.9	393.6	0.01	3.9	35.0
14890.80	Н	160	60	31.2	25.5	56.7	683.9	0.01	6.8	35.0
17376.49	٧	160	210	30.9	30.9	61.8	1230.3	0.01	12.3	35.0

<Radiated Measurements at 3 meters>

NOTES:

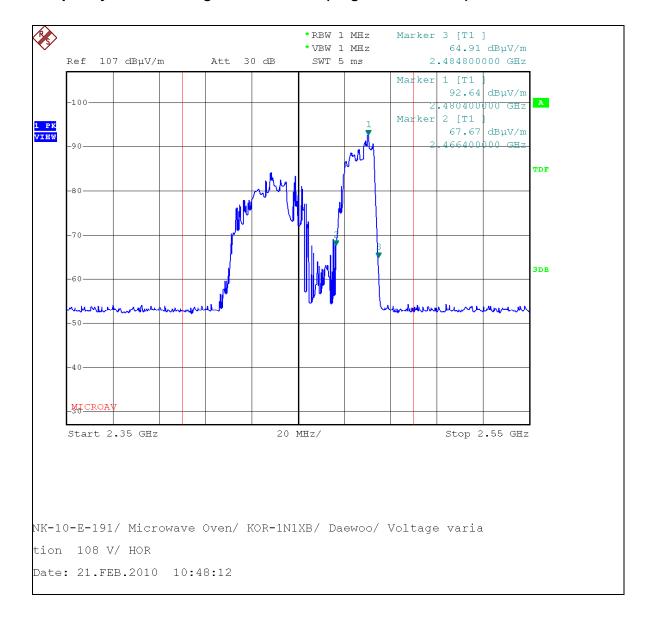


- 1. * Pol. H =Horizontal V=Vertical
- 2. ** Total Loss = Antenna Factor + Cable Loss + Amplifier + HPF (High Pass Filter)
- 3. Field Strength (at 300 m) (uV/m) = $K * 10^{\text{[Fieldstrength at 3 m (dBuV/m)/20]}}$
- 4. The limit at 300 meters is 25 * SQRT (RF Power/500)
- 5. Load for measurement of radiation on second and third harmonic: Two loads, one of 700 ml and the other of 300 ml, of water were used. Each load was tested both with the beaker located in the center of the oven and with it in the corner.
- 6. The test was performed at peak detector mode with average.
- 7. If no frequencies are specified in the tables, no measurement for peak with RBW 1 MHz & VBW 10 Hz.
- 8. The limit for consumer device is on the FCC Part section 18.305.

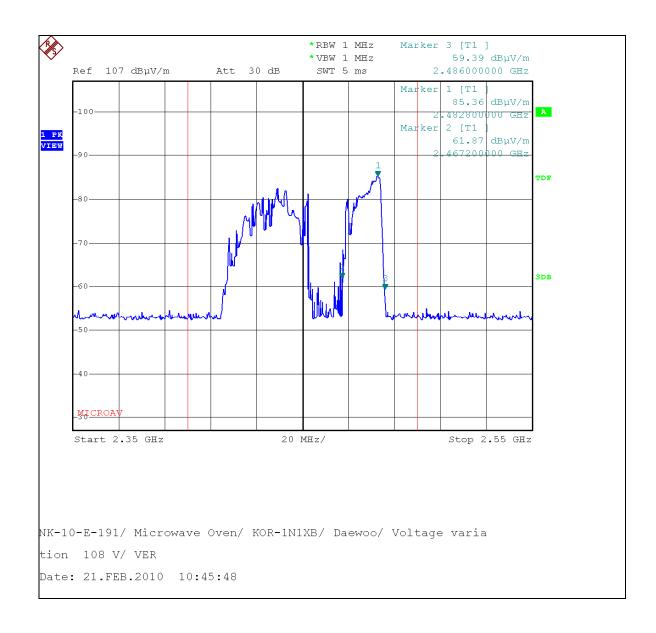


• Frequency vs Line Voltage Variation Test (Magnetron : RM269)

Magnetron: RM269_Horizontal (96 V, 1000 ml)

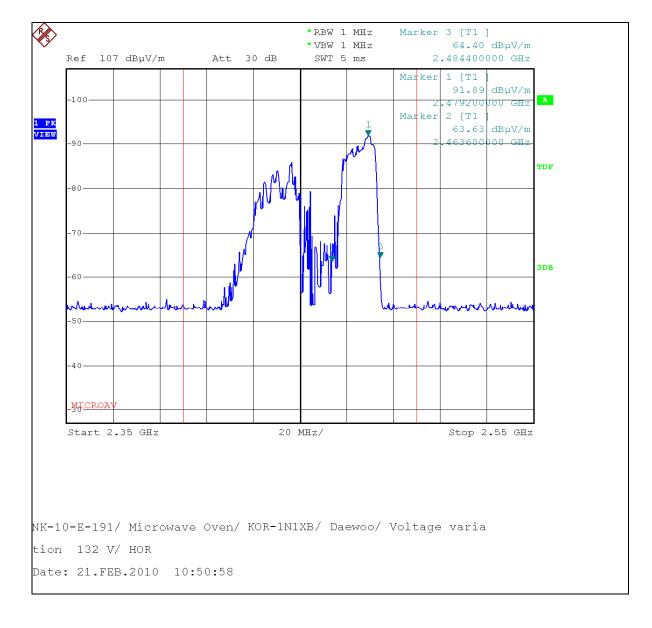


Magnetron: RM269_Vertical (96 V, 1000 ml)

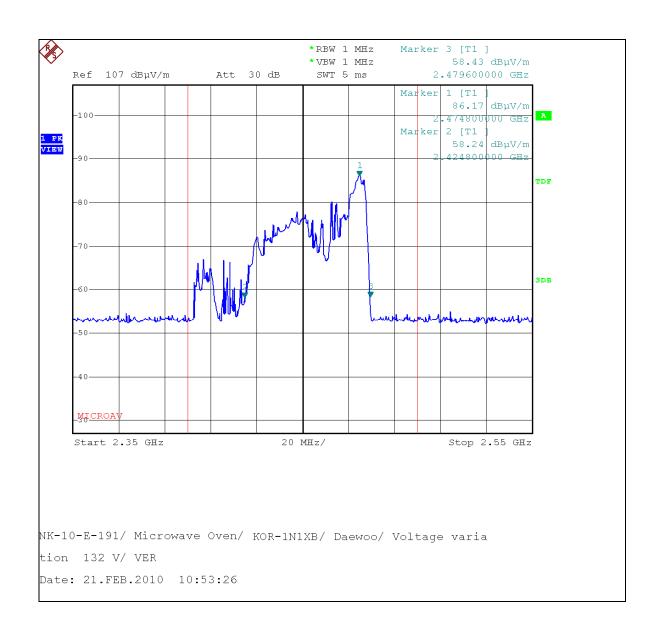


• Frequency vs Line Voltage Variation Test (Magnetron : RM269)

Magnetron: RM269_Horizontal (108 V, 1000 ml)

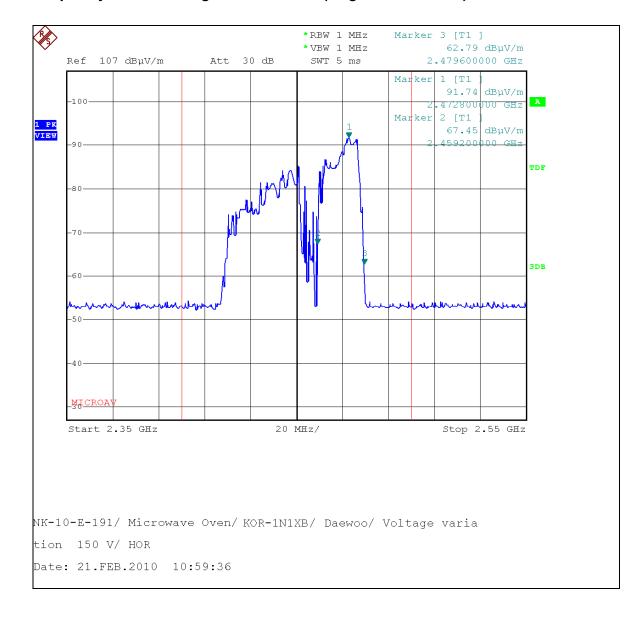


Magnetron: RM269_Vertical (108 V, 1000 ml)

