

Nemko Korea Co., Ltd.

155, 153 and 159, Osan-ro, Mohyeon-eup, Cheoin-gu, Yongin-si, Gyeonggi-do 16885 Republic of Korea TEL: + 82 31 330 1700 FAX: +82 31 322 2332

FCC PART 18 Class II Permissive Change

Applicant:

WINIADAEWOO Co., Ltd.

509, Dunchon-daero, Jungwon-gu, Seongnam-si, Test Report No.: NK-20-E-0656

Gyeonggi-do, Korea, Republic of

Attn: Mr. Youjin Choi

Dates of Issue: August 24, 2020

Test Site: Nemko Korea Co., Ltd.

EMC site, Korea

FCC ID

Trade Mark

Contact Person

C5F7NF1DMO100N

DAEWOO, WINIA, SHARP

WINIADAEWOO Co., Ltd.

509, Dunchon-daero, Jungwon-gu, Seongnam-si, Gyeonggi-do, Korea, Republic of Mr. Youjin Choi

Telephone No.: + 82 31 639 7754

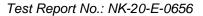
Applied Standard: FCC Part 18 & Part 2 Classification: Consumer ISM equipment

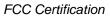
EUT Type: Microwave Oven

The device bearing the Trade Mark and FCC ID specified above has been shown to comply with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in MP-5:1986.

I attest to the accuracy of data and all measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Tested By : Yeonsuk Jung **Engineer**


Reviewed By: Taegyun Kim **Technical Manager**


Su Aug 24, 2020

Page 1 of 80

NKQF-27-23 (Rev. 0)

WINIADAEWOO Co., Ltd. FCC ID: C5F7NF1DMO100N

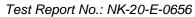


TABLE OF CONTENTS

SCOPE	3
INTRODUCTION (Site Description)	4
EUT INFORMATION	5
DESCRIPTION OF TESTS (Radiation Hazard)	6
DESCRIPTION OF TESTS (Input Power Measurement)	6
DESCRIPTION OF TESTS (Output Power Measurement)	6
DESCRIPTION OF TESTS (Frequency Measurements)	6
DESCRIPTION OF TESTS (Conducted Emissions)	7
DESCRIPTION OF TESTS (Radiated Emissions)	8
TEST DATA (Radiation Hazard)	9
TEST DATA (Input Power Measurement)	9
TEST DATA (RF Output Power Measurement)	9
TEST DATA (Frequency Measurements)	10
TEST DATA (Conducted Emissions)	12
TEST DATA (Radiated Emissions)	15
PLOT OF EMISSIONS (Frequency Measurements)	22
ACCURACY OF MEASUREMENT	60
LIST OF TEST EQUIPMENT	63
APPENDIX A - SAMPLE LABEL	64
APPENDIX B - PHOTOGRAPHS OF TEST SET-UP	65
APPENDIX C - EUT PHOTOGRAPHS	70

FCC Certification

SCOPE

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission under FCC part 18.

Responsible Party: WINIADAEWOO Co., Ltd.

Contact Person: Mr. Youjin Choi

Tel No.: + 82 31 639 7754

Manufacturer: WINIADAEWOO Co., Ltd.

509, Dunchon-daero, Jungwon-gu,

Seongnam-si, Gyeonggi-do, Korea, Republic of

FCC ID: C5F7NF1DMO100N

Model: KOR-1D**, SMC1449FS

Note) The asterisk "*" can be any alphanumeric character (A-Z or 0-9) to denote

enclosure design.

Trade Mark: DAEWOO, WINIA, SHARP

EUT Type: Microwave Oven

Applied Standard: FCC Part 18 & Part 2

• Test Procedure(s): MP-5:1986

Dates of Test: July 23, 2020 to August 18, 2020
 Place of Tests: Nemko Korea Co., Ltd. EMC Site

Test Report No.: NK-20-E-0656

* The model KOR-1D** was tested for the representative model.

INTRODUCTION

The measurement procedure described in MP5:1986 for Methods of Measurement of radiated, powerline conducted radio noise, frequency and power output was used in determining emissions emanating from **WINIADAEWOO Co., Ltd.**

FCC ID: C5F7NF1DMO100N, Microwave Oven.

These measurement tests were conducted at Nemko Korea Co., Ltd. EMC Laboratory.

The site address is 155, 153 and 159, Osan-ro, Mohyeon-eup, Cheoin-gu, Yongin-si, Gyeonggido 16885 Republic of Korea

The area of Nemko Korea Corporation Ltd. EMC Test Site is located in a mountain area at 80 kilometers (48 miles) southeast and Incheon International Airport (Incheon Airport), 30 kilometers (18 miles) south-southeast from central Seoul.

The Nemko Korea Co., Ltd. has been accredited as a Conformity Assessment Body (CAB).

Nemko Korea Co., Ltd.

155, 153 and 159, Osan-ro, Mohyeoneup, Cheoin-gu, Yongin-si, Gyeonggi-do 16885 Republic of Korea

Tel) + 82 31 330 1700

Fax) + 82 31 322 2332

Fig. 1. The map above shows the Seoul in Korea vicinity area.

The map also shows Nemko Korea Corporation Ltd. EMC Lab and Incheon Airport.

EUT INFORMATION

EUT Information

Intended use	Household
Type of appliance	Microwave Oven
Model	KOR-1D**, SMC1449FS
Rated voltage & frequency	a.c. 120 V, 60 Hz Single Phase
Rated power output	1 000 W
Rated power consumption(MW)	1 500 W
Magnetron	RM269 (WINIA)

Component List

Item Model N		Manufacturer	Serial Number
MAGNETRON	RM269	WINIADAEWOO Co., Ltd.	N/A
TRANS H.V.	DYAS10A0-1DA A	DPC	N/A
CAPACITOR H.V.	2100VAC 0.98 μF #187	BICAI	N/A
DIODE H.V.	CL01-12	GAOXING	N/A
TRAY MOTOR	49TYD-16A1	JING CHENG	N/A
FAN MOTOR	OEM-10DWX1- A07(A)	OH SUNG	N/A
NOISE FILTER	DWLF-M17	YUNLU	N/A
INTERLOCK SWITCH	16 A, 125/250 V ac	GERSUNG	N/A
Main PCB	M378	WINIADAEWOO Co., Ltd.	N/A

Description of the Changes according to FCC part 2.1043

Report No.	Difference
NK-16-E-0750	Main PCB: M345
(Basic Report)	
NK-20-E-0656	Main PCB: M378

DESCRIPTION OF TESTS

Radiation Hazard

A 700 ml water load was placed in the center of the oven.

The power setting was set to maximum power.

While the oven was operating, the Microwave Survey Meter probe was moved slowly around the door seams to check for leakage.

Input Power Measurement

A 700 $m\ell$ water load was placed in the center of the oven and the oven set to maximum power. A 700 $m\ell$ water load was chosen for its compatibility.

Input power and current were measured using a Power Analyzer.

Manufacturers to determine their input ratings commonly use this procedure.

Output Power Measurement

The Caloric Method was used to determine maximum output power.

The initial temperature of a 1000 $\,\mathrm{m}\ell$ water load was measured. The water load was placed in the center of the oven. The oven was operated at maximum output power for 47 seconds. Then the temperature of the water re-measured.

Frequency Measurements

Following the above test, after operating the oven long enough to assure that stable operating temperature were obtained, the operating frequency was monitored as the input voltage was varied between 80 percent to 125 percent of the nominal rating. And the load quantity was reduced by evaporation to approximately 20 % of the original quantity with nominal rating.

DESCRIPTION OF TESTS

Conducted Emissions

The Line conducted emission test facility is located inside a 4 x 7 x 2.5 m shielded enclosure.

It is manufactured by EM engineering. The shielding effectiveness of the shielded room is in accordance with MIL-STD-285 or NSA 65-6.

A 1 m x 1.5 m wooden table 0.8 m height is placed 0.4 m away from the vertical wall and 0.5 m away from the side of wall of the shielded room Rohde & Schwarz (ENV216) and Rohde & Schwarz (ESH2-Z5) of the 50 ohm / 50 uH Line Impedance Stabilization Network(LISN) are bonded to the shielded room.

The EUT is powered from the Rohde & Schwarz (ENV216) LISN and the support equipment is powered from the Rohde & Schwarz (ESH2-Z5) LISN.

Power to the LISN s are filtered by high-current high insertion loss power line filters.

The purpose of filter is to attenuate ambient signal interference and this filter is also bonded to shielded enclosure. All electrical cables are shielded by tinned copper zipper tubing with inner diameter of 1/2".

If d.c. power device, power will be derived from the source power supply it normally will be powered from and this supply lines will be connected to the LISNs,

All interconnecting cables more than 1 m were shortened by non-inductive bundling (serpentine fashion) to a 1 m length.

Sufficient time for EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer to determine the frequency producing the maximum EME from the EUT. The spectrum was scanned from 150 kHz to 30 MHz with 15 s sweep time.

The frequency producing the maximum level was re-examined using the EMI test receiver. (Rohde & Schwarz ESCI).

The detector functions were set to quasi-peak mode & CISPR average mode.

The bandwidth of receiver was set to 9 klb. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each EME emission.

Each emission was maximized by; switching power lines; varying the mode of operation or resolution; clock or data exchange speed; scrolling H pattern to the EUT and of support equipment, and powering the monitor from the floor mounted outlet box and computer aux a.c. outlet, if applicable; whichever determined the worst case emission.

Each EME reported was calibrated using the R&S signal generator.

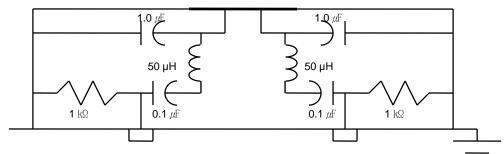


Fig. 2. LISN Schematic Diagram

DESCRIPTION OF TESTS

Radiated Emissions

Measurement were made indoors at 10 m & 3 m using antenna, signal conditioning unit and EMI test receiver to determine the frequency producing the maximum EME.

Appropriate precaution was taken to ensure that all EME from the EUT were maximized and investigated. The Technology configuration, clock speed, mode of operation or video resolution, turntable azimuth with respect to the antenna was note for each frequency found.

The spectrum was scanned from 0.15 Mb to 30 Mb using Loop Antenna (ROHDE & SCHWARZ/HFH2-Z2)

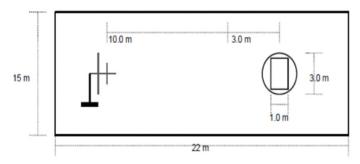
and from 30 Mb to 1000 Mb using TRILOG Broadband Test Antenna (Schwarzbeck, VULB 9163).

Above 1 GHz, Double Ridged Broadband Horn antenna (Schwarzbeck, HF907) was used.

Final Measurements were made indoors at 3 m using Loop Antenna

(ROHDE & SCHWARZ/HFH2-Z2) for measurement from 0.15 to 30 Mb with RBW 9 kb and made indoor at 10 m using TRILOG Broadband Test Antenna (Schwarzbeck, VULB 9163) for measurement from 30 Mb to 1000 Mb with RBW 120 kb and made indoors at 3 m using Double Ridged Broadband Horn antenna (Schwarzbeck, HF907) for measurement from 1 Gb to 18 Gb with RBW 1 Mb.

The detector function were set to quasi peak mode and the bandwidth of the receiver were set to 9 $\,\mathrm{kHz}$, 120 $\,\mathrm{kHz}$ and peak mode 1 $\,\mathrm{Mz}$ depending on the frequency or type of signal.


The Double Ridged Broadband Horn antenna was tuned to the frequency found during preliminary radiated measurements.

The EUT support equipment and interconnecting cables were re-configured to the setup producing the maximum emission for the frequency and were placed on top of a 0.8 m high non- metallic 1.0 X 1.5 meter table.

