

ELEMENT WASHINGTON DC LLC

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.381.1520 http://www.element.com

http://www.element.com

MEASUREMENT REPORT FCC PART 15.407 802.11a/n/ac/ax/be (OFDM)

Applicant Name:

Microsoft Corporation One Microsoft Way Redmond, WA 98052 United States

Date of Testing: 12/14/2023 - 03/18/2024 Test Report Issue Date: 4/16/2024 Test Site/Location:

Element lab., Columbia, MD, USA Test Report Serial No.: 1M2312040120-19.C3K

FCC ID:

C3K2077

APPLICANT:

Microsoft Corporation

Application Type: Model: EUT Type: Frequency Range: Modulation Type: FCC Equipment Class: FCC Rule Part(s): Test Procedure(s): Certification 2077 Portable Computing Device 5180 – 5885MHz OFDM Unlicensed National Information Infrastructure TX (NII) Part 15 Subpart E (15.407) ANSI C63.10-2013

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

RJ Ortanez Executive Vice President

FCC ID: C3K2077		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dage 1 of 155		
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 1 of 155		
© 2024 ELEMENT	-		V11.1 08/28/2023		

TABLE OF CONTENTS

1.0	INTRC	DUCTIO	N	4
	1.1	Scope)	4
	1.2	Eleme	ent Test Location	4
	1.3	Test F	acility / Accreditations	4
2.0	PROD	UCT INF	ORMATION	5
	2.1	Equip	ment Description	5
	2.2	Device	e Capabilities	5
	2.3	Anten	na Description	7
	2.4	Test C	Configuration	7
	2.5	Softwa	are and Firmware	7
	2.6	EMI S	uppression Device(s) / Modifications	7
3.0	DESC	RIPTION	OF TESTS	8
	3.1	Evalua	ation Procedure	8
	3.2	AC Lir	ne Conducted Emissions	8
	3.3	Radiat	ted Emissions	9
	3.4	Enviro	onmental Conditions	9
4.0	ANTE	NNA REC	QUIREMENTS	10
5.0	MEAS	UREMEN	NT UNCERTAINTY	11
6.0	TEST	EQUIPM	ENT CALIBRATION DATA	12
7.0	TEST	RESULT	S	13
	7.1	Summ	nary	13
	7.2	26dB I	Bandwidth Measurement	14
		7.2.1	MIMO Antenna-1 26dB Bandwidth Measurements	16
		7.2.2	MIMO Antenna-2 26dB Bandwidth Measurements	29
	7.3	6dB B	andwidth Measurement	42
		7.3.1	MIMO Antenna-1 6dB Bandwidth Measurements	44
		7.3.2	MIMO Antenna-2 6dB Bandwidth Measurements	52
	7.4	UNII C	Dutput Power Measurement	60
	7.5	Maxim	num Power Spectral Density	67
		7.5.1	MIMO Antenna-1 Power Spectral Density Measurements	71
		7.5.2	MIMO Antenna-2 Power Spectral Density Measurements	92
		7.5.3	MIMO Antenna-1 Power Spectral Density Measurements - Punctured	113
		7.5.4	MIMO Antenna-2 Power Spectral Density Measurements - Punctured	117
	7.6	Radiat	ted Emission Measurements	122
		7.6.1	MIMO Radiated Spurious Emission Measurements	
		7.6.2	MIMO Radiated Band Edge Measurements (20MHz BW)	
		7.6.3	MIMO Radiated Band Edge Measurements (40MHz BW)	139
		7.6.4	MIMO Radiated Band Edge Measurements (80MHz BW)	142
		7.6.5	MIMO Radiated Band Edge Measurements (160MHz BW)	145
	7.7	Line-C	Conducted Test Data	
8.0	CONC	LUSION		155

FCC ID: C3K2077		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dage 2 of 155		
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 2 of 155		
© 2024 ELEMENT	-		V11.1 08/28/2023		

MEASUREMENT REPORT

Channel		Tx Frequency	МІМО			
Bandwidth [MHz]	UNII Band	[MHz]	Max. Power [mW]	Max. Power [dBm]		
	1	5180 - 5240	157.40	21.97		
	2A	5260 - 5320	173.78	22.40		
20	2C	5500 - 5720	174.61	22.42		
	3	5745 - 5825	241.75	23.83		
	4	5845 - 5885	531.24	27.25		
	1	5190 - 5230	123.59	20.92		
	2A	5270 - 5310	137.09	21.37		
40	2C	5510 - 5710	175.39	22.44		
	3	5755 - 5795	241.55	23.83		
	4	5835 - 5875	859.08	29.34		
	1	5210	83.56	19.22		
	2A	5290	56.75	17.54		
80	2C	5530 - 5690	155.24	21.91		
	3	5775	114.02	20.57		
	4	5855	662.31	28.21		
	1/2A	5250	48.87	16.89		
160	2C	5570	48.75	16.88		
	3/4	5815	387.31	25.88		
	E	UT Overvie	w			

Note: The UNII Band 4 max power values shown in the above table are e.i.r.p values.

FCC ID: C3K2077		MEASUREMENT REPORT					
Test Report S/N:	Test Dates:	Fest Dates: EUT Type:					
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	12/14/2023 - 03/18/2024 Portable Computing Device					
© 2024 ELEMENT V11.1 08/28/2023							

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 Element Test Location

These measurement tests were conducted at the Element laboratory located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

1.3 Test Facility / Accreditations

Measurements were performed at Element lab located in Columbia, MD 21046, U.S.A.

- Element Washington DC LLC is an ISO 17025-2017 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- Element Washington DC LLC TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- Element Washington DC LLC facility is a registered (2451B) test laboratory with the site description on file with ISED.
- Element Washington DC LLC is a Recognized U.S. Certification Assessment Body (CAB # US0110) for ISED Canada as designated by NIST under the U.S. and Canada Mutual Recognition Agreements (MRAs).

FCC ID: C3K2077		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dogo 4 of 155		
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 4 of 155		
© 2024 ELEMENT			V11.1 08/28/2023		

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without written permission from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

PRODUCT INFORMATION 2.0

2.1 **Equipment Description**

The Equipment Under Test (EUT) is the Microsoft Corporation Portable Computing Device FCC ID: C3K2077. The test data contained in this report pertains only to the emissions due to the EUT's UNII transmitter.

Test Device Serial No.: 7CDR2, B44G2, B44D2, 7CF42, 7CDQ2, 7CDB2

2.2 **Device Capabilities**

This device contains the following capabilities:

Ch.

54

62

850/1700/1900 WCDMA/HSPA, Multi-band LTE, Multi-band 5G NR (FR1), 802.11b/g/n/ac/ax/be WLAN, 802.11a/n/ac/ax/be UNII (5GHz and 6GHz), Bluetooth (1x, EDR, LE)

	Band 1		Band 2A		Band 2C		Band 3		Band 3/4
Ch.	Frequency (MHz)	Ch.	Frequency (MHz)	Ch.	Frequency (MHz)	Ch.	Frequency (MHz)	Ch.	Frequency (MHz)
36	5180	52	5260	100	5500	149	5745	169	5845
:	:	:	:	:	:	:	:	:	:
40	5200	56	5280	120	5600	157	5785	173	5865
:	:	:	:	:	:	:	:	:	:
48	5240	64	5320	144	5720	165	5825	177	5885
		Table	0 4 000 44 alplaa	low/ho /0/			Onerations		

Table 2-1. 802.11a/n/ac/ax/be (20MHz) Frequency / Channel Operations

	Band 1
Ch.	Frequency (MHz)
38	5190
:	
46	5230
46	5230

Band 2A			
Frequency (MHz)	C	Ch.	
5270	1	02	
:		:	
5310	1	18	
	1	142	

Band 2C		Band 3
Frequency (MHz)	Ch.	Frequency (MHz)
5510	151	5755
:	:	:
5590	159	5795

Band 3/4

Ch.	Frequency (MHz)
167	5835
-	:
175	5875

Table 2-2. 802.11n/ac/ax/be (40MHz BW) Frequency / Channel Operations

5710

	Band 1		Band 2A		Band 2C		Band 3		Band 3/4
Ch.	Frequency (MHz)	Ch.	Frequency (MHz)	Ch.	Frequency (MHz)	Ch.	Frequency (MHz)	Ch.	Frequency (MHz)
42	5210	58	5290	106	5530	155	5775	167	5835
				:	:				
				122	5610				
				:	:				
				138	5690				
		Table 2	-3. 802.11ac/a	x/be (80	MHz BW) Freq	luency /	Channel Operat	ions	

		Band 1/2A			Band 2C			Band 3/4	
	Ch.	Frequency (MHz)		Ch.	Frequency (MHz)		Ch.	Frequency (MH	lz)
	50	5250		114	5570		163	5815	
		Table 2-4. 802.11ac	/ax/	be (16	MHz BW) Frequency	y / (Channe	el Operations	
FCC ID: C3K2077				ME	ASUREMENT REPORT				Approved by:
									Technical Manager
Test Report S/N: Test Dates: EUT Type:						Dawa 5 of 455			
1M2312040120-19.	СЗК	12/14/2023 - 03/18/2024	Porta	able Com	puting Device				Page 5 of 155
2024 ELEMENT		•							V11.1 08/28/202

Notes:

5GHz NII operation is possible in 20MHz, 40MHz, 80MHz, and 160MHz channel bandwidths. The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = peak per the guidance of Section B)2)b) of ANSI C63.10-2013. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

		MIMO (1+2)
802.11	Duty Cycle [%]	
	а	99.19
	n (HT20)	99.68
	ac (VHT20)	99.68
	ax (HE20)	99.68
	be (EHT20)	99.68
	n (HT40)	99.91
	ac (VHT40)	99.79
5GHz	ax (HE40)	99.80
	be (EHT40)	99.80
	ac (VHT80)	99.59
	ax (HE80)	99.79
	be (EHT80)	99.91
	ac (HT160)	99.30
	ax (HE160)	99.75
	be (EHT160)	99.75

Table 2-5. Measured Duty Cycles

2. The device employs MIMO technology. Below are the possible configurations.

WiFi Configurations		SI	SO	SE	DM	CDD	
VVIFI CO	Inigulations	ANT1	ANT2	ANT1	ANT2	ANT1	ANT2
	11a	√	✓	×	×	√	✓
	11n	√	✓	~	✓	√	✓
5GHz	11ac	√	✓	~	✓	√	✓
	11ax	√	✓	~	✓	√	✓
	11be	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓

Table 2-6. Antenna / Technology Configuration

✓ = Support ; × = NOT Support

SISO = Single Input Single Output

SDM = Spatial Diversity Multiplexing – MIMO function

CDD = Cyclic Delay Diversity – 2Tx Function

FCC ID: C3K2077		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 6 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 6 of 155
© 2024 ELEMENT			V11.1 08/28/2023

3. The device supports the following data rates (shown in Mbps):

					1	i																			
802.11a		MCS	Index		Spatial	0	FDM (802.1	1n/802.11a	c)		OFDM (8	02.11ac)							OFDM (802	2.11ax/be)					
20MHz					Stream	201	ИHz	40N	ЛHz	80N	ЛHz	160	MHz		20MHz			40MHz			80MHz			160MHz	
ZUIVINZ	HT	VHT	HE	EHT		0.8µs GI	0.4µs GI	0.8µs GI	0.4µs GI	0.8µs GI	0.4µs GI	0.8µs GI	0.4µs GI	0.8µs GI	1.6µs GI	3.2µs GI	0.8µs GI	1.6µs GI	3.2µs GI	0.8µs GI	1.6µs GI	3.2µs GI	0.8µs GI	1.6µs GI	3.2µs GI
6	0	0	0	0	1	6.5	7.2	13.5	15	29.3	32.5	58.5	65	8.6	8.1	7.3	17.2	16.3	14.6	36	34	30.6	72.1	68.1	61.3
9	1	1	1	1	1	13	14.4	27	30	58.5	65	117	130	17.2	16.3	14.6	34.4	32.5	29.3	72.1	68.1	61.3	144.1	136.1	122.5
12	2	2	2	2	1	19.5	21.7	40.5	45	87.8	97.5	175.5	195	25.8	24.4	21.9	51.6	48.8	43.9	108.1	102.1	91.9	216.2	204.2	183.8
18	3	3	3	3	1	26	28.9	54	60	117	130	234	260	34.4	32.5	29.3	68.8	65	58.5	144.1	136.1	122.5	288.2	272.2	245
24	4	4	4	4	1	39	43.3	81	90	175.5	195	351	390	51.6	48.8	43.9	103.2	97.5	87.8	216.2	204.2	183.8	432.4	408.3	367.5
36	5	5	5	5	1	52	57.8	108	120	234	260	468	520	68.8	65	58.5	137.6	130	117	288.2	272.2	245	576.5	544.4	490
48	6	6	6	6	1	58.5	65	121.5	135	263.3	292.5	526.5	585	77.4	73.1	65.8	154.9	146.3	131.6	324.3	306.3	275.6	648.5	612.5	551.3
54	7	7	7	7	1	65	72.2	135	150	292.5	325	585	650	86	81.3	73.1	172.1	162.5	146.3	360.3	340.3	306.3	720.6	680.6	612.5
		8	8	8	1	78	86.7	162	180	351	390	702	780	103.2	97.5	87.8	206.5	195	175.5	432.4	408.3	367.5	864.7	816.7	735
	`	9	9	9	1	N/A	N/A	180	200	390	433.3	780	866.7	114.7	108.3	97.5	229.4	216.7	195	480.4	453.7	408.3	960.8	907.4	816.7
			10	10	1									129	121.9	109.7	258.1	243.8	219.4	540.4	510.4	459.4	1080.9	1020.8	918.8
			11	11	1									143.4	135.4	121.9	286.8	270.8	243.8	600.5	567.1	510.4	1201	1134.3	1020.8
				12	1									154.9	146.3	131.6	309.7	292.5	263.3	648.5	612.5	551.3	1297.1	1225	1102.5
				13	1									172.1	162.5	146.3	344.1	325	292.5	720.6	680.6	612.5	1441.2	1361.1	1225
6	8	0	0	0	2	13	14.4	27	30	58.5	65	117	130	17.2	16.3	14.6	34.4	32.5	29.3	72.1	68.1	61.3	144.1	136.1	122.5
9	9	1	1	1	2	26	28.9	54	60	117	130	234	260	34.4	32.5	29.3	68.8	65	58.5	144.1	136.1	122.5	288.2	272.2	245
12	10	2	2	2	2	39	43.3	81	90	175.5	195	351	390	51.6	48.8	43.9	103.2	97.5	87.8	216.2	204.2	183.8	432.4	408.3	367.5
18	11	3	3	3	2	52	57.8	108	120	234	260	468	520	68.8	65	58.5	137.6	130	117	288.2	272.2	245	576.5	544.4	490
24	12	4	4	4	2	78	86.7	162	180	351	390	702	780	103.2	97.5	87.8	206.5	195	175.5	432.4	408.3	367.5	864.7	816.7	735
36	13	5	5	5	2	104	115.6	216	240	468	520	936	1040	137.6	130	117	275.3	260	234	576.5	544.4	490	1152.9	1088.9	980
48	14	6	6	6	2	117	130	243	270	526.5	585	1053	1170	154.9	146.3	131.6	309.7	292.5	263.3	648.5	612.5	551.3	1297.1	1225	1102.5
54	15	7	7	7	2	130	144.4	270	300	585	650	1170	1300	172.1	162.5	146.3	344.1	325	292.5	720.6	680.6	612.5	1441.2	1361.1	1225
		8	8	8	2	156	173.3	324	360	702	780	1404	1560	206.5	195	175.5	412.9	390	351	864.7	816.7	735	1729.4	1633.3	1470
		9	9	9	2	N/A	N/A	360	400	780	866.7	1560	1733.3	229.4	216.7	195	458.8	433.3	390	960.8	907.4	816.7	1921.6	1814.8	1633.3
			10	10	2									258.1	243.8	219.4	516.2	487.5	438.8	1080.9	1020.8	918.8	2161.8	2041.7	1837.5
			11	11	2									286.8	270.8	243.8	573.5	541.7	487.5	1201	1134.3	1020.8	2402	2268.5	2041.7
				12	2									309.7	292.5	263.3	619.4	585	526.5	1297.1	1225	1102.5	2594.1	2450	2205
				13	2									344.1	325	292.5	688.2	650	585	1441.2	1361.1	1225	2882.4	2722.2	2450

2.3 Antenna Description

Table 2-7. Supported Data Rates

The following antenna gains were used for the testing.