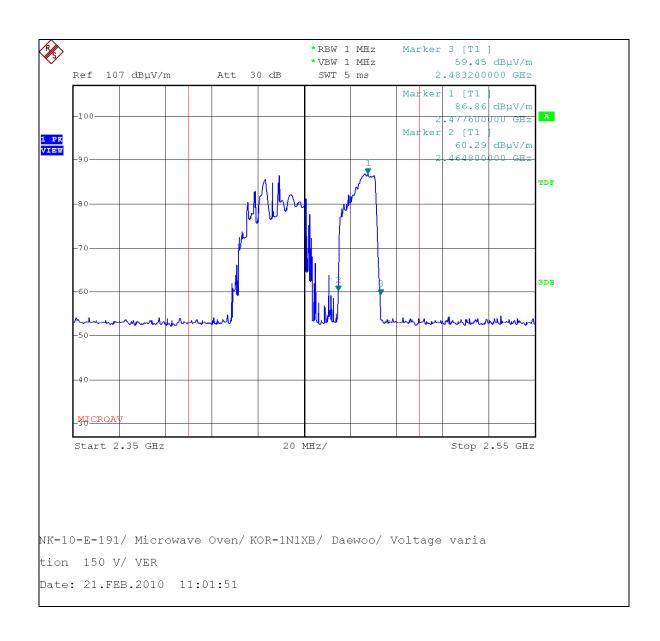


• Frequency vs Line Voltage Variation Test (Magnetron : RM269)

Magnetron: RM269_Horizontal (132 V, 1000 ml)



Magnetron: RM269_Vertical (132 V, 1000 ml)

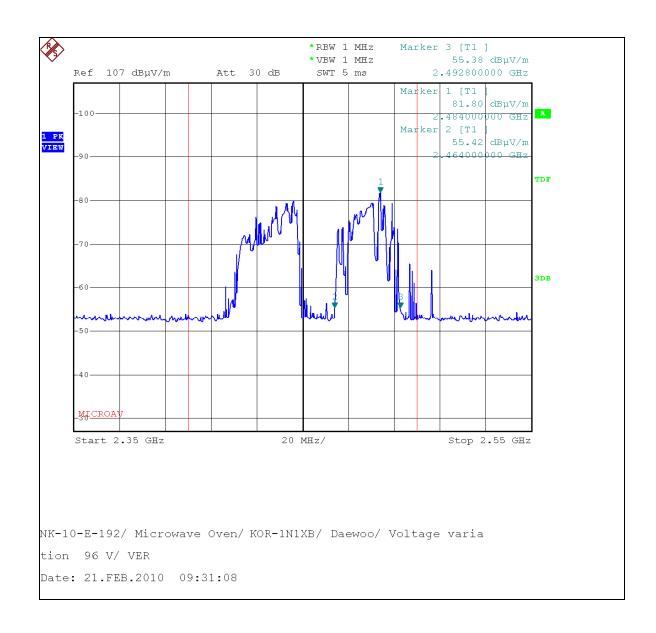


• Frequency vs Line Voltage Variation Test (Magnetron : RM269)

Magnetron: RM269_Horizontal (150 V, 1000 ml)

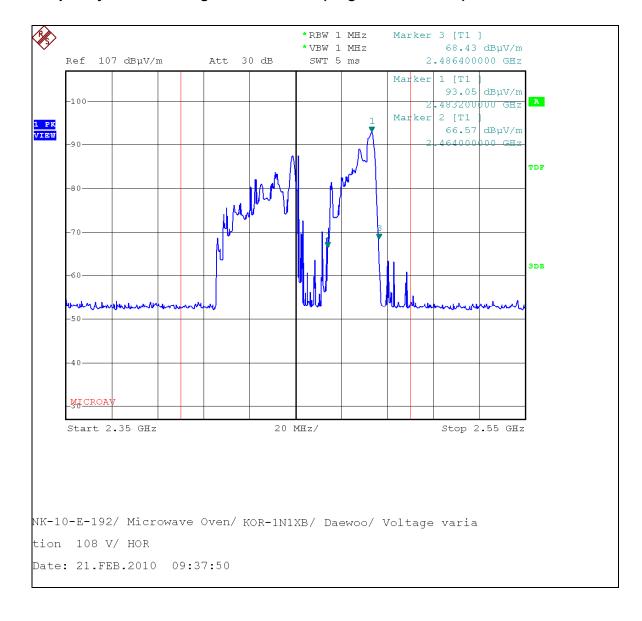


Magnetron: RM269_Vertical (150 V, 1000 ml)

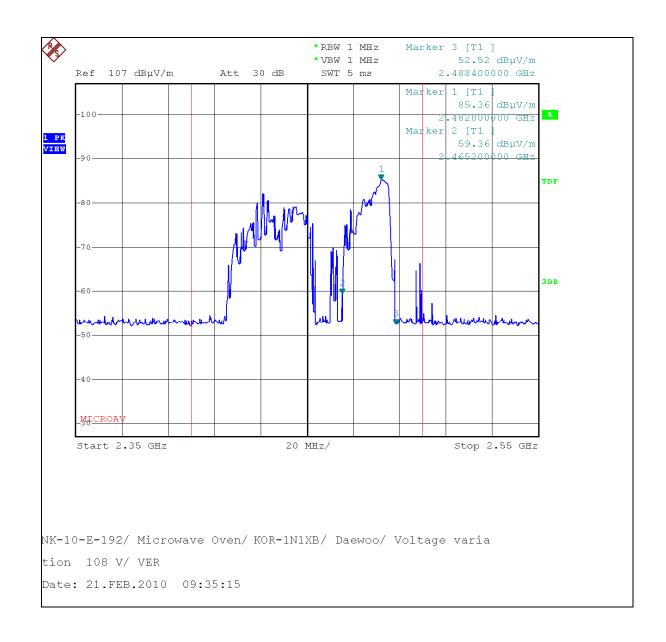


• Frequency vs Line Voltage Variation Test (Magnetron : RM259)

Magnetron: RM259_Horizontal (96 V, 1000 ml)

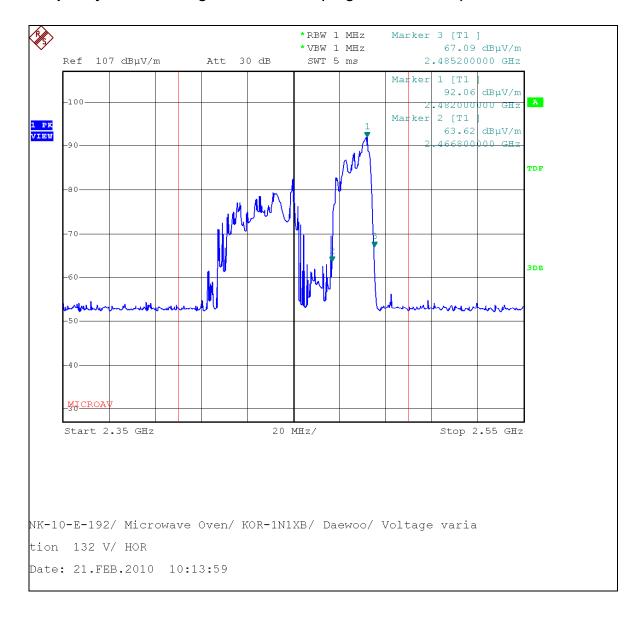


Magnetron: RM259_Vertical (96 V, 1000 ml)



• Frequency vs Line Voltage Variation Test (Magnetron : RM259)

Magnetron: RM259_Horizontal (108 V, 1000 ml)

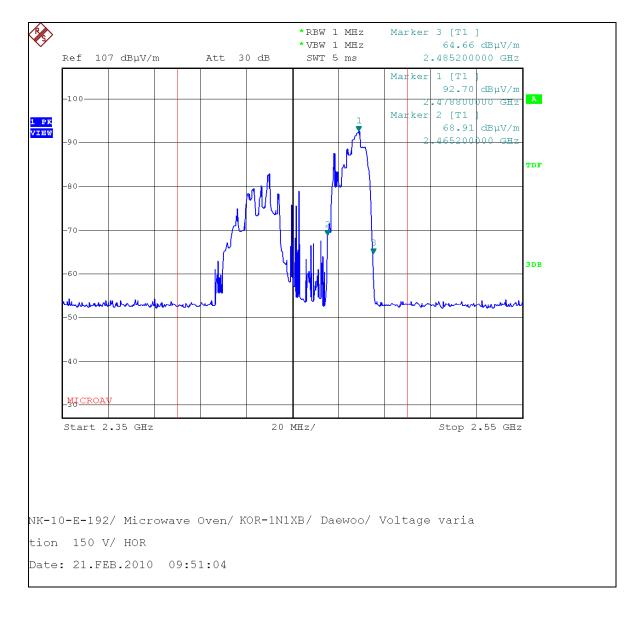


Magnetron: RM259_Vertical (108 V, 1000 ml)

