

FCC Certification

Nemko Korea Co., Ltd.

155 & 159, Osan-Ro, Mohyeon-Myeon, Cheoin-Gu, Yongin-Si, Gyeonggi-Do 16885 KOREA, REPUBLIC OF TEL: + 82 31 330 1700 FAX: +82 31 322 2332

FCC PART 18 Class II Permissive Change

Applicant:

Dongbu Daewoo Electronics Corporation (Cheongcheon-dong), 12, Bupyeongbuk-ro 236 beon-gil, Bupyeong-gu, Incheon,

Korea, Republic of

Attn: Mr. Byung-Seok, Kim

Dates of Issue: December 19, 2017

Test Report No.: NK-17-E-0829

Test Site: Nemko Korea Co., Ltd.

EMC site. Korea

FCC ID

Trade Mark

Contact Person

C5F7NF16MO110N

DAEWOO

Dongbu Daewoo Electronics Corporation (Cheongcheon-dong), 12. Bupveongbuk-ro 236 beon-gil, Bupyeong-gu, Incheon, Korea, Republic of Mr. Byung-Seok, Kim

Telephone No.: + 82 32 510 7919

Applied Standard:

FCC Part 18 & Part 2

Classification:

Consumer ISM equipment

EUT Type:

Microwave Oven

Remark: This Class II Permissive change test report was based on test report no. NK2FE368 which was issued on June 21, 2005.

The device bearing the Trade Mark and FCC ID specified above has been shown to comply with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in MP-5:1986.

I attest to the accuracy of data and all measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completen ess of these measurements and vouch for the qualific ations of all persons taking them.

Lec 13, 2019
Tested By: Taejoo Kim

Reviewed By : Sangkyu Lee

Technical Manager

NKQF-27-23 (Rev. 0)

Dongbu Daewoo Electronics Corporation

Page 1 of 73

FCC ID: C5F7NF16MO110N

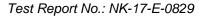


TABLE OF CONTENTS

SCOPE	3
INTRODUCTION (Site Description)	4
EUT INFORMATION	5
DESCRIPTION OF TESTS (Radiation Hazard)	6
DESCRIPTION OF TESTS (Input Power Measurement)	6
DESCRIPTION OF TESTS (Output Power Measurement)	6
DESCRIPTION OF TESTS (Frequency Measurements)	6
DESCRIPTION OF TESTS (Conducted Emissions)	7
DESCRIPTION OF TESTS (Radiated Emissions)	8
TEST DATA (Radiation Hazard)	9
TEST DATA (Input Power Measurement)	9
TEST DATA (RF Output Power Measurement)	9
TEST DATA (Frequency Measurements)	10
TEST DATA (Conducted Emissions)	12
TEST DATA (Radiated Emissions)	15
PLOT OF EMISSIONS (Frequency Measurements)	22
ACCURACY OF MEASUREMENT	42
LIST OF TEST EQUIPMENT	45
APPENDIX A - SAMPLE LABEL	46
APPENDIX B - PHOTOGRAPHS OF TEST SET-UP	47
APPENDIX C - EUT PHOTOGRAPHS	52
APPENDIX D - SCHEMATIC DIAGRAM	71
APPENDIX E - USER'S MANUAL	72
APPENDIX F - BLOCK DIAGRAM	73

FCC Certification

SCOPE

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission under FCC part 18.

Responsible Party: Dongbu Daewoo Electronics Corporation

Contact Person: Mr. Byung-Seok, Kim

Tel No.: + 82 32 510 7919

Manufacturer: Dongbu Daewoo Electronics Corporation

(Cheongcheon-dong), 12, Bupyeongbuk-ro 236 beon-gil,

Bupyeong-gu, Incheon, Korea, Republic of

FCC ID: C5F7NF16MO110N

Model: KOR-161G2

Variant Model: KOR-164HB, KOR-16**

Note 1) First "*": 0~9 or A~Z (Enclosure design difference)

Note 2) Second "*": 0~9 (Mechanical type) or A~Z (Electronic type)

Trade Mark: DAEWOO

EUT Type: Microwave Oven

Applied Standard: FCC Part 18 & Part 2

Test Procedure(s): MP-5:1986

Dates of Test: December 04, 2017 to December 15, 2017

Place of Tests: Nemko Korea Co., Ltd. EMC Site

• Test Report No.: NK-17-E-0829

INTRODUCTION

The measurement procedure described in MP5:1986 for Methods of Measurement of radiated, powerline conducted radio noise, frequency and power output was used in determining emissions emanating from **Dongbu Daewoo Electronics Corporation**.

FCC ID: C5F7NF16MO110N, Microwave Oven.

These measurement tests were conducted at Nemko Korea Co., Ltd. EMC Laboratory.

The site address is 155 & 159, Osan-Ro, Mohyeon-Myeon, Cheoin-Gu, Yongin-Si, Gyeonggi-Do 16885 KOREA, REPUBLIC OF

The area of Nemko Korea Corporation Ltd. EMC Test Site is located in a mountain area at 80 kilometers (48 miles) southeast and Incheon International Airport (Incheon Airport), 30 kilometers (18 miles) south-southeast from central Seoul.

The Nemko Korea Co., Ltd. has been accredited as a Conformity Assessment Body (CAB).

Nemko Korea Co., Ltd. 155 & 159, Osan-Ro, Mohyeon-Myeon, Cheoin-Gu, Yongin-Si, Gyeonggi-Do 16885 KOREA, REPUBLIC OF Tel) + 82 31 330 1700

Fax) + 82 31 322 2332

Fig. 1. The map above shows the Seoul in Korea vicinity area.

The map also shows Nemko Korea Corporation Ltd. EMC Lab and Incheon Airport.

EUT INFORMATION

EUT Information

Intended use	Household
Type of appliance	Counter-top Type
Rated voltage & frequency	a.c. 120 V, 60 Hz Single Phase
Rated power output	1 100 W
Rated power consumption	1 600 W
Magnetron	RM269 (DAEWOO)

Component List

Item	Model	Manufacturer	Serial Number
Diode H.V.	CL01-12	GAOXING	N/A
Fan Motor	OEM-15DWX1-B07	OH SUNG	N/A
H.V. CAPACITOR	2100VAC 0.98uF	BICAI	N/A
Noise Filter	DWLF-M17	N/A	N/A
Magnetron	RM269	DAEWOO	171111CD JF
Board	M372-1	DAEWOO	40303-0110200-00
SYNCHRONOUS MOTOR	49TYD-16A1	YUYAO JING CHENG HIGH & NEW TECHNOLOGY CO.,LTD	N/A
Trans H.V.	DWAR11A0-16T	ELEDEX CO., LTD.	N/A

Description of the Changes according to FCC part 2.1043

Basic model	Adding model	Difference
KOR-161G2	KOR-16**	The adding model is identical with the Basic model except for model name, control PCB and rated power consumption.

DESCRIPTION OF TESTS

Radiation Hazard

A 700 ml water load was placed in the center of the oven.

The power setting was set to maximum power.

While the oven was operating, the Microwave Survey Meter probe was moved slowly around the door seams to check for leakage.

Input Power Measurement

A 700 $m\ell$ water load was placed in the center of the oven and the oven set to maximum power. A 700 $m\ell$ water load was chosen for its compatibility.

Input power and current were measured using a Power Analyzer.

Manufacturers to determine their input ratings commonly use this procedure.

Output Power Measurement

The Caloric Method was used to determine maximum output power. The initial temperature of a 1000 $\,\mathrm{m}\ell$ water load was measured. The water load was

placed in the center of the oven. The oven was operated at maximum output power for 47 seconds. Then the temperature of the water re-measured.