Frequency [MHz]	Antenna 1 Gain (dBi)	Antenna 2 Gain (dBi)	Directional Gain (dBi)
5200	1.38	2.15	4.78
5300	1.39	2.43	4.94
5500	1.99	3.39	5.73
5800	2.58	2.72	5.66
5850	2.58	2.52	5.56

Table 2-8. Antenna Peak Gain

2.4 Test Configuration

ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing. See Sections 3.2 for AC line conducted emissions test setups, 7.6 for radiated emissions test setups, and 7.2, 7.3, 7.4, and 7.5 for antenna port conducted emissions test setups.

2.5 Software and Firmware

The test was conducted with software/firmware version 2024.111.46 installed on the EUT.

2.6 EMI Suppression Device(s) / Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

FCC ID: C3K2077		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 7 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 7 of 155
© 2024 ELEMENT			V11.1 08/28/2023

3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedures described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) was used in the measurement of the EUT.

Deviation from measurement procedure......None

3.2 AC Line Conducted Emissions

The line-conducted facility is located inside a 10'x16'x9' shielded enclosure. The shielded enclosure is manufactured by ETS Lindgren RF Enclosures. The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 65-5. A 1m x 1.5m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50\mu$ H Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. The external power line filter is an ETS Lindgren Model LPRX-4X30 (100dB Attenuation, 14kHz-18GHz) and the two EMI/RFI filters are ETS Lindgren Model LRW-2030-S1 (100dB Minimum Insertion Loss, 14kHz – 10GHz). These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply line(s) will be connected to the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference groundplane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The spectrum was scanned from 150kHz to 30MHz with a spectrum analyzer. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 10kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions is used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

Line conducted emissions test results are shown in Section 7.7. The EMI Receiver mode of the Agilent MXE was used to perform AC line conducted emissions testing.

FCC ID: C3K2077		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 9 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 8 of 155
© 2024 ELEMENT			V11.1 08/28/2023

3.3 Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. An 80cm tall test table made of Styrodur is placed on top of the turn table. For measurements above 1GHz, an additional Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33 depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions.

All radiated measurements are performed in a chamber that meets the site requirements per ANSI C63.4-2014. Additionally, radiated emissions below 30MHz are also validated on an Open Area Test Site to assert correlation with the chamber measurements per the requirements of KDB 414788 D01 v01r01.

3.4 Environmental Conditions

The temperature is controlled within range of 15°C to 35°C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

FCC ID: C3K2077		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 0 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 9 of 155
© 2024 ELEMENT			V11.1 08/28/2023

4.0 ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antennas of the EUT are **permanently attached**.
- There are no provisions for connection to an external antenna.

Conclusion:

The EUT complies with the requirement of §15.203.

FCC ID: C3K2077		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 10 of 155
© 2024 ELEMENT			V11.1 08/28/2023

5.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Line Conducted Disturbance	3.09
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: C3K2077		MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 11 of 155	
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 11 of 155	
© 2024 ELEMENT			V11.1 08/28/2023	

6.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
N/A	WL25-1	Conducted Cable Set (25GHz)	11/15/2023	Annual	11/15/2024	WL25-1
N/A	WL25-2	WLAN Cable Set (25GHz)	11/15/2023	Annual	11/15/2024	WL25-2
N/A	WL40-1	WLAN Cable Set (40GHz)	11/15/2023	Annual	11/15/2024	WL40-1
N/A	ETS-001	EMC Cable and Switch System	11/15/2023	Annual	11/15/2024	ETS-001
N/A	ETS-002	EMC Cable and Switch System	11/15/2023	Annual	11/15/2024	ETS-002
N/A	AP1-002	EMC Cable and Switch System	11/15/2023	Annual	11/15/2024	AP1-002
N/A	AP2-001	EMC Cable and Switch System	11/15/2023	Annual	11/15/2024	AP2-001
N/A	AP2-002	EMC Cable and Switch System	11/15/2023	Annual	11/15/2024	AP2-002
Anritsu	MA2411B	Pulse Power Sensor	11/8/2023	Annual	11/8/2024	1027293
Anritsu	MA2411B	Pulse Power Sensor	6/14/2023	Annual	6/14/2024	1911105
Com-Power	AL-130	9kHz - 30MHz Loop Antenna	4/13/2022	Biennial	4/13/2024	121034
Keysight Technologies	N9038A	MXE EMI Receiver	8/30/2023	Annual	8/30/2024	MY51210133
Keysight Technologies	N9030A	PXA Signal Analyzer	2/29/2024	Annual	3/1/2025	MY55410501
Keysight Technologies	N9020A	MXA Signal Analyzer	3/15/2023	Annual	3/15/2024	MY54500644
Pasternack	NMLC-2	Line Conducted Emissions Cable (NM)	11/15/2023	Annual	11/15/2024	NMLC-2
Rohde & Schwarz	ESU26	EMI Test Receiver (26.5GHz)	9/25/2023	Annual	9/25/2024	100342
Rohde & Schwarz	ESU40	EMI Test Receiver (40GHz)	9/11/2023	Annual	9/11/2024	100348
Rohde & Schwarz	FSW67	Signal / Spectrum Analyzer	2/15/2024	Annual	2/15/2025	103200
Rohde & Schwarz	SFUNIT-Rx	Shielded Filter Unit	3/15/2023	Biennial	3/15/2025	102136
Rohde & Schwarz	SFUNIT-Rx	Shielded Filter Unit	3/15/2023	Biennial	3/15/2025	102132
Rohde & Schwarz	SFUNIT-Rx	Shielded Filter Unit	1/11/2024	Annual	1/11/2025	102151
Sunol Sciences	DRH-118	Horn (Small)	2/21/2024	Biennial	2/21/2026	A050307
Sunol Sciences	JB5	Bi-Log Antenna (30M-5GHz)	8/30/2022	Biennial	8/30/2024	A051107

Table 6-1. Annual Test Equipment Calibration Schedule

Note:

For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.

FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 10 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 12 of 155
© 2024 ELEMENT			V11.1 08/28/2023

7.0 TEST RESULTS

7.1 Summary

Company Name:	Microsoft Corporation
FCC ID:	<u>C3K2077</u>
FCC Classification:	Unlicensed National Information Infrastructure (UNII)

FCC Part Section(s)	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
N/A	RSS-Gen [6.6]	26dB Bandwidth	N/A		PASS	Section 7.2
15.407(e)	RSS-Gen [6.6]	6dB Bandwidth	>500kHz(5725-5850MHz and 5850 – 5895MHz)		PASS	Section 7.3
15.407 (a)(1)(iv), (a)(2), (a)(3)	RSS-247 [6.2]	Maximum Conducted Output Power	Maximum conducted powers must meet the limits detailed in 15.407 (a) (RSS-247 [6.2])	CONDUCTED	PASS	Section 7.4
15.407 (a)(1)(iv), (a)(2), (a)(3)	RSS-247 [6.2]	Maximum Power Spectral Density	Maximum power spectral density must meet the limits detailed in 15.407 (a) (RSS-247 [6.2])		PASS	Section 7.5
15.407(h)	RSS-247 [6.3]	Dynamic Frequency Selection	See DFS Test Report		PASS	See DFS Test Report
15.407(b)(1), (b)(2), (b)(3), (b)(4)	RSS-247 [6.2]	Undesirable Emissions	Undesirable emissions must meet the limits detailed in 15.407(b) (RSS-247 [6.2])		PASS	Section 7.6
15.205, 15.407(b)(1), (b)(4), (b)(5), (b)(6)	RSS-Gen [8.9]	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209 (RSS-Gen [8.9])	RADIATED	PASS	Section 7.6
15.407	RSS-Gen [8.8]	AC Conducted Emissions 150kHz – 30MHz	< FCC 15.207 (RSS-Gen [8.8]) limits	LINE CONDUCTED	PASS	Section 7.7

Table 7-1. Summary of Test Results

Notes:

- 1) All channels, modes, and modulations/data rates were investigated among all UNII bands. The test results shown in the following sections represent the worst-case emissions.
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.
- 4) For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is Element "UNII Automation," Version 4.7.
- 5) For radiated band edge, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is Element "Chamber Automation," Version 1.5.0.

FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 12 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 13 of 155
© 2024 ELEMENT			V11.1 08/28/2023

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without written permission from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

7.2 26dB Bandwidth Measurement

Test Overview and Limit

The bandwidth at 26dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013, and at the appropriate frequencies. The spectrum analyzer's bandwidth measurement function is configured to measure the 26dB bandwidth.

The 26dB bandwidth is used to determine the conducted power limits.

Test Procedure Used

ANSI C63.10-2013 - Section 12.4

Test Settings

- The signal analyzers' automatic bandwidth measurement capability was used to perform the 26dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 26. The automatic bandwidth measurement function also has the capability of simultaneously measuring the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = approximately 1% of the emission bandwidth
- 3. VBW <u>></u> 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-1. Test Instrument & Measurement Setup

Test Notes

All cases were investigated; a subset of the taken plots were included to represent relevant settings and measurements.

FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 14 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 14 of 155
© 2024 ELEMENT		· · · · · · · · · · · · · · · · · · ·	V11.1 08/28/2023

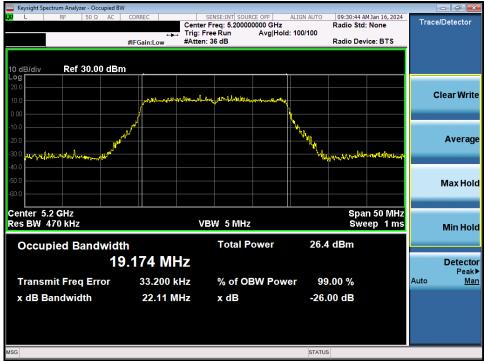
MIMO 26dB Bandwidth Measurements


	Frequency	Channel	802.11	Antenna-1 26dB Bandwidth	Antenna-2 26dB Bandwidth
	[MHz]	Charmer	MODE	[MHz]	[MHz]
	5180	36	а	23.35	23.16
	5200	40	а	23.40	22.98
	5240	48	а	23.34	22.75
	5180	36	n	23.66	23.41
	5200	40	n	23.78	23.27
	5240	48	n	23.93	23.42
<u> </u>	5180	36	be SU	23.52	23.91
Band 1	5200	40	be SU	22.11	22.60
ä	5240	48	be SU	22.63	23.23
	5190	38	n	45.89	45.58
	5230	46	n	47.67	46.56
	5190	38	be SU	46.56	45.77
	5230	46	be SU	47.31	46.17
	5210	42	ac	94.27	92.15
	5210	42	be SU	90.52	90.50
PL	5250	50	ac	175.96	177.56
Band 1/2A	5250	50	be SU	178.29	175.24
	5260	52	а	23.40	22.85
	5280	56	а	22.81	22.84
	5320	64	а	22.77	23.01
	5260	52	n	23.21	23.41
	5280	56	n	23.44	23.13
	5320	64	n	23.69	23.22
5	5260	52	be SU	22.67	23.59
ld 2	5280	56	be SU	22.60	23.12
Band 2A	5320	64	be SU	23.16	23.35
	5270	54	n	46.48	46.16
	5310	62	n	46.28	45.61
	5270	54	be SU	45.69	45.28
	5310	62	be SU	44.47	45.08
	5290	58	ac	94.23	92.76
	5290	58	be SU	92.56	91.62
	5500	100	а	23.48	23.13
	5600	120	a	23.60	22.71
	5720	144	a	23.11	22.78
	5500	100	n	23.89	23.62
	5600	120	n	23.79	23.66
	5720	144	n	23.35	23.59
	5500	100	be SU	22.94	23.66
	5600	100	be SU	22.24	23.00
	5720	144	be SU	22.38	23.69
	5510	102	n	45.73	47.38
Ŋ	5590	118	n	46.35	47.31
Band 2C	5710	142	n	48.24	46.71
Bai	5510	102	be SU	45.01	44.10
	5590	118	be SU	45.55	45.07
	5710	142	be SU	43.75	44.14
	5530	106	ac	93.48	92.06
	5610	122	ac	94.25	92.50
	5690	138	ac	94.25	92.36
	5530	106	be SU	93.25	89.35
	5610	100	be SU	90.02	89.01
	5690	138	be SU	89.53	90.92
	5570	114	ac	180.54	177.99
	5570	114	be SU	179.00	176.69
Pande 1 2				Bandwidtk	

Table 7-2. Bands 1, 2A, 2C Conducted 26dB Bandwidth Measurements MIMO

FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 15 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 15 of 155
© 2024 ELEMENT	-		V11.1 08/28/2023

7.2.1 MIMO Antenna-1 26dB Bandwidth Measurements


Plot 7-1. 26dB Bandwidth Plot MIMO ANT1 (802.11a (UNII Band 1) - Ch. 40)

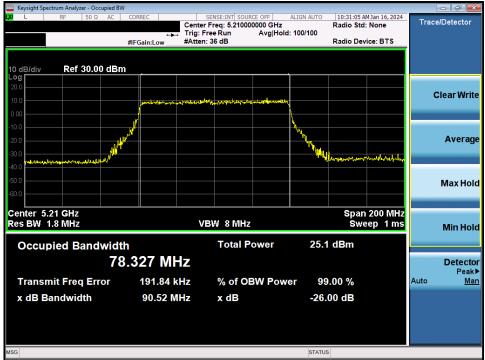
Plot 7-2. 26dB Bandwidth Plot MIMO ANT1 (20MHz BW 802.11n (UNII Band 1) - Ch. 40)

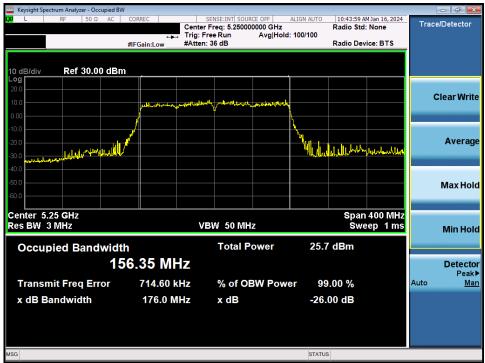
FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 16 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 16 of 155
2024 ELEMENT V11.1 08/28/2023			

Plot 7-3. 26dB Bandwidth Plot MIMO ANT1 (20MHz BW 802. 11ax/be (UNII Band 1) - Ch. 40)

Plot 7-4. 26dB Bandwidth Plot MIMO ANT1 (40MHz BW 802.11n (UNII Band 1) - Ch. 38)

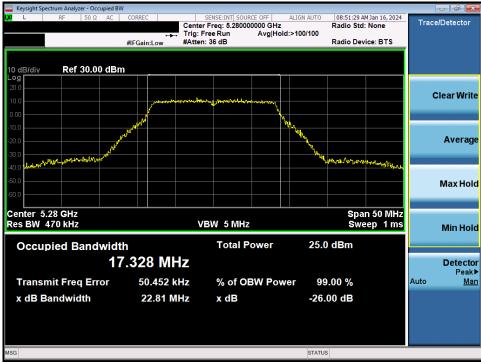
FCC ID: C3K2077		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Degs 17 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 17 of 155
© 2024 ELEMENT			V11.1 08/28/2023


Plot 7-5. 26dB Bandwidth Plot MIMO ANT1 (40MHz BW 802.11ax/be (UNII Band 1) - Ch. 38)


Plot 7-6. 26dB Bandwidth Plot MIMO ANT1 (80MHz BW 802.11ac (UNII Band 1) - Ch. 42)