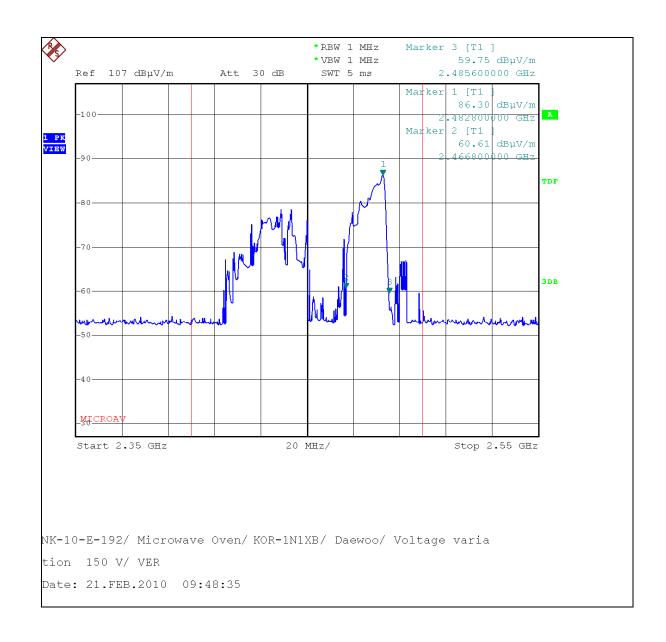


• Frequency vs Line Voltage Variation Test (Magnetron : RM259)

Magnetron: RM259_Horizontal (132 V, 1000 ml)

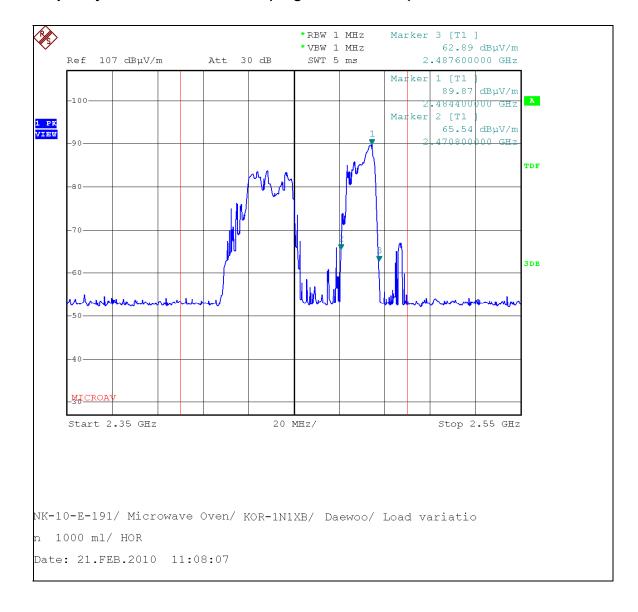


Magnetron: RM259_Vertical (132 V, 1000 ml)

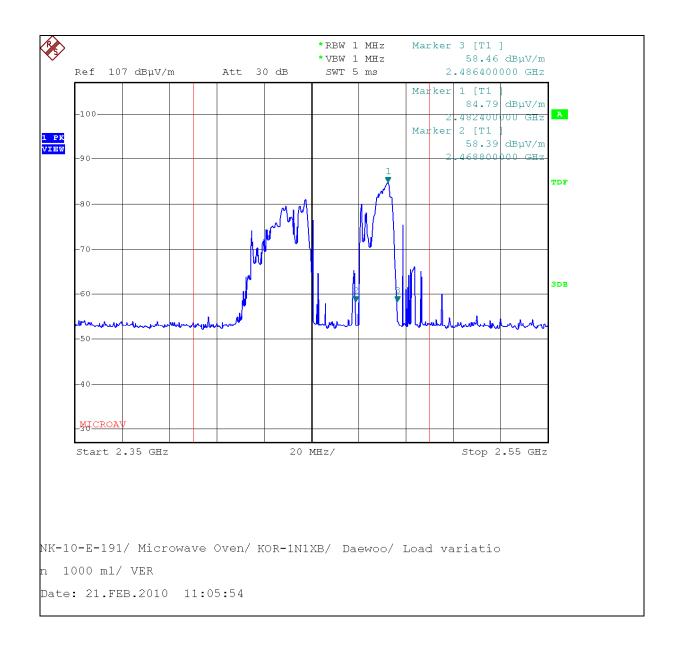


• Frequency vs Line Voltage Variation Test (Magnetron : RM259)

Magnetron: RM259_Horizontal (150 V, 1000 ml)

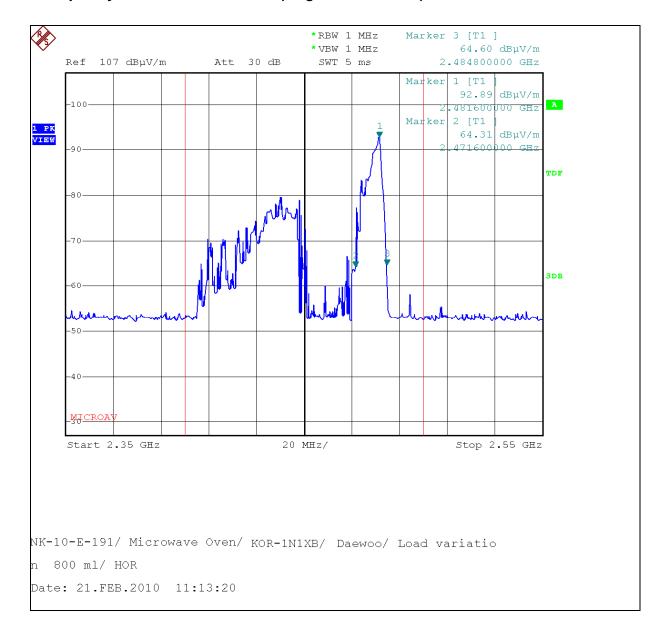


Magnetron: RM259_Vertical (150 V, 1000 ml)

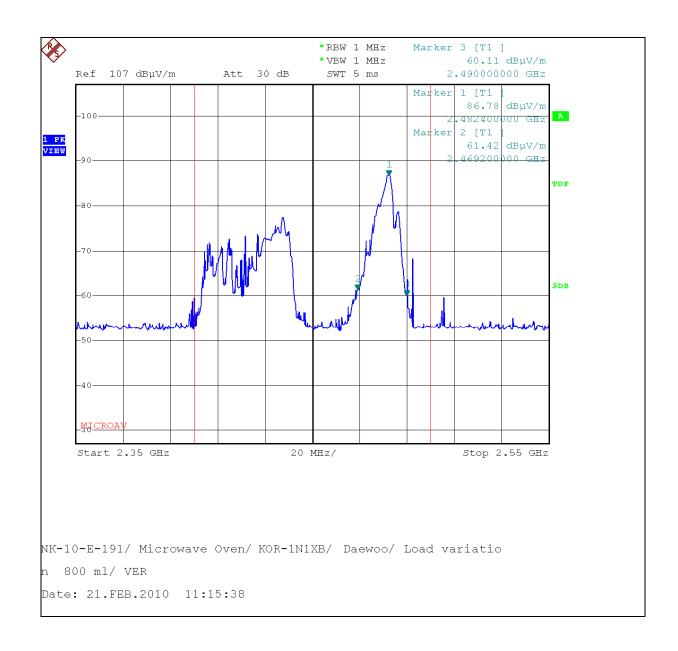


• Frequency vs Load Variation Test (Magnetron : RM269)

Magnetron: RM269_Horizontal (120 V, 1000 ml)

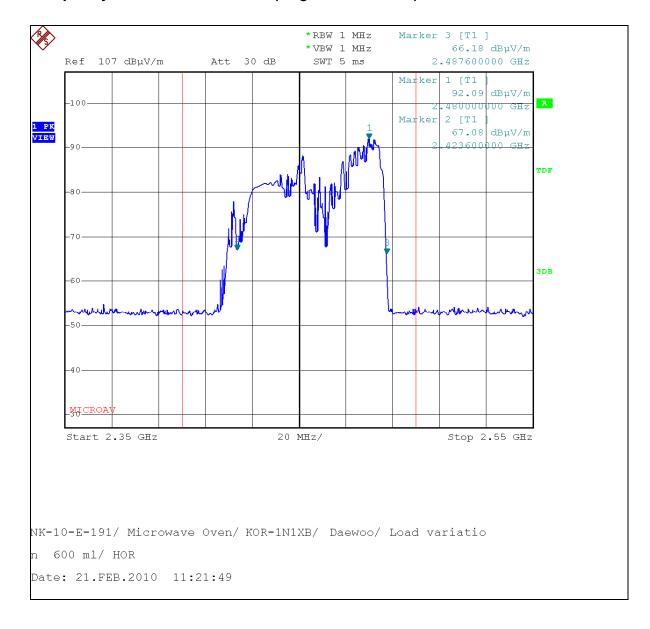


Magnetron: RM269_Vertical (120 V, 1000 ml)