The EUT, support equipment and interconnecting cables were re-arranged and manipulated to maximize each EME emission.

The EUT is rotated about its vertical axis on the turntable, and the polarization and height of the receiving antenna are varied to obtain the highest field strength on the particular frequency under observation.

Each EME reported was calibrated using the R/S signal generator.

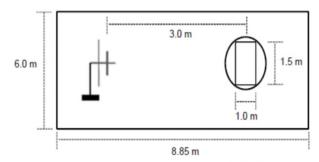


Fig. 4. Dimensions of 3 m full anechoic chamber

NKQF-27-23 (Rev. 0)

WINIADAEWOO Co., Ltd. FCC ID: C5F7NF1DMO100N

Radiation Hazard

Probe Location	Maximum Leakage [mW/Cm2]	Limit [mW/Cm2]
Α	0.1	1.00
В	0.1	1.00
С	0.2	1.00
D	0.1	1.00
Е	0.1	1.00
F	0.2	1.00

Input Power Measurement

Operation mode	P rated (W)	P (W)	dP (%)	Required dP (%)	
Power Input	1 500	1 496	0.4	+ 15 %	

Output Power Measurement

Quantity	Mass of the	Ambient	Initial	Final	Heating	Power
of Water	container	temperature	temperature	temperature	time	output
[ml]	[g]	[°]	[°]	[°]	[s]	[W]
1 000	400	22.1	10.0	19.7	42	954

Formula:

$$P = \frac{4.187 \times m_w \times (T_1 - T_0) + 0.55 \times m_c \times (T_1 - T_A)}{t}$$

NOTE:

P is the microwave power output (W)

 $m_{\rm w}$ is the mass of the water (g)

 m_c is the mass of the container (g)

 T_A is the ambient temperature ($^{\circ}$)

 T_0 is the initial temperature of the water ($^{\circ}$ C)

 T_1 is the final temperature of the water ($^{\circ}$)

t is the heating time (s), excluding the magnetron filament heating-up time.

Frequency measurements

► Frequency vs Line Voltage Variation Test

[Room Temperature : 19.5 ± 1.0 °C]

Line Voltage Variation (a.c. V)	*Pole	Frequency [雁]	Allowed Tolerance for the ISM Band			
	Н	Lower : 2 444.8				
00 (00 0/)	Н	Upper : 2 466.3				
96 (80 %)	V	Lower : 2 433.3				
	V	Upper : 2 467.2				
	Н	Lower : 2 434.9				
409 (00 9/)	Н	Upper : 2 465.3				
108 (90 %)	V	Lower : 2 429.8				
	V	Upper : 2 466.3				
	Н	Lower : 2 436.8				
420 (400 %)	Н	Upper : 2 462.4	Lower : 2 400 Mb			
120 (100 %)	V	Lower : 2 443.2	Upper : 2 500 ₩b			
	V	Upper : 2 464.4				
	Н	Lower : 2 430.1				
422 (440 0/)	Н	Upper : 2 465.3				
132 (110 %)	V	Lower : 2 429.1				
	V	Upper : 2 460.8				
	Н	Lower : 2 440.3				
150 (125 %)	Н	Upper : 2 463.1				
150 (125 %)	V	Lower : 2 427.9				
	V	Upper : 2 459.6				

NOTE:

1. *Pol. H = Horizontal V = Vertical

2. Initial load: 1 000 ml of water in the beaker.

3. Line voltage varied from 80 % to 125 %.

4. ISM Frequency : 2 450 Mb, Tolerance : ± 50 Mb

RESULT: Pass

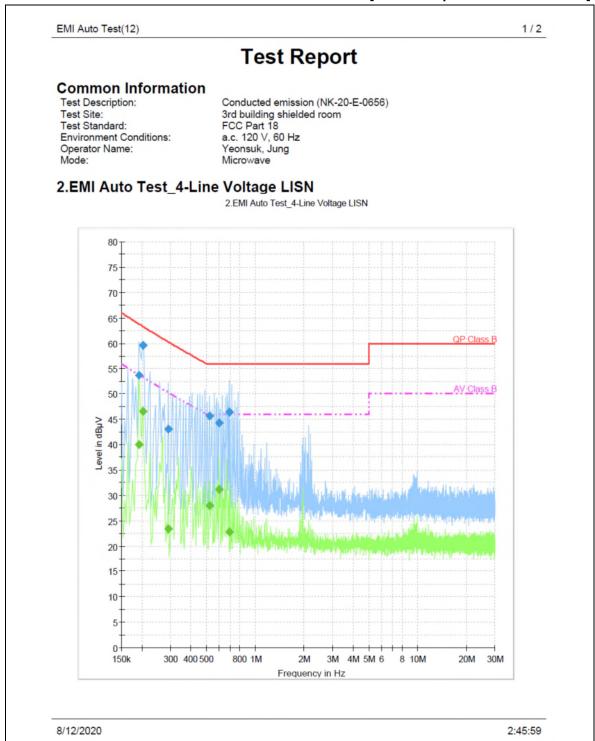
► Frequency vs Load Variation Test

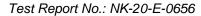
[Room Temperature : 19.5 ± 1.0 °C]

T		[Noon Temperature : 13.3 ± 1.				
Volume of water (mℓ)	*)Pole	Frequency [Mb]	Allowed Tolerance for the ISM Band			
	Н	Lower : 2 437.8				
200	Н	Upper : 2 462.8				
200	V	Lower : 2 443.2				
	V	Upper : 2 467.2				
	Н	Lower : 2 436.8				
400	Н	Upper : 2 461.8				
400	V	Lower : 2 441.9				
	V	Upper : 2 469.5				
	Н	Lower : 2 436.5				
600	Н	Upper : 2 461.5	Lower : 2 400 Mb			
600	V	Lower : 2 445.1	Upper : 2 500 ₩b			
	V	Upper : 2 468.8				
	Н	Lower : 2 437.5				
000	Н	Upper : 2 461.8				
800	V	Lower : 2 445.8				
	V	Upper : 2 466.3				
	н	Lower : 2 436.8				
1000	н	Upper : 2 462.4				
1000	V	Lower : 2 443.2				
	V	Upper : 2 464.4				

NOTE:

- 1. *Pol. H = Horizontal, V = Vertical
- 2. The water load was varied between 200 $m\ell$ to 1 000 $m\ell$.
- 3. Frequency was measured by using nominal voltage (a.c. 120 V).
- 4. ISM Frequency : 2 450 Mb, Tolerance : ± 50 Mb


RESULT: Pass



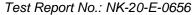
Conducted Emissions

FCC ID: C5F7NF1DMO100N

[Room Temperature : 19.5 ± 1.0 °C]

EMI Auto Test(12)

2/2


Final Result 1

Frequency (MHz)	QuasiPeak (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.191044	53.8	15000.0	9.000	GND	L1	10.6	10.1	63.9	
0.202238	59.7	15000.0	9.000	GND	L1	10.6	3.7	63.4	
0.291788	43.0	15000.0	9.000	GND	N	10.7	17.3	60.3	
0.523125	45.6	15000.0	9.000	GND	N	10.7	10.4	56.0	
0.601481	44.3	15000.0	9.000	GND	N	10.7	11.7	56.0	
0.691031	46.4	15000.0	9.000	GND	L1	10.7	9.6	56.0	

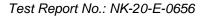
Final Result 2

Frequency (MHz)	CAverage (dBμV)	Meas. Time (ms)	Bandwidth (kHz)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.191044	40.0	15000.0	9.000	GND	L1	10.6	13.8	53.8	
0.202238	46.5	15000.0	9.000	GND	L1	10.6	6.8	53.3	
0.291788	23.4	15000.0	9.000	GND	N	10.7	26.8	50.2	
0.523125	28.0	15000.0	9.000	GND	N	10.7	18.0	46.0	
0.601481	31.1	15000.0	9.000	GND	N	10.7	14.9	46.0	
0.691031	22.9	15000.0	9.000	GND	L1	10.7	23.1	46.0	

8/12/2020 2:45:59

NOTES:

- 1. Measurements using quasi-peak mode & average mode.
- 2. If no frequencies are specified in the tables, no measurement for quasi-peak or average was necessary.
- 3. Line: L = Line, N = Neutral
- 4. The limit for consumer device is on the FCC Part section 18.307(b).



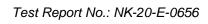
Radiated Emissions (150 kHz to 30 MHz)

FCC ID: C5F7NF1DMO100N

[Room Temperature : 19.5 ± 1.0 °C]

EMI Auto Test(1) 2 / 2

Final_Result


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Pol	Azimuth (deg)	Corr. (dB)
0.191790	30.59	70.80	40.21	15000.0	9.000	V	334.0	-22.8
0.379845	26.45	70.80	44.35	15000.0	9.000	V	17.0	-23.1
0.594765	24.95	70.80	45.85	15000.0	9.000	V	308.0	-23.1
2.746950	24.09	70.80	46.71	15000.0	9.000	V	54.0	-22.6
15.394395	24.05	70.80	46.75	15000.0	9.000	V	99.0	-22.0
27.438870	24.26	70.80	46.54	15000.0	9.000	Н	354.0	-20.9

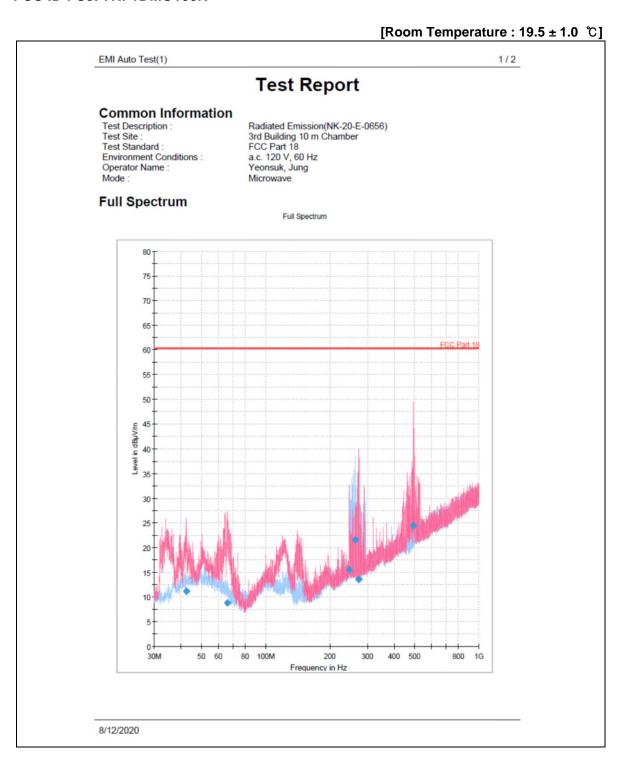
(continuation of the "Final_Result" table from column 15 ...)

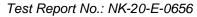
Frequency (MHz)	Comment				
0.191790	5:42:43 PM - 8/15/2020				
0.379845	5:40:58 PM - 8/15/2020				
0.594765	5:43:00 PM - 8/15/2020				
2.746950	5:41:25 PM - 8/15/2020				
15.394395	5:41:52 PM - 8/15/2020				
27.438870	5:39:52 PM - 8/15/2020				

<Radiated Measurements at 3 meters >

8/15/2020

FCC Certification


NOTES:

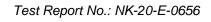

- 1. *Pol. H = Horizontal V = Vertical
- 2. **AF + CL + Amp. = Antenna Factor + Cable Loss + Amplifier.
- 3. Distance Correction factor : 20 * log (300 / 3) = 40 dBuV/m
- 4. The limit at 300 meters is 20 * log (25 * SQRT (RF Power / 500))
- 5. All other emissions were measured while a 700 $\, \mathrm{m}\!\ell \,$ load was placed in the center of the oven.
- 6. The limit for consumer device is on the FCC Part section 18.305.