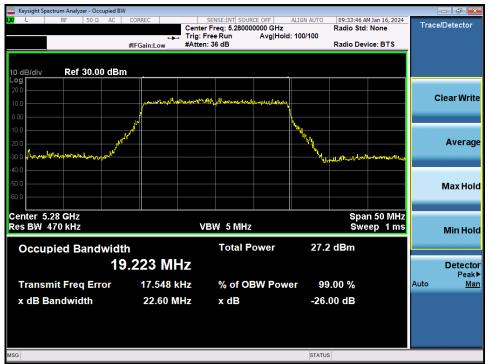
FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	D 40 (455	
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 18 of 155	
© 2024 ELEMENT			V11.1 08/28/2023	

Plot 7-7. 26dB Bandwidth Plot MIMO ANT1 (80MHz BW 802. 11ax/be (UNII Band 1) - Ch. 42)

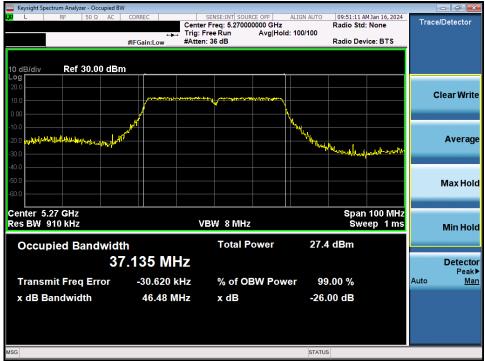

Plot 7-8. 26dB Bandwidth Plot MIMO ANT1 (160MHz BW 802.11ac (UNII Band 1/2A) - Ch. 50)

FCC ID: C3K2077		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 19 of 155
© 2024 ELEMENT		· · · · · · · · · · · · · · · · · · ·	V11.1 08/28/2023


Plot 7-9. 26dB Bandwidth Plot MIMO ANT1 (160MHz BW 802. 11ax/be (UNII Band 1/2A) - Ch. 50)

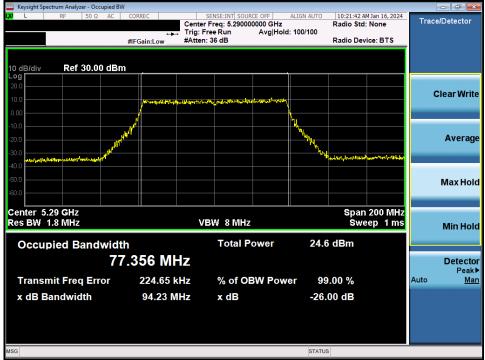

Plot 7-10. 26dB Bandwidth Plot MIMO ANT1 (802.11a (UNII Band 2A) - Ch. 56)

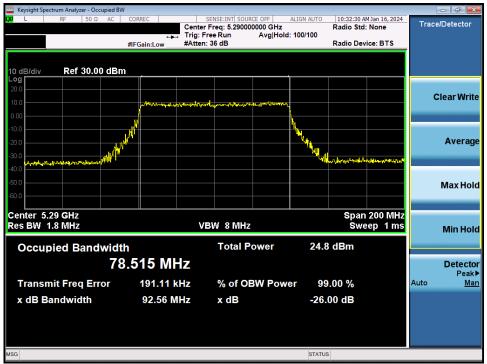
FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 20 of 155
© 2024 ELEMENT			V11.1 08/28/2023


Plot 7-11. 26dB Bandwidth Plot MIMO ANT1 (20MHz BW 802.11n (UNII Band 2A) - Ch. 56)

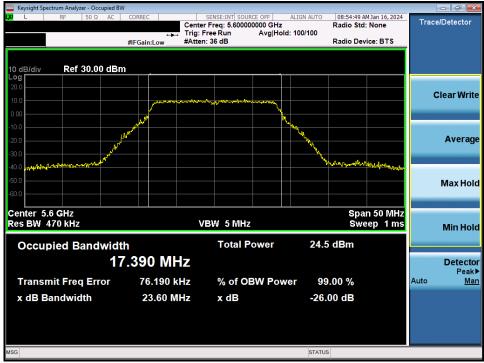
Plot 7-12. 26dB Bandwidth Plot MIMO ANT1 (20MHz BW 802.11ax/be (UNII Band 2A) - Ch. 56)

FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 21 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 21 of 155
© 2024 ELEMENT			V11.1 08/28/2023


Plot 7-13. 26dB Bandwidth Plot MIMO ANT1 (40MHz BW 802.11n (UNII Band 2A) - Ch. 54)

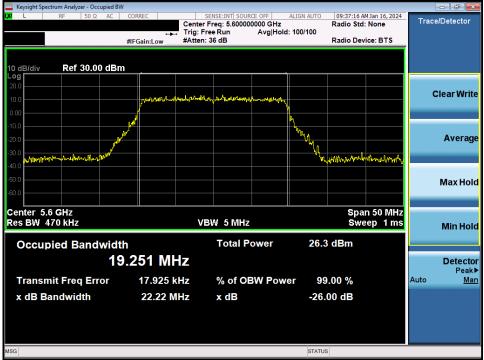

Plot 7-14. 26dB Bandwidth Plot MIMO ANT1 (40MHz BW 802.11ax/be (UNII Band 2A) - Ch. 54)

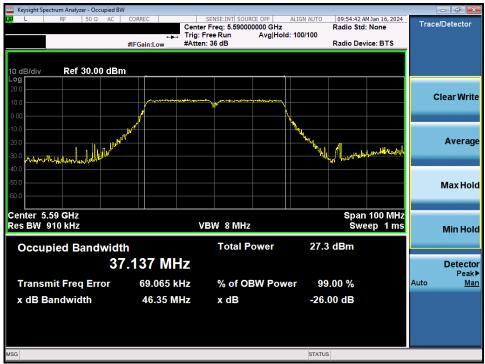
FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 22 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 22 of 155
© 2024 ELEMENT	V11.1 08/28/2023		


Plot 7-15. 26dB Bandwidth Plot MIMO ANT1 (80MHz BW 802.11ac (UNII Band 2A) - Ch. 58)

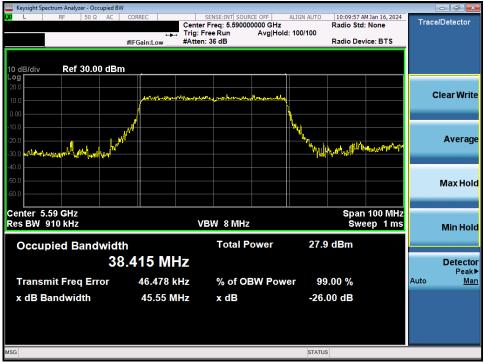
Plot 7-16. 26dB Bandwidth Plot MIMO ANT1 (80MHz BW 802.11ax/be (UNII Band 2A) - Ch. 58)

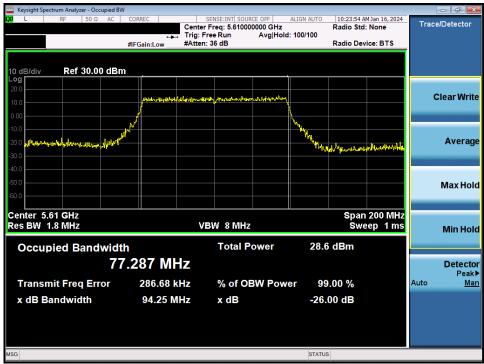
FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 22 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 23 of 155
© 2024 ELEMENT			V11.1 08/28/2023


Plot 7-17. 26dB Bandwidth Plot MIMO ANT1 (802.11a (UNII Band 2C) - Ch. 120)


Plot 7-18. 26dB Bandwidth Plot MIMO ANT1 (20MHz BW 802.11n (UNII Band 2C) - Ch. 120)

FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 24 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 24 of 155
© 2024 ELEMENT	V11.1 08/28/2023		


Plot 7-19. 26dB Bandwidth Plot MIMO ANT1 (20MHz BW 802.11ax/be (UNII Band 2C) - Ch. 120)


Plot 7-20. 26dB Bandwidth Plot MIMO ANT1 (40MHz BW 802.11n (UNII Band 2C) - Ch. 118)

FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 25 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 25 of 155
© 2024 ELEMENT	V11.1 08/28/2023		

Plot 7-21. 26dB Bandwidth Plot MIMO ANT1 (40MHz BW 802.11ax/be (UNII Band 2C) - Ch. 118)

Plot 7-22. 26dB Bandwidth Plot MIMO ANT1 (80MHz BW 802.11ac (UNII Band 2C) - Ch. 122)

FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 26 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 26 of 155
© 2024 ELEMENT			V11.1 08/28/2023

Plot 7-23. 26dB Bandwidth Plot MIMO ANT1 (80MHz BW 802.11ax/be (UNII Band 2C) - Ch. 122)

Plot 7-24. 26dB Bandwidth Plot MIMO ANT1 (160MHz BW 802.11ac (UNII Band 2C) - Ch. 114)

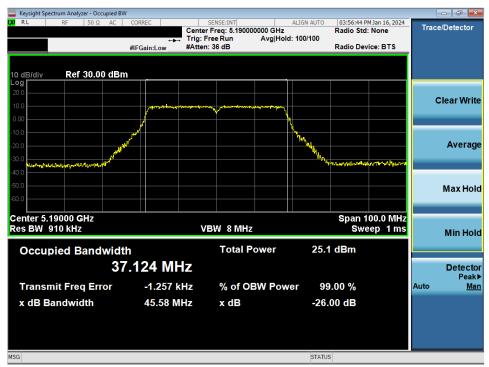
FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dego 27 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 27 of 155
© 2024 ELEMENT	V11.1 08/28/2023		

Plot 7-25. 26dB Bandwidth Plot MIMO ANT1 (160MHz BW 802.11ax/be (UNII Band 2C) - Ch. 114)

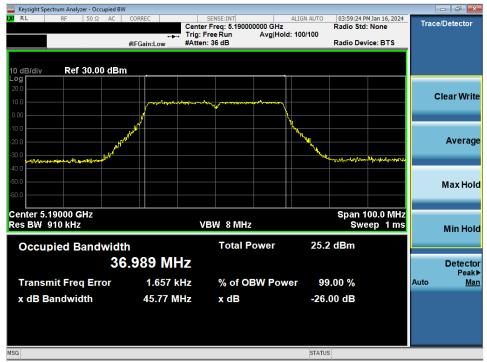

FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dago 29 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024 Portable Computing Device		Page 28 of 155
2024 ELEMENT V11.1 08/28/2023			

7.2.2 MIMO Antenna-2 26dB Bandwidth Measurements


Plot 7-26. 26dB Bandwidth Plot MIMO ANT2 (802.11a (UNII Band 1) - Ch. 40)


Plot 7-27. 26dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11n (UNII Band 1) - Ch. 40)

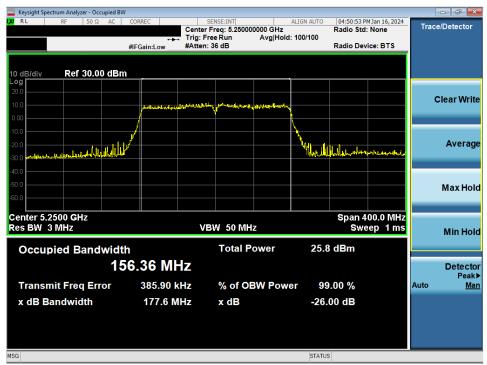
FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 29 of 155
© 2024 ELEMENT	V11.1 08/28/2023		


Plot 7-28. 26dB Bandwidth Plot MIMO ANT2 (20MHz BW 802. 11ax/be (UNII Band 1) - Ch. 40)


Plot 7-29. 26dB Bandwidth Plot MIMO ANT2 (40MHz BW 802.11n (UNII Band 1) - Ch. 38)

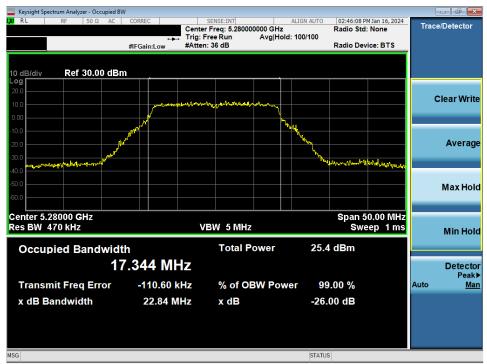
FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 30 of 155
© 2024 ELEMENT			V11.1 08/28/2023

Plot 7-30. 26dB Bandwidth Plot MIMO ANT2 (40MHz BW 802.11ax/be (UNII Band 1) - Ch. 38)

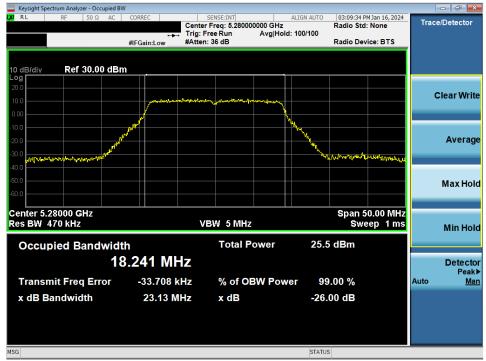

Plot 7-31. 26dB Bandwidth Plot MIMO ANT2 (80MHz BW 802.11ac (UNII Band 1) - Ch. 42)

FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 21 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 31 of 155
© 2024 ELEMENT	V11.1 08/28/2023		

Plot 7-32. 26dB Bandwidth Plot MIMO ANT2 (80MHz BW 802. 11ax/be (UNII Band 1) - Ch. 42)

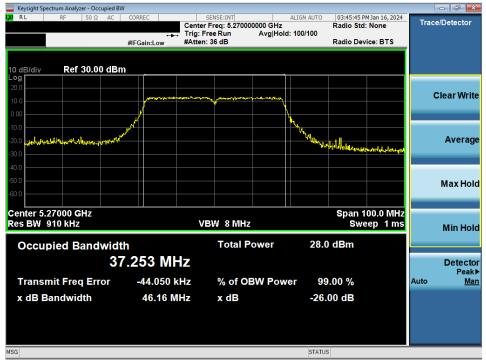

Plot 7-33. 26dB Bandwidth Plot MIMO ANT2 (160MHz BW 802.11ac (UNII Band 1/2A) - Ch. 50)

FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 22 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 32 of 155
© 2024 ELEMENT			V11.1 08/28/2023


Plot 7-34. 26dB Bandwidth Plot MIMO ANT2 (160MHz BW 802. 11ax/be (UNII Band 1/2A) - Ch. 50)

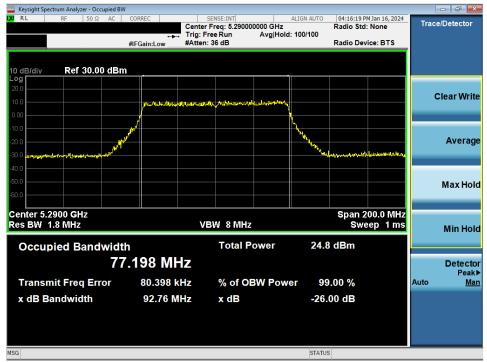
Plot 7-35. 26dB Bandwidth Plot MIMO ANT2 (802.11a (UNII Band 2A) - Ch. 56)

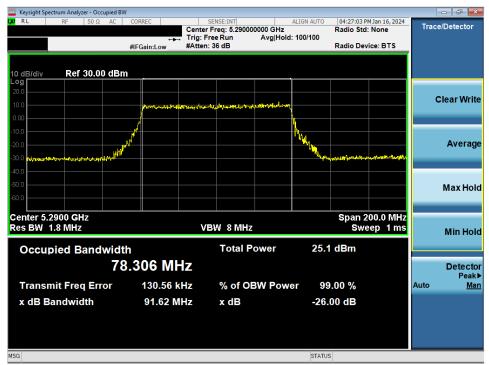
FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 22 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 33 of 155
© 2024 ELEMENT			V11.1 08/28/2023


Plot 7-36. 26dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11n (UNII Band 2A) - Ch. 56)


Plot 7-37. 26dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11ax/be (UNII Band 2A) - Ch. 56)

FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 24 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 34 of 155
© 2024 ELEMENT			V11.1 08/28/2023


Plot 7-38. 26dB Bandwidth Plot MIMO ANT2 (40MHz BW 802.11n (UNII Band 2A) - Ch. 54)

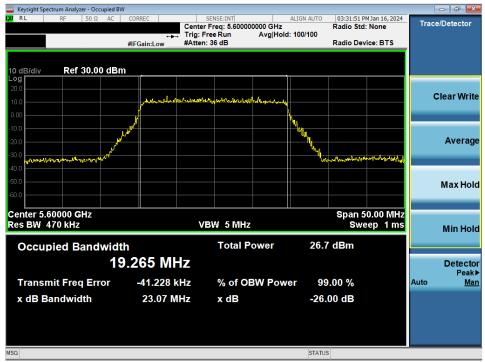

Plot 7-39. 26dB Bandwidth Plot MIMO ANT2 (40MHz BW 802.11ax/be (UNII Band 2A) - Ch. 54)

FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 25 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 35 of 155
© 2024 ELEMENT			V11.1 08/28/2023

Plot 7-40. 26dB Bandwidth Plot MIMO ANT2 (80MHz BW 802.11ac (UNII Band 2A) - Ch. 58)

Plot 7-41. 26dB Bandwidth Plot MIMO ANT2 (80MHz BW 802.11ax/be (UNII Band 2A) - Ch. 58)

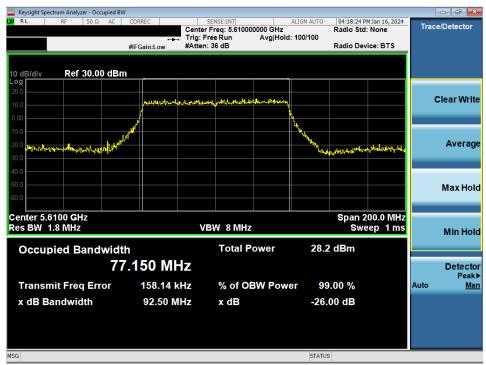
FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 26 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 36 of 155
© 2024 ELEMENT			V11.1 08/28/2023


Plot 7-42. 26dB Bandwidth Plot MIMO ANT2 (802.11a (UNII Band 2C) - Ch. 120)

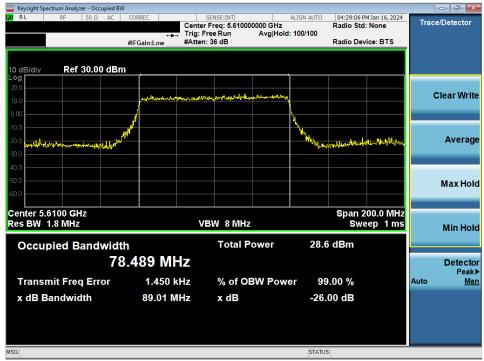

Plot 7-43. 26dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11n (UNII Band 2C) - Ch. 120)

FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 27 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 37 of 155
© 2024 ELEMENT			V11.1 08/28/2023

Plot 7-44. 26dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11ax/be (UNII Band 2C) - Ch. 120)

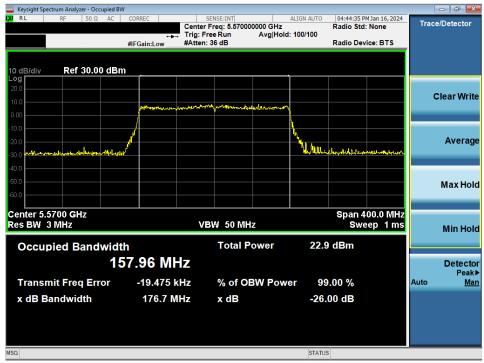

Plot 7-45. 26dB Bandwidth Plot MIMO ANT2 (40MHz BW 802.11n (UNII Band 2C) - Ch. 118)

FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 29 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 38 of 155
© 2024 ELEMENT			V11.1 08/28/2023


Plot 7-46. 26dB Bandwidth Plot MIMO ANT2 (40MHz BW 802.11ax/be (UNII Band 2C) - Ch. 118)

Plot 7-47. 26dB Bandwidth Plot MIMO ANT2 (80MHz BW 802.11ac (UNII Band 2C) – Ch. 122)

FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 39 of 155
© 2024 ELEMENT		· · · · · · · · · · · · · · · · · · ·	V11.1 08/28/2023


Plot 7-48. 26dB Bandwidth Plot MIMO ANT2 (80MHz BW 802.11ax/be (UNII Band 2C) - Ch. 122)

Plot 7-49. 26dB Bandwidth Plot MIMO ANT2 (160MHz BW 802.11ac (UNII Band 2C) - Ch. 114)

FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 40 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 40 of 155
© 2024 ELEMENT			V11.1 08/28/2023

Plot 7-50. 26dB Bandwidth Plot MIMO ANT2 (160MHz BW 802.11ax/be (UNII Band 2C) - Ch. 114)

FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 41 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Fage 41 01 155
© 2024 ELEMENT V11.			

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without written permission from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

7.3 6dB Bandwidth Measurement

Test Overview and Limit

The bandwidth at 6dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013, and at the appropriate frequencies. The spectrum analyzer's bandwidth measurement function is configured to measure the 6dB bandwidth.

In the 5.725 – 5.850GHz band and 5.850 – 5.895GHz band, the 6dB bandwidth must be \geq 500 kHz.

Test Procedure Used

ANSI C63.10-2013 - Section 6.9.2

Test Settings

- The signal analyzers' automatic bandwidth measurement capability was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The automatic bandwidth measurement function also has the capability of simultaneously measuring the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 100 kHz
- 3. VBW <u>></u> 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-2. Test Instrument & Measurement Setup

Test Notes

All cases were investigated; a subset of the taken plots were included to represent relevant settings and measurements.

FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 42 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 42 of 155
0 2024 ELEMENT V11.1 08/28/2023			

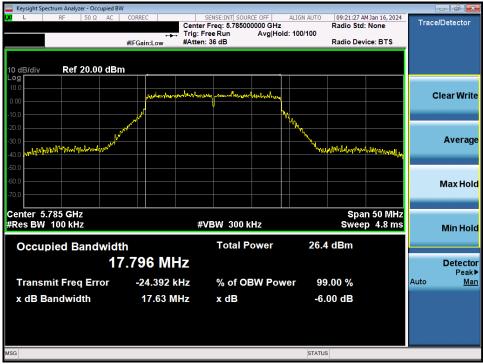
MIMO 6dB Bandwidth Measurements

	Frequency [MHz]	Channel	802.11 MODE	Antenna-1 6dB Bandwidth [MHz]	Antenna-2 6dB Bandwidth [MHz]
	5745	149	а	16.39	16.41
	5785	157	а	16.33	16.38
	5825	165	а	16.40	16.37
	5745	149	n	17.64	17.61
	5785	157	n	17.63	17.61
	5825	165	n	17.60	17.60
m	5745	149	be SU	18.65	18.88
Band	5785	157	be SU	18.57	18.91
	5825	165	be SU	18.87	18.91
	5755	151	n	36.48	36.41
	5795	159	n	36.41	36.43
	5755	151	be SU	38.11	38.02
	5795	159	be SU	38.13	38.18
	5775	155	ac	76.50	76.50
	5775	155	be SU	78.12	78.27

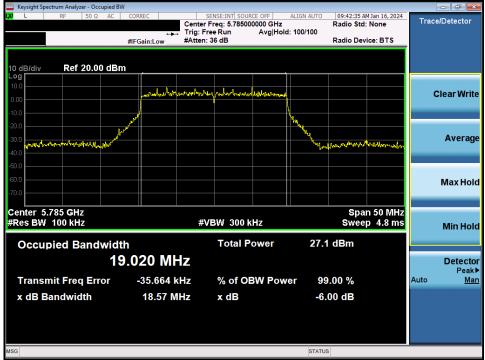
Table 7-3. Band 3 Conducted 6dB Bandwidth Measurements MIMO

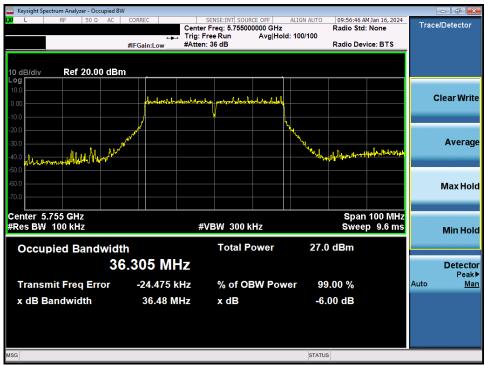
	Frequency [MHz]	Channel	802.11 MODE	Antenna-1 6dB Bandwidth [MHz]	Antenna-2 6dB Bandwidth [MHz]
Band 3/4	5845	169	а	16.40	16.39
Band 4	5865	173	а	16.39	16.40
Dallu 4	5885	177	а	16.39	16.41
Band 3/4	5845	169	n	17.60	17.63
Band 4	5865	173	n	17.60	17.61
Dallu 4	5885	177	n	17.65	17.61
Band 3/4	5845	169	be SU	18.80	18.82
Band 4	5865	173	be SU	18.83	18.76
Dallu 4	5885	177	be SU	18.88	18.64
Band 3/4	5835	167	n	36.48	36.42
Band 4	5875	175	n	36.43	36.43
Band 3/4	5835	167	be SU	38.34	38.18
Band 4	5875	175	be SU	38.32	38.23
	5855	171	ас	76.52	76.46
Band 3/4	5855	171	be SU	78.00	77.98
Dallu 5/4	5815	163	ас	156.24	156.00
	5815	163	be SU	158.18	157.88

Table 7-4. Bands 3/4 Conducted 6dB Bandwidth Measurements MIMO

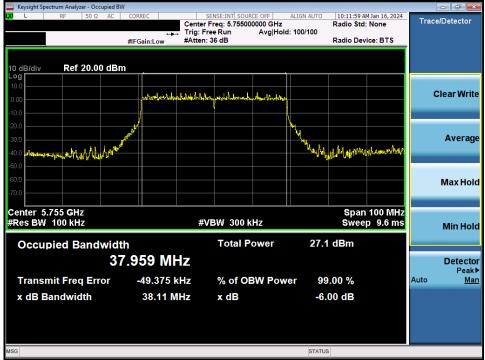

FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 42 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 43 of 155
© 2024 ELEMENT	-		V11.1 08/28/2023

7.3.1 MIMO Antenna-1 6dB Bandwidth Measurements


Plot 7-51. 6dB Bandwidth Plot MIMO ANT1 (802.11a (UNII Band 3) - Ch. 157)


Plot 7-52. 6dB Bandwidth Plot MIMO ANT1 (20MHz BW 802.11n (UNII Band 3) - Ch. 157)

FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 44 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 44 of 155
© 2024 ELEMENT			V11.1 08/28/2023


Plot 7-53. 6dB Bandwidth Plot MIMO ANT1 (20MHz BW 802.11ax/be (UNII Band 3) - Ch. 157)

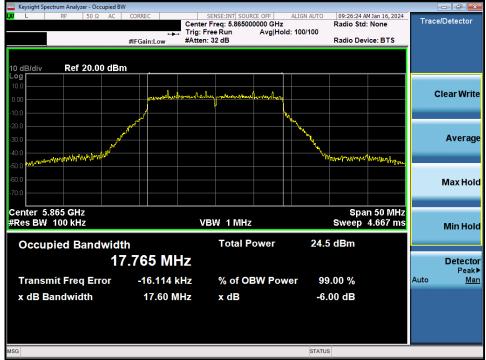

Plot 7-54. 6dB Bandwidth Plot MIMO ANT1 (40MHz BW 802.11n (UNII Band 3) - Ch. 151)

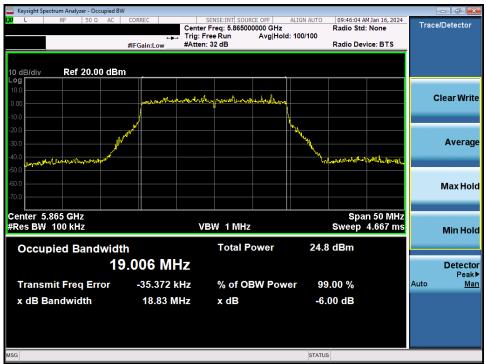
FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 45 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 45 of 155
© 2024 ELEMENT			V11.1 08/28/2023

Plot 7-55. 6dB Bandwidth Plot MIMO ANT1 (40MHz BW 802.11ax/be (UNII Band 3) - Ch. 151)

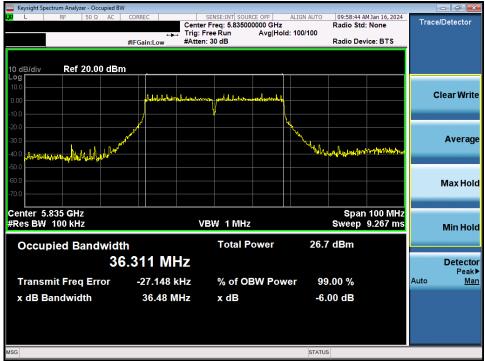
Plot 7-56. 6dB Bandwidth Plot MIMO ANT1 (80MHz BW 802.11ac (UNII Band 3) - Ch. 155)

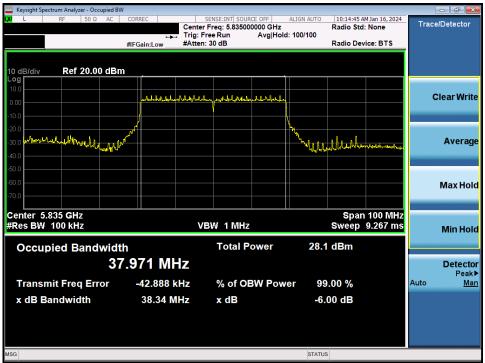
FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 46 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 46 of 155
© 2024 ELEMENT		· · · · · · · · · · · · · · · · · · ·	V11.1 08/28/2023


Plot 7-57. 6dB Bandwidth Plot MIMO ANT1 (80MHz BW 802.11ax/be (UNII Band 3) - Ch. 155)


Plot 7-58. 6dB Bandwidth Plot MIMO ANT1 (20MHz BW 802.11a (UNII Band 4) - Ch. 173)

FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 47 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 47 of 155
© 2024 ELEMENT			V11.1 08/28/2023


Plot 7-59. 6dB Bandwidth Plot MIMO ANT1 (20MHz BW 802.11n (UNII Band 4) - Ch. 173)


Plot 7-60. 6dB Bandwidth Plot MIMO ANT1 (20MHz BW 802.11ax/be (UNII Band 4) - Ch. 173)

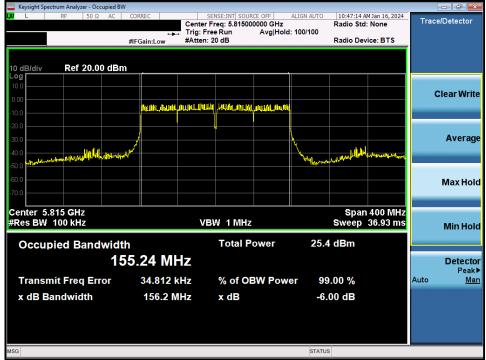
FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Degs 49 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 48 of 155
© 2024 ELEMENT			V11.1 08/28/2023

Plot 7-61. 6dB Bandwidth Plot MIMO ANT1 (40MHz BW 802.11n (UNII Band 3/4) - Ch. 167)


Plot 7-62. 6dB Bandwidth Plot MIMO ANT1 (40MHz BW 802.11ax/be (UNII Band 3/4) - Ch. 167)

FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 40 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 49 of 155
© 2024 ELEMENT		· · · · · · · · · · · · · · · · · · ·	V11.1 08/28/2023

