

FCC CFR47 PART 15 SUBPART C CERTIFICATION TEST REPORT

FOR

XBOX 360 WIRELESS RACING WHEEL WITH FORCE FEEDBACK

MODEL NUMBER: WRW02

FCC ID: C3KWRW02

REPORT NUMBER: 07U11053-1, REVISION B

ISSUE DATE: JULY 12, 2007

Prepared for MICROSOFT CORPORATION 1065 LA AVENIDA MOUNTAIN VIEW, CA 94043 USA

Prepared by COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET FREMONT, CA 94538 USA TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	07/06/07	Initial Issue	T. Chan
В	07/12/07	Revised power supply information and modify section 5.6	S. Radecki

Page 2 of 69

TABLE OF CONTENTS

	ATTE	STATION OF TEST RESULTS4	ŀ
2.	TEST	METHODOLOGY	5
3.	FACI	LITIES AND ACCREDITATION5	5
4.	CALI	BRATION AND UNCERTAINTY5	5
4	.1. N	EASURING INSTRUMENT CALIBRATION	5
4	.2. N	EASUREMENT UNCERTAINTY	5
5.	EQUI	PMENT UNDER TEST6	5
5	.1. L	ESCRIPTION OF EUT	5
5	.2. N	AXIMUM OUTPUT POWER	5
.5	.3. L	ESCRIPTION OF AVAILABLE ANTENNAS	5
5		OFTWARE AND FIRMWARE	
		ORST-CASE CONFIGURATION AND MODE	
		ESCRIPTION OF TEST SETUP	
3			
6.	TEST	AND MEASUREMENT EQUIPMENT9)
7.	τ τν/τ		
/•		ΓS AND RESULTS10)
		IS AND RESULTS10 <i>NTENNA PORT CHANNEL TESTS</i>	
		NTENNA PORT CHANNEL TESTS))
	7.1. A 7.1.1. 7.1.2.	NTENNA PORT CHANNEL TESTS)) 1
	7.1. A 7.1.1. 7.1.2. 7.1.3.	NTENNA PORT CHANNEL TESTS 10 20 dB BANDWIDTH 10 HOPPING FREQUENCY SEPARATION 14 NUMBER OF HOPPING CHANNELS 16)) 4 5
	<i>7.1. A</i> 7.1.1. 7.1.2. 7.1.3. 7.1.4.	NTENNA PORT CHANNEL TESTS 10 20 dB BANDWIDTH 10 HOPPING FREQUENCY SEPARATION 14 NUMBER OF HOPPING CHANNELS 16 AVERAGE TIME OF OCCUPANCY 18)) 4 5 3
	7.1. A 7.1.1. 7.1.2. 7.1.3.	NTENNA PORT CHANNEL TESTS1020 dB BANDWIDTH10HOPPING FREQUENCY SEPARATION14NUMBER OF HOPPING CHANNELS16AVERAGE TIME OF OCCUPANCY18PEAK OUTPUT POWER21) 1 5 1
	<i>C.I. A</i> 7.1.1. 7.1.2. 7.1.3. 7.1.4. 7.1.5. 7.1.6.	NTENNA PORT CHANNEL TESTS1020 dB BANDWIDTH10HOPPING FREQUENCY SEPARATION14NUMBER OF HOPPING CHANNELS16AVERAGE TIME OF OCCUPANCY18PEAK OUTPUT POWER21AVERAGE POWER25	
	<i>C.1. A</i> 7.1.1. 7.1.2. 7.1.3. 7.1.4. 7.1.5.	NTENNA PORT CHANNEL TESTS1020 dB BANDWIDTH10HOPPING FREQUENCY SEPARATION14NUMBER OF HOPPING CHANNELS16AVERAGE TIME OF OCCUPANCY18PEAK OUTPUT POWER21	
7	A.1. A 7.1.1. 7.1.2. 7.1.3. 7.1.4. 7.1.5. 7.1.6. 7.1.7.	NTENNA PORT CHANNEL TESTS1020 dB BANDWIDTH10HOPPING FREQUENCY SEPARATION14NUMBER OF HOPPING CHANNELS16AVERAGE TIME OF OCCUPANCY18PEAK OUTPUT POWER21AVERAGE POWER25CONDUCTED SPURIOUS EMISSIONS26	
7	A.1. A 7.1.1. 7.1.2. 7.1.3. 7.1.4. 7.1.5. 7.1.6. 7.1.7.	NTENNA PORT CHANNEL TESTS1020 dB BANDWIDTH10HOPPING FREQUENCY SEPARATION14NUMBER OF HOPPING CHANNELS16AVERAGE TIME OF OCCUPANCY18PEAK OUTPUT POWER21AVERAGE POWER25	
7	X.1. A 7.1.1. 7.1.2. 7.1.3. 7.1.3. 7.1.4. 7.1.5. 7.1.6. 7.1.7. X.2. R	NTENNA PORT CHANNEL TESTS1020 dB BANDWIDTH10HOPPING FREQUENCY SEPARATION14NUMBER OF HOPPING CHANNELS16AVERAGE TIME OF OCCUPANCY18PEAK OUTPUT POWER21AVERAGE POWER25CONDUCTED SPURIOUS EMISSIONS26ADIATED EMISSIONS35	
7	X.1. A 7.1.1. 7.1.2. 7.1.3. 7.1.3. 7.1.4. 7.1.5. 7.1.6. 7.1.7. X.2. R 7.2.1.	NTENNA PORT CHANNEL TESTS1020 dB BANDWIDTH10HOPPING FREQUENCY SEPARATION14NUMBER OF HOPPING CHANNELS16AVERAGE TIME OF OCCUPANCY18PEAK OUTPUT POWER21AVERAGE POWER25CONDUCTED SPURIOUS EMISSIONS26ADIATED EMISSIONS35TRANSMITTER RADIATED SPURIOUS EMISSIONS35	
7	X.1. A 7.1.1. 7.1.2. 7.1.3. 7.1.3. 7.1.4. 7.1.5. 7.1.6. 7.1.7. X.2. R 7.2.1. 7.2.1. 7.2.3. 7.2.3.	NTENNA PORT CHANNEL TESTS1020 dB BANDWIDTH10HOPPING FREQUENCY SEPARATION14NUMBER OF HOPPING CHANNELS16AVERAGE TIME OF OCCUPANCY18PEAK OUTPUT POWER21AVERAGE POWER25CONDUCTED SPURIOUS EMISSIONS26ADIATED EMISSIONS35TRANSMITTER RADIATED SPURIOUS EMISSIONS ABOVE 1 GHZ38	

1. ATTESTATION OF TEST RESULTS

STANDA FCC PART 15 SI		TEST RESULTS	
	APPLICAB	LE STANDARDS	
DATE TESTED:	MAY 7 - 12, 200	17	
SERIAL NUMBER:	0548000038271	5	
MODEL: WRW02			
EUT DESCRIPTION:	XBOX 360 WIR	ELESS RACING WHEEL WITH FORCE FEEDBACK	
	1065 LA AVEN MOUNTAIN VI		
COMPANY NAME:	MICROSOFT C	ORPORATION	

Compliance Certification Services, Inc. tested the above equipment in accordance with most of the requirements set forth in the above standards. Testing the average time of occupancy is not feasible, therefore the demonstration of compliance with this requirement is based on the theory of operation as documented in this report. The test results show that the equipment tested is capable of demonstrating compliance with the remaining requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

THU CHAN EMC SUPERVISOR COMPLIANCE CERTIFICATION SERVICES Tested By:

Chin Pany

CHIN PANG EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

Page 4 of 69

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2 and FCC CFR 47 Part 15.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Radiated Emission, Above 2000 MHz	+/- 4.3 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a frequency hopping transceiver.