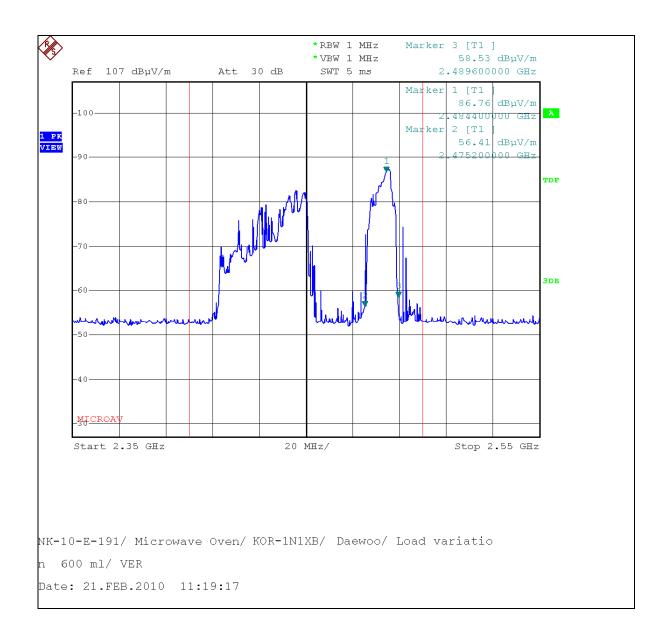


• Frequency vs Load Variation Test (Magnetron : RM269)

Magnetron: RM269_Horizontal (120 V, 800 ml)

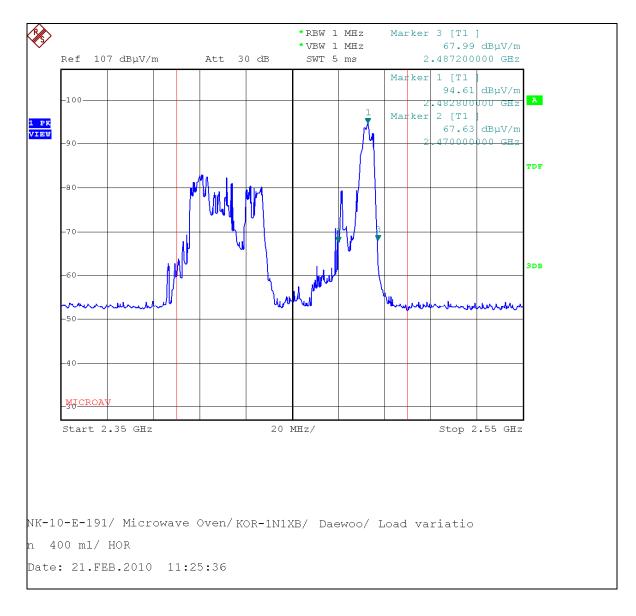


Magnetron: RM269_Vertical (120 V, 800 ml)

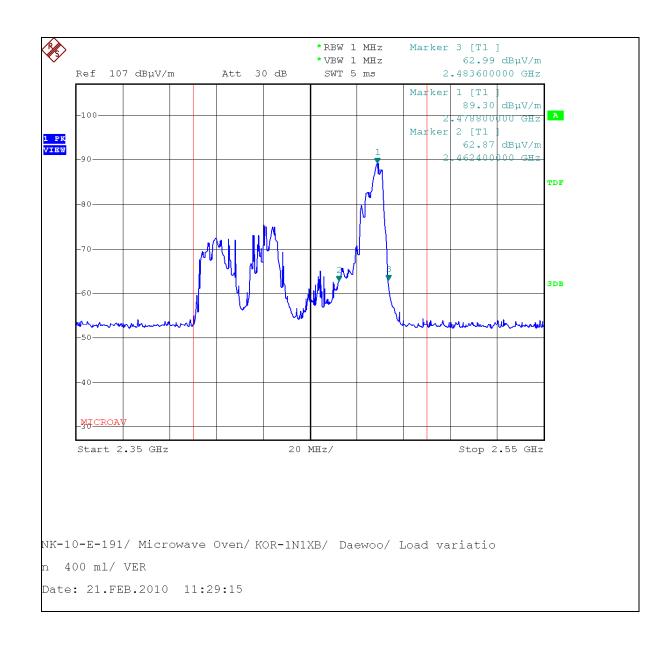


• Frequency vs Load Variation Test (Magnetron : RM269)

Magnetron: RM269_Horizontal (120 V, 600 ml)

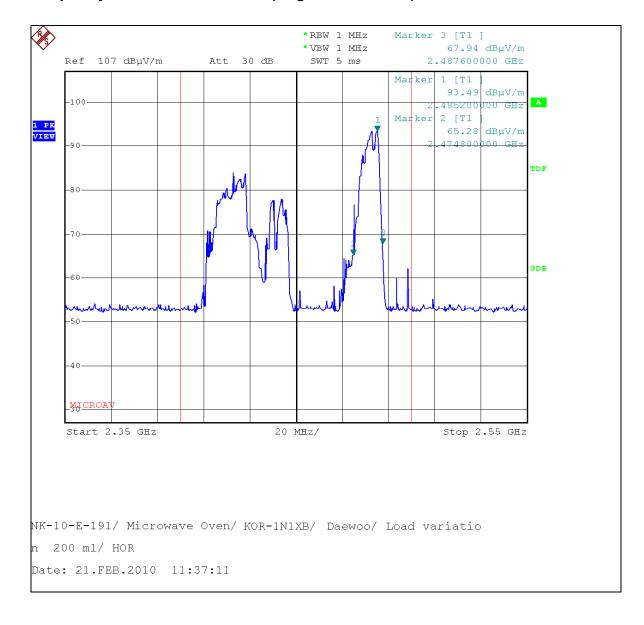


Magnetron: RM269_Vertical (120 V, 600 ml)

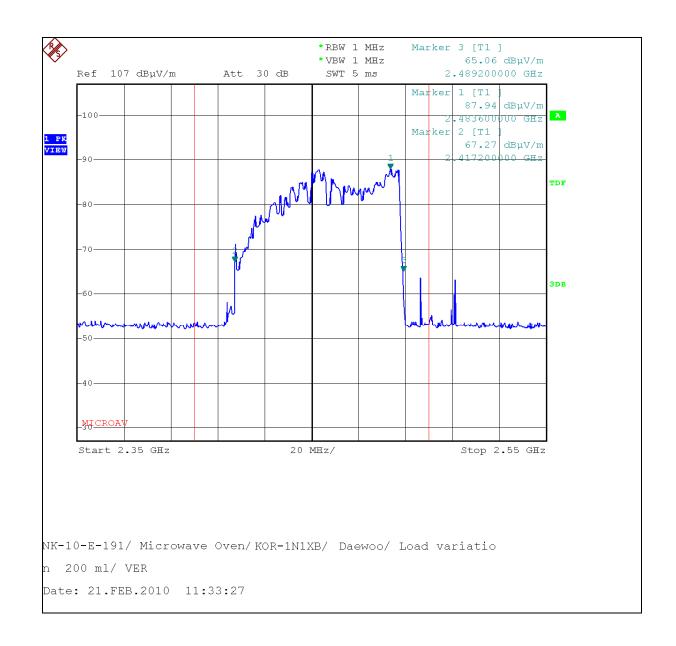


• Frequency vs Load Variation Test (Magnetron : RM269)

Magnetron: RM269_Horizontal (120 V, 400 ml)

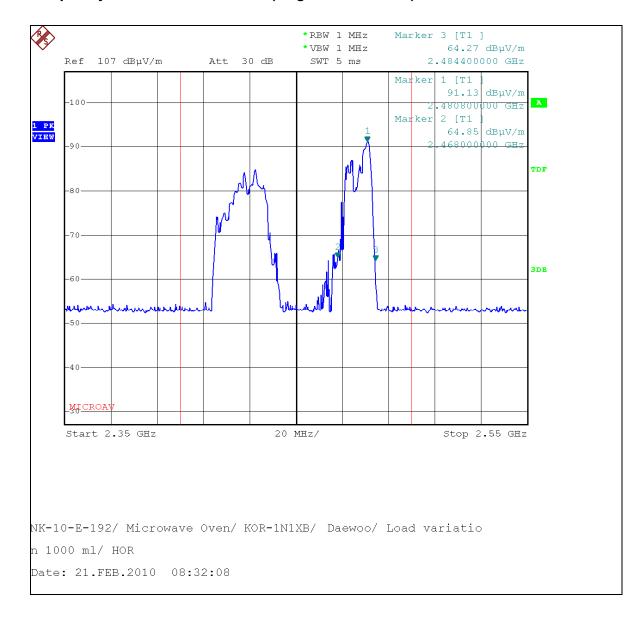


Magnetron: RM269_Vertical (120 V, 400 ml)