Frequency Measurements

Following the above test, after operating the oven long enough to assure that stable operating temperature were obtained, the operating frequency was monitored as the input voltage was varied between 80 percent to 125 percent of the nominal rating. And the load quantity was reduced by evaporation to approximately 20 % of the original quantity with nominal rating.

DESCRIPTION OF TESTS

Conducted Emissions

The Line conducted emission test facility is located inside a 4 x 7 x 2.5 m shielded enclosure.

It is manufactured by EM engineering. The shielding effectiveness of the shielded room is in accordance with MIL-STD-285 or NSA 65-6.

A 1 m x 1.5 m wooden table 0.8 m height is placed 0.4 m away from the vertical wall and 0.5 m away from the side of wall of the shielded room Rohde & Schwarz (ESH2-Z5) of the 50 ohm / 50 uH Line Impedance Stabilization Network(LISN) is bonded to the shielded room.

The EUT is powered from the Rohde & Schwarz (ESH2-Z5) LISN.

Power to the LISN s are filtered by high-current high insertion loss power line filters.

The purpose of filter is to attenuate ambient signal interference and this filter is also bonded to shielded enclosure. All electrical cables are shielded by tinned copper zipper tubing with inner diameter of 1 / 2 ".

If d.c. power device, power will be derived from the source power supply it normally will be powered from and this supply lines will be connected to the LISNs,

All interconnecting cables more than 1 m were shortened by non-inductive bundling (serpentine fashion) to a 1 m length.

Sufficient time for EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer to determine the frequency producing the maximum EME from the EUT. The spectrum was scanned from 150 kHz to 30 MHz with 20 ms sweep time.

The frequency producing the maximum level was re-examined using the EMI test receiver. (Rohde & Schwarz ESCI).

The detector functions were set to quasi-peak mode & average mode.

The bandwidth of receiver was set to 9 & . The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each EME emission.

Each emission was maximized by; switching power lines; varying the mode of operation or resolution; clock or data exchange speed; scrolling H pattern to the EUT and of support equipment, and powering the monitor from the floor mounted outlet box and computer aux a.c. outlet, if applicable; whichever determined the worst case emission.

Each EME reported was calibrated using the ROHDE & SCHWARZ signal generator.

Fig. 2. LISN Schematic Diagram

DESCRIPTION OF TESTS

Radiated Emissions

Measurement were made indoors at 10 m & 3 m using antenna, signal conditioning unit and EMI test receiver to determine the frequency producing the maximum EME.

Appropriate precaution was taken to ensure that all EME from the EUT were maximized and investigated. The Technology configuration, clock speed, mode of operation or video resolution, turntable azimuth with respect to the antenna was note for each frequency found.

The spectrum was scanned from 0.15 Mb to 30 Mb using Loop Antenna (ROHDE & SCHWARZ/HFH2-Z2)

and from 30 Mb to 1000 Mb using TRILOG Broadband Test Antenna (Schwarzbeck, VULB 9163).

Above 1 $\ \, \mathbb{G}$, Double Ridged Broadband Horn antenna (Schwarzbeck, HF907) was used.

Final Measurements were made indoors at 3 m using Loop Antenna

(ROHDE & SCHWARZ/HFH2-Z2) for measurement from 0.15 to 30 Mb with RBW 9 kb and made indoor at 10 m using TRILOG Broadband Test Antenna (Schwarzbeck, VULB 9163) for measurement from 30 Mb to 1000 Mb with RBW 100 kb and made indoors at 3 m using Double Ridged Broadband Horn antenna (Schwarzbeck, HF907) for measurement from 1 Gb to 18 Gb with RBW 1 Mb.

The detector function were set to quasi peak mode and the bandwidth of the receiver were set to 9 klb, 100 klb and peak mode 1 Mb depending on the frequency or type of signal.

The Double Ridged Broadband Horn antenna was tuned to the frequency found during preliminary radiated measurements.

The EUT support equipment and interconnecting cables were re-configured to the setup producing the maximum emission for the frequency and were placed on top of a 0.8 m high non- metallic 1.0 X 1.5 meter table.

The EUT, support equipment and interconnecting cables were re-arranged and manipulated to maximize each EME emission.

The EUT is rotated about its vertical axis on the turntable, and the polarization and height of the receiving antenna are varied to obtain the highest field strength on the particular frequency under observation.

Each EME reported was calibrated using the R/S signal generator.

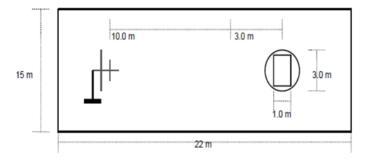


Fig. 3. Dimensions of 10 semi anechoic chamber

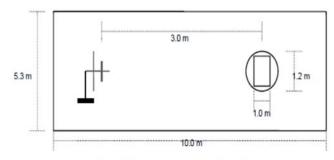
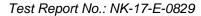



Fig. 4. Dimensions of 3 m full anechoic chamber

Radiation Hazard

Probe Location	Maximum Leakage [mW/Cm2]	Limit [mW/Cm2]
Α	0.03	1.00
All others	0.01	1.00

Input Power Measurement

Operation mode	P rated (W)	P (W)	dP (%)	Required dP (%)
Power Input	1 600	1 557	3.8	+ 15 %

Output Power Measurement

Quantity	Mass of the	Ambient	Initial	Final	Heating	Power
of Water	container	temperature	temperature	temperature	time	output
[ml]	[g]	[°]	[°]	[°]	[s]	[W]
1 000	400	20.0	10.0	19.9	38	1 090

Formula:

$$P = \frac{4.187 \times m_w \times (T_1 - T_0) + 0.55 \times m_c \times (T_1 - T_A)}{t}$$

NOTE:

P is the microwave power output (W)

 $m_{\rm w}$ is the mass of the water (g)

 m_c is the mass of the container (g)

 T_A is the ambient temperature ($^{\circ}$)

 T_0 is the initial temperature of the water ($^{\circ}$ C)

 T_1 is the final temperature of the water ($^{\circ}$)

t is the heating time (s), excluding the magnetron filament heating-up time.

Frequency measurements

► Frequency vs Line Voltage Variation Test

[Room Temperature : 18.5 ± 1.0 °C]

	[ROOII]					
Line Voltage	*)Pole	Frequency	Allowed Tolerance for			
Variation (a.c. V)	<i>)</i> 1 010	[MHz]	the ISM Band			
	Н	Lower : 2 407.2				
06 (90 %)	Н	Upper : 2 473.5				
96 (80 %)	V	Lower : 2 408.6				
	V	Upper : 2 469.2				
	Н	Lower : 2 408.1				
409 (00 9/)	Н	Upper : 2 469.7				
108 (90 %)	V	Lower : 2 402.4				
	V	Upper : 2 466.8				
	Н	Lower : 2 402.4				
420 (400 0/)	Н	Upper : 2 466.8	Lower: 2 400 Mb			
120 (100 %)	V	Lower : 2 400.9	Upper: 2 500 Mb			
	V	Upper : 2 468.2				
	Н	Lower : 2 404.3				
422 (440 0/)	Н	Upper : 2 466.8				
132 (110 %)	V	Lower : 2 404.8				
	V	Upper : 2 469.2				
	н	Lower : 2 411.0				
450 (425 9/)	Н	Upper : 2 461.5				
150 (125 %)	V	Lower : 2 402.8				
	V	Upper : 2 465.3				

NOTE:

1. *Pol. H = Horizontal V = Vertical

2. Initial load : 1 000 $\,\mathit{ml}$ of water in the beaker.

3. Line voltage varied from 80 % to 125 %.

4. ISM Frequency : 2 450 Mb, Tolerance : \pm 50 Mb

RESULT: Pass

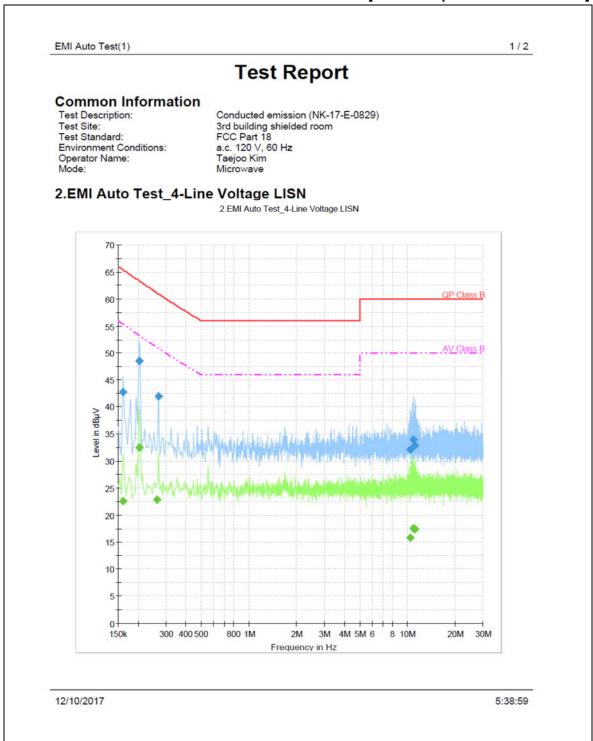
▶ Frequency vs Load Variation Test

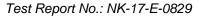
[Room Temperature : 17.8 ± 1.0 °C]

Volume of water (πℓ)	*)Pole	Frequency	Allowed Tolerance for the ISM Band
	Н	Lower : 2 401.9	
000	Н	Upper : 2 460.0	
200	V	Lower : 2 400.9	
	V	Upper : 2 458.1	
	Н	Lower : 2 400.9	
400	Н	Upper : 2 476.4	
400	V	Lower : 2 408.1	
	V	Upper : 2 462.0	
	Н	Lower : 2 405.2	
600	Н	Upper : 2 461.0	Lower : 2 400 Mb
600	V	Lower : 2 406.2	Upper : 2 500 Mb
	V	Upper : 2 468.2	
	Н	Lower : 2 404.3	
200	Н	Upper : 2 443.2	
800	V	Lower : 2 403.8	
	V	Upper : 2 466.8	
	Н	Lower : 2 400.9	
4000	Н	Upper : 2 468.2	
1000	V	Lower : 2 403.8	
	V	Upper : 2 463.9	

NOTE:

- 1. *Pol. H = Horizontal, V = Vertical
- 2. The water load was varied between 200 $\,\mathrm{ml}$ to 1 000 $\,\mathrm{ml}$.
- 3. Frequency was measured by using nominal voltage (a.c. 120 V).
- 4. ISM Frequency : 2 450 Mb, Tolerance : ± 50 Mb


RESULT: Pass



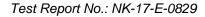
Conducted Emissions

FCC ID: C5F7NF16MO110N

[Room Temperature : 19.0 ± 1.0 °C]

FCC Certification

EMI Auto Test(1) 2/2


Final Result 1

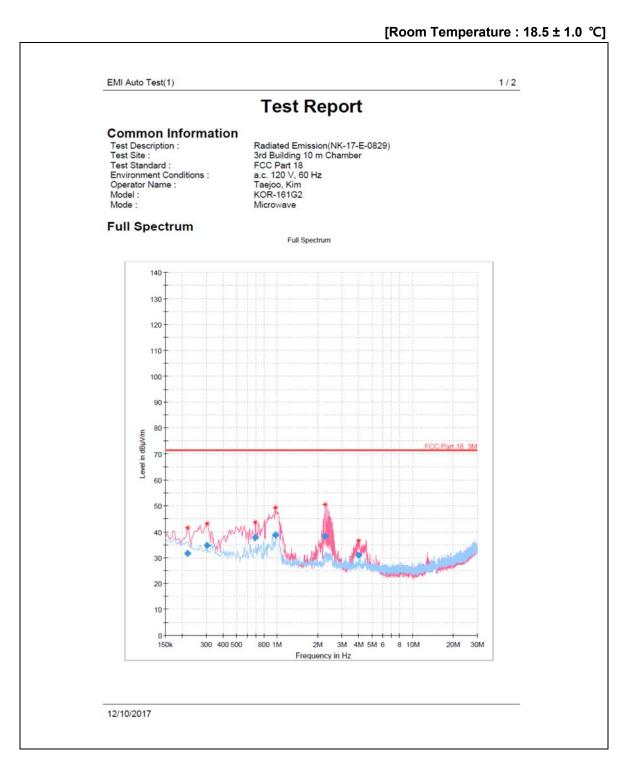
Frequency (MHz)	QuasiPeak (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.161194	42.8	15000.0	9.000	GND	N	10.3	22.6	65.4	
0.202238	48.5	15000.0	9.000	GND	N	10.2	14.8	63.4	
0.269400	41.9	15000.0	9.000	GND	N	10.3	19.0	60.9	
10.440788	32.1	15000.0	9.000	GND	N	10.7	27.9	60.0	
10.862419	33.9	15000.0	9.000	GND	N	10.7	26.1	60.0	
11.157188	32.8	15000.0	9.000	GND	N	10.7	27.2	60.0	

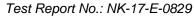
Final Result 2

Frequency (MHz)	CAverage (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.161194	22.7	15000.0	9.000	GND	N	10.3	32.7	55.3	
0.202238	32.5	15000.0	9.000	GND	N	10.2	20.8	53.3	
0.261938	22.8	15000.0	9.000	GND	N	10.3	28.3	51.1	
10.440788	15.8	15000.0	9.000	GND	N	10.7	34.2	50.0	
10.862419	17.6	15000.0	9.000	GND	N	10.7	32.4	50.0	
11.108681	17.5	15000.0	9.000	GND	N	10.7	32.5	50.0	

12/10/2017 5:38:59

FCC Certification


NOTES:

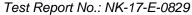

- 1. Measurements using quasi-peak mode & average mode.
- 2. If no frequencies are specified in the tables, no measurement for quasi-peak or average was necessary.
- 3. Line: L = Line, N = Neutral
- 4. The limit for consumer device is on the FCC Part section 18.307(b).

Radiated Emissions (150 址 to 30 址)

FCC ID: C5F7NF16MO110N

EMI Auto Test(1) 2/2

Final Result


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Pol	Azimuth (deg)	Corr. (dB)
0.218655	31.72	71.30	39.58	15000.0	9.000	V	59.0	-22.4
0.305220	34.69	71.30	36.61	15000.0	9.000	V	349.0	-22.6
0.693270	37.72	71.30	33.58	15000.0	9.000	V	112.0	-22.7
0.967890	38.81	71.30	32.49	15000.0	9.000	V	59.0	-22.6
2.254425	38.37	71.30	32.93	15000.0	9.000	V	314.0	-22.5
3.979755	31.06	71.30	40.24	15000.0	9.000	V	95.0	-22.7

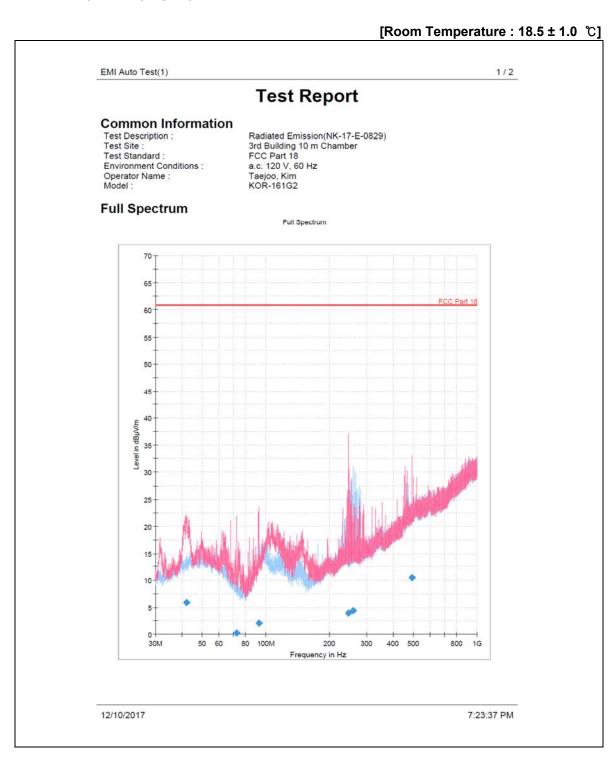
(continuation of the "Final_Result" table from column 15 ...)