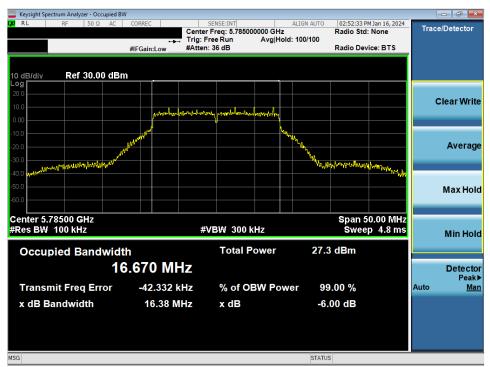
Keysight Spectrum Analyzer - Occupied BW					
L RF 50Ω AC 0	CORREC	SENSE:INT SOURCE OFF		:49 AM Jan 16, 2024	Trace/Detector
		er Freq: 5.855000000 GHz Free Run Avg Ho	Id: 100/100	Std: None	11400120100101
#		n: 28 dB		Device: BTS	
to apply to Def 40.00 dDm					
10 dB/div Ref 10.00 dBm					
0.00	Muc.Mul., Mul.M		u <mark>.</mark>		
-10.0					Clear Write
	/		N		
-20.0					
-30.0 allower and and and and and and and a start the start and			What also all the second	و بر المحمد الحمو الم	
-40.0			- Ward Hill Providence	and a second	Average
-50.0					
-60.0					
-70.0					
					Max Hold
-80.0					
Center 5.855 GHz				pan 200 MHz	
#Res BW 100 kHz	`	/BW 1 MHz		ep 18.47 ms	
#Res Boo Too Rilz			GWe	ep 18.47 ms	Min Hold
Occupied Bandwidth		Total Power	28.6 dBm		
/5.	890 MHz				Detector
Tropomit Frog Free	2.813 kHz	% of OBW Pov	wer 99.00 %	,	Peak▶ Auto Man
Transmit Freq Error	2.813 KHZ	% OF OBW PO	wer 99.00 %	0	Auto <u>Man</u>
x dB Bandwidth	76.52 MHz	x dB	-6.00 dE	3	
MSG			STATUS		


Plot 7-63. 6dB Bandwidth Plot MIMO ANT1 (80MHz BW 802.11ac (UNII Band 3/4) - Ch. 171)

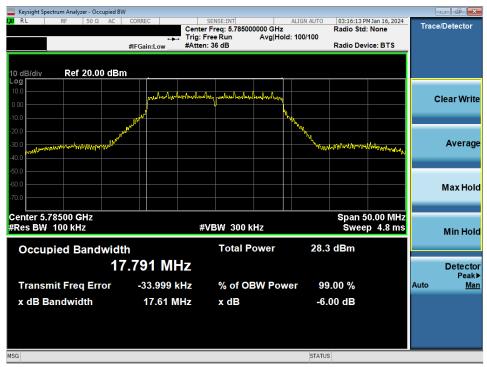
Plot 7-64. 6dB Bandwidth Plot MIMO ANT1 (80MHz BW 802.11ax/be (UNII Band 3/4) - Ch. 171)

FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 50 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 50 of 155
© 2024 ELEMENT			V11.1 08/28/2023

Plot 7-65. 6dB Bandwidth Plot MIMO ANT1 (160MHz BW 802.11ac (UNII Band 3/4) - Ch. 163)



Plot 7-66. 6dB Bandwidth Plot MIMO ANT1 (160MHz BW 802.11ax/be (UNII Band 3/4) - Ch. 163)

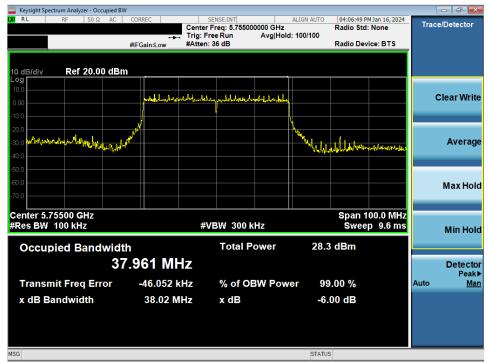

FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 51 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 51 of 155
© 2024 ELEMENT			V11.1 08/28/2023

7.3.2 MIMO Antenna-2 6dB Bandwidth Measurements

Plot 7-67. 6dB Bandwidth Plot MIMO ANT2 (802.11a (UNII Band 3) - Ch. 157)

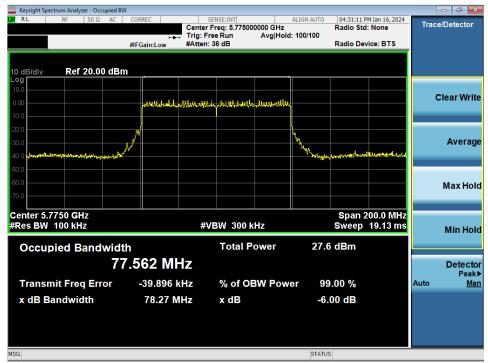
Plot 7-68. 6dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11n (UNII Band 3) - Ch. 157)

FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 52 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 52 of 155
© 2024 ELEMENT			V11.1 08/28/2023


Plot 7-69. 6dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11ax/be (UNII Band 3) - Ch. 157)

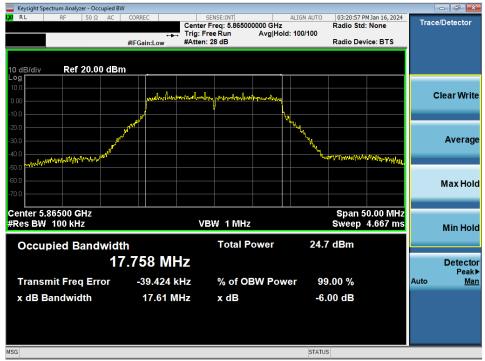
Plot 7-70. 6dB Bandwidth Plot MIMO ANT2 (40MHz BW 802.11n (UNII Band 3) - Ch. 151)

FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 52 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 53 of 155
© 2024 ELEMENT		· · · · · · · · · · · · · · · · · · ·	V11.1 08/28/2023


Plot 7-71. 6dB Bandwidth Plot MIMO ANT2 (40MHz BW 802.11ax/be (UNII Band 3) - Ch. 151)

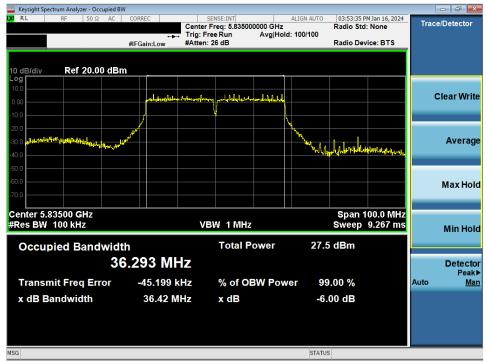
Plot 7-72. 6dB Bandwidth Plot MIMO ANT2 (80MHz BW 802.11ac (UNII Band 3) - Ch. 155)

FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 54 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 54 of 155
© 2024 ELEMENT			V11.1 08/28/2023


Plot 7-73. 6dB Bandwidth Plot MIMO ANT2 (80MHz BW 802.11ax/be (UNII Band 3) - Ch. 155)

Plot 7-74. 6dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11a (UNII Band 4) - Ch. 173)

FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage EE of 1EE
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 55 of 155
© 2024 ELEMENT			V11.1 08/28/2023


Plot 7-75. 6dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11n (UNII Band 4) - Ch. 173)


Plot 7-76. 6dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11ax/be (UNII Band 4) - Ch. 173)

FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage FC of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 56 of 155
© 2024 ELEMENT			V11.1 08/28/2023

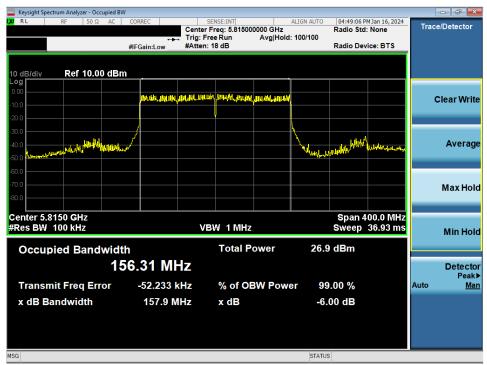
Plot 7-77. 6dB Bandwidth Plot MIMO ANT2 (40MHz BW 802.11n (UNII Band 3/4) - Ch. 167)

Plot 7-78. 6dB Bandwidth Plot MIMO ANT2 (40MHz BW 802.11ax/be (UNII Band 3/4) - Ch. 167)

FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 57 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 57 of 155
© 2024 ELEMENT		· · · · · · · · · · · · · · · · · · ·	V11.1 08/28/2023

🔤 Keysight Spectrum Analyzer - Occupied BV	V				- 6 -
LX/RL RF 50Ω AC		SENSE:INT Freq: 5.855000000 GHz	Radio Sto	PM Jan 16, 2024 i: None	Trace/Detector
		ree Run Avg Hol : 24 dB	d: 100/100 Radio De	vice: BTS	
10 dB/div Ref 10.00 dBr	n				
Log 0.00	اللايبيا ومرور ارمالا استالا	لناجر وماليا والمارية ومعالية والمالية والمناسب			
-10.0					Clear Write
-20.0					
-30.0	and the second s		Margarow alout Marandon	and and shiply	
-40.0			and the optimized of the second secon		Average
-50.0					
-60.0					
-70.0					Max Hold
-80.0					
Center 5.8550 GHz				200.0 MHz	
#Res BW 100 kHz	V	BW 1 MHz	Sweep	18.47 ms	Min Hold
Occupied Bandwidt	h	Total Power	28.6 dBm		
7	5.889 MHz				Detector
			00.00.00		Peak►
Transmit Freq Error	-13.924 kHz	% of OBW Pow			Auto <u>Man</u>
x dB Bandwidth	76.46 MHz	x dB	-6.00 dB		
MSG			STATUS		
			0.14100		


Plot 7-79. 6dB Bandwidth Plot MIMO ANT2 (80MHz BW 802.11ac (UNII Band 3/4) - Ch. 171)


Plot 7-80. 6dB Bandwidth Plot MIMO ANT2 (80MHz BW 802.11ax/be (UNII Band 3/4) - Ch. 171)

FCC ID: C3K2077		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 59 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 58 of 155
© 2024 ELEMENT		· · · · · · · · · · · · · · · · · · ·	V11.1 08/28/2023

Plot 7-81. 6dB Bandwidth Plot MIMO ANT2 (160MHz BW 802.11ac (UNII Band 3/4) - Ch. 163)

Plot 7-82. 6dB Bandwidth Plot MIMO ANT2 (160MHz BW 802.11ax/be (UNII Band 3/4) - Ch. 163)

FCC ID: C3K2077		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 50 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 59 of 155
© 2024 ELEMENT		· · · · · · · · · · · · · · · · · · ·	V11.1 08/28/2023

7.4 UNII Output Power Measurement

Test Overview and Limits

A transmitter antenna terminal of the EUT is connected to the input of an RF pulse power sensor. Measurement is made using a broadband average power meter while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013, and at the appropriate frequencies.

The output power limits are as specified in the tables below.

UNII	Frequency Range	Maximum Conducted Pov	wer Limit		Maximum e.i.r.p
Band	Frequency Range	FCC ISED		FCC	ISED
UNII 1	5.15 – 5.25GHz	23.98dBm (250mW)	N/A	N/A	The lesser of 23.01dBm (200mW) or 10dBm + 10log ₁₀ B
UNII 2A	5.25 – 5.35GHz		50		
UNII 2C	5.47 – 5.725GHz	The lesser of 23.98dBm (2 11dBm + 10log₁₀		N/A	The lesser of 30dBm (1W) or 17dBm + 10log ₁₀ B
UNII 3	5.725 – 5.850GHz	30dBm (1W)		N/A	N/A
UNII 4	5.850 – 5.895GHz	N/A		30dBm (1W)	30dBm (1W)

Test Procedure Used

ANSI C63.10-2013 – Section 12.3.3.2 Method PM-G ANSI C63.10-2013 – Section 14.2 Measure-and-Sum Technique

Test Settings

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-3. Test Instrument & Measurement Setup

Test Notes

None.

FCC ID: C3K2077		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 60 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 60 of 155
© 2024 ELEMENT	•		V11.1 08/28/2023

MIMO Maximum Conducted Output Power Measurements

		5GHz WIFI	(20MHz 802.11a	a MIMO)		Conducted	Conducted	Directional Ant.			
Band	Freq [MHz] Channel		MHz] Channel Avg. Conducted Pow		s [dBm]	Power Limit [dBm]	Power Margin [dB]	Gain [dBi]	Max e.i.r.p [dBm]	[dBm] 30.00	e.i.r.p Margin [dB]
			ANT1	ANT2	MIMO	lapini	lapi	[ubi]			
	5180	36	18.93	18.58	21.77	23.98	-2.21	4.78	26.55	30.00	-3.45
UNII-1	5200	40	18.57	18.06	21.33	23.98	-2.65	4.78	26.11	30.00	-3.89
UNII-1	5220	44	18.63	18.04	21.36	23.98	-2.62	4.78	26.14	30.00	-3.86
	5240	48	18.51	18.22	21.38	23.98	-2.60	4.78	26.16	30.00	-3.84
	5260	52	18.96	18.61	21.80	23.98	-2.18	4.94	26.74	30.00	-3.26
UNII-2A	5280	56	18.91	18.75	21.84	23.98	-2.14	4.94	26.78	30.00	-3.22
UNII-ZA	5300	60	18.84	18.77	21.82	23.98	-2.16	4.94	26.76	30.00	-3.24
	5320	64	18.77	18.88	21.84	23.98	-2.14	4.94	26.78	30.00	-3.22
	5500	100	18.85	18.89	21.88	23.98	-2.10	5.73	27.61	30.00	-2.39
UNII-2C	5600	120	18.91	18.71	21.82	23.98	-2.16	5.73	27.55	30.00	-2.45
UNII-2C	5620	124	18.83	18.66	21.76	23.98	-2.22	5.73	27.48	30.00	-2.52
	5720	144	18.99	18.51	21.77	23.98	-2.21	5.73	27.50	30.00	-2.50
	5745	149	20.93	20.56	23.76	30.00	-6.24	5.66	29.42	36.00	-6.58
UNII-3	5785	157	20.99	20.49	23.76	30.00	-6.24	5.66	29.42	36.00	-6.58
	5825	165	20.79	20.41	23.61	30.00	-6.39	5.66	29.28	36.00	-6.72
	5845	169	17.46	17.17	20.33	-	-	5.56	25.89	30.00	-4.11
UNII-4	5865	173	17.37	17.08	20.24	-	-	5.56	25.80	30.00	-4.20
	5885	177	17.40	17.22	20.32	-	-	5.56	25.88	30.00	-4.12

Table 7-5. MIMO 20MHz BW 802.11a (UNII) Maximum Conducted Output Power

		5GHz WIFI	(20MHz 802.11r	n MIMO)		Conducted	Conducted	Directional Ant.			
Band	Freq [MHz]	Channel	Avg. Conducted Powers [dBm]			Power Limit [dBm]	Power Margin [dB]	Gain [dBi]	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
			ANT1	ANT2	MIMO	[ubiii]	[ub]	լսոյ			
	5180	36	18.99	18.69	21.85	23.98	-2.13	4.78	26.63	30.00	-3.37
UNII-1	5200	40	19.06	18.68	21.88	23.98	-2.10	4.78	26.66	30.00	-3.34
UNII-1	5220	44	19.08	18.54	21.83	23.98	-2.15	4.78	26.61	30.00	-3.39
	5240	48	19.04	18.52	21.80	23.98	-2.18	4.78	26.58	30.00	-3.42
	5260	52	19.38	19.14	22.27	23.98	-1.71	4.94	27.21	30.00	-2.79
UNII-2A	5280	56	19.39	19.13	22.27	23.98	-1.71	4.94	27.21	30.00	-2.79
UNII-ZA	5300	60	19.25	19.35	22.31	23.98	-1.67	4.94	27.25	30.00	-2.75
	5320	64	19.21	19.34	22.29	23.98	-1.69	4.94	27.23	30.00	-2.77
	5500	100	19.21	19.42	22.33	23.98	-1.65	5.73	28.06	30.00	-1.94
UNII-2C	5600	120	19.34	19.19	22.28	23.98	-1.70	5.73	28.00	30.00	-2.00
UNII-2C	5620	124	19.40	19.18	22.30	23.98	-1.68	5.73	28.03	30.00	-1.97
	5720	144	18.35	17.99	21.18	23.98	-2.80	5.73	26.91	30.00	-3.09
	5745	149	20.89	20.49	23.70	30.00	-6.30	5.66	29.37	36.00	-6.63
UNII-3	5785	157	20.83	20.45	23.65	30.00	-6.35	5.66	29.32	36.00	-6.68
	5825	165	20.73	20.35	23.55	30.00	-6.45	5.66	29.22	36.00	-6.78
	5845	169	18.34	17.81	21.09	-	-	5.56	26.65	30.00	-3.35
UNII-4	5865	173	18.31	17.85	21.10	-	-	5.56	26.66	30.00	-3.34
	5885	177	18.18	17.91	21.06	-	-	5.56	26.62	30.00	-3.38