During the final tests, a special design test accessory (RTX Unity) was used to control the frequency channel and enable continuous transmission.

Proprietary communication protocol is detailed in the theory of operation.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

2400 to 2483.5 MHz Authorized Band

Frequency Range	Output Power	Output Power	
(MHz)	(dBm)	(mW)	
2402 - 2482	3.14	2.06	

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a directional patch antenna, with a maximum peak gain of -2.1 dBi.

5.4. SOFTWARE AND FIRMWARE

The EUT driver software installed in the host support equipment during testing was BAT-menu-V0107.

5.5. WORST-CASE CONFIGURATION AND MODE

The worst-case channel is determined as the channel with the highest output power. The highest measured output power was at 2402 MHz.

5.6. MODIFICATIONS

- 1. Add FFB motor ferrite. Steward/ PN 28B0355-000 or equivalent.
- 2. Removed R122, R123, R124, and R125
- 3. Replaced R118, R119, R120, and R121 with 330 Ohm 0402 resistors
- 4. Replaced 100 Ohm (0402) resistors with 200 Ohm (0402) resistors on R115, R140, and R141
- 5. Replaced suppressors with 3.9V zener diodes on VR22, VR23, and VR24

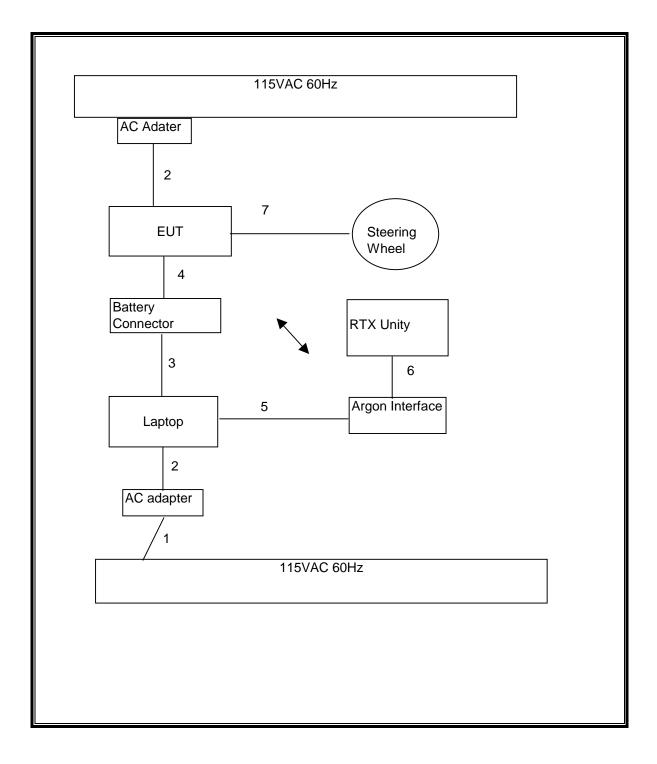
Page 6 of 69

6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST					
Description Manufacturer Model Serial Number FC					
Laptop	Dell	Inspiron 1200	0043-658-488-585	DoC	
RTX Unity	MS	Xbox MS	76	N/A	
Converter	MS	Xbox MS	209358	N/A	
Converter	KEYSPAN	USA-19113	N/A	DoC	
Steering Wheel	Microsoft	DVX809211-001	608000011	NA	
AC Adapter	Phihong	PSC24W-240(MS)	N/A	DoC	

I/O CABLES


	I/O CABLE LIST						
Cable	Port	# of	Connector	Cable	Cable	Remarks	
No.	No.		Туре	Туре	Length		
		Ports					
1	AC	2	US 115V	Un-shielded	2m	N/A	
2	DC	2	DC	Un-shielded	2m	Ferrite on one end	
3	USB	1	USB	Un-shielded	2m	N/A	
4	J5	1	8 pins Connector	Shielded	1m	N/A	
5	USB	1	Argon Interface	Un-shielded	2m	Two Ferrites on laptop's end	
6	Serial	1	Argon Interface	Un-shielded	0.2m	To Argon Interface Card	
7	J6, 6 Pins Connector	1	Steering Wheel	Un-shielded	0.2m	N/A	

TEST SETUP

The EUT was tested in a standalone configuration once it was setup for testing with the laptop.

Page 7 of 69

SETUP DIAGRAM FOR EMISSIONS TESTS

Page 8 of 69

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST						
Description	Manufacturer	Model	Serial Number	Cal Due		
Spectrum Analyzer 3 Hz ~ 44 GHz	Agilent / HP	E4446A	MY45300064	03/18/08		
SA Display Section 2	Agilent / HP	85662A	2816A16696	04/07/08		
Quasi-Peak Adaptor	Agilent / HP	85650A	3145A01654	01/21/08		
SA RF Section, 1.5 GHz	Agilent / HP	85680B	2814A04227	01/07/08		
Peak / Average Power Sensor	Agilent	E9327A	US40440755	12/02/07		
Peak Power Meter	Agilent / HP	E4416A	GB41291160	12/02/07		
Preamplifier, 1 ~ 26.5 GHz	Agilent / HP	8449B	3008A00369	08/01/07		
Antenna, Horn 1 ~ 18 GHz	EMCO	3115	6717	04/15/08		
Preamplifier, 1300 MHz	Agilent / HP	8447D	1937A02062	01/23/08		
EMI Test Receiver	R & S	ESHS 20	827129/006	01/27/08		
LISN, 10 kHz ~ 30 MHz	FCC	50/250-25-2	114	09/15/07		
Antenna, Bilog 30 MHz ~ 2 Ghz	Sunol Sciences	JB1	A121003	08/13/07		

Page 9 of 69

7. LIMITS AND RESULTS

7.1. ANTENNA PORT CHANNEL TESTS

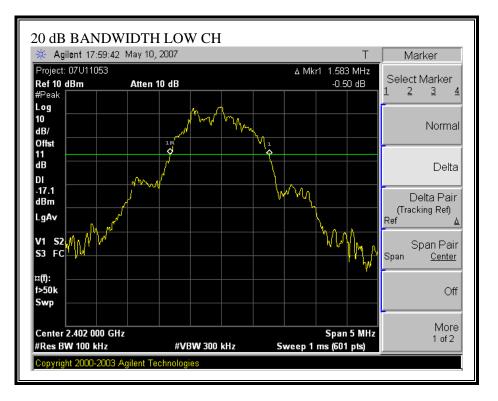
7.1.1. 20 dB BANDWIDTH

<u>LIMIT</u>

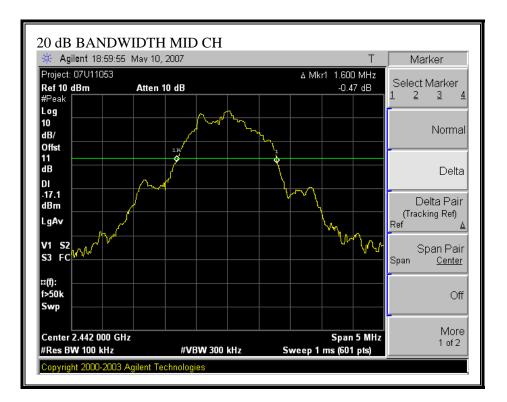
None; for reporting purposes only.