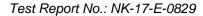
Frequency (MHz)	Comment						
0.218655	4:46:40 PM - 12/10/2017						
0.305220	4:49:02 PM - 12/10/2017						
0.693270	4:47:47 PM - 12/10/2017						
0.967890	4:46:57 PM - 12/10/2017						
2.254425	4:48:36 PM - 12/10/2017						
3.979755	4:47:23 PM - 12/10/2017						

12/10/2017

<Radiated Measurements at 3 meters >

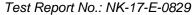
FCC Certification

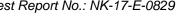

NOTES:


- 1. *Pol. H = Horizontal V = Vertical
- 2. **AF + CL + Amp. = Antenna Factor + Cable Loss + Amplifier.
- 3. Distance Correction factor : 20 * log (300 / 3) = 40 dBuV/m
- 4. The limit at 300 meters is 20 * log (25 * SQRT (RF Power / 500))
- 5. All other emissions were measured while a 700 ml load was placed in the center of the oven.
- 6. The limit for consumer device is on the FCC Part section 18.305.

Radiated Emissions (30 Mb to 1 础)

FCC ID: C5F7NF16MO110N





EMI Auto Test(1) 2/2 Final Result Margin (dB) Time (ms)
54.90 15000.0
60.60 15000.0
58.73 15000.0
56.85 15000.0
56.45 15000.0
50.35 15000.0 Limit (dBµV/m) Average (dBµV/m) Bandwidth (kHz) Azimuth (deg) Frequency (MHz) 42.157333 72.583000 92.662000 246.019000 258.338000 492.431333 60.80 60.80 60.80 60.80 60.80 5.90 0.20 2.07 3.95 4.35 10.45 120.000 120.000 120.000 120.000 120.000 120.000 -28.0 -21.6 133.0 -26.1 110.0 -23.5 294.0 -19.8 82.0 -19.4 39.0 -11.9 100.0 V 170.0 V 130.0 V 170.0 V (continuation of the "Final_Result" table from column 16 ...) Frequency (MHz) 42.157333 72.583000 92.662000 246.019000 258.338000 492.431333 Comment 12/10/2017 7:23:37 PM

<Radiated Measurements at 10 meters>

FCC Certification

NOTES:

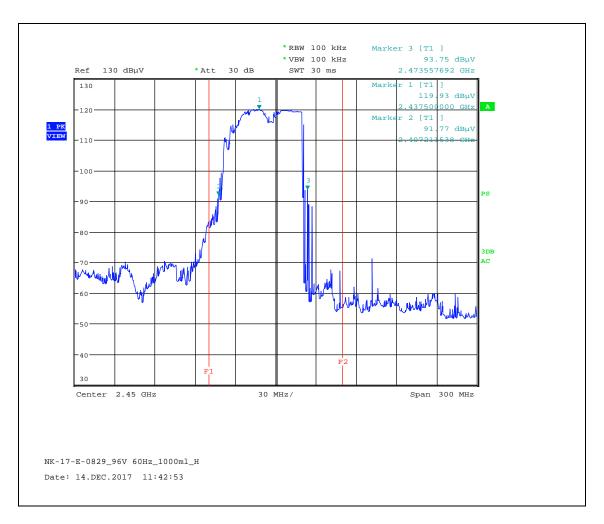
- 1. *Pol. H = Horizontal V = Vertical
- 2. **AF + CL + Amp. = Antenna Factor + Cable Loss + Amplifier.
- 3. Distance Correction factor : 20 * log (300/10) \rightleftharpoons 29.5 dB $\mu N/m$
- 4. The limit at 300 meters is 20 * log (25 * SQRT (RF Power/500))
- 5. All other emissions were measured while a 700 ml load was placed in the center of the oven.
- 6. The limit for consumer device is on the FCC Part section 18.305.

Radiated Emissions (Above 1 础)

FCC ID: C5F7NF16MO110N

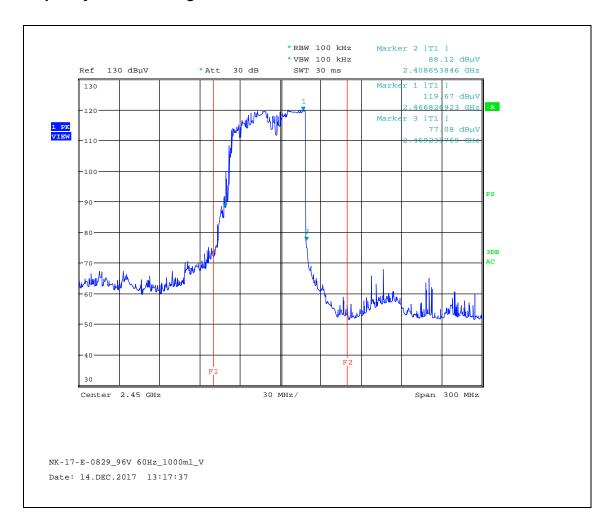
[Room Temperature : 18.5 ± 2.5 °C]

Frequency	Pol*	Antenna Heights	Turntable Angles	Reading Level	Total Loss**	Result at 3 m		к	Results at 300 m	Limits at 300 m
(MHz)	(H/V)	(cm)	O	(dBμV)	(dB)	(dBµV/m)	(<i>μ</i> V/m)		(μV/m)	(<i>μ</i> V/m)
2 204.32	Н	400.1	50	47.7	-5.1	42.6	134.9	0.005	0.7	36.9
2 713.94	Η	400.1	96	57.2	-3.6	53.6	480.8	0.006	2.9	36.9
4 210.39	Ι	200.1	314	36.5	-3.0	33.5	47.2	0.009	0.4	36.9
4 919.98	Ι	200.1	258	46.4	-1.8	44.6	170.0	0.01	1.7	36.9
6 849.24	Ι	200.1	300	36.1	2.7	38.8	87.5	0.01	0.9	36.9
7 086.59	Ι	99.9	306	35.1	0.2	35.3	58.5	0.01	0.6	36.9
7 374.47	V	99.9	321	35.8	-0.8	35.0	56.4	0.01	0.6	36.9
8 336.63	Н	200.1	307	34.2	1.1	35.3	58.1	0.01	0.6	36.9
9 832.59	V	300.0	324	34.3	2.3	36.6	67.9	0.01	0.7	36.9
10 096.36	V	300.0	326	34.8	2.7	37.5	74.9	0.01	0.7	36.9
14 777.53	Η	400.1	53	37.2	8.5	45.7	192.8	0.01	1.9	36.9
17 246.09	Ι	99.9	65	33.3	12.7	46.0	199.8	0.01	2.0	36.9