Table 7-6. MIMO 20MHz BW 802.11n (UNII) Maximum Conducted Output Power

		5GHz WIFI	(20MHz 802.11a	c MIMO)		Conducted	Conducted	Directional Ant.			
Band	Freq [MHz]	Channel	annel Avg. Conducted Powers [dBm]		Power Limit	Power Margin [dB]	Gain [dBi]	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]	
			ANT1	ANT2	MIMO	lapuil	[ub]	[ubi]			
	5180	36	18.99	18.73	21.87	23.98	-2.11	4.78	26.65	30.00	-3.35
UNII-1	5200	40	19.06	18.71	21.90	23.98	-2.08	4.78	26.68	30.00	-3.32
UNII-1	5220	44	19.04	18.51	21.79	23.98	-2.19	4.78	26.57	30.00	-3.43
	5240	48	19.04	18.51	21.79	23.98	-2.19	4.78	26.57	30.00	-3.43
	5260	52	19.45	19.12	22.30	23.98	-1.68	4.94	27.24	30.00	-2.76
UNII-2A	5280	56	19.37	19.15	22.27	23.98	-1.71	4.94	27.21	30.00	-2.79
UNII-ZA	5300	60	19.25	19.33	22.30	23.98	-1.68	4.94	27.24	30.00	-2.76
	5320	64	19.32	19.33	22.34	23.98	-1.64	4.94	27.28	30.00	-2.72
	5500	100	19.25	19.43	22.35	23.98	-1.63	5.73	28.08	30.00	-1.92
UNII-2C	5600	120	19.46	19.19	22.34	23.98	-1.64	5.73	28.07	30.00	-1.93
UNII-2C	5620	124	19.31	19.18	22.26	23.98	-1.72	5.73	27.98	30.00	-2.02
	5720	144	18.36	17.98	21.18	23.98	-2.80	5.73	26.91	30.00	-3.09
	5745	149	20.67	20.35	23.52	30.00	-6.48	5.66	29.18	36.00	-6.82
UNII-3	5785	157	20.85	20.45	23.66	30.00	-6.34	5.66	29.33	36.00	-6.67
	5825	165	20.78	20.39	23.60	30.00	-6.40	5.66	29.26	36.00	-6.74
	5845	169	18.72	18.52	21.63	-	-	5.56	27.19	30.00	-2.81
UNII-4	5865	173	18.74	18.54	21.65	-	-	5.56	27.21	30.00	-2.79
	5885	177	18.69	18.55	21.63	-	-	5.56	27.19	30.00	-2.81

Table 7-7. MIMO 20MHz BW 802.11ac (UNII) Maximum Conducted Output Power

FCC ID: C3K2077		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 61 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 61 of 155
© 2024 ELEMENT	•		V11.1 08/28/2023

	5GHz WIFI (20MHz 802.11ax MIMO)						Conducted	Directional Ant.			
Band	Freq [MHz]	Channel	Avg. C	onducted Powers	s [dBm]	[dBm]	Power Margin [dB]	Gain [dBi]	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
			ANT1	ANT2	MIMO		[ub]	lapi			
	5180	36	18.47	18.15	21.32	23.98	-2.66	4.78	26.10	30.00	-3.90
UNII-1	5200	40	19.19	18.71	21.97	23.98	-2.01	4.78	26.75	30.00	-3.25
UNII-1	5220	44	19.18	18.51	21.87	23.98	-2.11	4.78	26.65	30.00	-3.35
	5240	48	19.17	18.53	21.87	23.98	-2.11	4.78	26.65	30.00	-3.35
	5260	52	19.06	18.63	21.86	23.98	-2.12	4.94	26.80	30.00	-3.20
UNII-2A	5280	56	19.08	18.78	21.94	23.98	-2.04	4.94	26.88	30.00	-3.12
UNII-ZA	5300	60	19.37	19.41	22.40	23.98	-1.58	4.94	27.34	30.00	-2.66
	5320	64	19.32	19.46	22.40	23.98	-1.58	4.94	27.34	30.00	-2.66
	5500	100	18.84	19.07	21.97	23.98	-2.01	5.73	27.70	30.00	-2.30
UNII-2C	5600	120	19.46	19.36	22.42	23.98	-1.56	5.73	28.15	30.00	-1.85
UNII-2C	5620	124	19.49	19.21	22.36	23.98	-1.62	5.73	28.09	30.00	-1.91
	5720	144	18.45	18.09	21.28	23.98	-2.70	5.73	27.01	30.00	-2.99
	5745	149	20.99	20.65	23.83	30.00	-6.17	5.66	29.49	36.00	-6.51
UNII-3	5785	157	20.96	20.62	23.80	30.00	-6.20	5.66	29.46	36.00	-6.54
	5825	165	20.84	20.51	23.69	30.00	-6.31	5.66	29.35	36.00	-6.65
	5845	169	18.82	18.54	21.69	-	-	5.56	27.25	30.00	-2.75
UNII-4	5865	173	18.84	18.51	21.69	-	-	5.56	27.25	30.00	-2.75
	5885	177	18.70	18.56	21.64	-	-	5.56	27.20	30.00	-2.80

Table 7-8. MIMO 20MHz BW 802.11ax (UNII) Maximum Conducted Output Power

		5GHz WIFI	(20MHz 802.11b	e MIMO)		Conducted	Conducted	Directional Ant.			
Band	Freq [MHz]	Channel	Avg. Conducted Powers [dBm]		Power Limit [dBm]	Power Margin [dB]	Gain [dBi]	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]	
			ANT1	ANT2	MIMO	lapini	[ub]	lapi			
	5180	36	18.44	18.18	21.32	23.98	-2.66	4.78	26.10	30.00	-3.90
UNII-1	5200	40	19.09	18.77	21.94	23.98	-2.04	4.78	26.72	30.00	-3.28
UNII-I	5220	44	19.01	18.51	21.78	23.98	-2.20	4.78	26.56	30.00	-3.44
	5240	48	19.07	18.54	21.82	23.98	-2.16	4.78	26.60	30.00	-3.40
	5260	52	19.05	18.66	21.87	23.98	-2.11	4.94	26.81	30.00	-3.19
	5280	56	19.32	19.19	22.27	23.98	-1.71	4.94	27.21	30.00	-2.79
UNII-2A	5300	60	19.26	19.43	22.36	23.98	-1.62	4.94	27.30	30.00	-2.70
	5320	64	19.25	19.49	22.38	23.98	-1.60	4.94	27.32	30.00	-2.68
	5500	100	18.66	19.07	21.88	23.98	-2.10	5.73	27.61	30.00	-2.39
UNII-2C	5600	120	19.40	19.31	22.37	23.98	-1.61	5.73	28.09	30.00	-1.91
UNII-2C	5620	124	19.36	19.27	22.33	23.98	-1.65	5.73	28.05	30.00	-1.95
	5720	144	18.39	18.06	21.24	23.98	-2.74	5.73	26.97	30.00	-3.03
	5745	149	20.95	20.58	23.78	30.00	-6.22	5.66	29.44	36.00	-6.56
UNII-3	5785	157	20.82	20.55	23.70	30.00	-6.30	5.66	29.36	36.00	-6.64
	5825	165	20.76	20.61	23.70	30.00	-6.30	5.66	29.36	36.00	-6.64
	5845	169	18.23	17.94	21.10	-	-	5.56	26.66	30.00	-3.34
UNII-4	5865	173	18.21	17.93	21.08	-	-	5.56	26.64	30.00	-3.36
	5885	177	18.21	18.14	21.19	-	-	5.56	26.75	30.00	-3.25
		T.L.L. 7	A 14114A		11 000 441	- /LINUUN B/		Conductor	10.4.4	N	

Table 7-9. MIMO 20MHz BW 802.11be (UNII) Maximum Conducted Output Power

		5GHz WIFI	(40MHz 802.11r	n MIMO)		Conducted	Conducted	Directional Ant.			
Band	Freq [MHz] Channe	Channel	Channel Avg. Conducted Powers [dBm]			Power Limit	Power Margin	Gain	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
			ANT1	ANT2	MIMO	lapui	[dB]	[dBi]			
UNII-1	5190	38	17.83	17.67	20.76	23.98	-3.22	4.78	25.54	30.00	-4.46
UNII-1	5230	46	18.09	17.73	20.92	23.98	-3.06	4.78	25.70	30.00	-4.30
UNII-2A	5270	54	17.99	17.91	20.96	23.98	-3.02	4.94	25.90	30.00	-4.10
UNII-ZA	5310	62	17.04	17.41	20.24	23.98	-3.74	4.94	25.18	30.00	-4.82
	5510	102	17.28	17.33	20.32	23.98	-3.66	5.73	26.05	30.00	-3.95
UNII-2C	5590	118	18.87	19.05	21.97	23.98	-2.01	5.73	27.70	30.00	-2.30
UNII-2C	5630	126	19.32	19.49	22.42	23.98	-1.56	5.73	28.15	30.00	-1.85
	5710	142	18.41	18.28	21.36	23.98	-2.62	5.73	27.09	30.00	-2.91
UNII-3	5755	151	19.34	19.28	22.32	30.00	-7.68	5.66	27.98	36.00	-8.02
0111-5	5795	159	20.78	20.77	23.79	30.00	-6.21	5.66	29.45	36.00	-6.55
UNII-4	5835	167	20.76	20.72	23.75	-	-	5.56	29.31	30.00	-0.69
0111-4	5875	175	20.75	20.72	23.75	-	-	5.56	29.31	30.00	-0.69

Table 7-10. MIMO 40MHz BW 802.11n (UNII) Maximum Conducted Output Power

FCC ID: C3K2077		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 62 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 62 of 155
© 2024 ELEMENT	•		V11.1 08/28/2023

		5GHz WIFI	(40MHz 802.11a	c MIMO)		Conducted	Conducted	Directional Ant.			
Band	Freq [MHz]	Channel	Avg. C	onducted Powers	s [dBm]	Power Limit	Power Margin [dB]	Gain [dBi]	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
			ANT1	ANT2	MIMO	lapini	lapi	[ubi]			
UNII-1	5190	38	17.91	17.73	20.83	23.98	-3.15	4.78	25.61	30.00	-4.39
UNII-1	5230	46	18.07	17.75	20.92	23.98	-3.06	4.78	25.70	30.00	-4.30
UNII-2A	5270	54	17.96	17.87	20.93	23.98	-3.05	4.94	25.87	30.00	-4.13
UNII-ZA	5310	62	17.19	17.48	20.35	23.98	-3.63	4.94	25.29	30.00	-4.71
	5510	102	17.27	17.29	20.29	23.98	-3.69	5.73	26.02	30.00	-3.98
UNII-2C	5590	118	18.78	18.97	21.89	23.98	-2.09	5.73	27.62	30.00	-2.38
UNII-2C	5630	126	19.31	19.49	22.41	23.98	-1.57	5.73	28.14	30.00	-1.86
	5710	142	18.40	18.25	21.34	23.98	-2.64	5.73	27.07	30.00	-2.93
UNII-3	5755	151	19.42	19.28	22.36	30.00	-7.64	5.66	28.02	36.00	-7.98
UNII-3	5795	159	20.87	20.77	23.83	30.00	-6.17	5.66	29.49	36.00	-6.51
UNII-4	5835	167	20.78	20.69	23.75	-	-	5.56	29.31	30.00	-0.69
0111-4	5875	175	20.74	20.71	23.74	-	-	5.56	29.30	30.00	-0.70

Table 7-11. MIMO 40MHz BW 802.11ac (UNII) Maximum Conducted Output Power

		5GHz WIFI	(40MHz 802.11a	x MIMO)		Conducted	Conducted	Directional Ant.			
Band	Freq [MHz]	Channel	Avg. C	onducted Powers	s [dBm]	Power Limit	Power Margin	Gain	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
			ANT1	ANT2	MIMO	[dBm]	[dB]	[dBi]			
UNII-1	5190	38	17.71	17.72	20.73	23.98	-3.25	4.78	25.51	30.00	-4.49
UNII-1	5230	46	18.07	17.74	20.92	23.98	-3.06	4.78	25.70	30.00	-4.30
UNII-2A	5270	54	17.97	17.91	20.95	23.98	-3.03	4.94	25.89	30.00	-4.11
UNII-ZA	5310	62	17.14	17.46	20.31	23.98	-3.67	4.94	25.25	30.00	-4.75
	5510	102	17.27	17.42	20.36	23.98	-3.62	5.73	26.09	30.00	-3.91
UNII-2C	5590	118	18.88	18.98	21.94	23.98	-2.04	5.73	27.67	30.00	-2.33
UNII-20	5630	126	19.37	19.49	22.44	23.98	-1.54	5.73	28.17	30.00	-1.83
	5710	142	18.41	18.29	21.36	23.98	-2.62	5.73	27.09	30.00	-2.91
UNII-3	5755	151	19.35	19.27	22.32	30.00	-7.68	5.66	27.98	36.00	-8.02
01411-3	5795	159	20.79	20.74	23.78	30.00	-6.22	5.66	29.44	36.00	-6.56
UNII-4	5835	167	20.80	20.73	23.78	-	-	5.56	29.34	30.00	-0.66
UNII-4	5875	175	20.81	20.67	23.75	-	-	5.56	29.31	30.00	-0.69

Table 7-12. MIMO 40MHz BW 802.11ax (UNII) Maximum Conducted Output Power

		5GHz WIFI	(40MHz 802.11b	e MIMO)		Conducted	Conducted	Directional Ant.			
Band	Freq [MHz]	Channel	Avg. C	onducted Powers	s [dBm]	Power Limit	Power Margin	Gain	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
			ANT1	ANT2	MIMO	lapui	[dB]	[dBi]			
UNII-1	5190	38	17.65	17.56	20.62	23.98	-3.36	4.78	25.40	30.00	-4.60
UNII-1	5230	46	17.88	17.60	20.75	23.98	-3.23	4.78	25.53	30.00	-4.47
UNII-2A	5270	54	18.37	18.35	21.37	23.98	-2.61	4.94	26.31	30.00	-3.69
UNII-ZA	5310	62	16.91	17.24	20.09	23.98	-3.89	4.94	25.03	30.00	-4.97
	5510	102	17.04	17.16	20.11	23.98	-3.87	5.73	25.84	30.00	-4.16
UNII-2C	5590	118	19.14	19.42	22.29	23.98	-1.69	5.73	28.02	30.00	-1.98
UNII-2C	5630	126	19.10	19.38	22.25	23.98	-1.73	5.73	27.98	30.00	-2.02
	5710	142	18.17	18.04	21.12	23.98	-2.86	5.73	26.85	30.00	-3.15
UNII-3	5755	151	19.20	19.07	22.15	30.00	-7.85	5.66	27.81	36.00	-8.19
UNII-5	5795	159	20.68	20.64	23.67	30.00	-6.33	5.66	29.33	36.00	-6.67
UNII-4	5835	167	20.54	20.49	23.53	-	-	5.56	29.09	30.00	-0.91
UNII-4	5875	175	20.52	20.52	23.53	-	-	5.56	29.09	30.00	-0.91