TEST PROCEDURE

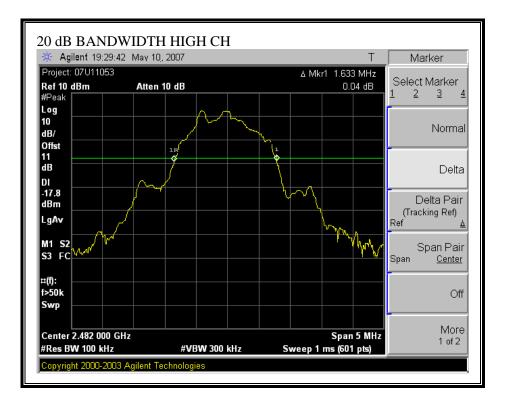
The transmitter output is connected to a spectrum analyzer. The RBW is set to 1% to 3% of the 20 dB bandwidth. The VBW is set to >= the RBW. The sweep time is coupled.


RESULTS

No non-compliance noted:


Channel	Frequency	20 dB Bandwidth
	(MHz)	(kHz)
Low	2402	1583
Middle	2442	1600
High	2482	1633

Page 10 of 69


20 dB BANDWIDTH

Page 11 of 69

Page 12 of 69

Page 13 of 69

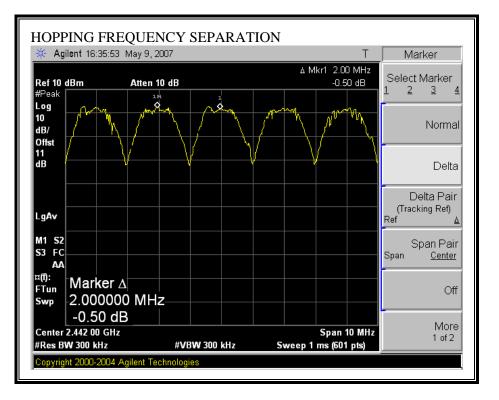
7.1.2. HOPPING FREQUENCY SEPARATION

<u>LIMIT</u>

\$15.247 (a) (1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The sweep time is coupled.


RESULTS

No non-compliance noted:

Channel Separation	20 dB Bandwidth	Margin
2 MHz	1.633 MHz	367KHz

Page 14 of 69

HOPPING FREQUENCY SEPARATION

Page 15 of 69

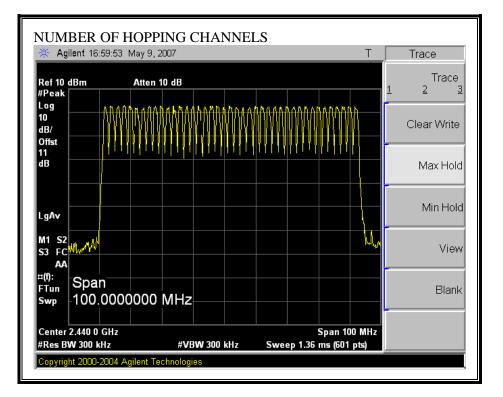
7.1.3. NUMBER OF HOPPING CHANNELS

<u>LIMIT</u>

15.247 (a) (1) (iii) Frequency hopping systems in the 2400 - 2483.5 MHz band shall use at least 15 non-overlapping channels.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to 1 % of the span. The analyzer is set to Max Hold.


RESULTS

No non-compliance noted:

41 Channels observed.

Page 16 of 69

NUMBER OF HOPPING CHANNELS

Page 17 of 69

7.1.4. AVERAGE TIME OF OCCUPANCY

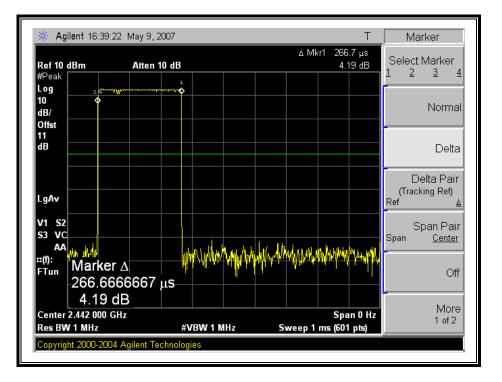
<u>LIMIT</u>

15.247 (a) (1) (iii) Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 nonoverlapping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

TEST PROCEDURE

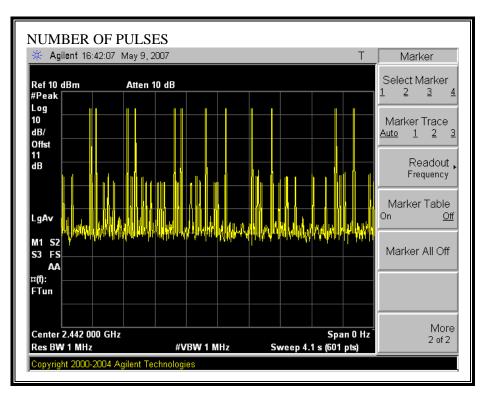
The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 31.6 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.


RESULTS

No non-compliance noted:

Time of Occupancy = 10 * 12 pulses * 0.2667 msec = 32 msec


Pulse Width	Number of Pulses in 3.16 seconds	Average Time of Occupancy	Limit	Margin
(msec)		(sec)	(sec)	(sec)
0.2667	12	0.032	0.4	0.368

PULSE WIDTH

Page 19 of 69

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD

Page 20 of 69

7.1.5. PEAK OUTPUT POWER

PEAK POWER LIMIT

§15.247 (b) The maximum peak output power of the intentional radiator shall not exceed the following:

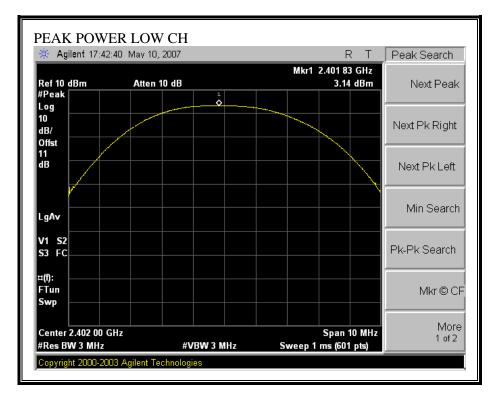
§15.247 (b) (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 hopping channels: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

\$15.247 (b) (4) Except as shown in paragraphs (b)(3) (i), (ii) and (iii) of this section, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

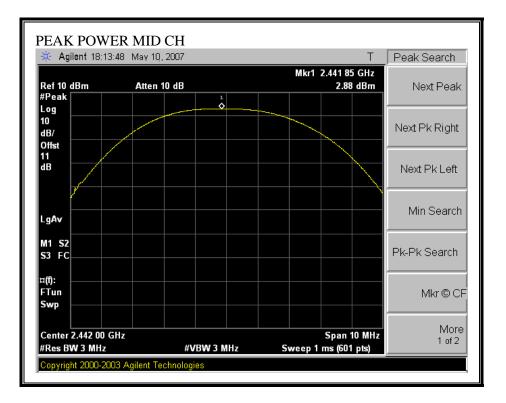
The maximum antenna gain is -2.1 dBi; therefore the limit is 21 dBm.