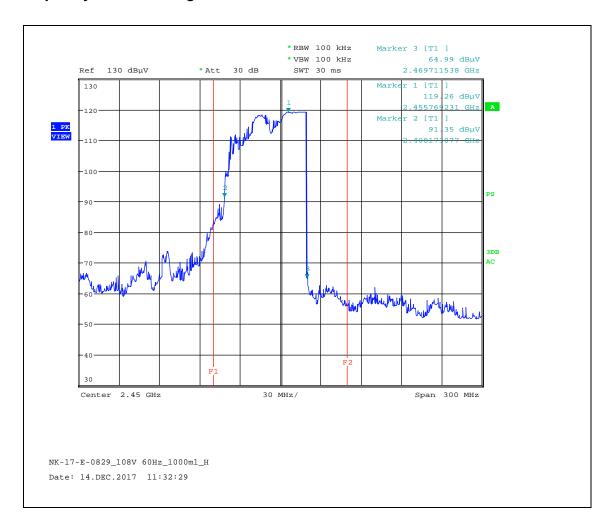

<Radiated Measurements at 3 meters>

NOTES:

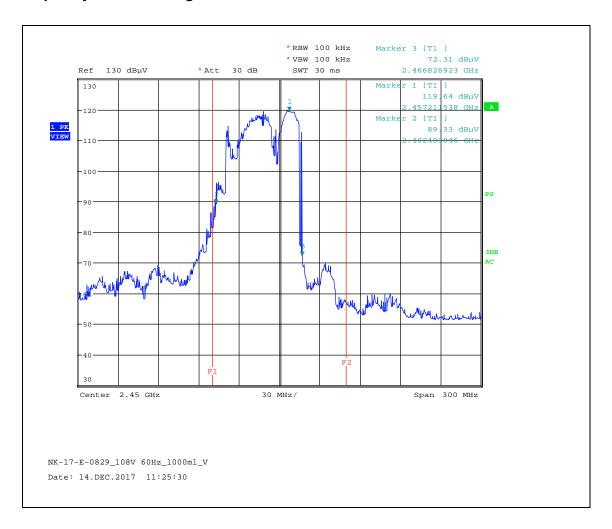
- 1. * Pol. H =Horizontal V=Vertical
- 2. ** Total Loss = Antenna Factor + Cables Loss + Amplifier + HPF (High Pass Filter)
- 3. Field Strength (at 300 m) (uV/m) = K * 10 [Fieldstrength at 3 m (dBuV/m)/20]
- 4. The limit at 300 meters is 25 * SQRT (RF Power/500)
- 5. Load for measurement of radiation on second and third harmonic: Two loads, one of 700 ml and the other of 300 ml, of water were used. Each load was tested both with the beaker located in the center of the oven and with it in the corner.
- 6. The test was performed at peak detector mode with average.
- 7. The limit for consumer device is on the FCC Part section 18.305.


Frequency vs Line Voltage Variation Test

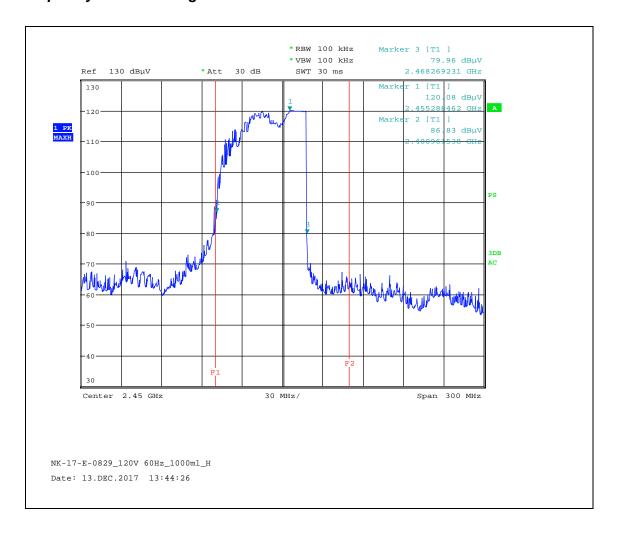
Horizontal (96 V, 1000 ml)


• Frequency vs Line Voltage Variation Test

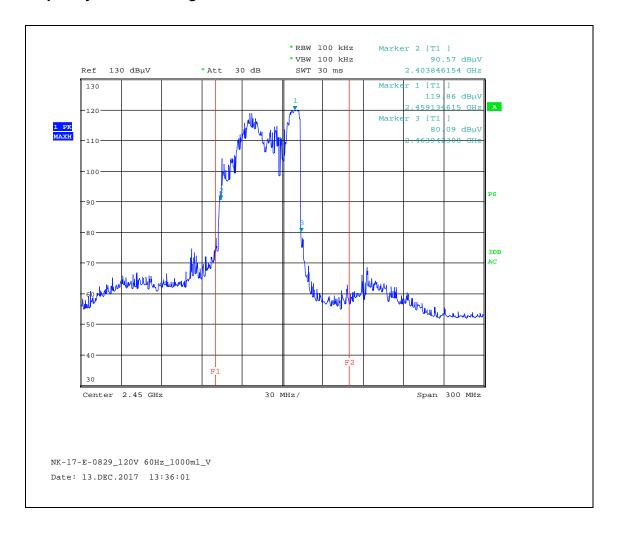
Vertical (96 V, 1000 ml)


Frequency vs Line Voltage Variation Test

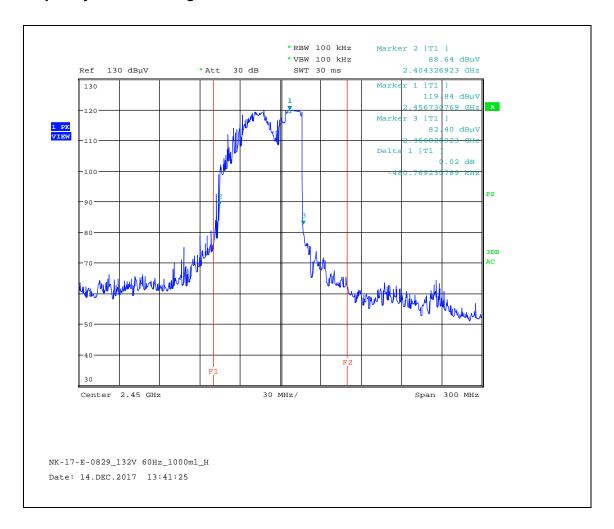
Horizontal (108 V, 1000 mℓ)


Frequency vs Line Voltage Variation Test

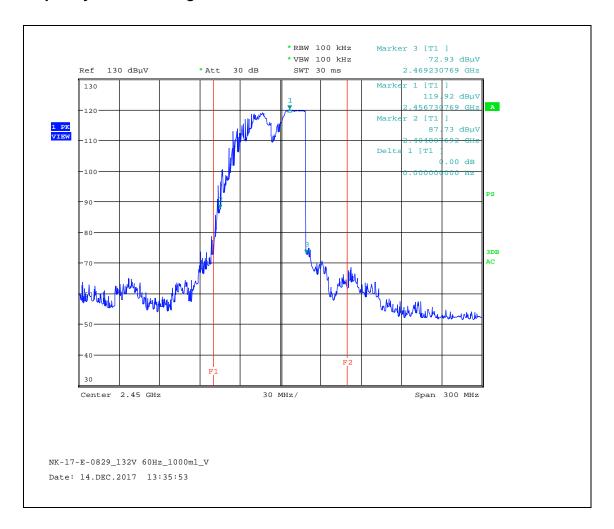
Vertical (108 V, 1000 mℓ)


• Frequency vs Line Voltage Variation Test

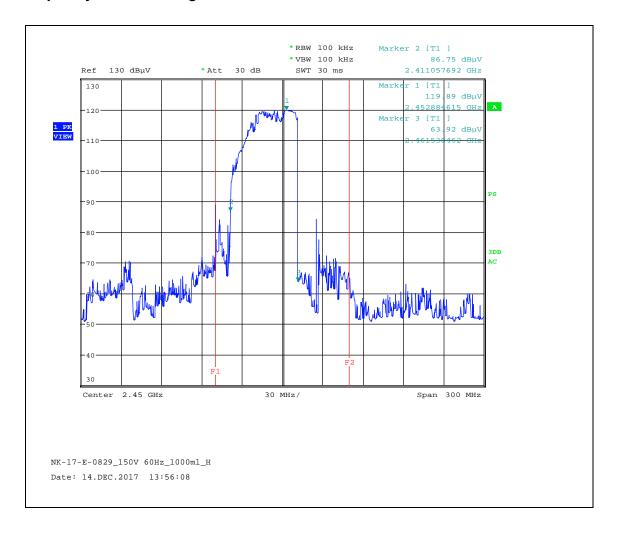
Horizontal (120 V, 1000 mℓ)


