Certification of Compliance

CFR 47 Part 15 Subpart B

TABLE OF CONTENTS

Appendix

A. The preliminary test results

INFORMATIONS OF TEST LABORATORY

```
EMC LABORATORY of IST Co., Ltd.(FCC Filing Lab)
San 21-8, Goan-Ri, Baekam-Myun, Yongin-City
Kyonggi-Do, 449-860, Korea
TEL : +82 31 333 4093 FAX : +82 31 333 4094
```


ENVIRONMENTAL CONDITIONS

Temperature
Humidity
Atmospheric pressure
$21{ }^{\circ} \mathrm{C}$
46%
1003 mbar

POWER SUPPLY SYSTEM USED

```
Power supply system
\(120 \mathrm{Vac}, 60 \mathrm{~Hz}\)
```


PRODUCT INFORMATIONS

```
Power supply system : 120Vac / 60Hz
Power consumption : 24W
Video signal : EIA STANDARD NTSC COLOR
RF input impedance : 75 ohm Unbal. (U/V one input)
RF output impedance : 75 ohm Unbal.
VHF output signal : Channel 3 or 4 (selectable)
Video input signal : Phono type 1.0 士0.2Vp-p sync negative 75ohms unbalance
Video output signal : Phono type 1.0 士0.2Vp-p sync negative 75ohms unbalance
Audio input signal : Phono type, -8.8dBm, more then 47k ohms unbalanced
Audio output signal : Phono type, -8.8dBm(VCR),2Vrms(DVD), less then 1k ohms
    unbalanced
VCR system : Hi-Fi Rotary Double Azimuth 4 heads helical scanning system.
DVD system : DVD, VCD, CD, MP3, CD-R, CD-RW Playback system
-EMC suppression device is not used during the test.
- Please refer to user's manual.
```


DESCRIPTIONS OF TEST

Conducted Emissions:

The measurement were performed over the frequency range of 0.15 MHz to 30 MHz using a $50 \Omega / 50 \mathrm{uH}$ LISN as the input transducer to a Spectrum Analyzer or a Field Intensity Meter. The measurements were made with the detector set for "Peak" amplitude within an bandwidth of 10 KHz or for "quasi-peak" within a bandwidth of 9 KHz .

- Procedure of Test

The line-conducted facility is located inside a shielded room No.1. A 1m X 1.5m wooden table 80 cm height is placed 40 cm away from the vertical wall and 1.5 m away from the other wall of the shielded room. The R/S ESH3-Z5 and EMCO 3825/2 LISN are bonded to bottom of the shielded room. The EUT is located on the wooden table with distance more than 80 cm from the LISN and powered from the EMCO LISN. The peripheral equipment is powered from the other LISN. Power to the LISNs are filtered by a noise cut power line filters. All electrical cables are shielded by braided tinned steel tubing with inner $\phi 1.2 \mathrm{~cm}$. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply lines will be connected to the EMCO LISN. All interconnecting cables more than 1 m were shortened by non-inductive bundling to a lm length. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating conditions. The RF output of the LISN was connected to the R/S receiver to determine the frequency producing the maximum emission from the EUT. The frequency producing the maximum level was reexamined using Quasi-Peak mode by manual measurement, after scanned by automatic Peak mode for frequency range from 0.15 to 30 MHz . The bandwidth of the receiver was set to 10 kHz . The EUT, peripheral equipment, and interconnecting cables were arranged and manipulated to maximize each EME emission.

< Concept Drawing >

IST Co., Ltd
 EMC LABORATORY TEST REPORT NO. : 03-IST-131

DESCRIPTION OF TEST

Radiated Emissions:

The measurement was performed over the frequency range of 30 MHz to 1 GHz using antenna as the input transducer to a Spectrum analyzer or a Field Intensity Meter. The measurement was made with the detector set for "quasi-peak" within a bandwidth of 120 KHz .