TEST PROCEDURE

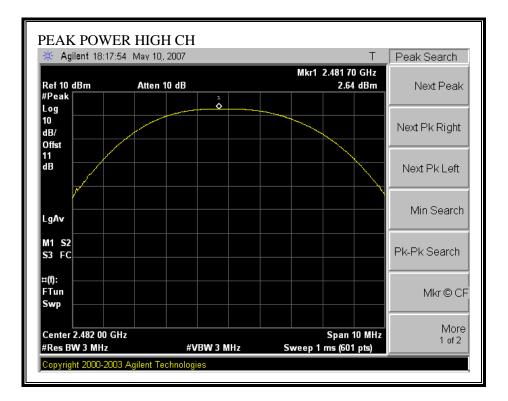
The transmitter output is connected to a spectrum analyzer and the analyzer bandwidth is set to a value greater than the 20 dB bandwidth of the EUT.


RESULTS

Channel	Frequency (MHz)	Peak Power (dBm)	Limit (dBm)	Margin (dB)
Low	2402	3.14	21.00	-17.86
Middle	2442	2.88	21.00	-18.12
High	2482	2.64	21.00	-18.36


No non-compliance noted:

Page 21 of 69


OUTPUT POWER

Page 22 of 69

Page 23 of 69

Page 24 of 69

7.1.6. AVERAGE POWER

AVERAGE POWER LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

No non-compliance noted:

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Average Power	
	(MHz)	(dBm)	
Low	2402	-7.26	
Middle	2442	-7.47	
High	2482	-8.17	

Page 25 of 69

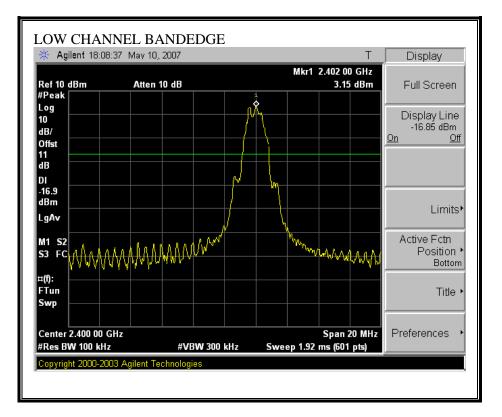
7.1.7. CONDUCTED SPURIOUS EMISSIONS

LIMITS

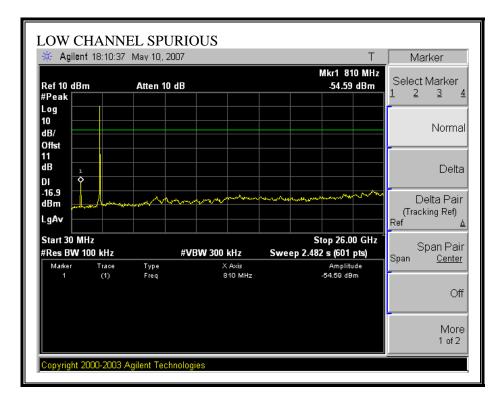
§15.247 (c) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in§15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

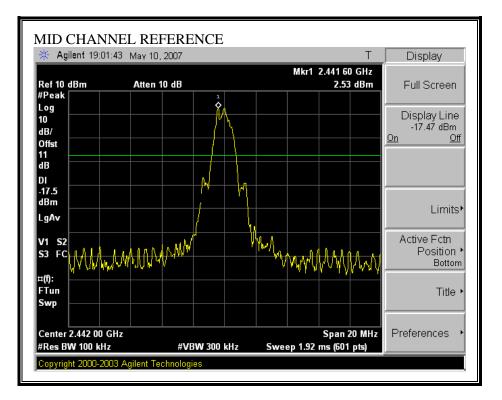

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

RESULTS

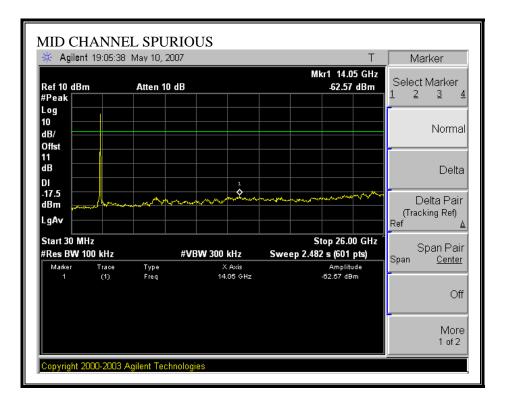

No non-compliance noted:

Page 26 of 69

SPURIOUS EMISSIONS, LOW CHANNEL

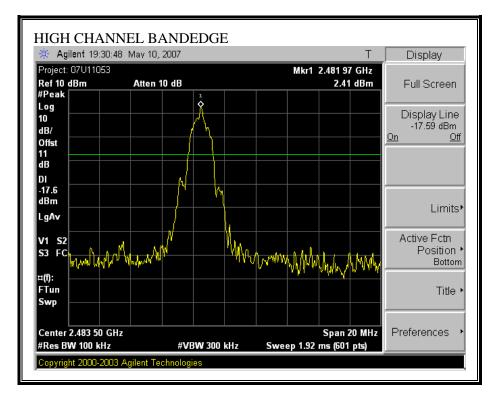


Page 27 of 69



Page 28 of 69

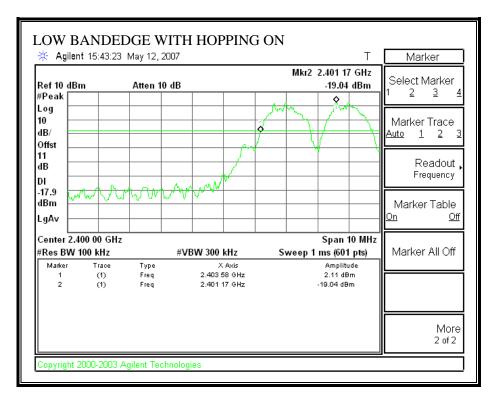
SPURIOUS EMISSIONS, MID CHANNEL



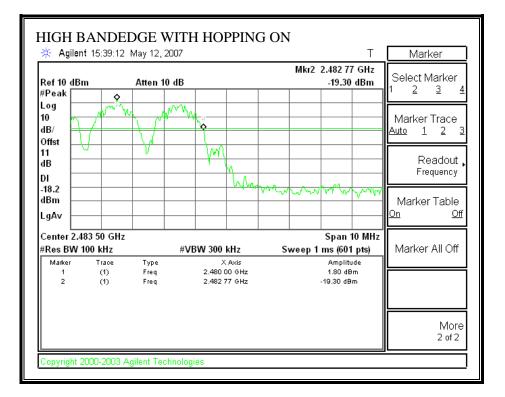
Page 29 of 69

Page 30 of 69

SPURIOUS EMISSIONS, HIGH CHANNEL



Page 31 of 69



Page 32 of 69

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

Page 33 of 69

Page 34 of 69

7.2. RADIATED EMISSIONS

7.2.1. TRANSMITTER RADIATED SPURIOUS EMISSIONS

LIMITS

\$15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

§15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

Field Strength Measurement Distance Frequency (microvolts/meter) (MHz) (meters) 30 - 88 100 ** 3 3 88 - 216 150 ** 3 216 - 960 200 ** Above 960 500 3

\$15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

Page 36 of 69

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each 5 GHz band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

The EUT was tested inside the host system and in stand-alone configuration.