Table 7-13. MIMO 40MHz BW 802.11be (UNII) Maximum Conducted Output Power

		5GHz WIFI	(80MHz 802.11a	c MIMO)		Conducted	Conducted	Directional Ant.			
Band	Freq [MHz]	Channel	Avg. C	onducted Powers	s [dBm]	Power Limit	Power Margin	Gain [dBi]	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
			ANT1	ANT2	MIMO	ταστη	[dB]	Ιασι			
UNII-1	5210	42	16.44	15.97	19.22	23.98	-4.76	4.78	24.00	30.00	-6.00
UNII-2A	5290	58	14.15	14.04	17.10	23.98	-6.88	4.94	22.04	30.00	-7.96
	5530	106	15.32	15.36	18.35	23.98	-5.63	5.73	24.08	30.00	-5.92
UNII-2C	5610	122	18.86	18.93	21.91	23.98	-2.07	5.73	27.64	30.00	-2.36
	5690	138	18.87	18.79	21.84	23.98	-2.14	5.73	27.57	30.00	-2.43
UNII-3	5775	155	17.31	17.35	20.34	30.00	-9.66	5.66	26.00	36.00	-10.00
UNII-4	5855	171	19.39	19.19	22.30	-	-	5.66	27.96	30.00	-2.04

Table 7-14. MIMO 80MHz BW 802.11ac (UNII) Maximum Conducted Output Power

FCC ID: C3K2077		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 62 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 63 of 155
© 2024 ELEMENT	•		V11.1 08/28/2023

		5GHz WIFI	(80MHz 802.11a	x MIMO)		Conducted	Conducted	Directional Ant.			
Band	Freq [MHz]	Channel	Avg. C	onducted Powers	s [dBm]	Power Limit	Power Margin	Gain [dBi]	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
			ANT1	ANT2	MIMO	lapui	[dB]	lapi			
UNII-1	5210	42	16.13	15.77	18.96	23.98	-5.02	4.78	23.74	30.00	-6.26
UNII-2A	5290	58	14.48	14.54	17.52	23.98	-6.46	4.94	22.46	30.00	-7.54
	5530	106	15.52	15.56	18.55	23.98	-5.43	5.73	24.28	30.00	-5.72
UNII-2C	5610	122	18.55	18.67	21.62	23.98	-2.36	5.73	27.35	30.00	-2.65
	5690	138	18.60	18.61	21.62	23.98	-2.36	5.73	27.35	30.00	-2.65
UNII-3	5775	155	17.57	17.36	20.48	30.00	-9.52	5.66	26.14	36.00	-9.86
UNII-4	5855	171	19.57	19.51	22.55	-	-	5.66	28.21	30.00	-1.79

Table 7-15. MIMO 80MHz BW 802.11ax (UNII) Maximum Conducted Output Power

		5GHz WIFI	(80MHz 802.11b	e MIMO)		Conducted	Conducted	Directional Ant.			
Band	Freq [MHz]	Channel	Avg. C	onducted Powers	s [dBm]	Power Limit	Power Margin	Gain	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
			ANT1	ANT2	MIMO	[dBm]	[dB]	[dBi]			
UNII-1	5210	42	16.24	15.80	19.04	23.98	-4.94	4.78	23.82	30.00	-6.18
UNII-2A	5290	58	14.48	14.57	17.54	23.98	-6.44	4.94	22.48	30.00	-7.52
	5530	106	15.14	15.39	18.28	23.98	-5.70	5.73	24.01	30.00	-5.99
UNII-2C	5610	122	18.70	18.85	21.79	23.98	-2.19	5.73	27.52	30.00	-2.48
	5690	138	18.60	18.78	21.70	23.98	-2.28	5.73	27.43	30.00	-2.57
UNII-3	5775	155	17.66	17.45	20.57	30.00	-9.43	5.66	26.23	36.00	-9.77
UNII-4	5855	171	19.46	19.46	22.47	-	-	5.66	28.13	30.00	-1.87

Table 7-16. MIMO 80MHz BW 802.11be (UNII) Maximum Conducted Output Power

		5GHz WIFI (160MHz 802.11a	nc MIMO)		Conducted	Conducted	Directional Ant.			
Band	Freq [MHz]	Channel	Avg. C	onducted Powers	s [dBm]	Power Limit	Power Margin [dB]	Gain [dBi]	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
			ANT1	ANT2	MIMO	lapui	[ab]	[αΒι]			
UNII-1/2A	5250	50	13.70	13.76	16.74	23.98	-7.24	4.94	21.68	30.00	-8.32
UNII-2C	5570	114	13.62	13.85	16.75	23.98	-7.23	5.73	22.48	30.00	-7.52
UNII-3/4	5815	163	17.13	16.97	20.06	30.00	-9.94	5.66	25.72	30.00	-4.28

Table 7-17. MIMO 160MHz BW 802.11ac (UNII) Maximum Conducted Output Power

		5GHz WIFI (160MHz 802.11a	x MIMO)		Conducted	Conducted	Directional Ant.			
Band	Freq (MHz)	Channel	Avg. C	onducted Powers	s [dBm]	Power Limit	Power Margin [dB]	Gain [dBi]	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
			ANT1	ANT1 ANT2 MIMO			[ub]	Гаріј			
UNII-1/2A	5250	50	13.59	13.63	16.62	23.98	-7.36	4.94	21.56	30.00	-8.44
UNII-2C	5570	114	13.47	13.74	16.62	23.98	-7.36	5.73	22.35	30.00	-7.65
UNII-3/4	5815	163	17.04	16.83	19.95	30.00	-10.05	5.66	25.61	30.00	-4.39

Table 7-18. MIMO 160MHz BW 802.11ax (UNII) Maximum Conducted Output Power

						Conducted	Conducted	Directional Ant.			
Band	Freq (MHz)	Channel	Avg. C	onducted Powers	s [dBm]	Power Limit	Power Margin [dB]	Gain [dBi]	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
			ANT1	ANT2	MIMO	lapul	[ab]	[αΒι]			
UNII-1/2A	5250	50	13.84	13.91	16.89	23.98	-7.09	4.94	21.83	30.00	-8.17
UNII-2C	5570	114	13.77	13.97	16.88	23.98	-7.10	5.73	22.61	30.00	-7.39
UNII-3/4	5815	163	17.30	17.11	20.22	30.00	-9.78	5.66	25.88	30.00	-4.12

Table 7-19. MIMO 160MHz BW 802.11be (UNII) Maximum Conducted Output Power

					Average Conducted Power (dBm) Puncture Case			Conducted Power	Conducted Power	Dir. Ant. Gain	Max e.i.r.p	e.i.r.p Limit	e.i.r.p Margin		
Band	Freq [MHz]	Channel	Puncture Size		MRU4			MRU1		Limit	Margin	[dBi]	[dBm]	[dBm]	[dB]
				ANT1	ANT2	MIMO	ANT1	ANT2	MIMO	[dBm]	[dB]				
1	5210	42	20MHz	15.04	15.09	18.07	15.28	15.15	18.22	23.98	-5.76	4.78	23.01	30.0	-6.99
2A	5290	58	20MHz	13.52	13.52	16.53	13.76	13.72	16.75	23.98	-7.23	4.94	21.69	30.0	-8.31
	5530	106	20MHz	14.62	14.93	17.79	14.54	14.58	17.57	23.98	-6.19	5.73	23.52	30.0	-6.48
2C	5610	122	20MHz	18.07	18.20	21.14	18.09	18.13	21.12	23.98	-2.84	5.73	26.87	30.0	-3.13
	5690	138	20MHz	18.03	18.06	21.06	18.04	18.07	21.06	23.98	-2.92	5.73	26.79	30.0	-3.21
3	5775	155	20MHz	16.51	16.56	19.55	16.58	16.64	19.62	30	-10.38	5.66	25.28	36.0	-10.72
4	5855	171	20MHz	18.55	18.69	21.63	18.52	18.67	21.60	-	-	5.56	27.19	30.0	-2.81

Table 7-20. MIMO 80MHz BW 802.11be (UNII) Maximum Conducted Output Power - Punctured

Deved	Band Freg [MHz]	Channel		Average Conducted Power (dBm) Puncture Case						Conducted Power	Conducted Power	Dir. Ant. Gain	Max e.i.r.p	e.i.r.p Limit	e.i.r.p Margin
Band	Freq[MHZ]	Channel	Puncture Size		MRU3			MRU1		Limit [dBm]	Margin [dB]	[dBi]	[dBm]	[dBm]	[dB]
				ANT1	ANT2	MIMO	ANT1	ANT2	MIMO						
1/2A	5250	50	40MHz	13.10	13.14	16.13	13.11	13.36	16.25	23.98	-7.73	4.94	21.18	30.0	-8.82
2C	5570	114	40MHz	12.53	12.65	15.60	12.60	12.82	15.72	23.98	-8.26	5.73	21.45	30.0	-8.55
3/4	5815	163	40MHz	16.02	16.08	19.06	16.11	16.32	19.23	-		5.66	24.89	30.0	-5.11

Table 7-21. MIMO 160MHz BW 802.11be (UNII) Maximum Conducted Output Power - Punctured

FCC ID: C3K2077		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dage 64 of 155		
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 64 of 155		
© 2024 ELEMENT	·		V11.1 08/28/2023		

						Average Conduc	ted Power (dBm)	1		Conducted Power	Conducted Power				
Band		nannel Puncture Size	Puncture Case					Limit		Dir. Ant. Gain	Max e.i.r.p	e.i.r.p Limit	e.i.r.p Margin		
Band	Freq [MHz]	Channel	Puncture Size		MRU8			MRU1		[dBm]	Margin	[dBi]	[dBm]	[dBm]	[dB]
				ANT1	ANT2	MIMO	ANT1	ANT2	MIMO	laemj	[dB]				
1/2A	5250	50	20MHz	13.48	13.37	16.44	13.47	13.38	16.44	23.98	-7.54	4.94	21.37	30.0	-8.63
2C	5570	114	20MHz	12.87	12.84	15.86	12.52	12.68	15.61	23.98	-8.12	5.73	21.59	30.0	-8.41
3/4	5815	163	20MHz	16.40	16.34	19.38	16.32	16.23	19.29			5.66	25.04	30.0	-4.96

Table 7-22. MIMO 160MHz BW 802.11be (UNII) Maximum Conducted Output Power - Punctured

FCC ID: C3K2077		MEASUREMENT REPORT	Approved by: Technical Manager					
Test Report S/N:	Test Dates:	EUT Type:	Daga 65 of 155					
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 65 of 155					
© 2024 ELEMENT V11.1 08/28/2023								

Note:

Per ANSI C63.10-2013, the conducted powers at Antenna 1 and Antenna 2 were first measured separately during MIMO transmission as shown in the section above. The measured values were then summed in linear power units then converted back to dBm.

Per ANSI C63.10-2013 Section 14.4.3, the directional gain is calculated using the following formula, where G_N is the gain of the nth antenna and N_{ANT} , the total number of antennas used.

Directional gain = 10 log[(10^{G1/20} + 10^{G2/20} + ... + 10^{GN/20})² / N_{ANT}] dBi

Sample MIMO Calculation:

At 5180MHz in 802.11n (20MHz BW) mode, the average conducted output power was measured to be 18.99 dBm for Antenna 1 and 18.69 dBm for Antenna 2.

Antenna 1 + Antenna 2 = MIMO

(18.99 dBm + 18.69 dBm) = (79.25 mW + 73.96 mW) = 153.21 mW = 21.85 dBm

Sample e.i.r.p Calculation:

At 5180MHz in 802.11n (20MHz BW) mode, the average MIMO conducted power was calculated to be 21.85 dBm with directional gain of 4.78 dBi.

e.i.r.p. (dBm) = Conducted Power (dBm) + Ant gain (dBi)

21.85 dBm + 4.78 dBi = 26.63 dBm

FCC ID: C3K2077		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dere 66 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 66 of 155
© 2024 ELEMENT			V11.1 08/28/2023

7.5 Maximum Power Spectral Density

Test Overview and Limit

The spectrum analyzer was connected to the antenna terminal while the EUT was operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013, and at the appropriate frequencies. Method SA-1, as defined in ANSI C63.10-2013, was used to measure the power spectral density.

The output power density limits are as specified in the tables below.

UNII	Fragueney Denge	Maximum Power Spectral Density					
Band	Frequency Range	FCC	ISED				
UNII 1	5.15 – 5.25GHz	11dBm/MHz	10dBm/MHz e.i.r.p				
UNII 2A	5.25 – 5.35GHz						
UNII 2C	5.47 – 5.725GHz	11dBm/MHz					
UNII 3	5.725 – 5.850GHz	30dBm/500kHz					
UNII 4	5.850 – 5.895GHz	14dBm/MHz e.i.r.p					

Test Procedure Used

ANSI C63.10-2013 – Section 12.3.2.3 (Method SA-2) ANSI C63.10-2013 – Section 14.3.2.2 Measure-and-Sum Technique

Test Settings

- 1. Analyzer was set to the center frequency of the UNII channel under investigation
- 2. Span was set to encompass the entire emission bandwidth of the signal
- 3. RBW = 1MHz
- 4. VBW = 3MHz
- 5. Number of sweep points $\geq 2 \times (\text{span/RBW})$
- 6. Sweep time = auto
- 7. Detector = power averaging (RMS)
- 8. Trigger was set to free run for all modes
- 9. Trace was averaged over 100 sweeps
- 10. The peak search function of the spectrum analyzer was used to find the peak of the spectrum.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-4. Test Instrument & Measurement Setup

Test Notes

All cases were investigated; a subset of the taken plots were included to represent relevant settings and measurements.