Radiated Emissions (30 Mb to 1 Gb)

FCC ID: C5F7NF1DMO100N

EMI Auto Test(1) 2/2

Final_Result


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
42.286667	11.16	60.30	49.14	15000.0	120.000	106.0	V	316.0	-21.0
65.857667	8.74	60.30	51.56	15000.0	120.000	277.0	V	3.0	-23.0
246.568667	15.50	60.30	44.80	15000.0	120.000	106.0	V	288.0	-18.2
262.929333	21.59	60.30	38.71	15000.0	120.000	230.0	Н	315.0	-18.1
273.567000	13.47	60.30	46.83	15000.0	120.000	130.0	V	239.0	-17.9
492.528333	24.41	60.30	35.89	15000.0	120.000	176.0	V	93.0	-10.0

(continuation of the "Final_Result" table from column 16 ...)

Frequency (MHz)	Comment
42.286667	
65.857667	
246.568667	
262.929333	
273.567000	
492.528333	

<Radiated Measurements at 10 meters>

8/12/2020

FCC Certification

NOTES:

- 1. *Pol. H = Horizontal V = Vertical
- 2. **AF + CL + Amp. = Antenna Factor + Cable Loss + Amplifier.
- 3. Distance Correction factor : 20 * log (300/10) \rightleftharpoons 29.5 dB $\mu N/m$
- 4. The limit at 300 meters is 20 * log (25 * SQRT (RF Power/500))
- 5. All other emissions were measured while a 700 $\, \mathrm{m}\ell \,$ load was placed in the center of the oven.
- 6. The limit for consumer device is on the FCC Part section 18.305.

Radiated Emissions (Above 1 础)

FCC ID: C5F7NF1DMO100N

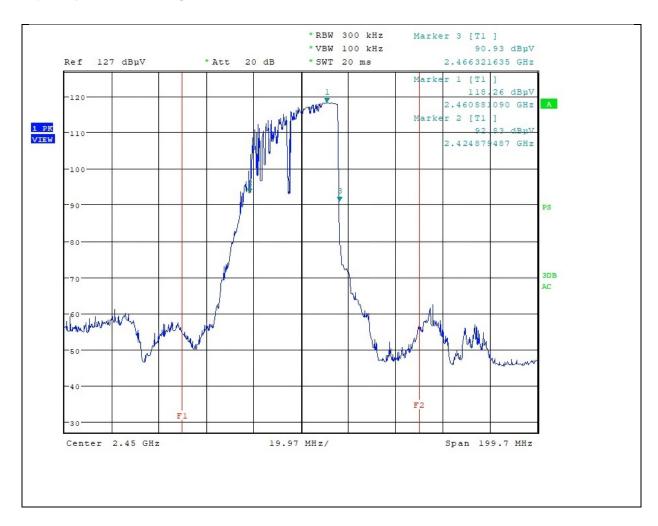
[Room Temperature : 18.8 ± 1.0 °C]

Frequency	Pol*	Antenna Heights	Turntable Angles	Reading Level	Total Loss**	Result	Result at 3 m		Results at 300 m	Limits at 300 m
(MHz)	(H/V)	(cm)	(°)	(dBμV)	(dB)	(dBµV/m)	(μV/m)	K	(μV/m)	(μV/m)
2204	н	99.8	315	51.48	-13	38.48	83.95	0.0058	0.49	34.50
2708	Н	99.8	315	45.66	-10.39	35.27	58.01	0.0069	0.40	34.50
4239	V	300.1	0	39.17	-5	34.17	51.11	0.0102	0.52	34.50
4921	Н	99.8	0	45.79	-3.5	42.29	130.17	0.0117	1.52	34.50
6152	V	99.8	45	34.66	-1.9	32.76	43.45	0.0144	0.63	34.50
6878	V	99.8	135	33.80	-1	32.8	43.65	0.0160	0.70	34.50
7108	Н	99.8	315	32.20	-0.3	31.9	39.36	0.0165	0.65	34.50
7393	Н	400.2	315	39.28	-0.1	39.18	90.99	0.0171	1.56	34.50
7655	Н	99.8	315	30.77	0.8	31.57	37.89	0.0177	0.67	34.50
8236	Н	99.8	45	30.04	1.2	31.24	36.48	0.0190	0.69	34.50
8505	V	99.8	90	30.92	1.1	32.02	39.90	0.0195	0.78	34.50
8636	Н	199.8	315	30.51	1.6	32.11	40.32	0.0198	0.80	34.50
9842	Н	400.2	315	28.95	2.5	31.45	37.37	0.0225	0.84	34.50
10111	V	400	45	28.08	2.7	30.78	34.59	0.0231	0.80	34.50
12314	Н	99.8	0	26.21	4.1	30.31	32.77	0.0279	0.91	34.50
14779	Н	99.8	0	22.38	8.1	30.48	33.42	0.0333	1.11	34.50
17215	Н	400.2	315	19.45	11	30.45	33.30	0.0386	1.29	34.50
17519	Н	99.8	315	18.92	11.9	30.82	34.75	0.0392	1.36	34.50

<Radiated Measurements at 3 meters>

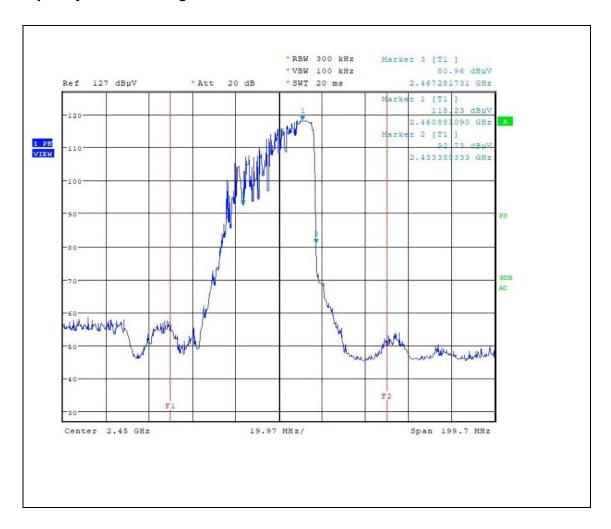
NOTES:

- 1. * Pol. H =Horizontal V=Vertical
- 2. ** Total Loss = Antenna Factor + Cables Loss + Amplifier + HPF (High Pass Filter)
- 3. Field Strength (at 300 m) (uV/m) = K * 10 [Fieldstrength at 3 m (dBuV/m)/20]
- 4. The limit at 300 meters is 25 * SQRT (RF Power/500)
- 5. Load for measurement of radiation on second and third harmonic: Two loads, one of 700 ml and the other of 300 ml, of water were used. Each load was tested both with the beaker located in the center of the oven and with it in the corner.
- 6. The test was performed at peak detector mode with average.
- 7. The limit for consumer device is on the FCC Part section 18.305.

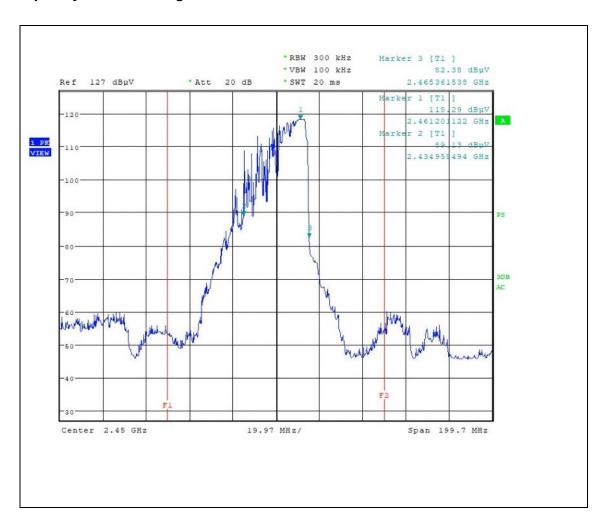

Tested by: Yeonsuk Jung

NKQF-27-23 (Rev. 0)

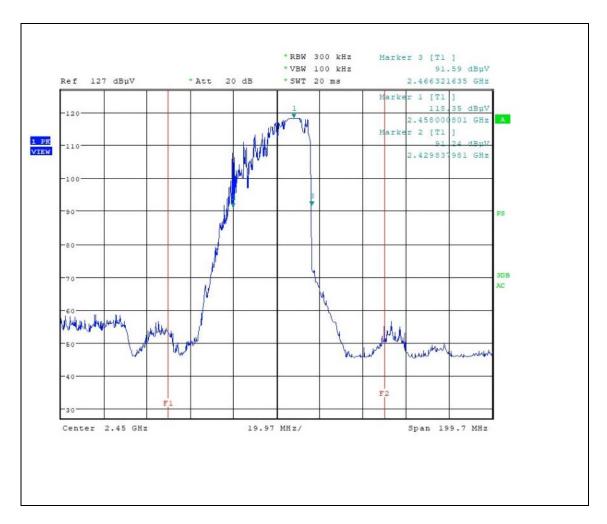
WINIADAEWOO Co., Ltd. FCC ID: C5F7NF1DMO100N


Frequency vs Line Voltage Variation Test

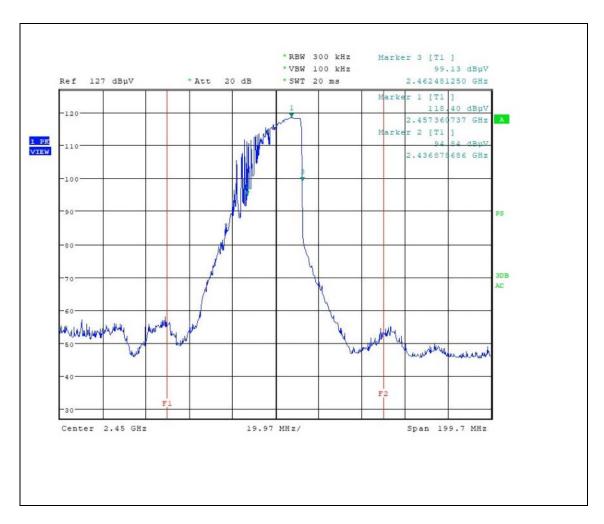
Horizontal (96 V, 1000 mℓ)


• Frequency vs Line Voltage Variation Test

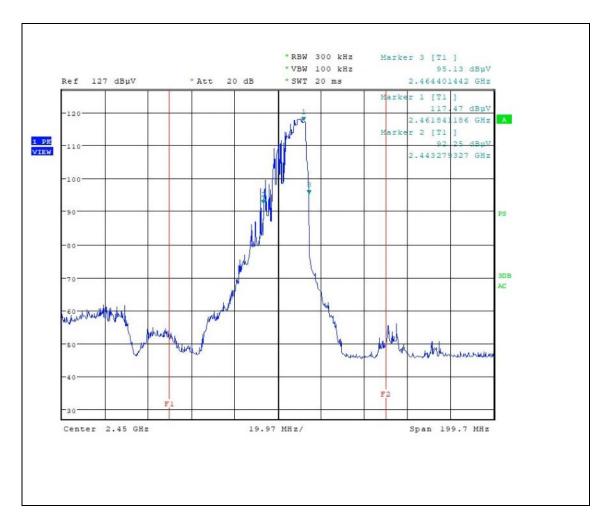
Vertical (96 V, 1000 ml)