- Procedure of Test

Preliminary measurements were made at 3 meter using bi-conical and log-periodic antennas, and spectrum analyzer to determine the frequency producing the max. emission in anechoic chamber. Appropriate precaution was taken to ensure that all emission from the EUT were maximized and investigated. The system configuration, mode of operation, turn table azimuth and height with respect to the antenna were noted for each frequency found. The spectrum was scanned from 40 MHz to 300 MHz using S / B biconical antenna and 300 to 1000 MHz using S / B log-periodic antenna. Above 1 GHz , linearly polarized double ridge horn antennas were used. Final measurements were made at open site with 3-meters test distance using S/B bi-log antenna or horn antenna. The OATS have been verified in regular for its normalized site attenuations. The test equipment was placed on a wooden table. Sufficient time for the EUT, peripheral equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. Each frequency found during pre-scan measurements was reexamined by manual. The detector function was set to CISPR quasi-peak mode and the bandwidth of the receiver was set to 120 kHz or 1 MHz depending on the frequency of type of signal. The EUT, peripheral equipment and interconnecting cables were reconfigured to the set-up producing the max. emission for the frequency and were placed on top of a 0.8 -meter high nonmetalic 1×1.5 meter table. The EUT, peripheral equipment, and interconnecting cables were re-arranged and manipulated to maximize each emission. The turntable containing the system was rotated; the antenna height was varied 1 to 4 meters and stopped at the azimuth or height producing the maximum emission. Each emission was maximized by: varying the mode of operation to the EUT and/or peripheral equipment and changing the polarity of the antenna, whichever determined the worst-case emission.

5 of 18

SUMMARY

- Conducted Emission

```
        The requirements are
        MET
```

```Not MET Minimum limit margin 7.3 dB at 28.636 MHz Maximum limit exceeding
```

Remarks : With live phase, VCR record mode

- Radiated Emission

The requirements are	MET	Not MET
Minimum limit margin	3.7 dB at 202.0 MHz	
Maximum limit exceeding		

Remarks : The DVD playback and VCR record mode

Prepared By

Note :

TEST CONDITIONS AND DATA

Conducted Emissions

- Test Equipment Used

Model Name	Manufacturer	Description	Next Cal. Date
ESH3	Rohde Schwarz	Receiver	Aug. 16, 2003
ESH3-Z2	Rohde Schwarz	Pulse Limiter	Jul. 25, 2003
EZM	Rohde Schwarz	Spectrum monitor	-
$3825 / 2$	EMCO	LISN	Jul. 13, 2003
PM5515	Philips	Pattern Generator	Jun. 20, 2003

External Peripherals

Device Description
TV Receiver

Model Name
F19430

Manufacture

Daewoo

FCC Compliance Information
Verification

Test Program

Test Area

DVD Playback and VCR record, DVD Playback, VCR Playback, VCR record mode

Shielded room \#3

Note : The test were performed with color bar as VITS. The channels were assigned to playback mode for ch3 with IVpp pre-recorded reference tape and record mode for ch 4 with video input of 5 Vpp color bar signal amplified by HP8447D.

This test method cover all case of operation for $R F$ output channels and modes of playback and record.

- Find the test data in following page(s) 9 to 15.

Conducted Emissions

(Mains Terminal Disturbance Voltages)

Freq. [MHz]	Measu [dB	rement $\mu \mathrm{V}$]	Limit [dB $\mu \mathrm{V}$]		Insertion Loss $[\mathrm{dB}]$	$\begin{gathered} \text { Cable } \\ \text { Loss } \\ \text { [dBuV] } \end{gathered}$	Result$[\mathrm{dB} \mu \mathrm{~V} \text {] }$		Margin [dB]	
	Q-peak	Average	Q-peak	Average			Q-peak	Average	Q-peak	Average
0.157	45.3	35.6	65.6	55.6	1.4	0.5	47.2	37.5	18.4	18.1
0.254	37.0	29.9	61.6	51.6	0.9	0.5	38.4	31.3	23.3	20.4
20.228	26.7	19.6	60.0	50.0	0.4	0.7	27.8	20.7	32.2	29.3
28.636	35.8	34.3	60.0	50.0	0.4	0.8	36.9	35.4	23.1	14.6

Note :

Conducted Emissions

(Mains Terminal Disturbance Voltages)

Freq. [MHz]	Measurement $[\mathrm{dB} \mu \mathrm{V}]$		Limit $[\mathrm{dB} \mu \mathrm{V}]$		Insertion Loss	Cable Loss	Result $[\mathrm{dB} \mu \mathrm{V}]$		Margin [dB]	
	Q-peak	Average	Q-peak	Average	[dB]	[dBuV]	Q-peak	Average	Q-peak	Average
0.157	44.5	34.7	65.6	55.6	1.4	0.5	46.4	36.6	19.2	19.0
0.204	34.5	27.3	63.4	53.4	1.0	0.5	36.0	28.8	27.4	24.6
20.080	26.9	19.6	60.0	50.0	0.4	0.7	28.0	20.7	32.0	29.3
28.636	36.7	35.1	60.0	50.0	0.4	0.8	37.8	36.2	22.2	13.8