• Frequency vs Line Voltage Variation Test

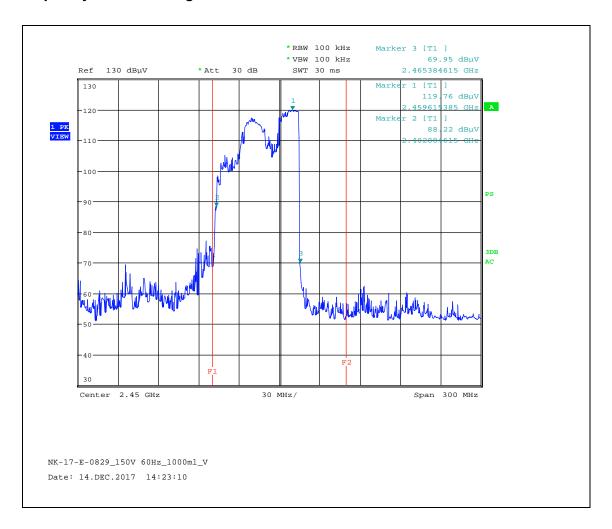
Vertical (120 V, 1000 ml)


Frequency vs Line Voltage Variation Test

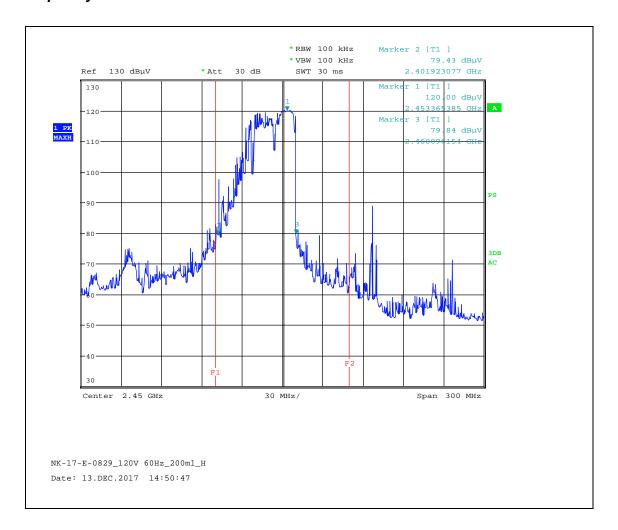
Horizontal (132 V, 1000 mℓ)


Frequency vs Line Voltage Variation Test

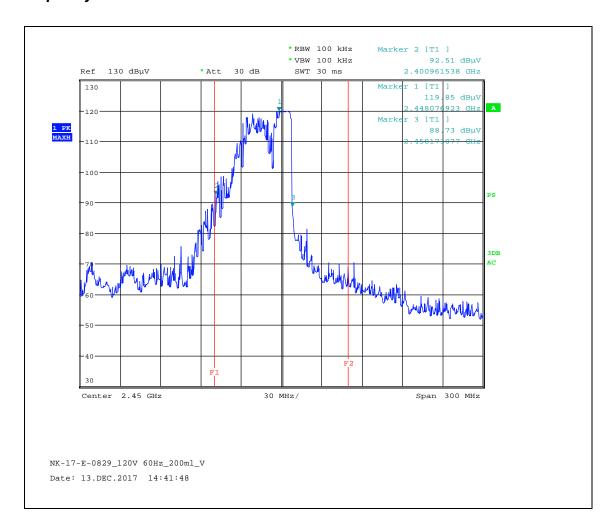
Vertical (132 V, 1000 ml)


• Frequency vs Line Voltage Variation Test

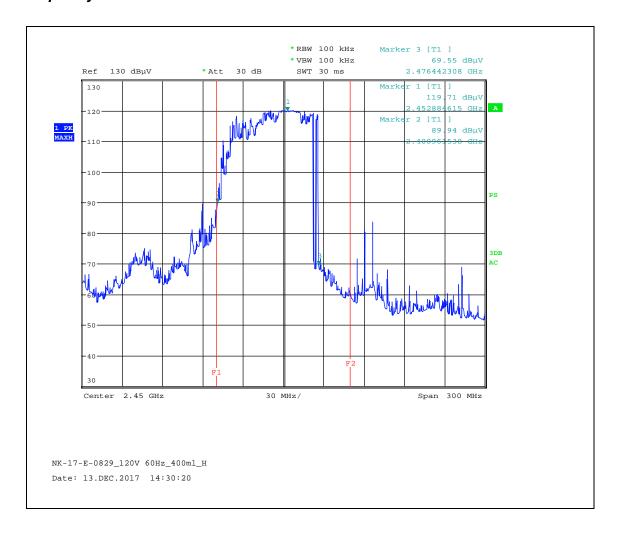
Horizontal (150 V, 1000 mℓ)


Frequency vs Line Voltage Variation Test

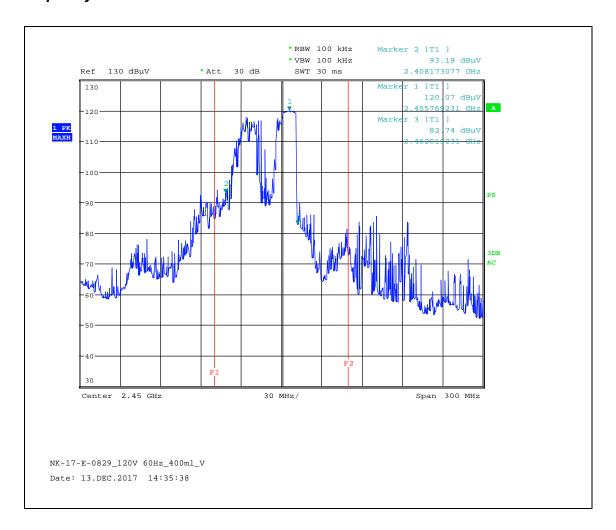
Vertical (150 V, 1000 mℓ)


• Frequency vs Load Variation Test

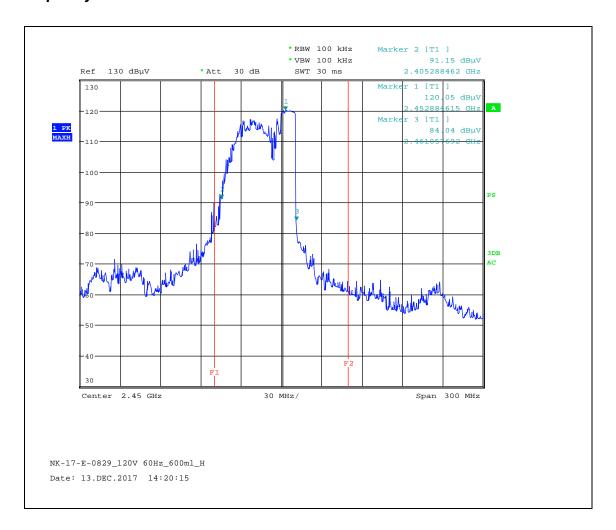
Horizontal (120 V, 200 ml)