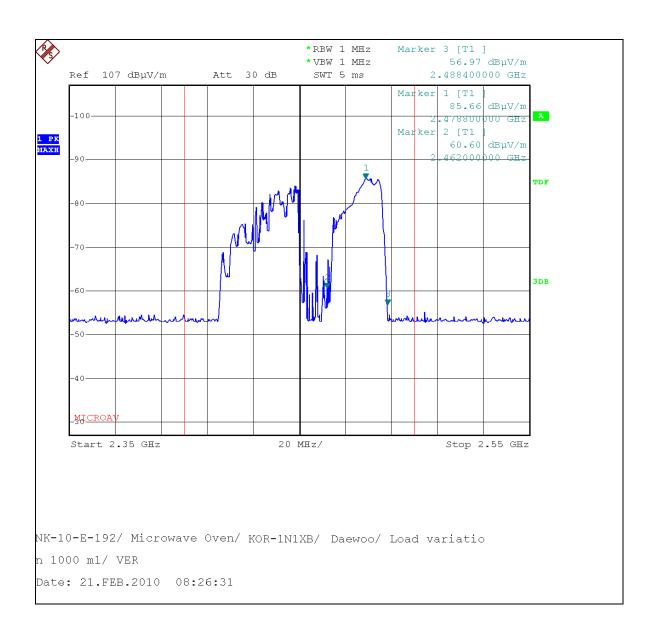


• Frequency vs Load Variation Test (Magnetron : RM269)

Magnetron: RM269_Horizontal (120 V, 200 ml)

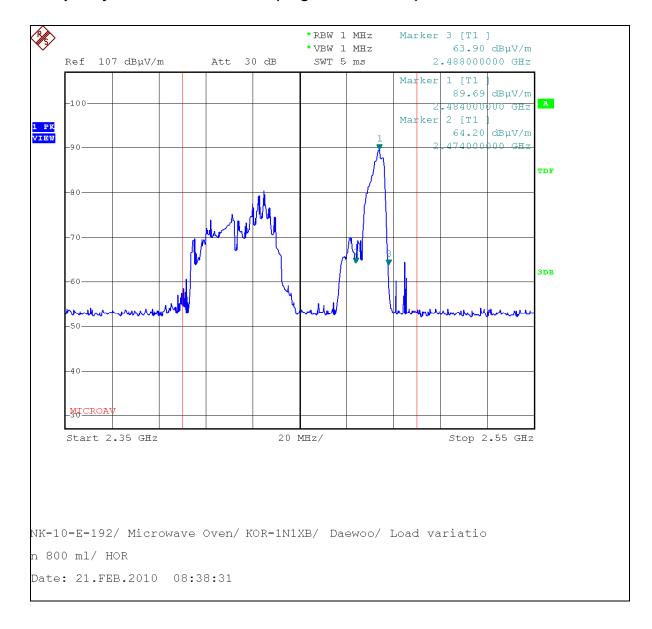


Magnetron: RM269_Vertical (120 V, 200 ml)

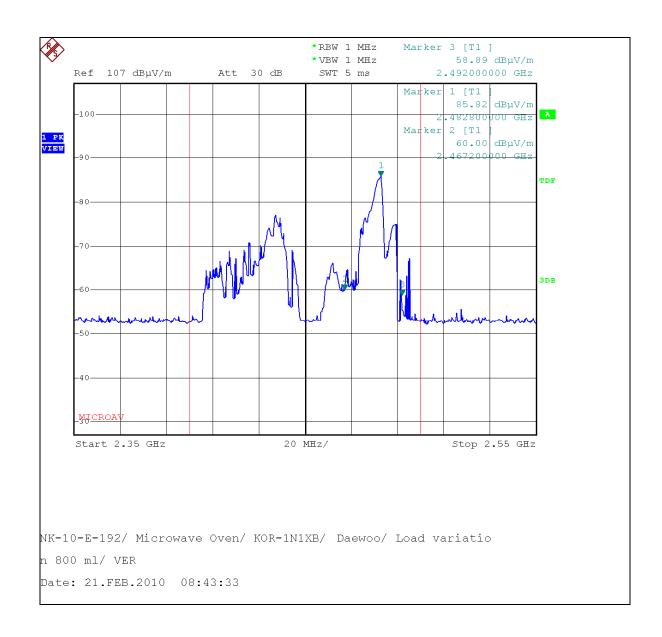


• Frequency vs Load Variation Test (Magnetron : RM259)

Magnetron: RM259_Horizontal (120 V, 1000 ml)

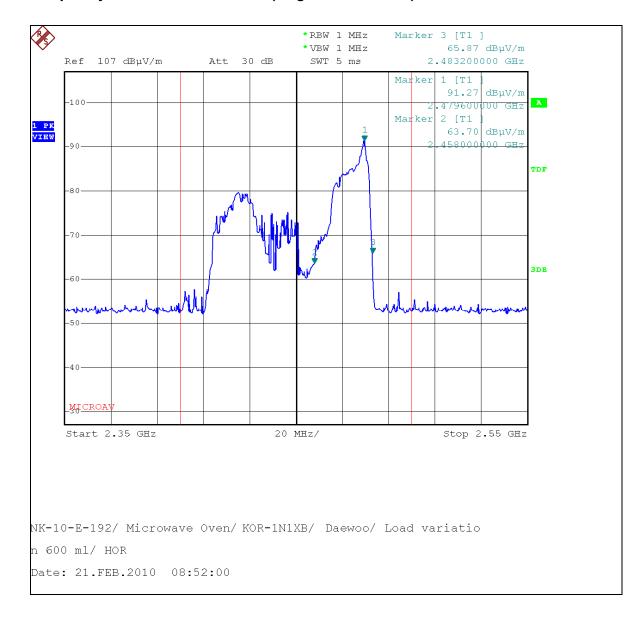


Magnetron: RM259_Vertical (120 V, 1000 ml)

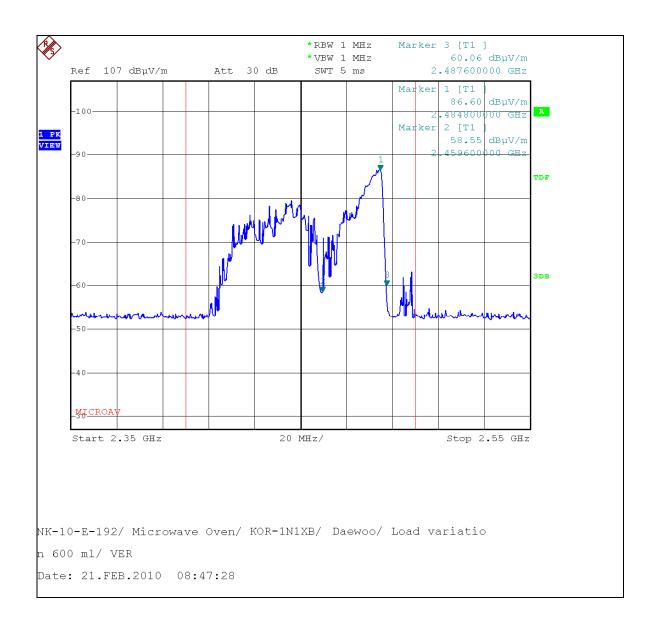


• Frequency vs Load Variation Test (Magnetron : RM259)

Magnetron: RM259_Horizontal (120 V, 800 ml)

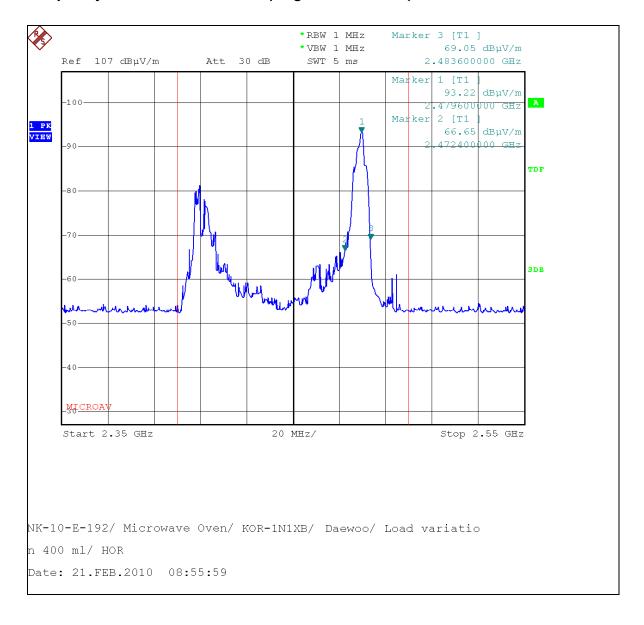


Magnetron: RM259_Vertical (120 V, 800 ml)