Note :

Conducted Emissions

(Mains Terminal Disturbance Voltages)

Freq. [MHz]	$\begin{gathered} \text { Measurement } \\ {[\mathrm{dB} \mu V \text {] }} \end{gathered}$		Limit [$\mathrm{dB} \mu \mathrm{V}$]		Insertion Loss $[\mathrm{dB}]$	$\begin{gathered} \text { Cable } \\ \text { Loss } \end{gathered}$	$\begin{aligned} & \text { Result } \\ & {[\mathrm{dB} \mu \mathrm{~V}]} \end{aligned}$		Margin [dB]	
	Q-peak	Average	Q-peak	Average			Q-peak	Average	Q-peak	Average
0.157	46.9	32.8	65.6	55.6	1.4	0.5	48.8	34.7	16.8	20.9
0.235	34.9	29.1	62.3	52.3	0.9	0.5	36.3	30.5	26.0	21.8
19.925	26.5	20.0	60.0	50.0	0.4	0.7	27.6	21.1	32.4	28.9
28.636	36.1	34.8	60.0	50.0	0.4	0.8	37.2	35.9	22.8	14.1

Note :

Conducted Emissions

(Mains Terminal Disturbance Voltages)

Freq. [MHz]	Measurement [$\mathrm{dB} \mu \mathrm{V}$]		Limit [dB $\mu \mathrm{V}$]		Insertion Loss$\|$	$\begin{gathered} \text { Cable } \\ \text { Loss } \\ \hline \text { [dBuV] } \end{gathered}$	Result [$\mathrm{dB} \mu \mathrm{V}$]		Margin [dB]	
	Q-peak	Average	Q-peak	Average			Q-peak	Average	Q-peak	Average
0.177	40.1	28.5	64.6	54.6	1.2	0.5	41.8	30.2	22.8	24.4
0.220	27.1	25.6	62.8	52.8	0.9	0.5	28.5	27.0	34.3	25.8
19.667	23.0	15.9	60.0	50.0	0.4	0.7	24.1	17.0	35.9	33.0
28.635	32.5	31.4	60.0	50.0	0.4	0.8	33.6	32.5	26.4	17.5

Note :

Conducted Emissions

(Mains Terminal Disturbance Voltages)

Freq. [MHz]	Measurement$[\mathrm{dB} \mu \mathrm{~V}]$		Limit [dB μV]		Insertion Loss $[\mathrm{dB}]$	$\begin{array}{\|c} \text { Cable } \\ \text { Loss } \end{array}$	Result$[\mathrm{dB} \mu \mathrm{~V}]$		Margin [dB]	
	Q-peak	Average	Q-peak	Average			Q-peak	Average	Q-peak	Average
0.166	49.0	41.3	65.2	55.2	1.3	0.5	50.8	43.1	14.3	12.0
0.220	38.3	37.6	62.8	52.8	0.9	0.5	39.7	39.0	23.1	13.8
20.093	41.4	40.7	60.0	50.0	0.4	0.7	42.5	41.8	17.5	8.2
28.636	49.7	41.6	60.0	50.0	0.4	0.8	50.8	42.7	9.2	7.3

Note :

Conducted Emissions

(Mains Terminal Disturbance Voltages)

Freq. [MHz]	Measurement [$\mathrm{dB} \mu \mathrm{V}$]		Limit$[\mathrm{dB} \mu \mathrm{l}]$		Insertion Loss $[\mathrm{dB}]$	$\begin{gathered} \begin{array}{c} \text { Cable } \\ \text { Loss } \end{array} \\ \hline[\mathrm{dBuV}] \end{gathered}$	$\begin{aligned} & \text { Result } \\ & {[\mathrm{dB} \mu \mathrm{~V}]} \end{aligned}$		Margin [dB]	
	Q-peak	Average	Q-peak	Average			Q-peak	Average	Q-peak	Average
0.187	36.3	35.2	64.2	54.2	1.2	0.5	38.0	36.9	26.2	17.3
0.220	36.3	35.2	62.8	52.8	0.9	0.5	37.7	36.6	25.1	16.2
20.121	36.3	35.2	60.0	50.0	0.4	0.7	37.4	36.3	22.6	13.7
28.636	41.6	40.8	60.0	50.0	0.4	0.8	42.7	41.9	17.3	8.1