• Frequency vs Line Voltage Variation Test

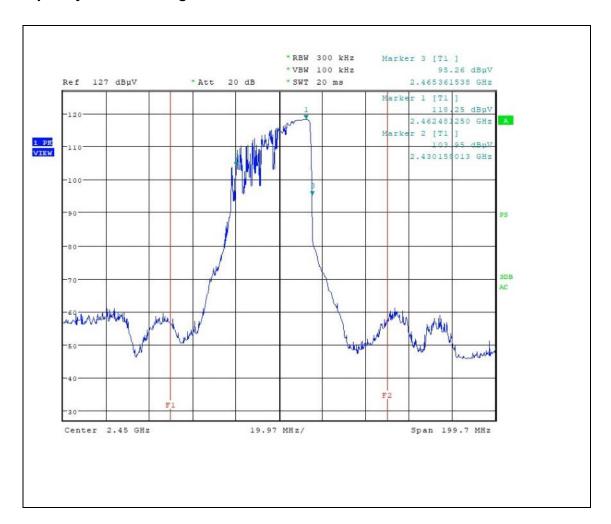
Horizontal (108 V, 1000 ml)


Frequency vs Line Voltage Variation Test

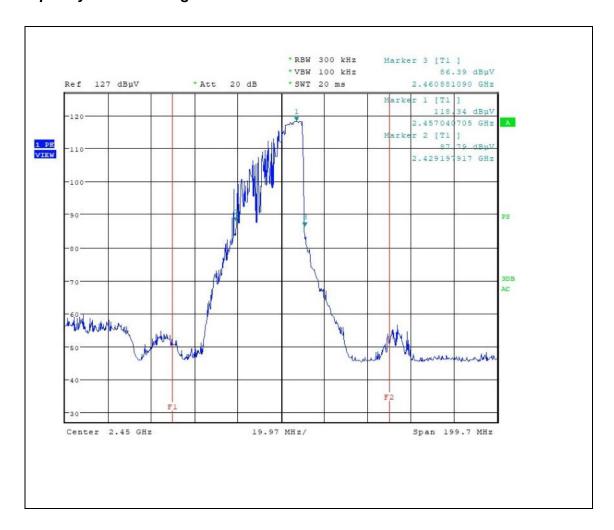
Vertical (108 V, 1000 ml)


Frequency vs Line Voltage Variation Test

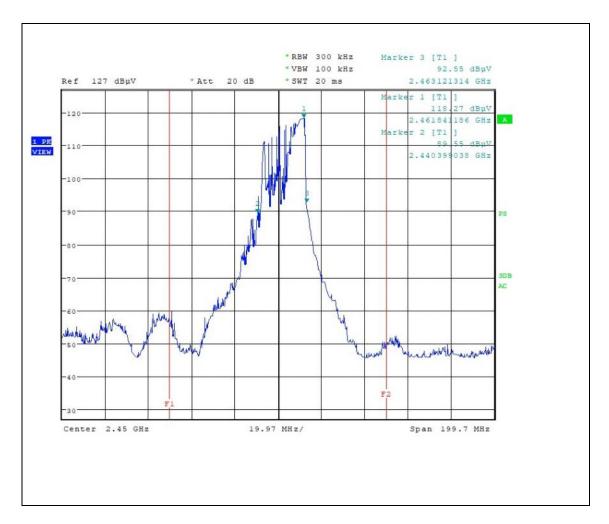
Horizontal (120 V, 1000 ml)


Frequency vs Line Voltage Variation Test

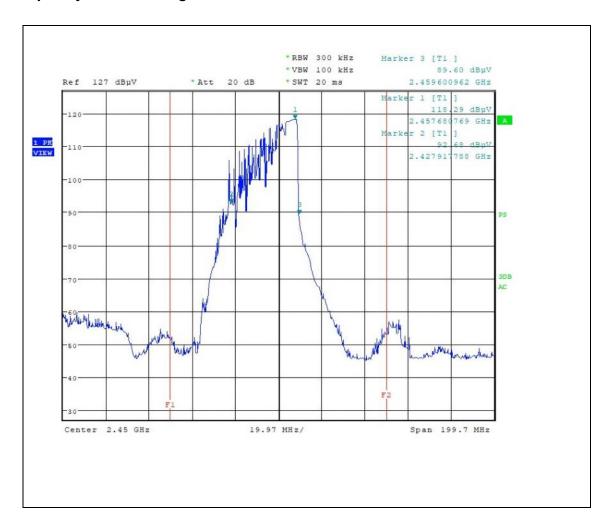
Vertical (120 V, 1000 mℓ)


• Frequency vs Line Voltage Variation Test

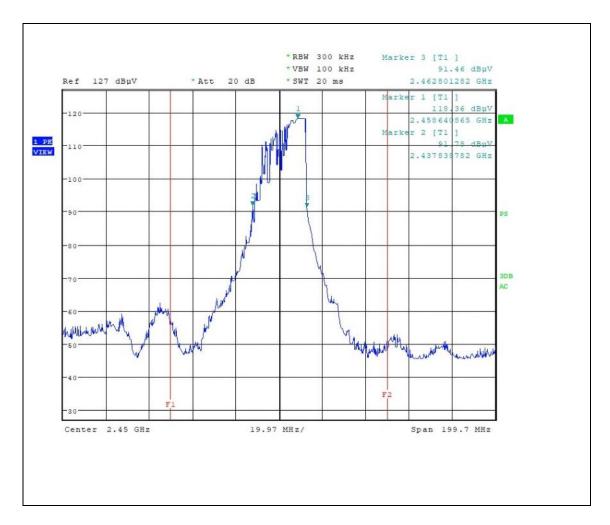
Horizontal (132 V, 1000 ml)


• Frequency vs Line Voltage Variation Test

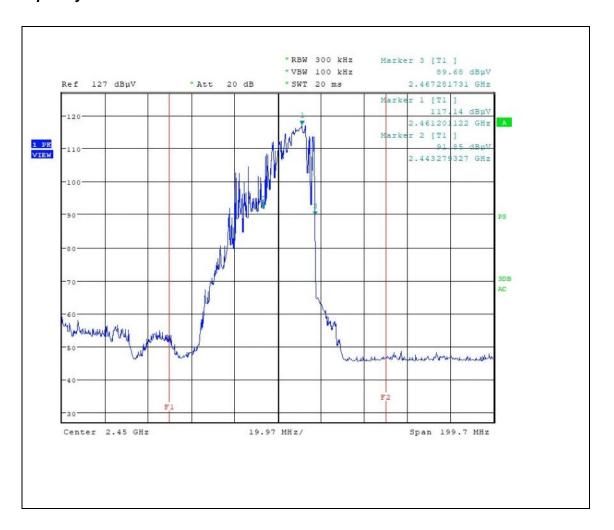
Vertical (132 V, 1000 ml)


Frequency vs Line Voltage Variation Test

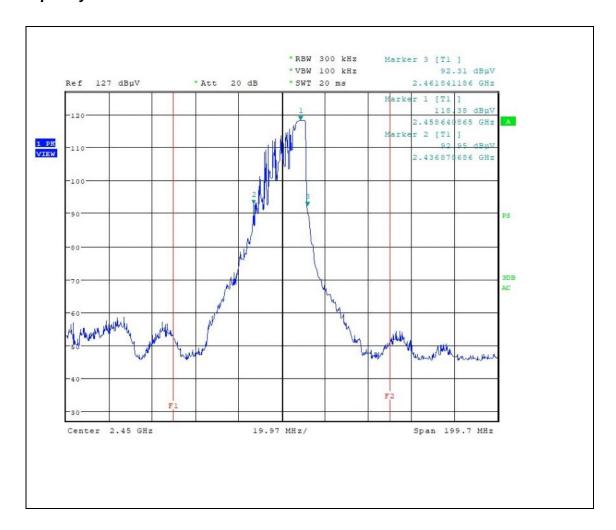
Horizontal (150 V, 1000 ml)


• Frequency vs Line Voltage Variation Test

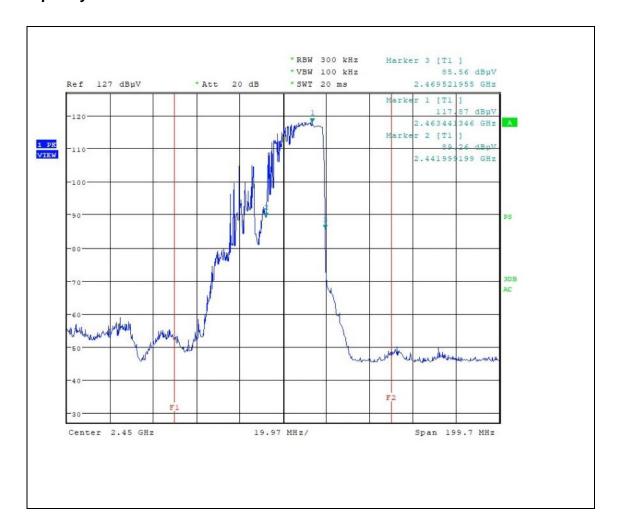
Vertical (150 V, 1000 ml)


• Frequency vs Load Variation Test

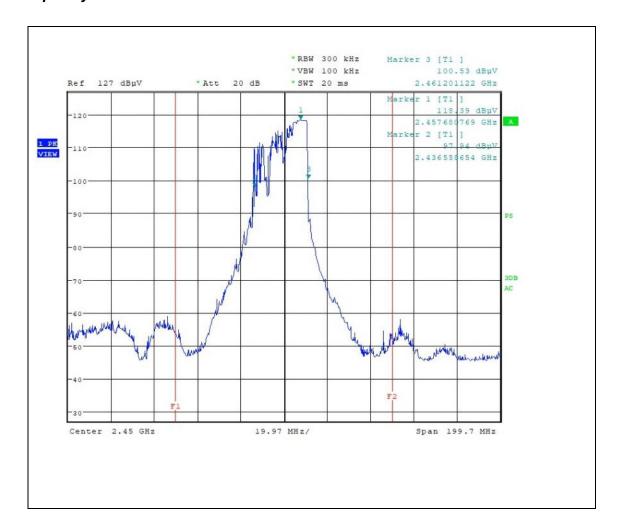
Horizontal (120 V, 200 ml)


• Frequency vs Load Variation Test

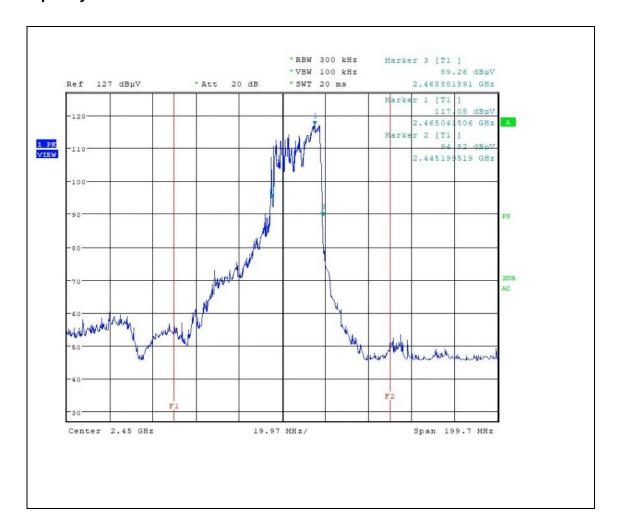
Vertical (120 V, 200 ml)


• Frequency vs Load Variation Test

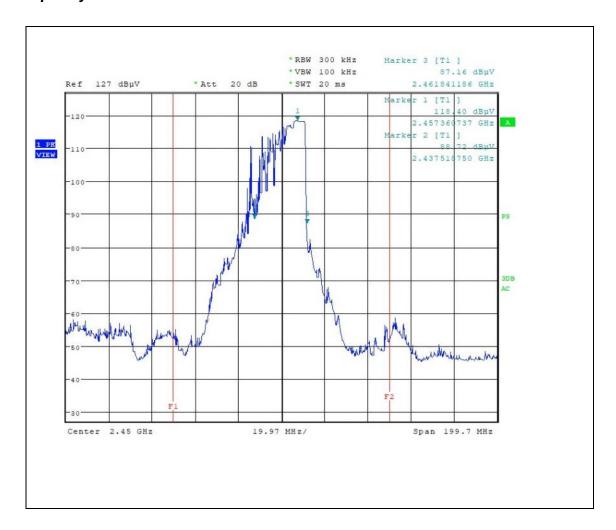
Horizontal (120 V, 400 ml)