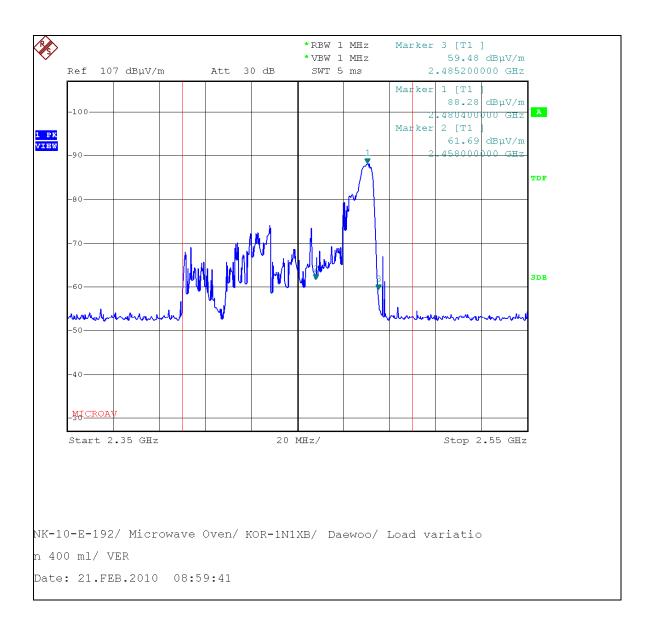


• Frequency vs Load Variation Test (Magnetron : RM259)

Magnetron: RM259_Horizontal (120 V, 600 ml)

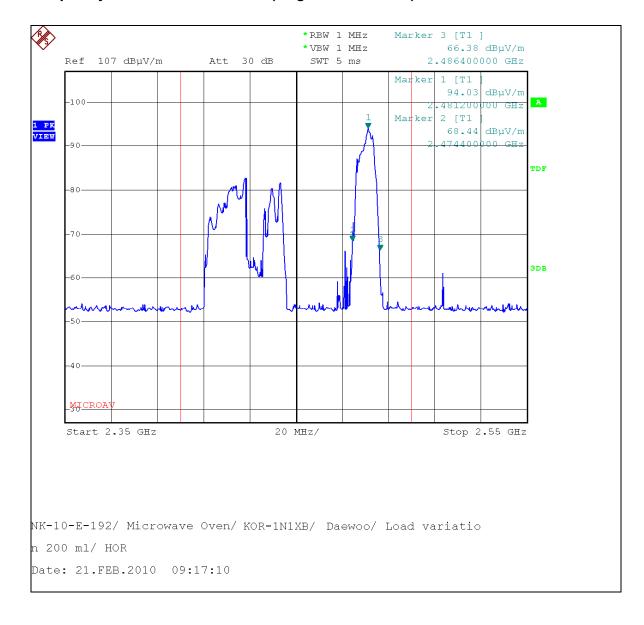


Magnetron: RM259_Vertical (120 V, 600 ml)

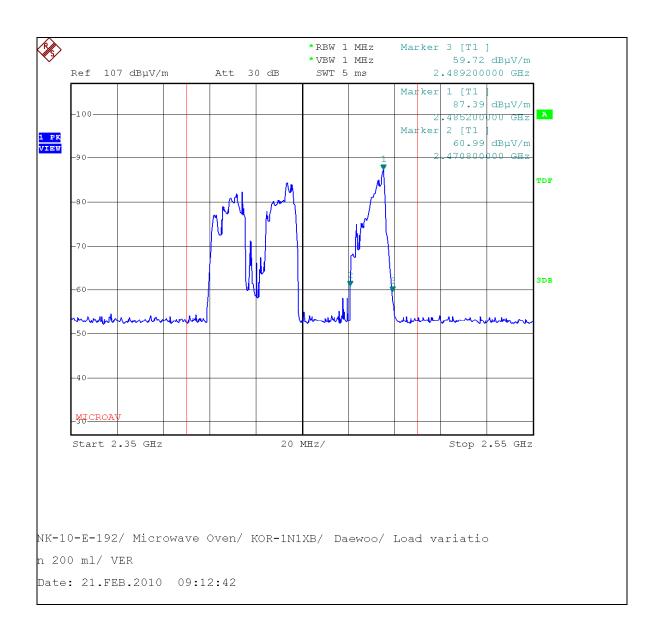


• Frequency vs Load Variation Test (Magnetron : RM259)

Magnetron: RM259_Horizontal (120 V, 400 ml)

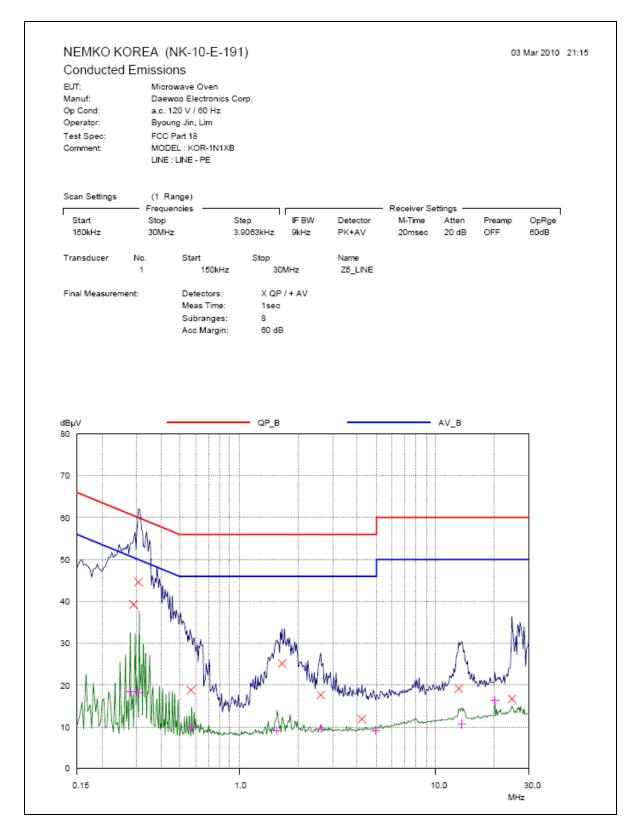


Magnetron: RM259_Vertical (120 V, 400 ml)

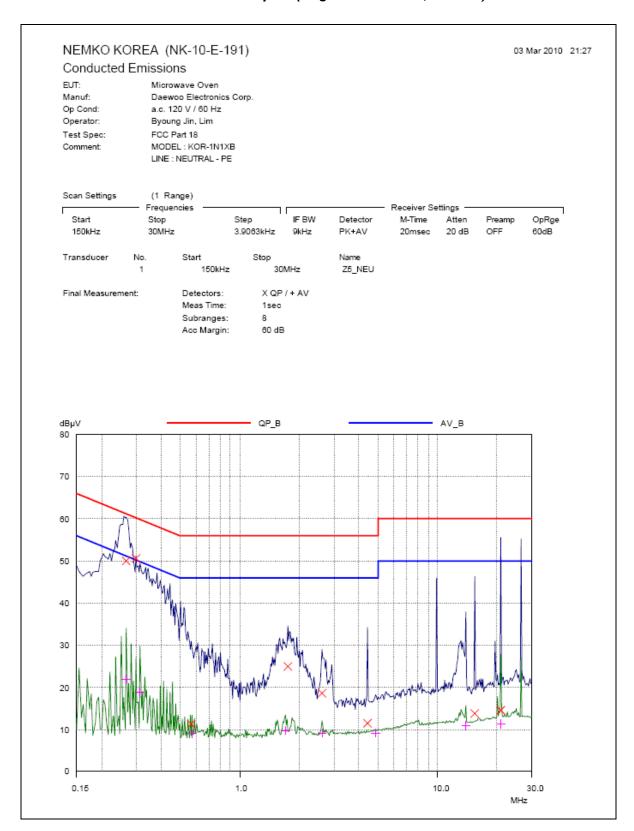


• Frequency vs Load Variation Test (Magnetron : RM259)