Note :

Conducted Emissions

(Mains Terminal Disturbance Voltages)

Freq. [MHz]	Measurement [$\mathrm{dB} \mu \mathrm{V}$]		Limit [dB $\mu \mathrm{V}$]		Insertion Loss $[\mathrm{dB}]$	$\begin{gathered} \text { Cable } \\ \text { Loss } \\ \hline \text { [dBuV] } \end{gathered}$	Result [$\mathrm{dB} \mu \mathrm{N}$]		Margin [dB]	
	Q-peak	Average	Q-peak	Average			Q-peak	Average	Q-peak	Average
0.175	41.7	35.9	64.7	54.7	1.2	0.5	43.4	37.6	21.3	17.1
0.234	37.2	32.0	62.3	52.3	0.9	0.5	38.6	33.4	23.7	18.9
21.558	28.5	21.3	60.0	50.0	0.4	0.7	29.6	22.4	30.4	27.6
28.636	35.3	34.5	60.0	50.0	0.4	0.8	36.4	35.6	23.6	14.4

Note :

Conducted Emissions

(Mains Terminal Disturbance Voltages)

Freq. [MHz]	Measurement$[\mathrm{dB} \mu \mathrm{~V}]$		Limit [dB $\mu \mathrm{V}$]		Insertion Loss $[\mathrm{dB}]$	$\begin{gathered} \text { Cable } \\ \text { Loss } \\ \hline \text { [dBuV] } \end{gathered}$	Result [dB μV]		Margin [dB]	
	Q-peak	Average	Q-peak	Average			Q-peak	Average	Q-peak	Average
0.176	41.2	34.0	64.7	54.7	1.2	0.5	42.9	35.7	21.7	18.9
0.234	35.2	29.5	62.3	52.3	0.9	0.5	36.6	30.9	25.7	21.4
20.036	27.9	20.7	60.0	50.0	0.4	0.7	29.0	21.8	31.0	28.2
28.635	35.9	35.2	60.0	50.0	0.4	0.8	37.0	36.3	23.0	13.7

Note :

TEST CONDITIONS AND DATA

Radiated Emission

- Test Equipment Used

Model Name	Manufacturer	Description	Next Cal. Date
ESVP	Rohde Schwarz	Receiver	Aug. 16, 2003
VULB9160	Schwarzbeck	Antenna	Jul. 03, 2003
EZM	Rohde Schwarz	Spectrum monitor	-
8566B	Hewlett Packard	Spectrum Analyzer	Aug. 13, 2003
85685 A	Hewlett Packard	RF preselector	Aug. 13, 2003

External Peripherals

Device Description

TV Receiver

Model Name

F19430

Manufacture
Daewoo

FCC Compliance Information
Verification

- Test Program

DVD Playback and VCR record, DVD Playback, VCR Playback, VCR record mode

Test Area
Open Field Test Site \#2

Note : The final measurement in OATS was performed for worst case investigated. Please refer to all of other results of preliminary test in appendix A. The test were performed with color bar as VITS. The channels were assigned to playback mode for ch3 with IVpp pre-recorded reference tape and record mode for ch4 with video input of 5Vpp color bar signal amplified by HP8447D.
This test method cover all case of operation for $R F$ output channels and modes of playback and record.

Find the test data in following page(s) 17.

Radiated Emissions

(Disturbance Radiation)

- Tuner : LGTMI-US5

Mode	Freq. $[\mathrm{MHz}]$	Reading $[\mathrm{dBuV}]$	Antenna Factor $[\mathrm{dB}]$	Cable Loss $[\mathrm{dB}]$	Angle $[\mathrm{deg}]$	Polar. $[\mathrm{H} / \mathrm{V}]$	Result $[\mathrm{dBuV}]$	Limit $[\mathrm{dBuV}]$	Margin $[\mathrm{dB}]$
DVD	147.5	18.4	12.6	2.9	324	H	33.8	43.5	9.7
Playback	202.7	27.2	9.3	3.3	343	H	39.8	43.5	3.7
and	239.7	27.2	10.6	3.9	302	H	41.7	46.0	4.3
VCR Record	567.0	15.6	18.0	6.5	284	V	40.0	46.0	

End of data

Note :

Appendix A. Preliminary Test Data

DVD Playback and VCR Record low-range

DVD Playback and VCR Record low-range