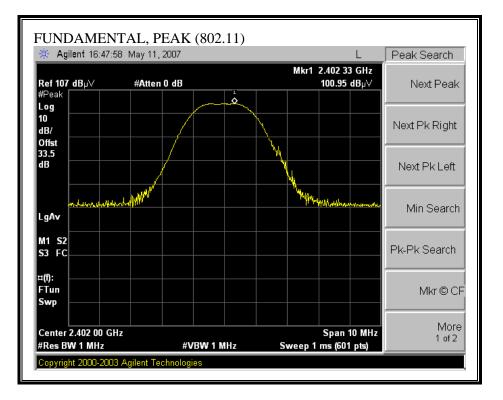
The data reported represents the worse case.

Page 37 of 69

7.2.2. TRANSMITTER RADIATED EMISSIONS ABOVE 1 GHZ

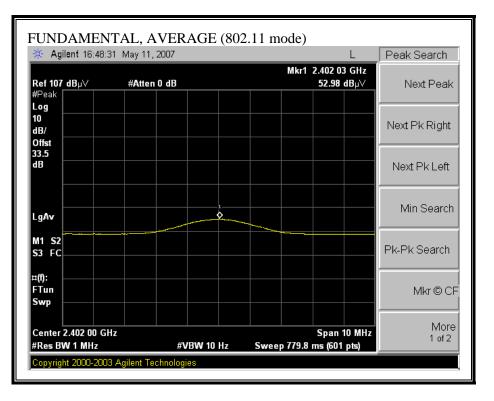
DELTA METHOD RESULTS

EUT WITHOUT SHIELD

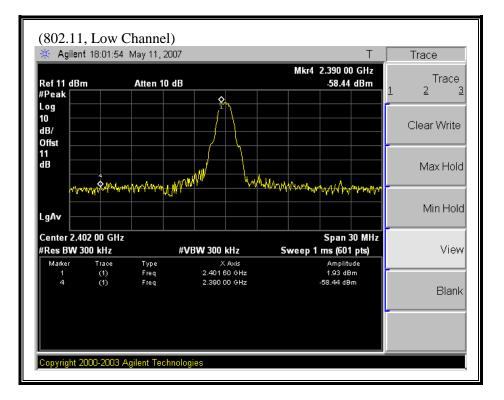

		Fundamental (dBuV/m)			Reading	(dBuV/m)	Limit (c	BuV/m)	Margin (dBuV/m)	
	CHANNEL	Delta (dBc)	Peak	Average	Peak	Average	Peak	Average	Peak	Average
F	2402	60.37	100.4	67.78	40.03	7.41	74	54	-33.97	-46.59
	2482	35.43	100.4	68.3	64.97	32.87	74	54	-9.03	-21.13

EUT WITH SHIELD

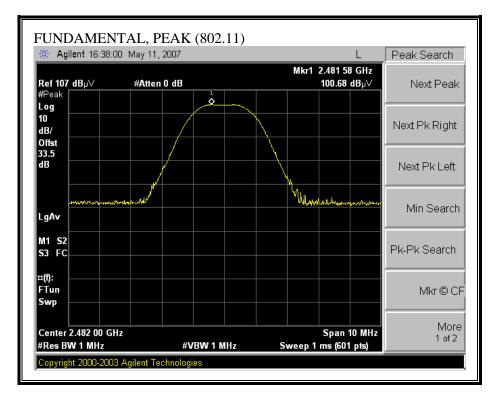
	Fundamenta			Reading	(dBuV/m)	Limit (c	dBuV/m)	Margin (dBuV/m)	
	Delta								
CHANNEL	(dBc)	Peak	Average	Peak	Average	Peak	Average	Peak	Average
2402	60.37	100.95	52.98	40.58	-7.39	74	54	-33.42	-61.39
2482	35.43	100.68	54.25	65.25	18.82	74	54	-8.75	-35.18


Page 38 of 69

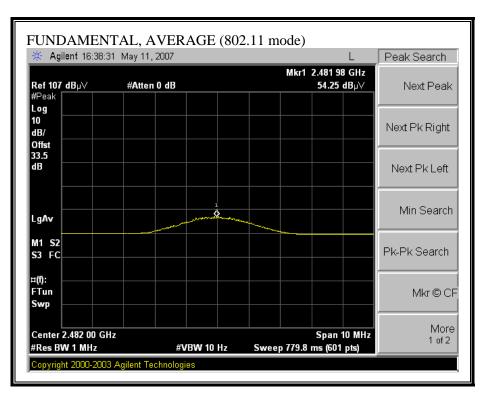
FUNDAMENTAL (b MODE, LOW CHANNEL, PEAK)


Page 39 of 69

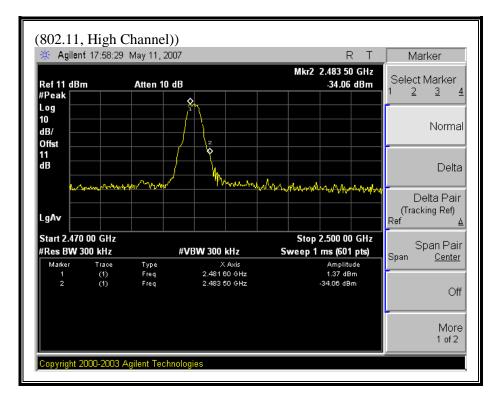
FUNDAMENTAL (LOW CHANNEL, AVERAGE)


Page 40 of 69

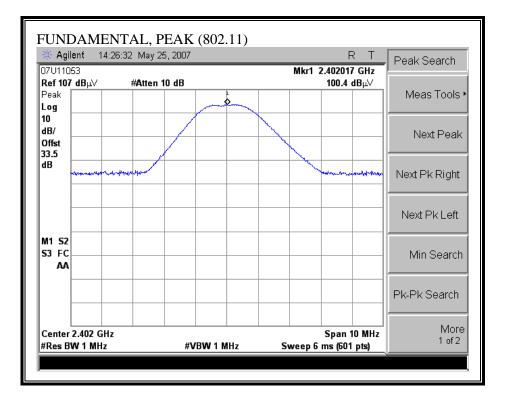
DELTA CONDUCTED BANDEDGE (LOW CHANNEL)


Page 41 of 69

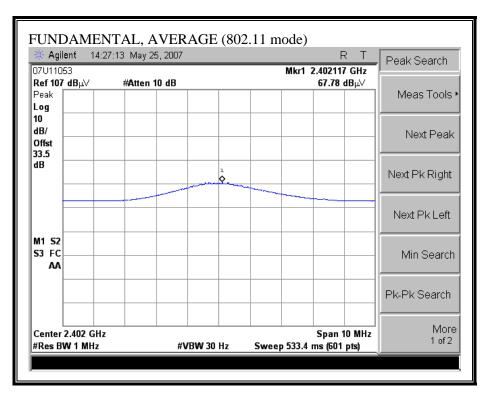
FUNDAMENTAL (HIGH CHANNEL, PEAK)


Page 42 of 69

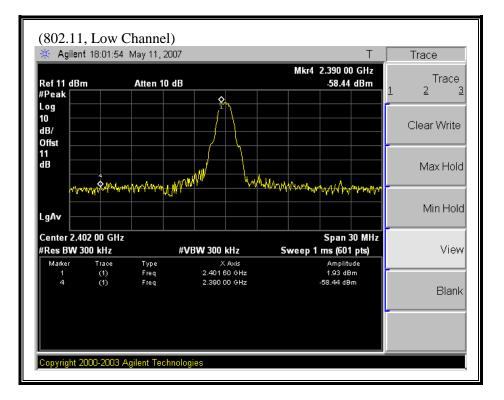
FUNDAMENTAL (HIGH CHANNEL, AVERAGE)