• Frequency vs Load Variation Test

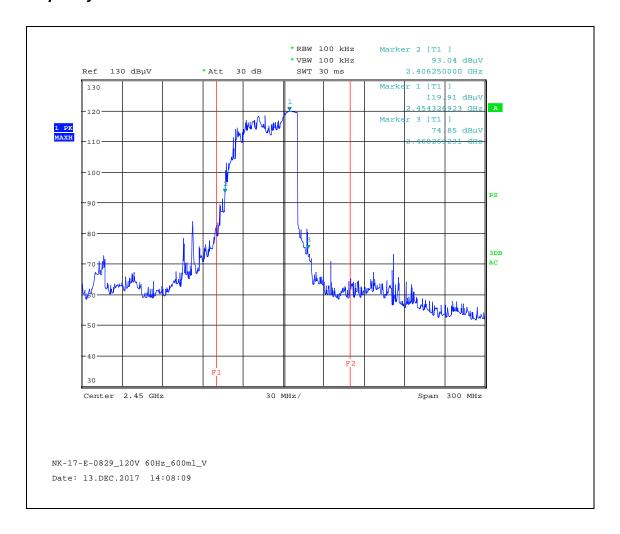
Vertical (120 V, 200 ml)


Frequency vs Load Variation Test

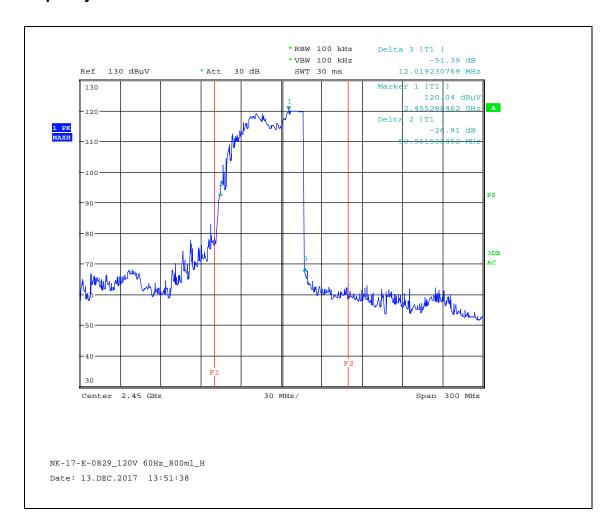
Horizontal (120 V, 400 ml)

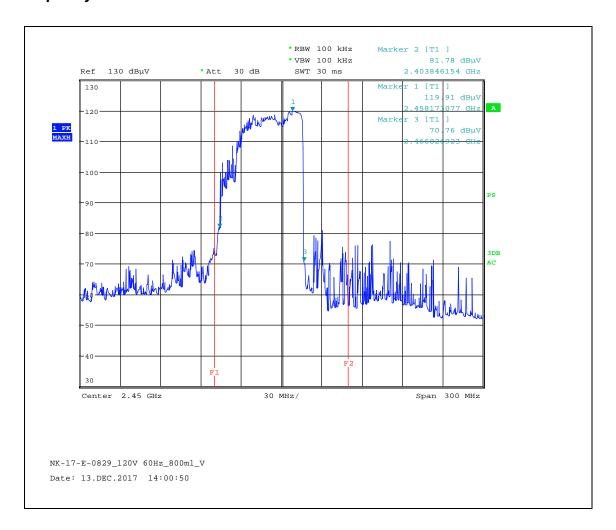

• Frequency vs Load Variation Test

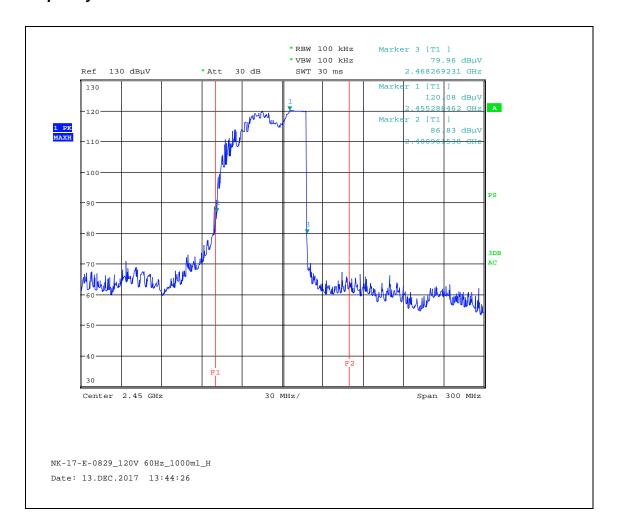
Vertical (120 V, 400 ml)

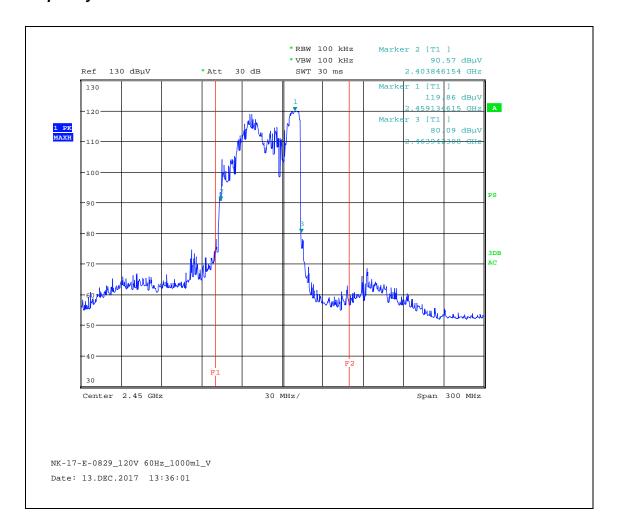


• Frequency vs Load Variation Test


Horizontal (120 V, 600 ml)

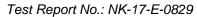

Vertical (120 V, 600 ml)

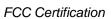

Horizontal (120 V, 800 mℓ)


Vertical (120 V, 800 ml)

Horizontal (120 V, 1000 mℓ)

Vertical (120 V, 1000 mℓ)

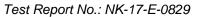



ACCURACY OF MEASUREMENT

The Measurement Uncertainties stated were calculated in accordance with the requirements of measurement uncertainty contained in CISPR 16-4-2 with the confidence level of 95 %

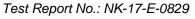
1. Conducted Uncertainty Calculation

		Uncertainty of Xi		Coverage			
Source of Uncertainty	Xi	Value (dB)	Probability Distribution	factor k	<i>u(Xi)</i> (dB)	Ci	Ci u(Xi) (dB)
Measurement System Repeatability	Rs	0.10	normal 1	1.00	0.10	1	0.10
Receiver reading	Ri	± 0.02	normal 2	2.00	0.01	1	0.01
Attenuation AMN- Receiver	Lc	± 0.10	rectangular	√3	0.06	1	0.06
AMN Voltage division factor	LAMN	± 0.09	normal 2	2.00	0.05	1	0.05
Sine wave voltage	dVsw	± 0.17	normal 2	2.00	0.09	1	0.09
Pulse amplitude response	dVpa	± 0.92	normal 2	2.00	0.50	1	0.50
Pulse repetition rate response	dVpя	± 0.35	normal 2	2.00	0.18	1	0.18
Noise floor proximity	dVNF	± 0.00	rectangular	√3	0.00	1	0.00
AMN Impedance	dΖ	± 2.00	normal 2	2.00	1.00	1	1.00
Mismatch	М	+ 0.81 - 0.89	U-Shaped	√3	0.60	1	0.60
Remark	Using 50 Ω / 50 uH AMN						
Combined Standard Uncertainty	Normal			<i>uc</i> = 1.29 dB			
Expended Uncertainty U	Normal (<i>k</i> = 2)			U = 2.6 dB (CL is 95 %)			