Frequency vs Load Variation Test

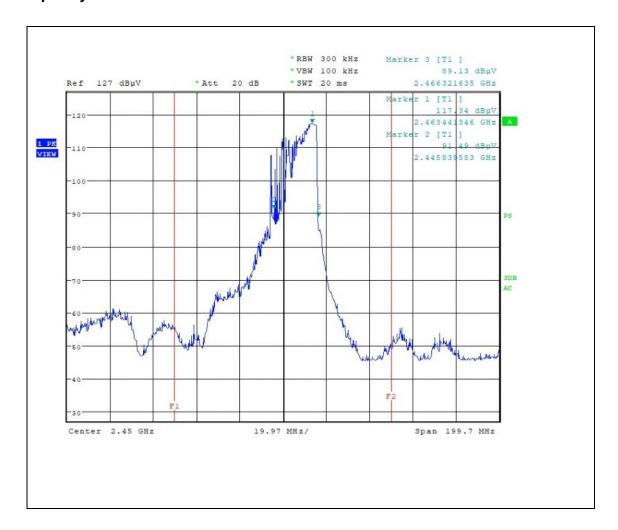
Vertical (120 V, 400 ml)


Frequency vs Load Variation Test

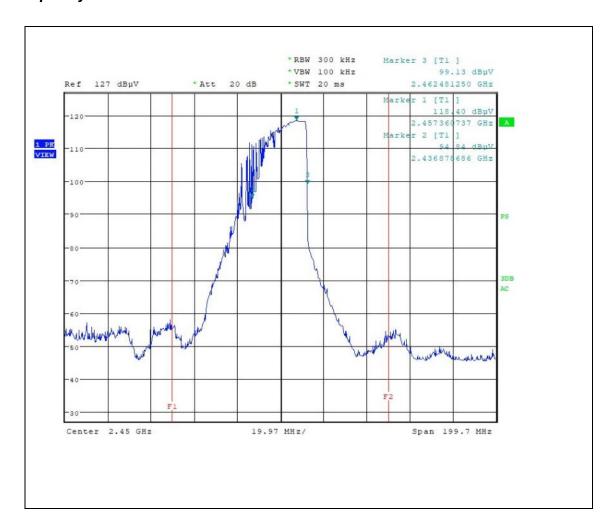
Horizontal (120 V, 600 ml)


• Frequency vs Load Variation Test

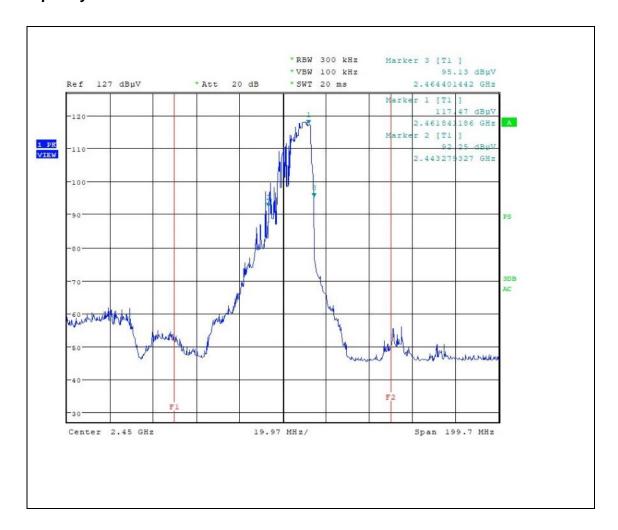
Vertical (120 V, 600 ml)


• Frequency vs Load Variation Test

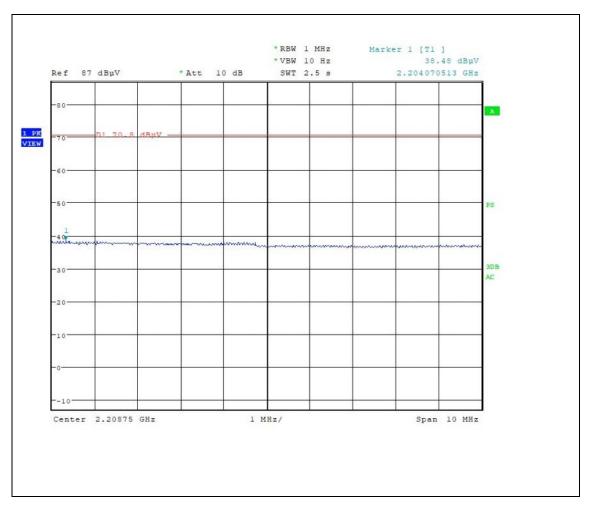
Horizontal (120 V, 800 ml)


• Frequency vs Load Variation Test

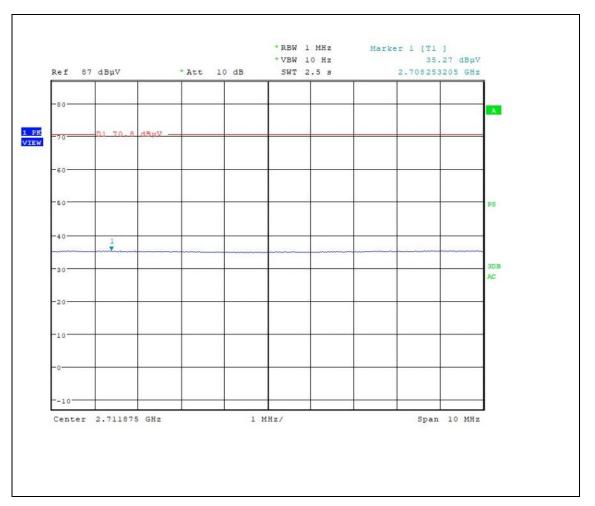
Vertical (120 V, 800 ml)

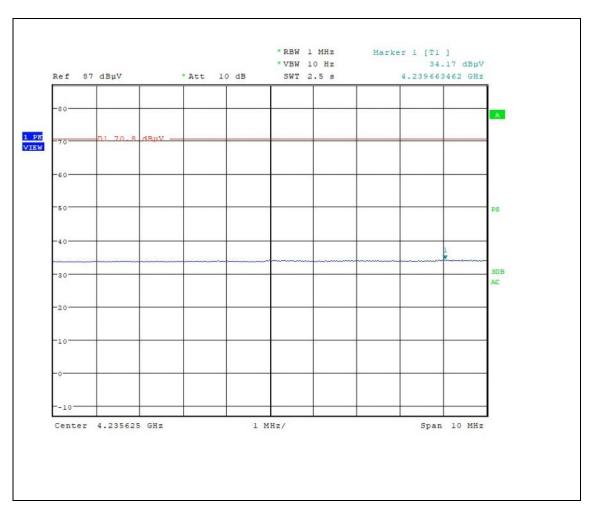

• Frequency vs Load Variation Test

Horizontal (120 V, 1000 ml)

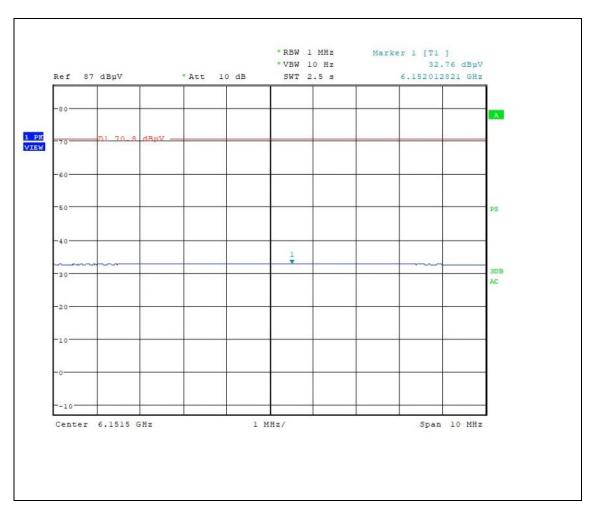


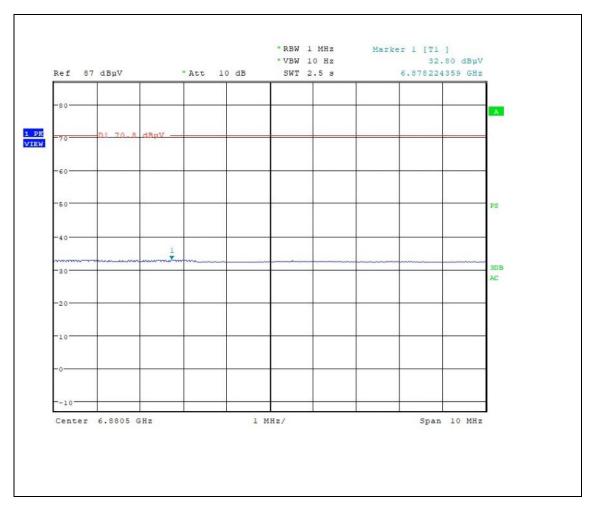
Frequency vs Load Variation Test

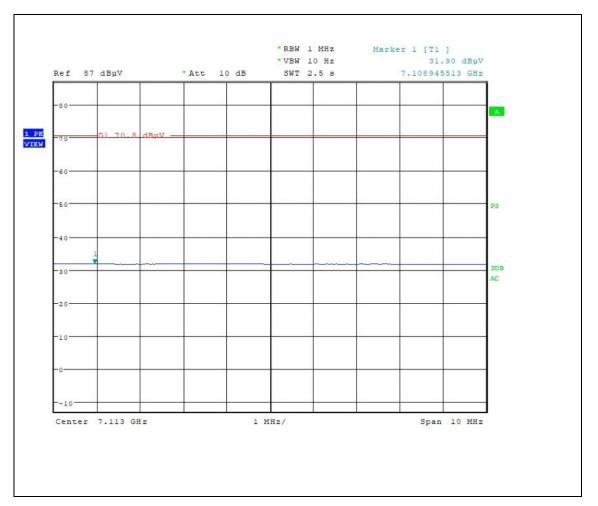

Vertical (120 V, 1000 ml)