Page 43 of 69

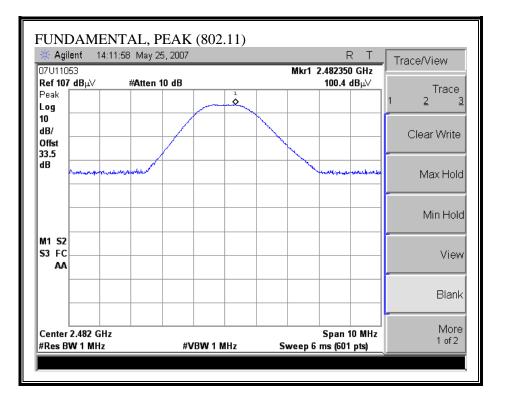
DELTA CONDUCTED BANDEDGE (HIGH CHANNEL)


Page 44 of 69

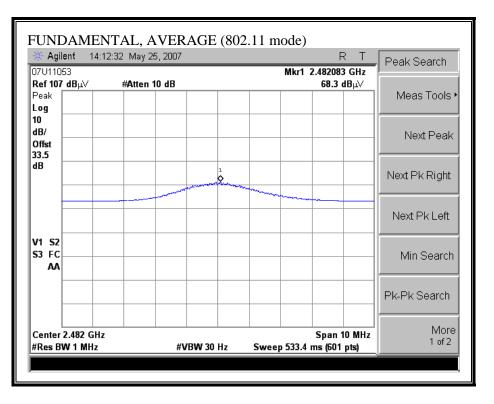
EUT WIH RF SHIELD


Page 45 of 69

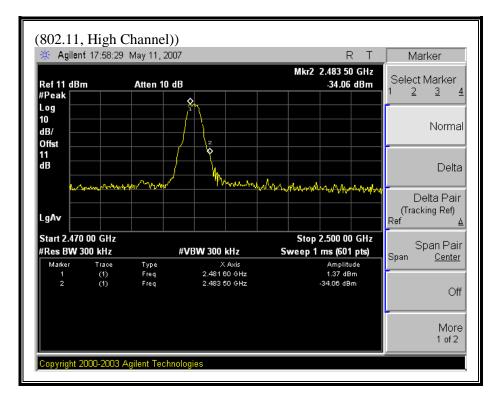
FUNDAMENTAL (LOW CHANNEL, AVERAGE)


Page 46 of 69

DELTA CONDUCTED BANDEDGE (LOW CHANNEL)


Page 47 of 69

FUNDAMENTAL (HIGH CHANNEL, PEAK)


Page 48 of 69

FUNDAMENTAL (HIGH CHANNEL, AVERAGE)

Page 49 of 69

DELTA CONDUCTED BANDEDGE (HIGH CHANNEL)

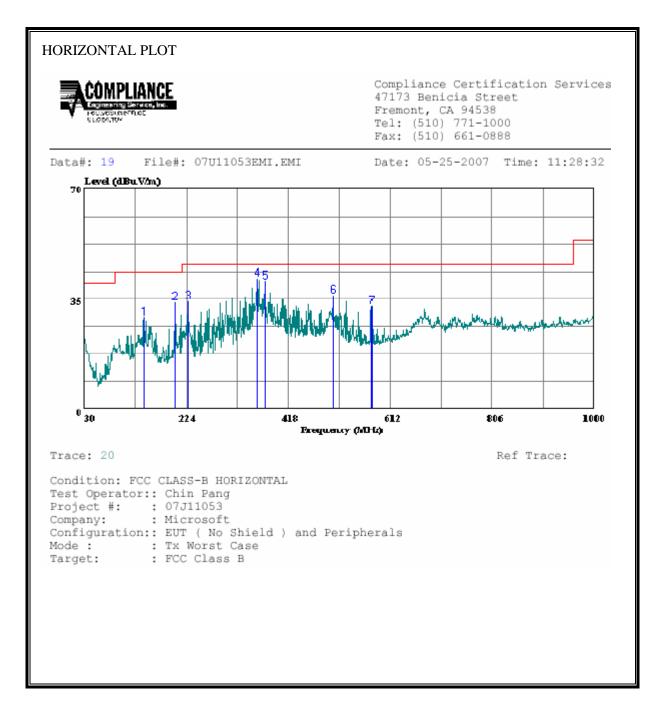
Page 50 of 69

HARMONICS AND SPURIOUS EMISSIONS (Un-shielded)

Compli	~	Frequency rtification				5m Ch	amber										
Compa	ny:		Micros	oft													
Project	#:		07U110														
Date: Lost Er	ngineer:		05/10/0 Frank I														
	ngmeer: mation:			oranım ith perip	berals												
Mode:			TXON														
S/N:			CS0195	15													
Test E	quipmen	<u>t:</u>															
F	lorn 1-	18GHz	F	re-an	nplifer	1-26	GHz	Pre-am	plifer	26-40GH	z		н	orn > 1	8GHz		Limit
T120; S/N: 29310 @3m 🗸 T34 HP 8449B 🗸									•	T89;	; ARA 18-26	GHz; S/	N:1049	-	FCC 15.205 🗸		
Hi Frequency Cables															_		
	2 foot	cable		3	footo	able		12	footo	able			HPF		Reject Filt		<u>k Measurements</u> W=VBW=1MHz
· ·					•	A-5m Chamber			Í			▼ R_001 ▼			Average Measurements RBW=1MHz; VBW=10Hz		
f	Dist	Read Pk	Read	Avg.	AF	CL	Amp	D Corr	Fltr	Peak	A	vg	Pk Lim	Avg Li	m Pk Mar	Avg Mar	Notes
GHz	(m)	dBuV	dB	uV	dB/m	dB	dB	dB	dB	dBuV/m	dBı	uV/m	dBuV/m	dBuV/	m dB	dB	(V/H)
.ow Cha .200	nnel (240) 3.0	2 MHz) 59.60	20	34	28.6	3.3	-38.0	0.0	0.0	53.48	2	3.22	74	54	-20.52	-20.78	v
4.804	3.0	43.31		.48	33.7	5.5 6.9	-34.8	0.0	0.0	49.02		,.22 1.19	74	54 54	-20.52	-20.78	v
.200	3.0	58.56		36	28.6	33	-38.0	0.0	0.0	52.44		7.24	74	54	-21.56	-16.76	H
4.804 Mid Cha	3.0 nnel (2442	43.82 MHz)	24	.84	33.7	6.9	-34.8	0.0	0.0	49.53	31).55	74	54	-24.47	-23.45	Н
4.884	3.0	45.24	26	.01	33.8	6.9	-34.8	0.0	0.0	51.11	3]	1.88	74	54	-22.89	-22.12	v
1.884	3.0	43.02	25	.75	33.8	6.9	-34.8	0.0	0.0	48.89	3)	1.62	74	54	-25.11	-22.38	Н
High Ch 1964	annel (248			.02	33.8	7.0	-34.8	0.0	0.0	47.66	~	2.05	74	54	-26.34	-21.95	v
1.964 1.964	3.0 3.0	41.63 40.97	20 25		33.8 33.8	7.0 7.0	-34.8 -34.8	0.0 0.0	0.0 0.0	47.00		2.05	74	54 54	-20.34	-21.95	H H
					7		•	-						-			
																-	
		-	-				~	-						-	-	-	
											ngui			T K. IVIAI	Iviai Bui A	5. FCaR Luin	ı
	f Measurement Frequency Amp Dist Distance to Antenna D Corr Read Analyzer Reading Avg AF Antenna Factor Peak CL Cable Loss HPF						Preamp Gain Distance Correct to 3 meters Average Field Strength @ 3 m Calculated Peak Field Strength High Pass Filter					Avg Lim Average Field Strength Limit Pk Lim Peak Field Strength Limit Avg Mar Margin vs. Average Limit Pk Mar Margin vs. Peak Limit					