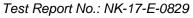

2. Radiation Uncertainty Calculation (Below 1 @b)

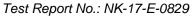
		Uncertainty of <i>Xi</i>		Coverage			
Source of Uncertainty	Xi	Value (dB)	Probability Distribution	factor k	<i>u(Хі)</i> (dВ)	Ci	Ci u(Xi) (dB)
Measurement System Repeatability 1)	R s	0.15	normal 1	1.00	0.15	1	0.15
Receiver reading 2)	Ri	± 0.02	normal 2	2.00	0.01	1	0.01
Sine wave voltage 3)	dVsw	± 0.17	normal 2	2.00	0.09	1	0.09
Pulse amplitude response 4)	dVpa	± 0.92	normal 2	2.00	0.46	1	0.46
Pulse repetition rate response 5)	dVpr	± 0.35	normal 2	2.00	0.18	1	0.18
Noise floor proximity 6)	dVnf	± 0.50	normal 2	2.00	0.25	1	0.25
Antenna Factor Calibration 7)	AF	± 1.50	rectangular	√3	0.87	1	0.87
Cable Loss 8)	C ∟	± 1.00	normal 2	2.00	0.50	1	0.50
Antenna Directivity 9)	Aρ	± 0.00	rectangular	√3	0.00	1	0.00
Antenna Factor Height Dependence 10)	Ан	± 2.00	rectangular	√ 3	1.15	1	1.15
Antenna Phase Centre Variation 11)	Aр	± 0.20	rectangular	√ 3	0.12	1	0.12
Antenna Factor Frequency Interpolation 12)	Ai	± 0.25	rectangular	√3	0.14	1	0.14
Site Imperfections 13)	Si	± 4.00	triangular	√6	1.63	1	1.63
Measurement Distance Variation 14)	Dv	± 0.60	rectangular	√3	0.35	1	0.35
Antenna Balance 15)	D bal	± 0.90	rectangular	√3	0.52	1	0.52
Cross Polarisation 16)	D Cross	± 0.00	rectangular	√3	0.00	1	0.00
Mismatch 17)	М	+ 0.98 - 1.11	U-Shaped	√2	0.74	1	0.74
EUT Volume Diameter 18)	Vd	0.33	normal 1	1.00	0.33	1	0.11
Combined Standard Uncertainty	Normal			<i>uc</i> = 2.53 dB			
Expended Uncertainty U	Normal (<i>k</i> = 2)			5.1 dB (CL is 95 %)			

3. Radiation Uncertainty Calculation (Above 1 @/)


		Uncer	tainty of <i>Xi</i>	Coverage			
Source of Uncertainty	Χi	Value (dB)	Probability Distribution	factor	<i>u(Xi)</i> (dB)	Ci	Ci u(Xi) (dB)
Measurement System Repeatability 1)	Rs	0.25	normal 1	1.00	0.25	1	0.25
Receiver Reading 2)	Ri	± 0.27	normal 2	2	0.14	1	0.14
Attenuation (antenna-receiver) 3)	a _C	± 0.30	normal 2	2	0.15	1	0.15
Preamplifier gain 4)	Gp	± 0.23	normal 2	2	0.12	1	0.12
Receiver Sine Wave 5)	dVsw	± 0.17	normal 2	2	0.08	1	0.08
Instability of preamp gain 6)	dGр	± 1.2	rectangular	√3	0.70	1	0.70
Noise Floor Proximity 7)	dVnf	± 0.70	rectangular	√3	0.40	1	0.40
Antenna Factor Calibration 8)	AF	± 2.0	normal 2	2	1.00	1	1.00
Directivity difference 9)	DFadir	± 1.00	rectangular	√3	0.58	1	0.58
Phase Centre location 10)	А Р	± 0.30	rectangular	√3	0.17	1	0.17
Antenna Factor Frequency Interpolation 11)	Ai	± 0.30	rectangular	√3	0.17	1	0.17
Site Imperfections 12)	Si	± 3.00	triangular	√6	1.22	1	1.22
Effect of setup table material 13)	dАnт	± 1.50	rectangular	√3	0.87	1	0.87
Separation distance 14)	d D	± 0.30	rectangular	√3	0.17	1	0.17
Cross Polarization 15)	DCross	± 0.00	rectangular	√3	0.00	1	0.00
Table height 16)	dн	± 0.00	normal 2	2	0.00	1	0.00
Mismatch (antenna-Preamplifier) 17)	М	+ 1.30 - 1.50	U-Shaped	√2	1.00	1	1.00
Mismatch (preamplifier-receiver) 18)	М	+ 1.20 - 1.40	U-Shaped	√2	0.92	1	0.92
Combined Standard Uncertainty	Normal			<i>uc</i> = 2.51 dB			
Expended Uncertainty U	Normal (<i>k</i> = 2)			<i>U</i> = 5.0 dB (CL is 95 %)			

LIST OF TEST EQUIPMENT


					Due to	Calibration
No.	Instrument	Manufacturer	Model	Serial No.	Calibration	Interval
1	LOOP ANTENNA	ROHDE & SCHWARZ	HFH2-Z2	100279	Feb. 13 2019	2 years
2	Microwave survey meter	ETS Lindgren	1501	00033549	Feb. 20 2018	2 year
3	EMI Test Receiver	ROHDE & SCHWARZ	ESCI	101041	Apr. 03 2018	1 year
4	Software	ROHDE & SCHWARZ	EMC32	Version 8.53.0	-	-
5	ARTIFICIAL MAINS NETWORK	ROHDE & SCHWARZ	ESH2-Z5	100273	Apr. 04 2018	1 year
6	EMI TEST RECEIVER	ROHDE & SCHWARZ	ESW8	100994	Apr. 03 2018	1 year
7	ATTENUATOR	FAIRVIEW	SA3N5W-10	N/A	Apr. 03 2018	1 year
8	EMI Test Receiver	ROHDE & SCHWARZ	ESU 40	100202	Apr. 04 2018	1 year
9	Software	ROHDE & SCHWARZ	EMC32	Version 10.10.01	-	-
10	TRILOG Broadband Test Antenna	SCHWARZBECK	VULB 9163	9163-01027	Apr. 18 2019	2 year
11	ATTENUATOR	FAIRVIEW	SA3N5W-06	N/A	Jan. 09 2018	1 year
12	Controller	innco systems GmbH	CO2000-G	CO2000/562/ 23890210/L	N/A	N/A
13	Open Switch and Control Unit	ROHDE & SCHWARZ	OSP-120	100015	N/A	N/A
14	Antenna Mast (Left)	innco systems GmbH	MA4000-EP	N/A	N/A	N/A
15	Turn Table	innco systems GmbH	DT3000-3T	N/A	N/A	N/A
16	Signal Conditioning Unit	ROHDE & SCHWARZ	SCU 01	10030	Apr. 03 2018	1 year
17	Signal Conditioning Unit	Rohde & Schwarz	SCU 18	10065	May. 29 2018	1 year
18	ANTENNA MAST (RIGHT)	innco systems GmbH	MA4000-EP	N/A	N/A	N/A
19	DOUBLE RIDGED HORN ANTENNA	SCHWARZBECK	HF907	102585	Jan.18 2019	2 year
20	SWITCH AND POWER DETECTOR UNIT	ROHDE & SCHWARZ	OSP-120	101766	N/A	N/A
21	TILT ANTENNA MAST	innco systems GmbH	MA4640-XP- EP	N/A	N/A	N/A
22	CONTROLLER	innco systems GmbH	CO3000	CO3000/937/3 8330516/L	N/A	N/A
23	Turntable	innco systems GmbH	DT2000-2t	N/A	N/A	N/A
24	WiFi Filter Bank	ROHDE & SCHWARZ	U082	N/A	N/A	N/A
25	Band Reject	wainwright Instruments GmbH	RCJV8- 2350-2400- 2500-2550- 40SS	2	N/A	N/A


APPENDIX D - SCHEMATIC DIAGRAM

APPENDIX E - USER'S MANUAL

APPENDIX F - BLOCK DIAGRAM