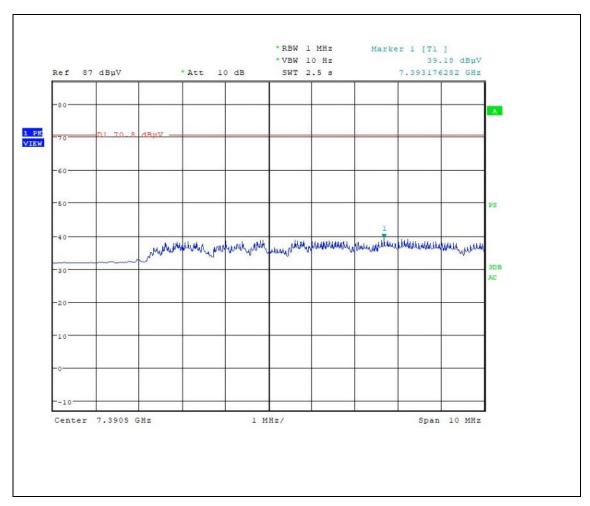

2204.07 MHz

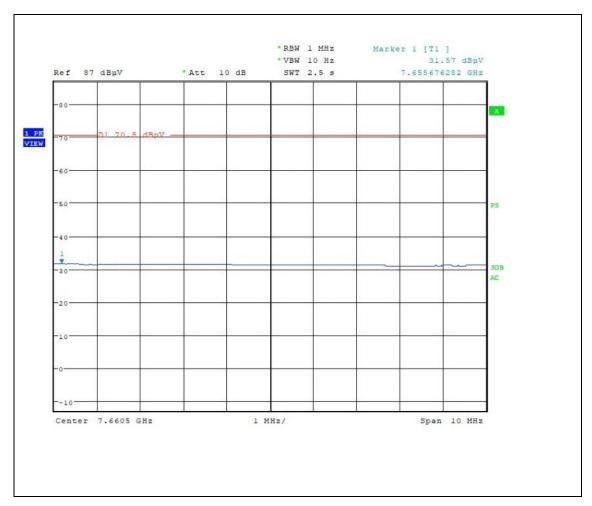
2708.25 MHz

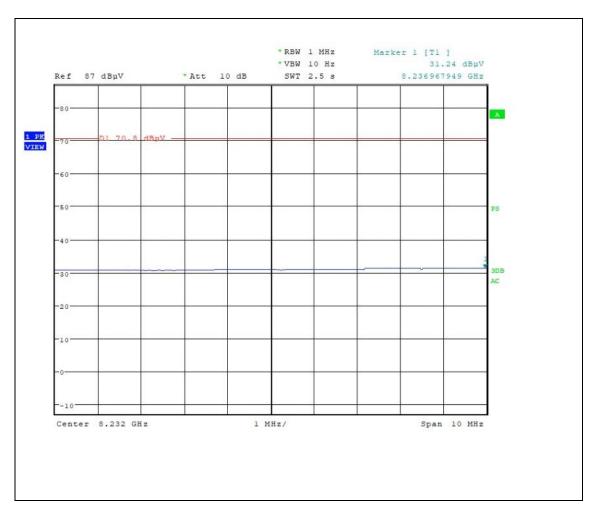

4239.66 MHz

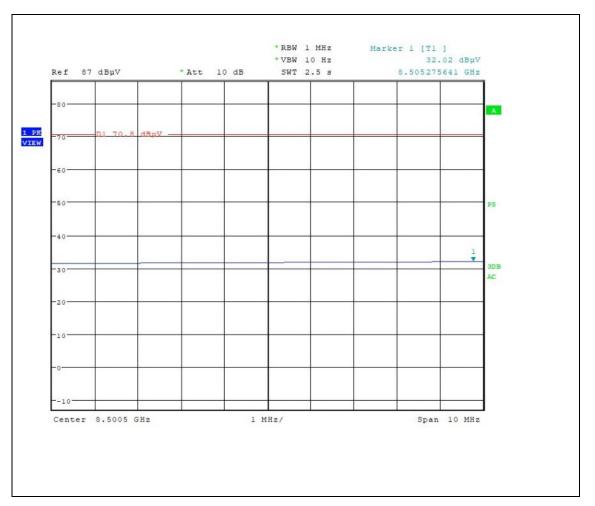

4921.66 MHz

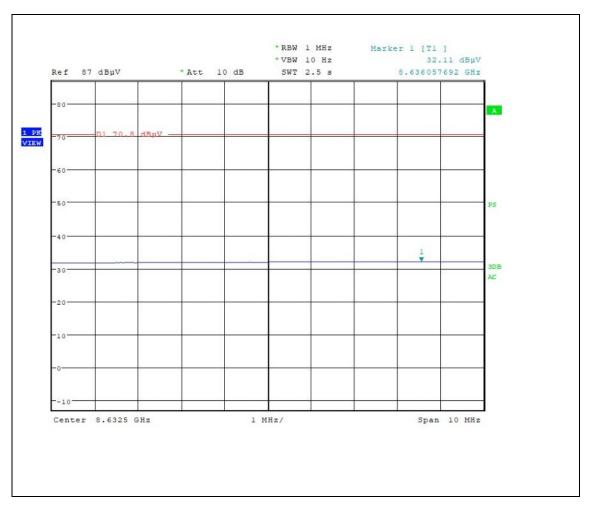

6152.01 MHz

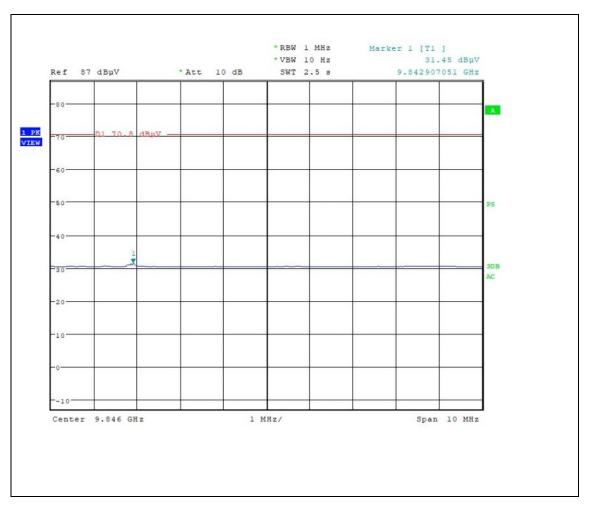

6878.22 MHz


7108.94 MHz

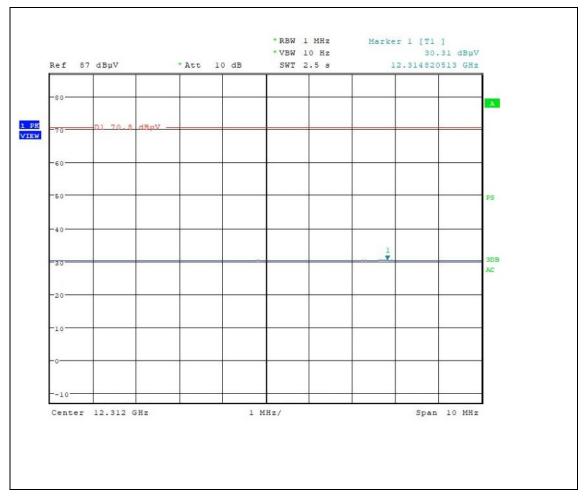

7393.17 MHz

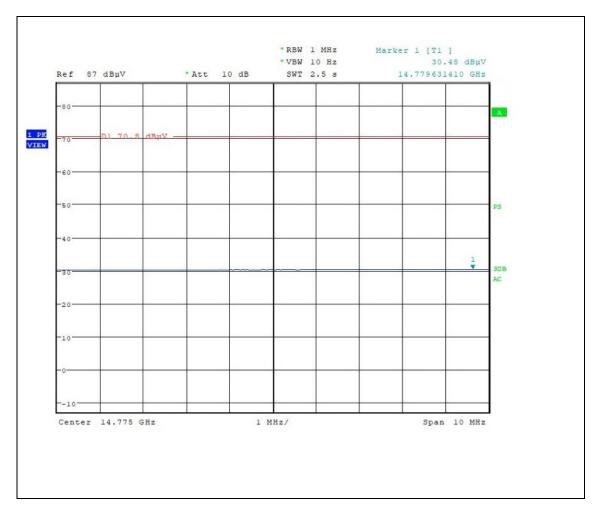

7655.67 MHz

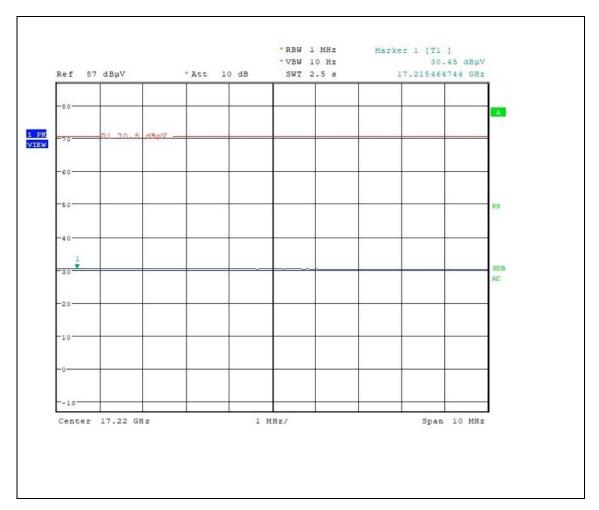

8236.96 MHz

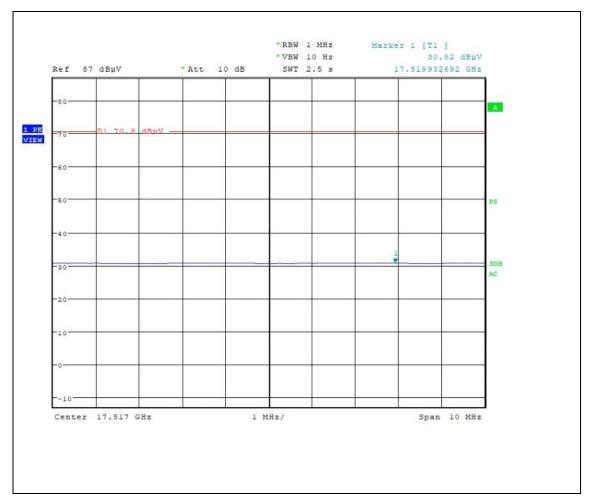

8505.27 MHz

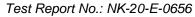

8636.05 MHz


9842.90 MHz


10111.90 MHz


12314.82 MHz


14779.63 MHz



17215.46 MHz

17519.93 MHz

ACCURACY OF MEASUREMENT

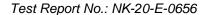
The Measurement Uncertainties stated were calculated in accordance with the requirements of measurement uncertainty contained in CISPR 16-4-2 with the confidence level of 95 %

1. Conducted Uncertainty Calculation

Source of Uncertainty	Xi	Uncertainty of Xi		Coverage factor	u(Xi)	Ci	Ci u(Xi)
Course of Officertainty	711	Value (dB)	Probability Distribution	k	(dB)		(dB)
Receiver reading	Rs	± 2.38	normal 1	1.00	2.38	1	2.38
AMN Voltage division factor	Lamn	± 0.15	normal 2	2.00	0.08	1	0.08
Sine wave voltage	dVsw	± 0.17	normal 2	2.00	0.09	1	0.09
Pulse amplitude response	dVpa	± 0.39	normal 2	2.00	0.20	1	0.20
Pulse repetition rate response	dVғя	± 0.39	normal 2	2.00	0.20	1	0.20
Noise floor proximity	dVnF	± 0.00	rectangular	√3	0.00	1	0.00
AMN VDF frequency interpolation	dVғı	± 0.10	rectangular	$\sqrt{3}$	0.06	1	0.06
AMN Impedance	dz	+ 2.60 - 2.70	Triangular	$\sqrt{6}$	1.10	1	1.10
Mismatch : AMN- Receiver	М	± 0.07	U-Shaped	$\sqrt{2}$	0.05	1	0.05
Remark	Using 50 Ω / 50 uH AMN						
Combined Standard Uncertainty	Normal			uc = 1.18 dB			
Expended Uncertainty U	Normal (k = 2)			U = 2.4 dB (CL is 95 %)			