Page 51 of 69

HARMONICS AND SPURIOUS EMISSIONS (With-RF shield)

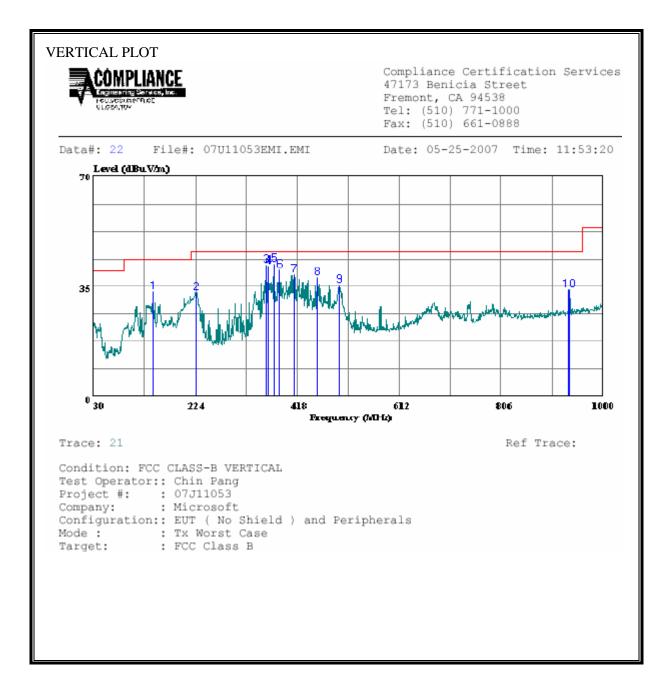

	#:07U1 25/2007																
	igineer:	Chin Pang															
onfigu Iode: '		EUT/Suppo	rt periphera	ls. (EU	T with	ı RF Shi	eld)										
est Eq	nipmen	<u>t:</u>															
н	lorn 1-	18GHz	Pre-a	mplifer	1-26	GHz	Pre-am	plifer	26-40GH	Iz	н	orn > 18(GHz		Limit		
T60; \$	S/N: 223	8 @3m	▼ T144 I	Miteq 30	08A00	931 🗸				-				•	FCC 15.205 🗸		
- Hi Frei	quency Ca	hles —								_				_			
	2 foot			3 foot c	able		12	foot c	able		HPF	D	eject Filte		k Measurements		
	21000	Capie		10010	apre						псс			RB	W=VBW=1MHz		
			-			•	Gordor	20313	\$4001			- R_	001		age Measurements =1MHz ; VBW=10Hz		
-		-						-					-				
f GHz	Dist (m)	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	Fltr dB	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m	-	Pk Mar dB	Avg Mar dB	Notes (V/H)		
ow Ch																	
.804 .804	3.0 3.0	47.7 46.6	36.8 36.4	33.D 33.D	69 69	-36.5 -36.5	0.0 0.0	0.0 0.0	51.1 50.0	40.2 39.8	74 74	54 54	-22.9 -24.0	-13.8 -14.2	V H		
lid Ch .884	3.0	47.2	36.5	33.1	6.9	-36.5	0.0	0.0	50.7	40.0	74	54	-23.3	-14.0	v		
.884	3.0	46.2	36.0	33.1	6.9	-36.5	0.0	0.0	49.7	39.5	74	54	-24.3	-14.5	Н		
ligh Ch													ļ				
964 964	3.0 3.0	47.5 46.0	36.1 35.8	33.1 33.1	7.0 7.0	-36.5 -36.5	0.0 0.0	0.0 0.0	51.2 49.7	39.8 39.5	74 74	54 54	-22.8 -24.3	-14.2 -14.5	V H		
		•									•						
ev. 5.1.6																	
		issions were	detected above	the syste	m noise	floor.											
	f	Measurem	ent Frequenc	v		Amp	Preamp (Fain				AvoTim	Average I	Field Strengt	h T <i>im</i> it		
	-	Distance to	-	,		-	-		ct to 3 met	ers		-	_	d Strength L			
		Analyzer B	<u> </u>			Avg			Strength @				0	Average L			
	AF	Antenna F				Peak upp	Calculate High Pas		k Field Stre	ength		Pk Mar	Margin vs	. Peak Limit	t		
	CL Cable Loss HPF					TTE L	тцун газ	s rutei									

Page 52 of 69

7.2.3. WORST-CASE RADIATED EMISSIONS BELOW 1 GHz

EUT WITHOUT SHIELD

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)


Page 53 of 69

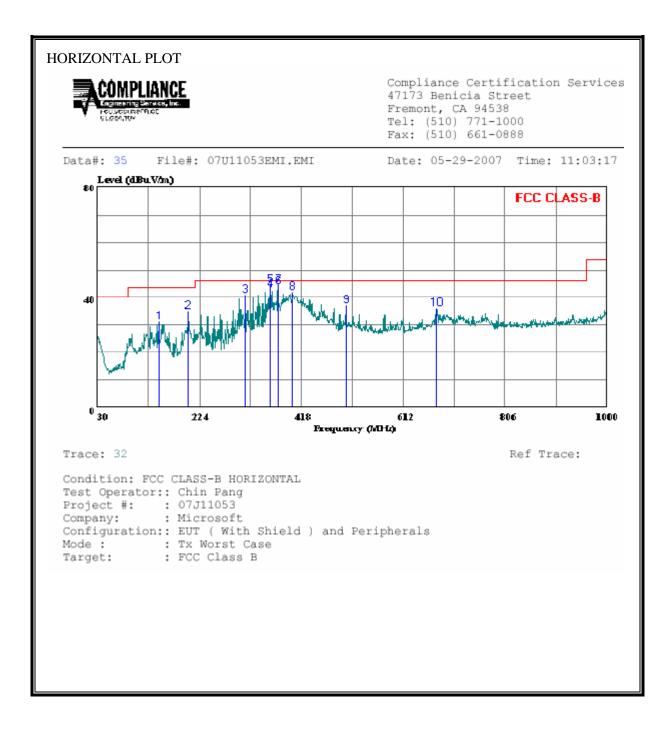
FCC ID: C3KWRW02

HORIZ	ZONTAL D	ATA						
1 2 3 4 5 6 7	Freq MHz 142.520 202.660 226.910 359.800 373.380 503.360 576.110	51.40 52.80 56.00 54.80 47.40	dB -16.90 -17.32 -18.52 -14.42 -14.06 -11.31	dBuV/m 29.20 34.09 34.28 41.58 40.74 36.09	Line dBuV/m 43.50 43.50 46.00 46.00 46.00 46.00	dB -14.30 -9.41 -11.72 -4.42 -5.26 -9.91	Peak Peak Peak Peak Peak Peak	Page: 1