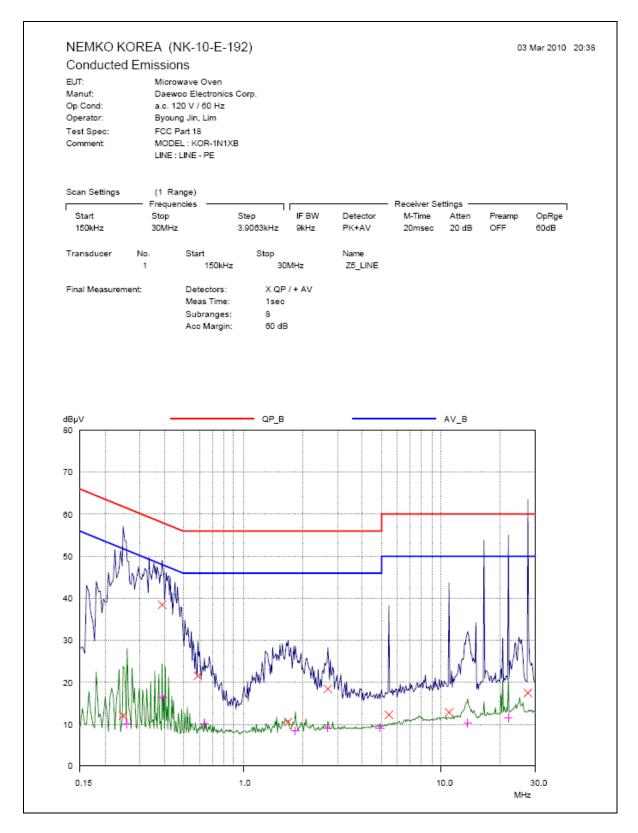
Magnetron: RM259_Horizontal (120 V, 200 ml)



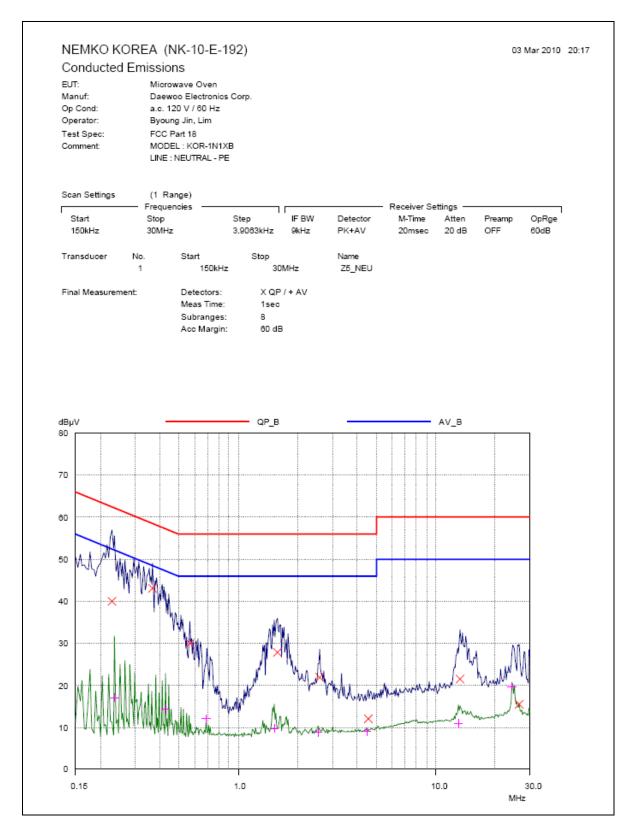
Magnetron: RM259_Vertical (120 V, 200 ml)



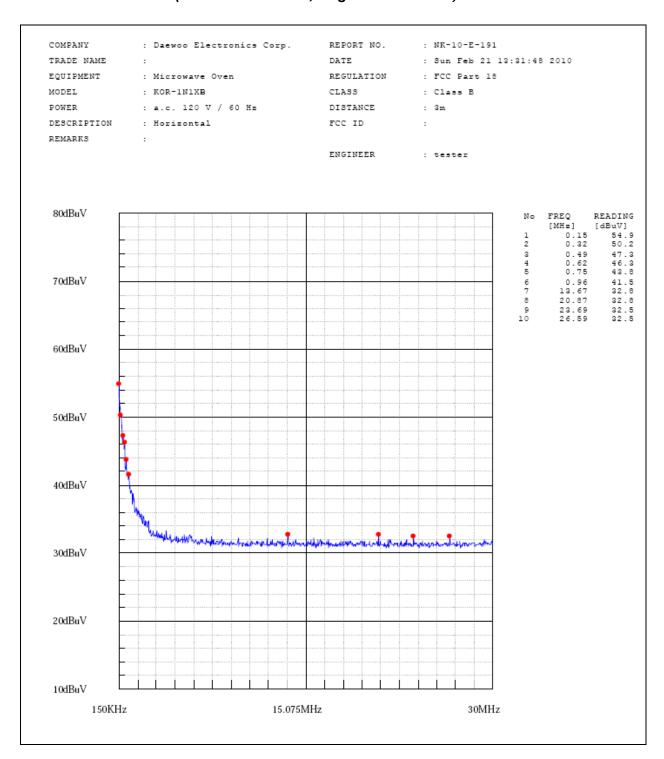
• Conducted Emission at the Mains port (Magnetron : RM269, Line)



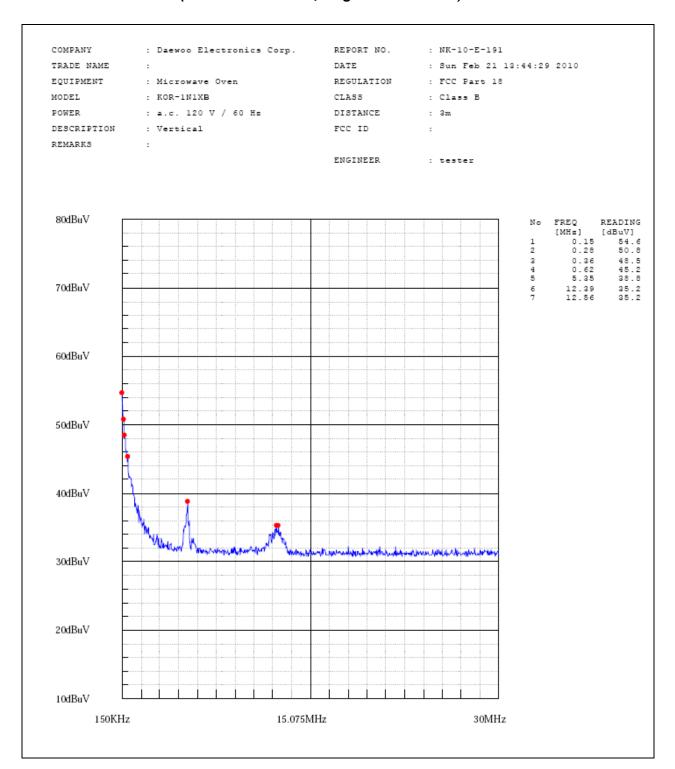
Conducted Emission at the Mains port (Magnetron : RM269, Neutral)



Conducted Emission at the Mains port (Magnetron : RM259, Line)



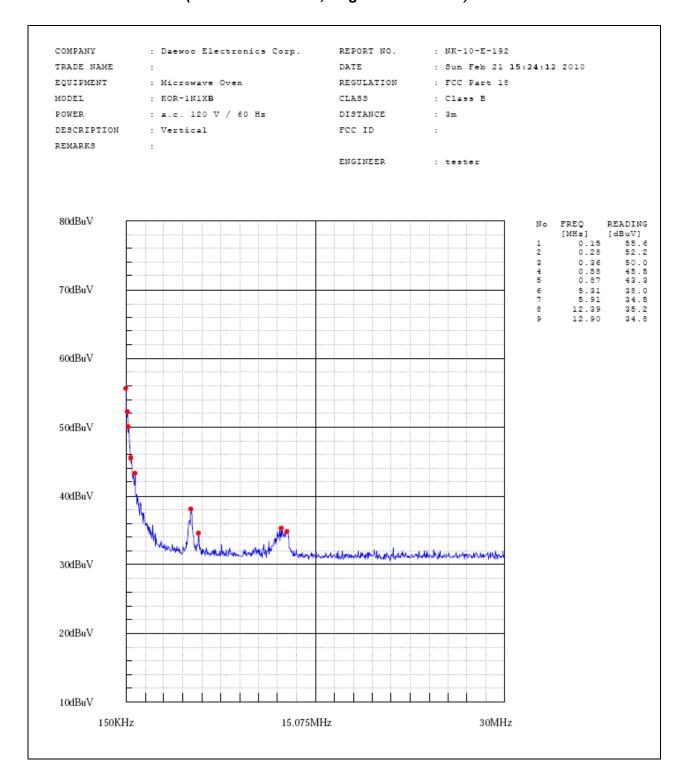
Conducted Emission at the Mains port (Magnetron : RM259, Neutral)