2. Radiation Uncertainty Calculation (Below 1 @/b)

		Uncerta	ainty of <i>Xi</i>	Coverage			
Source of Uncertainty	Xi	Value (dB)	Probability Distribution	factor	<i>u(Xi)</i> (^{dB})	Ci	Ci u(Xi) (dB)
Receiver reading	Ri	± 0.04	normal 1	1.00	0.04	1	0.04
Sine wave voltage	dVsw	± 0.17	normal 2	2.00	0.09	1	0.09
Pulse amplitude response	dVpa	± 0.54	normal 2	2.00	0.27	1	0.27
Pulse repetition rate response	dVpr	± 0.54	normal 2	2.00	0.27	1	0.27
Noise floor proximity	dVnf	± 0.50	normal 2	2.00	0.29	1	0.29
Antenna Factor Calibration	AF	± 1.30	rectangular	2.00	0.65	1	0.65
Antenna Directivity	ΑD	± 0.50	rectangular	√3	0.29	1	0.29
Antenna Factor Height Dependence	Ан	± 0.50	rectangular	√3	0.29	1	0.29
Antenna Phase Centre Variation	A_P	± 0.20	rectangular	√3	0.12	1	0.12
Antenna Factor Frequency Interpolation	Ai	± 0.3	rectangular	√3	0.17	1	0.17
Site Imperfections	Si	± 4.00	Triangular	√6	1.63	1	1.63
Measurement Distance Variation	Dv	± 0.60	rectangular	√3	0.35	1	0.35
Antenna Balance	D _{bal}	± 1.00	rectangular	√3	0.58	1	0.58
Cross Polarization	Dcross	± 0.90	rectangular	$\sqrt{3}$	0.52	1	0.52
Mismatch	М	+ 1.32 - 1.57	U-Shaped	$\sqrt{2}$	0.11	1	1.11
EUT Volume Diameter	Vd	0.33	Normal 1	1.00	0.33	1	0.33
Combined Standard Uncertainty	Normal			<i>uc</i> = 2.36 dB			
Expended Uncertainty U	Normal (k = 2)			U = 4.8 dB (CL is 95 %)			


3. Radiation Uncertainty Calculation (Above 1 42)

		Uncerta	ainty of <i>Xi</i>	Coverage			
Source of Uncertainty	Xi	Value (dB)	Probability Distribution	factor	u(Xi) (dB)	Ci	Ci u(Xi) (dB)
Receiver reading	Ri	0.25	normal 1	1.00	0.25	1	0.25
Preamplifier gain	Gp	± 0.23	normal 2	2	0.12	1	0.12
Receiver Sine Wave	dVsw	± 0.27	normal 2	2	0.14	1	0.14
Instability of preamp gain	dGpw	± 1.2	rectangular	√3	0.70	1	0.70
Noise Floor Proximity	dVnf	± 0.70	rectangular	√3	0.40	1	0.40
Antenna Factor Calibration	AF	± 1.50	normal 2	2	0.75	1	0.75
Directivity difference	A_D	± 3.00	rectangular	$\sqrt{3}$	0.87	1	0.87
Phase Centre location	A P	± 0.30	rectangular	√3	0.17	1	0.17
Antenna Factor Frequency Interpolation	Ai	± 0.30	rectangular	√3	0.17	1	0.17
Site Imperfections	Si	± 3.00	Triangular	$\sqrt{6}$	1.22	1	1.22
Effect of setup table material	d ANT	± 1.50	rectangular	$\sqrt{3}$	0.87	1	0.87
Separation distance	d ⊳	± 0.30	rectangular	$\sqrt{3}$	0.17	1	0.17
Cross Polarization	Dcross	± 0.90	rectangular	$\sqrt{3}$	0.52	1	0.52
Mismatch (antenna-Preamplifier)	Μ	+ 1.30 - 1.50	U-Shaped	$\sqrt{2}$	1.06	1	1.06
Mismatch (preamplifier-receiver)	М	+ 1.20 - 1.40	U-Shaped	$\sqrt{2}$	0.99	1	0.99
Combined Standard Uncertainty	Normal			<i>uc</i> = 2.86 dB			
Expended Uncertainty U	Normal (<i>k</i> = 2)			U = 5.8 dB (CL is 95 %)			

LIST OF TEST EQUIPMENT

No.	Instrument	Manufacturer	Model	Serial No.	Due to Calibration	Calibration Interval
1	Microwave survey meter	ETS Lindgren	1501	00033549	Jan. 29 2021	2 year
2	EMI Test Receiver	ROHDE & SCHWARZ	ESCI	101041	Apr. 02 2021	1 year
3	Software	ROHDE & SCHWARZ	EMC32	Version 8.53.0	-	-
4	ARTIFICIAL MAINS NETWORK	ROHDE & SCHWARZ	ESH2-Z5	100273	Oct. 11 2020	1 year
5	ATTENUATOR	FAIRVIEW	SA3N5W-10	N/A	Jul. 13 2021	1 year
6	LOOP ANTENNA	ROHDE & SCHWARZ	HFH2-Z2	100279	Feb. 13 2021	2 years
7	EMI Test Receiver	ROHDE & SCHWARZ	ESU 40	100202	Apr. 02 2021	1 year
8	EMI TEST RECEIVER	ROHDE & SCHWARZ	ESW8	100994	Apr. 02 2021	1 year
9	Software	ROHDE & SCHWARZ	EMC32	Version 10.10.01	-	-
10	Signal Conditioning Unit	ROHDE & SCHWARZ	SCU 01	10029	Apr. 02 2021	1 year
11	TRILOG Broadband Test Antenna	SCHWARZBECK	VULB 9163	9163-01027	Feb. 07 2022	2 year
12	ATTENUATOR	FAIRVIEW	SA3N5W-06	N/A	Jan. 13 2021	1 year
13	Controller	innco systems GmbH	CO2000-G	CO2000/562/ 23890210/L	N/A	N/A
14	Open Switch and Control Unit	ROHDE & SCHWARZ	OSP-120	100015	N/A	N/A
15	Antenna Mast (Left)	innco systems GmbH	MA4000-EP	N/A	N/A	N/A
16	Turn Table	innco systems GmbH	DT3000-3T	N/A	N/A	N/A
17	Signal Conditioning Unit	ROHDE & SCHWARZ	SCU 01	10030	Apr. 02 2021	1 year
18	Signal Conditioning Unit	Rohde & Schwarz	SCU 18	10065	Apr. 02 2021	1 year
19	DOUBLE RIDGED HORN ANTENNA	SCHWARZBECK	HF907	100197	Aug. 09 2020	1 year
20	SWITCH AND POWER DETECTOR UNIT	ROHDE & SCHWARZ	OSP-120	101766	N/A	N/A
21	TILT ANTENNA MAST	innco systems GmbH	MA4640-XP- EP	N/A	N/A	N/A
22	CONTROLLER	innco systems GmbH	CO3000	CO3000/937/383 30516/L	N/A	N/A
23	Turntable	innco systems GmbH	DT2000-2t	N/A	N/A	N/A
24	WiFi Filter Bank	ROHDE & SCHWARZ	U082	N/A	N/A	N/A

APPENDIX A - SAMPLE LABEL

Labeling Requirements

The sample label shown shall be *permanently affixed* at a conspicuous location on the device and be readily visible to the user at the time of purchase.

HOUSEHOLD MICROWAVE OVEN

MODEL NO.: KOR-1DGP MICROW POWER INPUT 120V 60Hz AC ONLY, 1.5KW,

POWER OUTPUT 1000W, 2450MHz SINGLE PHASE WITH GROUNDING.

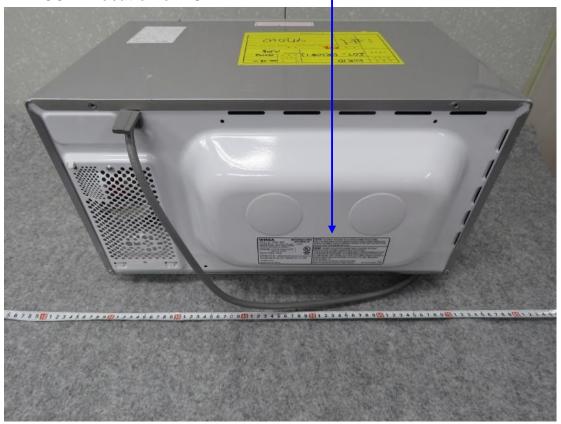
FCC ID: C5F7NF1DMO100N Contains FCC ID: COFMT-52 MADE IN CHINA

DHHS CODE: H7NF
DISTRIBUTED BY:
SHARP ELECTRONICS CORPORATION
100 Paragon Drive, Montvale, NJ 07645
SERIAL NO.:

MANUFACTURED:

CAUTION "THIS DEVICE IS TO BE SERVICED ONLY BY PROPERLY QUALIFIED SERVICE PERSONNEL.

CONSULT THE SERVICE MANUAL FOR PROPER SERVICE PROCEDURES TO ASSURE CONTINUED COMPLIANCE WITH
THE FEDERAL PERFORMANCE STANDARD FOR MICROWAVE OVENS AND FOR PRECAUTIONS TO BE TAKEN TO AVOID
POSSIBLE EXPOSURE TO EXCESSIVE MICROWAVE ENERGY.

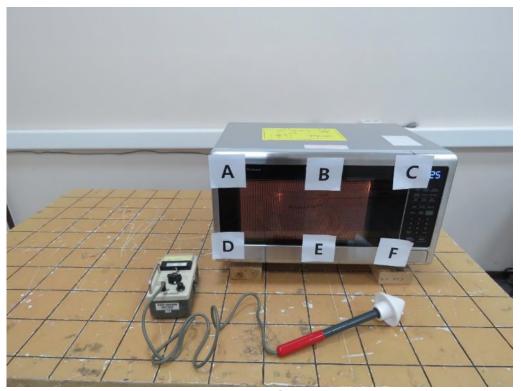

WARNING 'DISCONNECT APPLIANCE BEFORE SERVICING, REMOVAL OF ENCLOSURE WITH PRODUCT ENERGIZED MAY EXPOSE SERVICEMAN TO HAZARDOUS HIGH-VOLTAGE POTENTIALS.

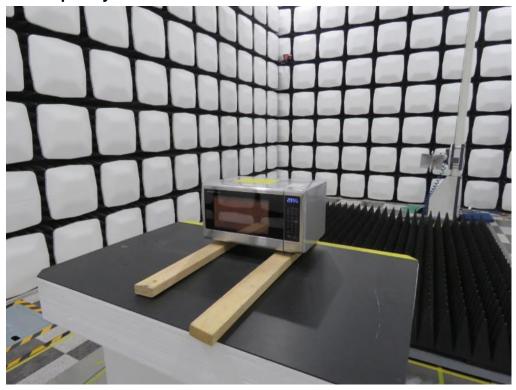
'TO ENSURE CONTINUED PROTECTION AGAINST SHOCK HAZARD CONNECT TO PROPERLY GROUNDED OUTLETS ONLY.
'CERTAIN INTERNAL PARTS ARE INTENTIONALLY NOT GROUNDED AND MAY PRESENT A RISK OF ELECTRIC SHOCK ONLY DURING SERVICING, SERVICE PERSONNEL-DO NOT CONTACT THE FOLLOWING PARTS WHILE THE APPLIANCE IS ENERGIZED: FAN MOTOR, LOW YOLTAGE TRANSFORMER (TOUCH CONTROL TYPE), TIMER & TIMER MOUNTING BRACKET (MECHANICAL TYPE).

RISK OF ELECTRIC SHOCK, NON REMOVABLE FASTENERS ARE PROVIDED BECAUSE OF INTERNAL HIGH VOLTAGES, DO NOT REMOVE FASTENERS

N=001 NOT FOR BUILT-IN INSTALLATION

FCC ID Location of EUT

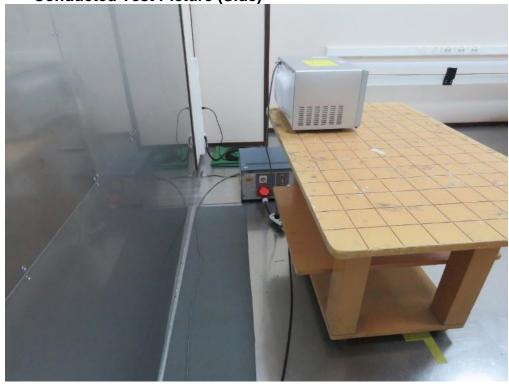


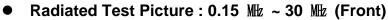

APPENDIX B - PHOTOGRAPHS OF TEST SET-UP

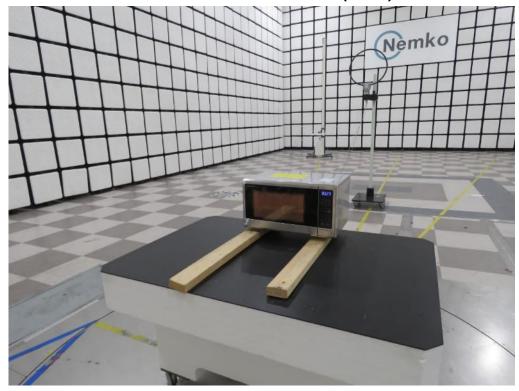
The **Conducted Test Picture** and **Radiated Test Picture** and show the worst-case configuration and cable placement.