Page 54 of 69

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

Page 55 of 69


REPORT NO: 07U11053-1B EUT: XBOX 360 WIRELESS RACING WHEEL WITH FORCE FEEDBACK

DATE: JULY 12, 2007 FCC ID: C3KWRW02

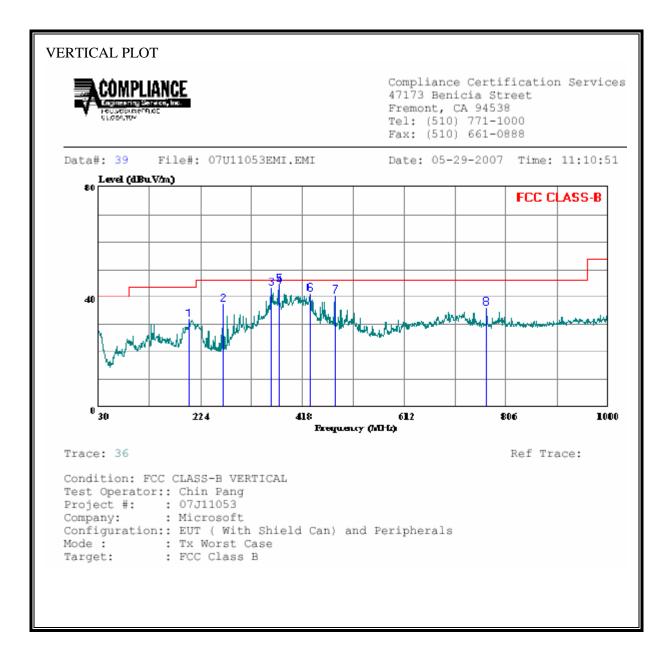
Page 56 of 69

EUT WITH RF SHIELD

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

Page 57 of 69

REPORT NO: 07U11053-1BDEUT: XBOX 360 WIRELESS RACING WHEEL WITH FORCE FEEDBACKF


Page: 1

HORIZONTAL DATA

	Freq	Read Level dBuV		Level dBuV/m		Over Limit	Remark
1 2 4 5 6 7 8 9 10	146.400 202.660 311.300 359.800 373.380 373.380 401.510 503.360 675.050	48.60 52.70 53.80 55.50 54.52 55.30 51.80 44.30	-13.67 -13.73 -11.98 -10.77 -10.77 -10.49 -9.87 -7.32 -3.93	34.87 40.72 43.03 44.73 44.03 44.81 41.93 36.98	43.50 46.00 46.00 46.00 46.00 46.00 46.00	-12.17 -8.63 -5.28 -2.97 -1.27 -1.97 -1.19 -4.07 -9.02 -10.13	Peak QP Peak QP Peak Peak Peak Peak

Page 58 of 69

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

Page 59 of 69

REPORT NO: 07U11053-1B EUT: XBOX 360 WIRELESS RACING WHEEL WITH FORCE FEEDBACK

VERTICAL DA	ТА							
	Read			Limit	Over		Page: 1	
		Factor			Limit	Remark		
	MHz dBuV		dBuV/m		dB			
1 202. 2 266. 3 359. 4 373. 5 373. 6 431. 7 480. 8 768.	680 50.94 800 54.10 380 54.60 380 55.30 580 50.30 080 48.40	-7.81	37.39 43.33 44.11 44.81 41.24 40.59	46.00 46.00 46.00 46.00 46.00	-11.53 -8.61 -2.67 -1.89 -1.19 -4.76 -5.41 -10.08	Peak Peak QP Peak Peak Peak		

Page 60 of 69

7.3. POWERLINE CONDUCTED EMISSIONS

<u>LIMIT</u>

\$15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

The lower limit applies at the boundary between the frequency ranges.

Frequency of Emission (MHz)	Conducted I	.imit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56	56 to 46 *
0.5-5	56	46
5-30	60	50

Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

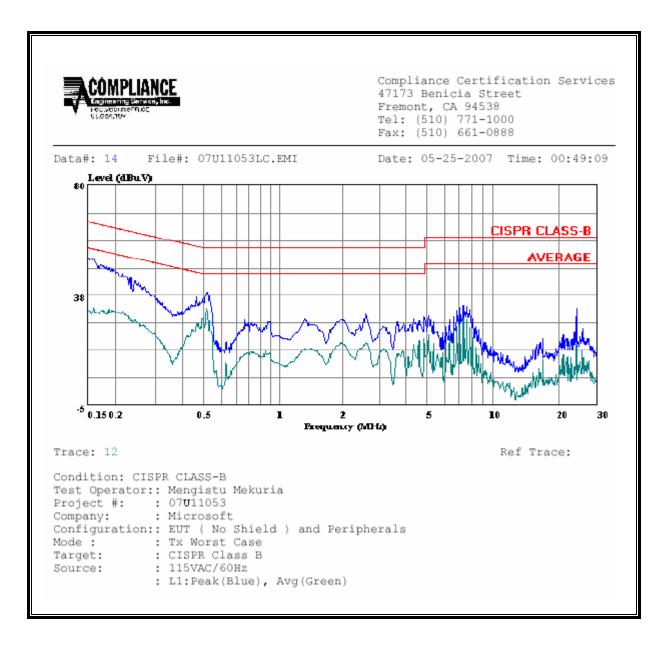
The resolution bandwidth is set to 9 kHz for both peak detection and quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

Line conducted data is recorded for both NEUTRAL and HOT lines.

<u>RESULTS</u>

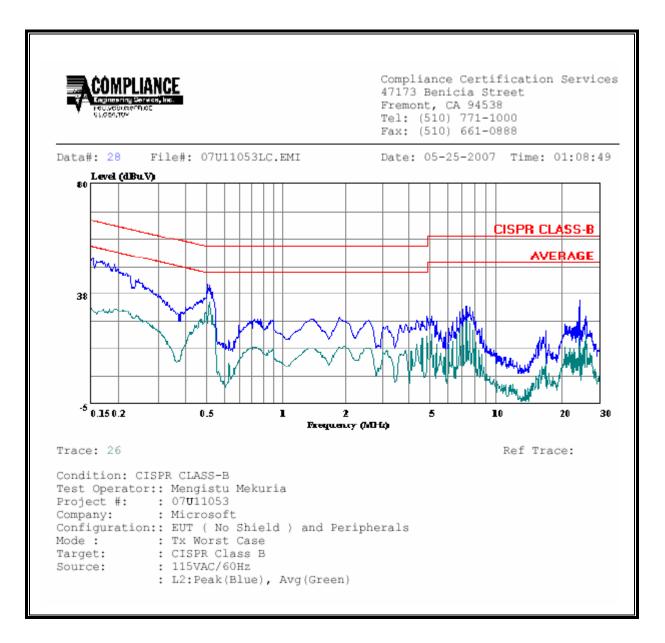
No non-compliance noted:

Page 61 of 69


6 WORST EMISSIONS

	CONDUCTED EMISSIONS DATA (115VAC 60Hz)												
Freq.		Reading		Closs	Limit	EN_B	Mar	Remark					
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV (dB)	L1 / L2				
0.15	52.07			0.00	66.00	56.00	-13.93	-3.93	L1				
0.52	38.91			0.00	56.00	46.00	-17.09	-7.09	L1				
7.45	33.62			0.00	60.00	50.00	-26.38	-16.38	L1				
0.15	51.31			0.00	65.89	55.89	-14.58	-4.58	L2				
0.51	41.30			0.00	56.00	46.00	-14.70	-4.70	L2				
24.01	35.24			0.00	60.00	50.00	-24.76	-14.76	L2				
6 Worst I	Data												

Page 62 of 69


EUT WITHOUT SHIELD

LINE 1 RESULTS

Page 63 of 69

LINE 1 RESULTS

Page 64 of 69