• Radiated Emission (0.15 MHz ~ 30 MHz, Magnetron : RM269)

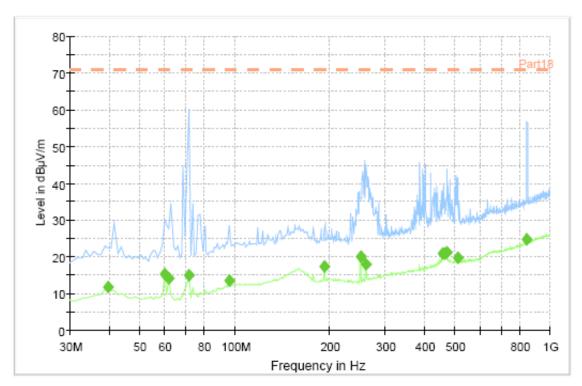
(Magnetron: RM269_Horizontal)


• Radiated Emission (0.15 MHz ~ 30 MHz, Magnetron : RM269)

(Magnetron: RM269_Vertical)


• Radiated Emission (0.15 MHz ~ 30 MHz, Magnetron : RM259)

(Magnetron: RM259_Horizontal)


• Radiated Emission (0.15 MHz ~ 30 MHz, Magnetron : RM259)


(Magnetron: RM259_Vertical)

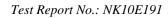
• Radiated Emission (30 MHz ~ 1 GHz)

(Magnetron: RM269)

(Magnetron : RM259)

ACCURACY OF MEASUREMENT

The Measurement Uncertainties stated were calculated in accordance with the requirements of measurement uncertainty contained in CISPR 16-4-2 with the confidence level of 95%


1. Conducted Uncertainty Calculation

		Uncertainty of Xi		Coverage			
Source of Uncertainty	Xi	Value (dB)	Probability Distribution	factor k	<i>u(Xi)</i> (dB)	Ci	<i>Ci u(Xi)</i> (dB)
Receiver reading	RI	± 0.1	normal 1	1.000	0.1	1	0.1
Attenuation AMN- Receiver	LC	± 0.08	normal 2	2.000	0.04	1	0.04
AMN Voltage division factor	LAMN	± 0.8	normal 2	2.000	0.4	1	0.4
Sine wave voltage	dVSW	± 2.00	normal 2	2.000	1.00	1	1.00
Pulse amplitude response	dVPA	± 1.50	rectangular	1.732	0.87	1	0.87
Pulse repetition rate response	dVPR	± 1.50	rectangular	1.732	0.87	1	0.87
Noise floor proximity	dVNF	± 0.00			0.00	1	0.00
AMN Impedance	dΖ	± 1.80	triangular	2.449	0.73	1	0.73
	М	+ 0.70	U-Shaped	1.414	0.49	1	0.49
(b) Mismatch	М	- 0.80	U-Shaped	1.414	- 0.56	1	- 0.56
Measurement System Repeatability	RS	0.05	normal 1	1.000	0.05	1	0.05
Remark	a: AMN-Receiver Mismatch: + b: AMN-Receiver Mismatch: -						
Combined Standard Uncertainty	Normal			± 1.88			
Expended Uncertainty U	Normal (<i>k</i> = 2)			± 3.76			

2. Radiation Uncertainty Calculation

		Uncertainty of Xi		Coverage			
Source of Uncertainty	Xi	Value (dB)	Probability Distribution	factor k	<i>u(Xi)</i> (dB)	Ci	Ci u(Xi) (dB)
Receiver reading	RI	± 0.10	normal 1	1.000	0.10	1	0.10
Sine wave voltage	dVsw	± 2.00	normal 2	2.000	1.00	1	1.00
Pulse amplitude response	dVpa	± 1.50	rectangular	1.732	0.87	1	0.87
Pulse repetition rate response	dVpr	± 1.50	rectangular	1.732	0.87	1	0.87
Noise floor proximity	dVnf	± 0.50	normal 2	2.000	0.25	1	0.25
Antenna Factor Calibration	AF	± 1.50	normal 2	2.000	0.75	1	0.75
Attenuation Antenna-receiver	CL	± 0.52	normal 2	2.000	0.26	1	0.26
Antenna Directivity	AD	± 1.00	rectangular	1.732	0.58	1	0.58
Antenna Factor Height Dependence	АН	± 0.50	rectangular	1.732	0.29	1	0.29
Antenna Phase Centre Variation	AP	± 0.30	rectangular	1.732	0.17	1	0.17
Antenna Factor Frequency Interpolation	A/	± 0.30	rectangular	1.732	0.17	1	0.17
Site Imperfections	SI	± 4.00	triangular	2.449	1.63	1	1.63
Measurement Distance Variation	DV	± 0.10	rectangular	1.732	0.06	1	0.06
Antenna Balance	Dbal	± 0.90	rectangular	1.732	0.52	1	0.52
Cross Polarisation	DCross	± 0.90	rectangular	1.732	0.52	1	0.52
a Mismatch	М	+ 0.25	U-Shaped	1.414	0.18	1	0.18
(b) Mismatch	М	- 0.26	U-Shaped	1.414	- 0.18	1	- 0.18
© Mismatch	М	+ 0.98	U-Shaped	1.414	0.69	1	0.69
@ Mismatch	М	- 1.11	U-Shaped	1.414	- 0.79	1	- 0.79

FCC Certification

Measurement System Repeatability	RS	0.09	normal 1	1.000	0.09	1	0.09	
Remark	b: Bicon c: Log P	 (a): Biconical Antenna-receiver Mismatch: + (< 200 MHz) (b): Biconical Antenna-receiver Mismatch: - (< 200 MHz) (c): Log Periodic Antenna-receiver Mismatch: + (≥ 200 MHz) (d): Log Periodic Antenna-receiver Mismatch: - (≥ 200 MHz) 						
Combined Standard Uncertainty	± 2.63 (< 200 MHz) Normal ± 2.74 (≥200 MHz)							
Expended Uncertainty U		Normal (<i>k</i> =	= 2)	± 5.26 (< 200 MHz) ± 5.48 (≧200 MHz)				

LIST OF TEST EQUIPMENT

		<u> </u>	<u> </u>		Calibration	Calibration
No. Instrument		Manufacturer	Model	Serial No.	Date	Interval
1	Test Receiver	R & S	ESCS 30	833364/020	Mar. 28 2009	1 year
2	*Test Receiver	R & S	ESCS 30	100302	Nov. 11 2009	1 year
3	*Amplifier	НР	8447F	2805A03406	Apr. 09 2009	1 year
4	*Amplifier	НР	8447F	2805A03351	Oct. 12 2009	1 year
5	*Pre Amplifier	НР	8449B	3008A00107	Feb. 03 2010	1 year
6	Spectrum Analyzer	НР	8593E	3926A04282	Nov. 11 2009	1 year
7	*Spectrum Analyzer	R & S	FSP40	100361	Sep. 04 2009	1 year
8	PSA Series Spectrum Analyzer	Agilent	E4440A	MY44022567	Sep. 09 2009	1 year
9	*Exposure Lever Tester	Narda	ELT-400	N/A	Feb. 01 2010	1 years
10	*Loop Antenna	ЕМСО	EMCO/6502	8911-2436	Jan. 19 2010	2 years
11	*Biconical Log Antenna	ARA	LPB-2520/A	1180	Apr. 21 2008	2 years
12	*Trilog-Broadband Antenna	SCHWARZBECK	VULB 9168	9168-257	Apr. 21 2008	2 years
13	*Double Ridged Broadband Horn Antenna	Schwarzbeck	BBHA 9120 D	9120D-474	June. 13 2008	2 years
14	Signal Generater	R & S	SMP02	833286/003	Jul. 20 2009	1 year
15	LISN	R & S	ESH3-Z5	833874/006	Nov. 11 2009	1 year
16	*LISN	R & S	ESH2-Z5	100227	Feb. 03 2010	1 year
17	*Position Controller	DAEIL EMC	N/A	N/A	N/A	N/A
18	*Turn Table	DAEIL EMC	N/A	N/A	N/A	N/A
19	*Antenna Mast	DAEIL EMC	N/A	N/A	N/A	N/A
20	*Anechoic Chamber	EM Eng.	N/A	N/A	N/A	N/A
21	*Shielded Room	EM Eng.	N/A	N/A	N/A	N/A
22	*Anechoic Chamber	SY Corporation	N/A	N/A	N/A	N/A
23	Shielded Room	SY Corporation	N/A	N/A	N/A	N/A

^{*)} Test equipment used during the test

APPENDIX D - SCHEMATIC DIAGRAM

APPENDIX E - USER'S MANUAL

APPENDIX F - BLOCK DIAGRAM