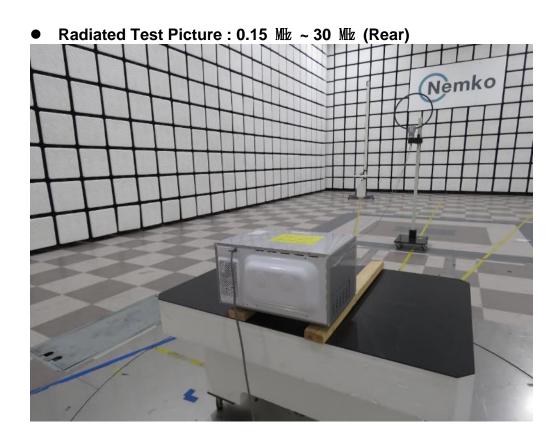
Radiation hazard Test Picture

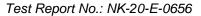
Frequency measurement Test Picture

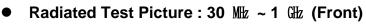


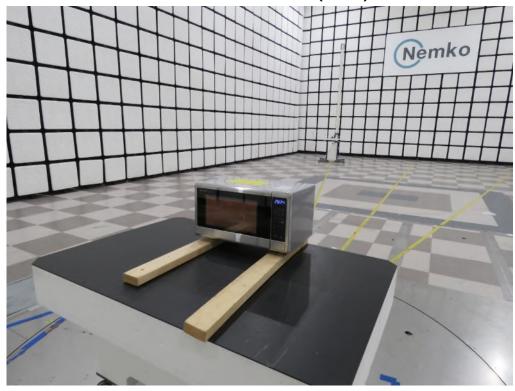


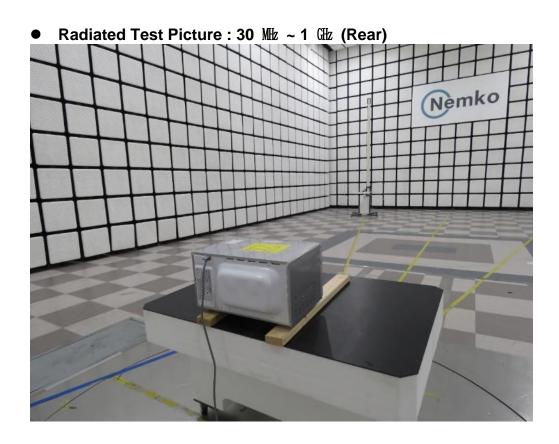


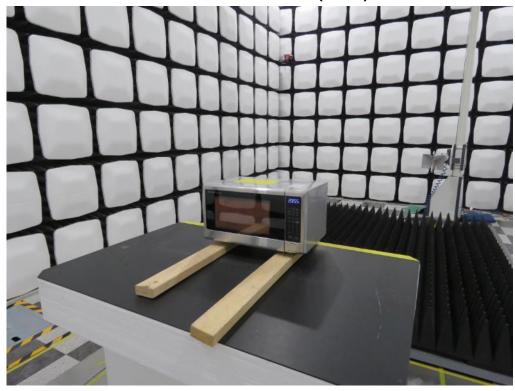


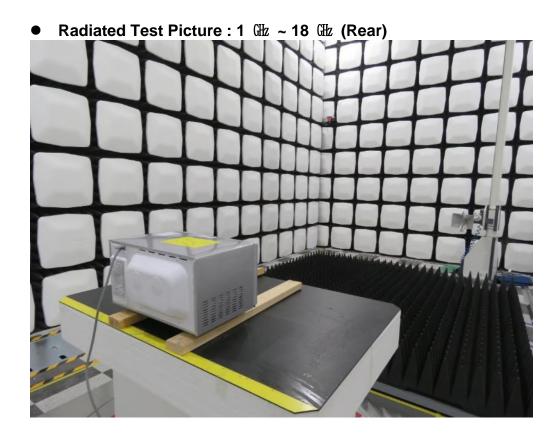












APPENDIX C – EUT PHOTOGRAPHS

1. Front View of EUT

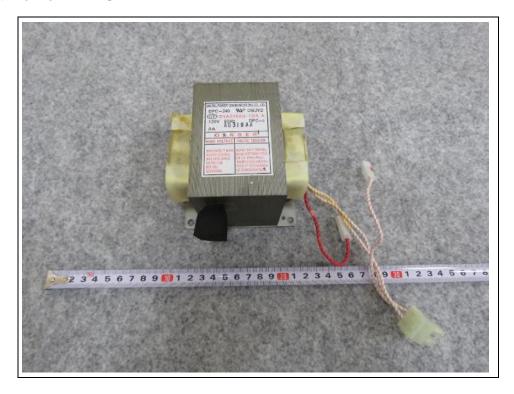
2. Rear View of EUT



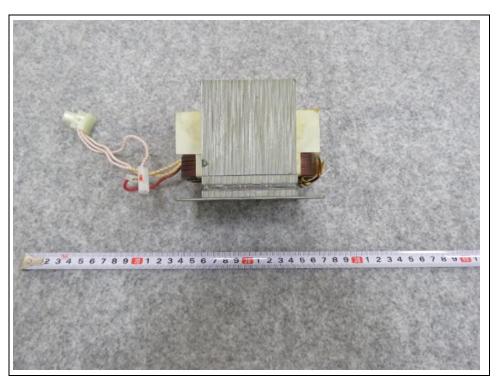
3. Inside View of EUT

4. Location of WiFi Module & Antenna Pattern

5. Front View of MAGNETRON

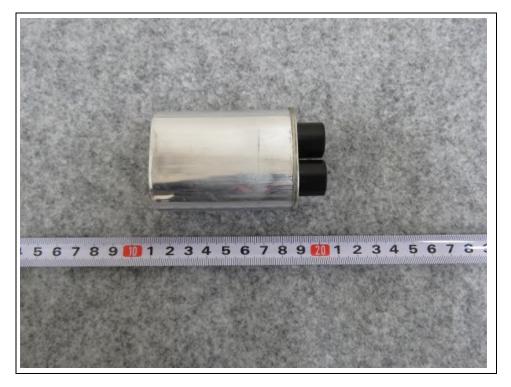


6. Rear View of MAGNETRON



7. Front View of TRANS H.V.

8. Rear View of TRANS H.V.


WINIADAEWOO Co., Ltd. FCC ID: C5F7NF1DMO100N

9. Front View of CAPACITOR H.V.

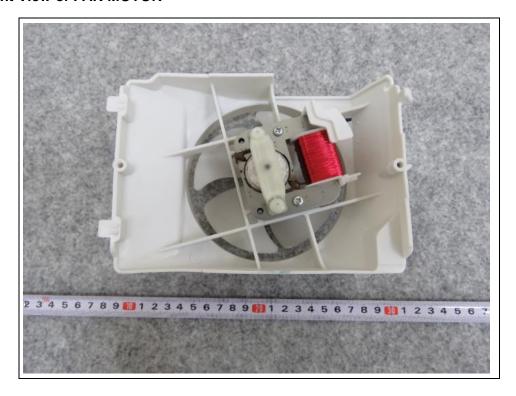
10. Rear View of CAPACITOR H.V.

WINIADAEWOO Co., Ltd. FCC ID: C5F7NF1DMO100N

11. Front View of DIODE H.V.

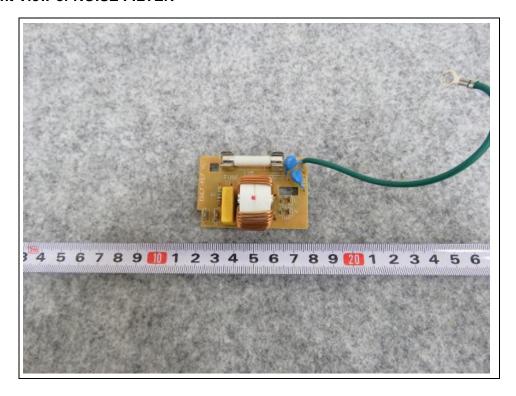
12. Rear View of DIODE H.V.

13. Front View of TRAY MOTOR

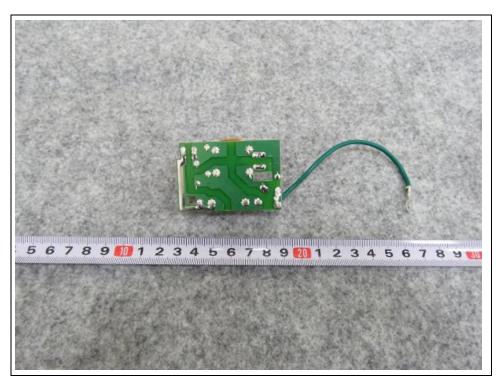


14. Rear View of TRAY MOTOR

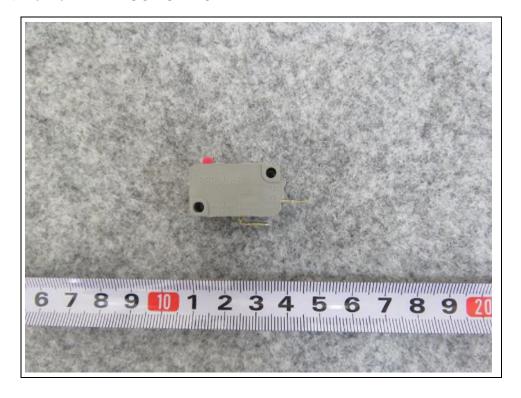
15. Front View of FAN MOTOR

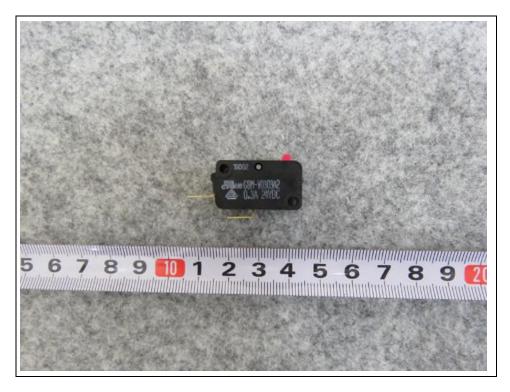


16. Rear View of FAN MOTOR

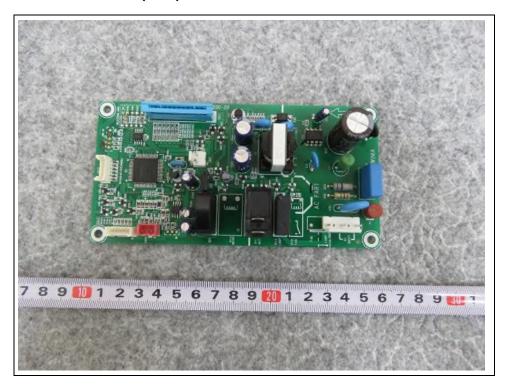


17. Front View of NOISE FILTER


18. Rear View of NOISE FILTER


WINIADAEWOO Co., Ltd. FCC ID: C5F7NF1DMO100N

19. Front View of INTERLOCK SWITCH



20. Rear View of INTERLOCK SWITCH

21. Front View of Main PCB (New)

22. Rear View of Main PCB (New)