FCC ID: C3K2077		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dege 67 of 155		
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 67 of 155		
© 2024 ELEMENT	•		V11.1 08/28/2023		

Summed MIMO Power Spectral Density Measurements

	Frequency		802.11	Antenna 1 PSD	Antenna 2 PSD	MIMO	Max PSD	Margin
	[MHz]	Channel	MODE	[dBm]	[dBm]	Summed PSD [dBm]	[dBm]	[dB]
	5180	36	а	7.33	7.02	10.19	11.00	-0.81
	5200	40	а	6.94	6.70	9.83	11.00	-1.17
	5240	48	а	7.25	6.93	10.10	11.00	-0.90
	5180	36	n	7.18	6.71	9.96	11.00	-1.04
	5200	40	n	7.45	7.09	10.29	11.00	-0.71
	5240	48	n	7.49	7.28	10.39	11.00	-0.61
11	5180	36	be SU	6.30	6.69	9.51	11.00	-1.49
Band 1	5200	40	be SU	7.09	7.10	10.11	11.00	-0.89
ä	5240	48	be SU	7.31	7.11	10.22	11.00	-0.78
	5190	38	n	3.01	2.84	5.94	11.00	-5.06
	5230	46	n	0.85	2.20	4.59	11.00	-6.41
	5190	38	be SU	2.89	2.74	5.83	11.00	-5.17
	5230	46	be SU	5.87	6.01	8.95	11.00	-2.05
	5210	42	ас	-2.68	-1.23	1.11	11.00	-9.89
	5210	42	be SU	-1.33	-1.73	1.48	11.00	-9.52
Band 1/2A	5250	50	ac	-4.56	-2.49	-0.40	11.00	-11.40
Ba 1/:	5250	50	be SU	-3.07	-2.65	0.16	11.00	-10.84
	5260	52	а	7.55	7.70	10.64	11.00	-0.36
	5280	56	а	7.50	7.47	10.50	11.00	-0.50
	5320	64	а	7.64	7.58	10.62	11.00	-0.38
	5260	52	n	7.67	7.46	10.57	11.00	-0.43
	5280	56	n	7.61	7.48	10.56	11.00	-0.44
	5320	64	n	7.67	7.61	10.65	11.00	-0.35
ZA	5260	52	be SU	7.13	7.13	10.14	11.00	-0.86
Band 2A	5280	56	be SU	7.48	7.75	10.62	11.00	-0.38
Bai	5320	64	be SU	7.40	7.77	10.60	11.00	-0.40
	5270	54	n	5.56	5.68	8.63	11.00	-2.37
	5310	62	n	2.26	2.43	5.36	11.00	-5.64
[5270	54	be SU	6.10	5.79	8.95	11.00	-2.05
	5310	62	be SU	2.17	2.31	5.25	11.00	-5.75
	5290	58	ac	-0.74	-0.59	2.35	11.00	-8.65
	5290	58	be SU	-0.94	-0.69	2.20	11.00	-8.80
	5500	100	а	7.10	7.27	10.20	11.00	-0.80
	5600	120	а	7.00	6.82	9.92	11.00	-1.08
	5720	144	а	7.25	7.78	10.53	11.00	-0.47
	5500	100	n	7.09	7.72	10.43	11.00	-0.57
	5600	120	n	7.11	7.27	10.20	11.00	-0.80
	5720	144	n	7.27	8.00	10.66	11.00	-0.34
	5500	100	be SU	6.64	7.01	9.84	11.00	-1.16
	5600	120	be SU	7.05	7.28	10.18	11.00	-0.82
	5720	144	be SU	6.27	6.73	9.52	11.00	-1.48
	5510	102	n	1.85	2.50	5.20	11.00	-5.80
2C	5590	118	n	5.01	5.03	8.03	11.00	-2.97
Band 2C	5710	142	n	3.59	4.09	6.86	11.00	-4.14
Ba	5510	102	be SU	1.57	2.18	4.90	11.00	-6.10
	5590	118	be SU	4.96	5.36	8.17	11.00	-2.83
	5710	142	be SU	2.95	3.63	6.32	11.00	-4.68
	5530	106	ac	-0.84	-1.33	1.93	11.00	-9.07
	5610	122	ac	3.27	2.95	6.12	11.00	-4.88
	5690	138	ac	3.12	3.57	6.36	11.00	-4.64
	5530	106	be SU	-1.29	-1.63	1.56	11.00	-9.44
	5610	122	be SU	2.80	2.63	5.72	11.00	-5.28
	5690	138	be SU	2.84	2.99	5.93	11.00	-5.07
	5570	114	ac	-6.40	-5.58	-2.96	11.00	-13.96
	3370							

 Table 7-23. Bands 1, 2A, 2C MIMO Conducted Power Spectral Density Measurements

FCC ID: C3K2077		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dage 69 of 155		
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 68 of 155		
© 2024 ELEMENT			V11.1 08/28/2023		

	Frequency [MHz]	Channel	802.11 MODE	Antenna 1 PSD [dBm]	Antenna 2 PSD [dBm]	MIMO Summed PSD [dBm]	Max PSD [dBm]	Margin [dB]
	5745	149	а	6.38	6.65	9.53	30.00	-20.47
	5785	157	а	6.12	6.55	9.35	30.00	-20.65
	5825	165	а	5.89	6.28	9.10	30.00	-20.90
	5745	149	n	5.97	6.70	9.36	30.00	-20.64
	5785	157	n	5.84	6.53	9.21	30.00	-20.79
	5825	165	n	5.57	5.97	8.78	30.00	-21.22
m	5745	149	be SU	5.97	6.61	9.32	30.00	-20.68
Band	5785	157	be SU	5.80	6.30	9.06	30.00	-20.94
ä	5825	165	be SU	5.69	5.90	8.80	30.00	-21.20
	5755	151	n	2.90	3.64	6.30	30.00	-23.70
	5795	159	n	2.71	3.39	6.07	30.00	-23.93
	5755	151	be SU	2.85	3.40	6.14	30.00	-23.86
	5795	159	be SU	2.70	2.99	5.86	30.00	-24.14
	5775	155	ac	-0.92	-0.29	2.42	30.00	-27.58
	5775	155	be SU	-1.17	-0.70	2.08	30.00	-27.92

 Table 7-24. Band 3 MIMO Conducted Power Spectral Density Measurements

	Frequency [MHz]	Channel	802.11 MODE	Antenna 1 PSD [dBm]	Antenna 2 PSD [dBm]	MIMO Summed PSD [dBm]	Directional Antenna Gain [dBi]	EIRP PSD [dBm]	Max EIRP PSD [dBm]	Margin [dB]
Band 3/4	5845	169	а	5.50	5.30	8.41	5.56	13.97	14.00	-0.03
Band 4	5865	173	а	5.48	5.32	8.41	5.56	13.97	14.00	-0.03
Dallu 4	5885	177	а	5.38	5.40	8.40	5.56	13.96	14.00	-0.04
Band 3/4	5845	169	n	5.26	5.06	8.17	5.56	13.73	14.00	-0.27
Band 4	5865	173	n	5.27	5.14	8.22	5.56	13.78	14.00	-0.22
Dallu 4	5885	177	n	5.08	5.24	8.17	5.56	13.73	14.00	-0.27
Band 3/4	5845	169	be SU	5.14	5.14	8.15	5.56	13.71	14.00	-0.29
Band 4	5865	173	be SU	5.17	4.80	8.00	5.56	13.56	14.00	-0.44
Dallu 4	5885	177	be SU	5.33	5.15	8.25	5.56	13.81	14.00	-0.19
Band 3/4	5835	167	n	5.49	5.29	8.40	5.56	13.96	14.00	-0.04
Band 4	5875	175	n	5.43	5.36	8.40	5.56	13.96	14.00	-0.04
Band 3/4	5835	167	be SU	4.82	5.63	8.25	5.56	13.81	14.00	-0.19
Band 4	5875	175	be SU	5.03	5.61	8.34	5.56	13.90	14.00	-0.10
	5855	171	ac	2.91	2.53	5.73	5.56	11.29	14.00	-2.71
Band 3/4	5855	171	be SU	2.44	2.26	5.36	5.56	10.92	14.00	-3.08
Dand 3/4	5815	163	ac	-2.40	-2.40	0.61	5.56	6.17	14.00	-7.83
	5815	163	be SU	-3.11	-2.48	0.22	5.56	5.78	14.00	-8.22

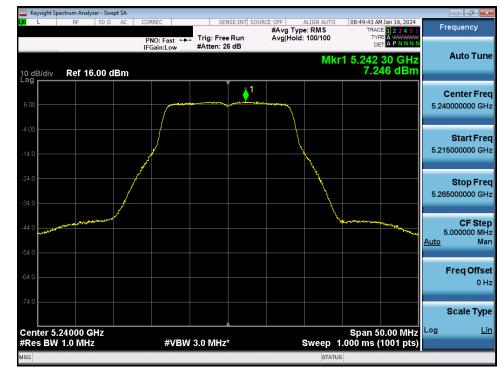
 Table 7-25. Bands 3/4 MIMO Conducted Power Spectral Density Measurements

FCC ID: C3K2077		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dage 60 of 155		
1M2312040120-19.C3K	12/14/2023 - 03/18/202	Portable Computing Device	Page 69 of 155		
© 2024 ELEMENT			V11.1 08/28/2023		

	Frequency [MHz]	Channel	802.11 MODE	Antenna 1 PSD [dBm]	Antenna 2 PSD [dBm]	MIMO Summed PSD [dBm]	Max PSD [dBm]	Margin [dB]
Band 1	5210	42	be SU	0.81	0.19	3.52	11.00	-7.48
Band	5250	50	be SU	-4.94	-4.65	-1.78	11.00	-12.78
Band 2A	5290	58	be SU	-1.11	-1.59	1.67	11.00	-9.33
	5530	106	be SU	-0.86	-1.02	2.07	11.00	-8.93
Band 2C	5610	122	be SU	3.19	2.94	6.07	11.00	-4.93
Danu 2C	5690	138	be SU	3.37	3.10	6.25	11.00	-4.75
	5570	114	be SU	-5.36	-5.10	-2.21	11.00	-13.21

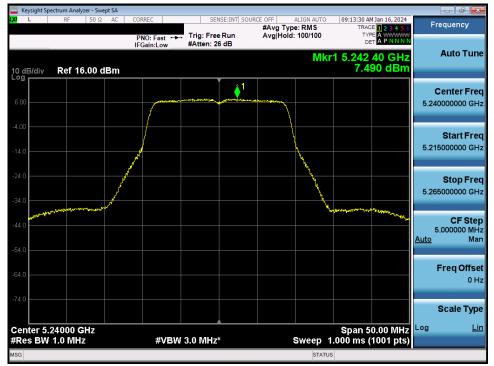
Table 7-26. Bands 1, 2A, 2C MIMO Conducted Power Spectral Density Measurements - Punctured

		Frequency [MHz]	Channel	802.11 MODE	Antenna 1 PSD [dBm]	Antenna 2 PSD [dBm]	MIMO Summed PSD [dBm]	Max PSD [dBm]	Margin [dB]
Ban	d 3	5775	155	be SU	-0.94	-0.95	2.07	30.00	-27.93

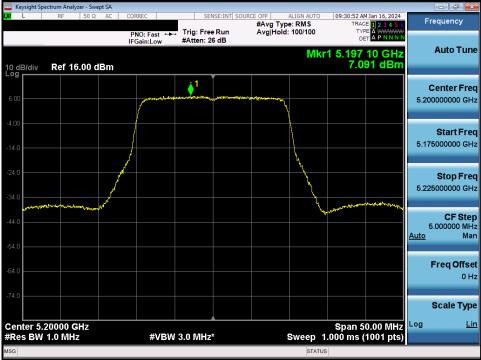

Table 7-27. Band 3 MIMO Conducted Power Spectral Density Measurements - Punctured

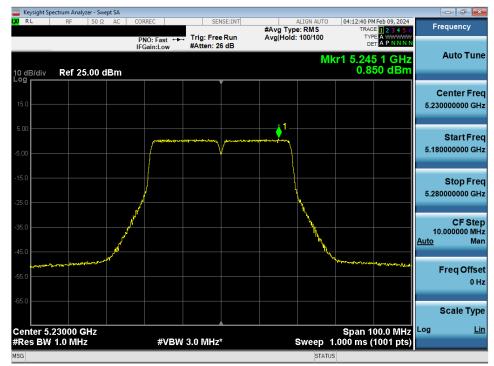
	Frequency [MHz]	Channel	802.11 MODE	Antenna 1 PSD [dBm]	Antenna 2 PSD [dBm]	MIMO Summed PSD [dBm]	Directional Antenna Gain [dBi]	EIRP PSD [dBm]	Max EIRP PSD [dBm]	Margin [dB]
Dand 2/4	5855	171	be SU	3.57	2.55	6.10	5.56	11.66	14.00	-2.34
Band 3/4	5815	163	be SU	-1.93	-1.95	1.07	5.56	6.63	14.00	-7.37

Table 7-28. Bands 3/4 MIMO Conducted Power Spectral Density Measurements - Punctured

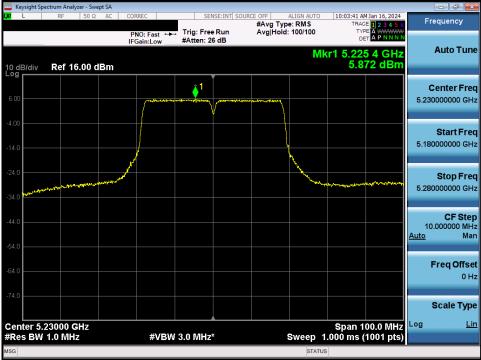

FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 70 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 70 of 155
© 2024 ELEMENT			V11.1 08/28/2023

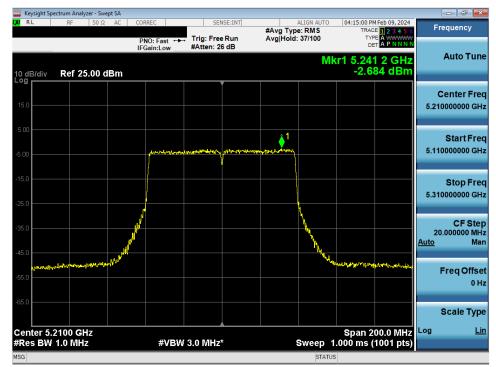
7.5.1 MIMO Antenna-1 Power Spectral Density Measurements



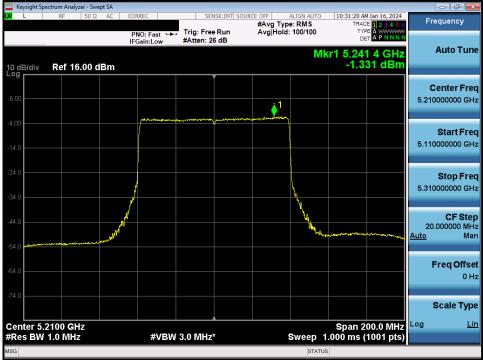

Plot 7-84. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11n (UNII Band 1) - Ch. 48)

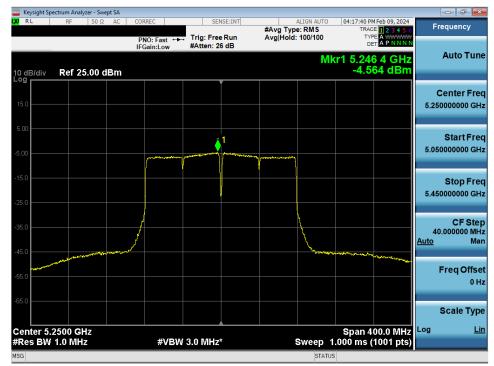
FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 71 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 71 of 155
© 2024 ELEMENT			V11.1 08/28/2023


Plot 7-85. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802. 11ax/be (UNII Band 1) - Ch. 40)

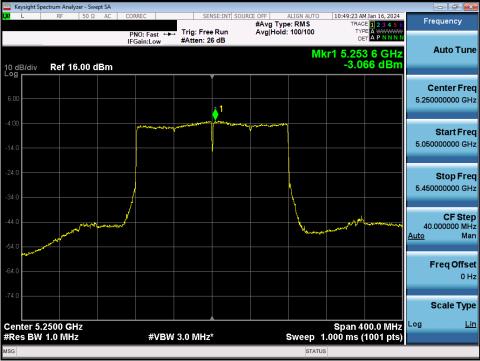

Plot 7-86. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11n (UNII Band 1) - Ch. 46)

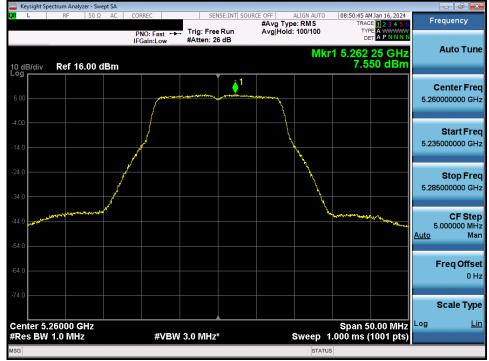
FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 72 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 72 of 155
© 2024 ELEMENT			V11.1 08/28/2023


Plot 7-87. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802. 11ax/be (UNII Band 1) - Ch. 46)


Plot 7-88. Power Spectral Density Plot MIMO ANT1 (80MHz BW 802.11ac (UNII Band 1) – Ch. 42)

FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 72 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 73 of 155
© 2024 ELEMENT			V11.1 08/28/2023


Plot 7-89. Power Spectral Density Plot MIMO ANT1 (80MHz BW 802. 11ax/be (UNII Band 1) - Ch. 42)

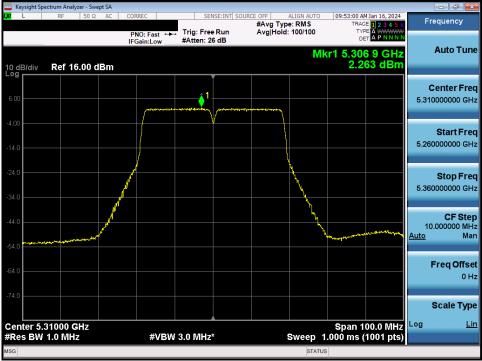

Plot 7-90. Power Spectral Density Plot MIMO ANT1 (160MHz BW 802.11ac (UNII Band 1/2A) - Ch. 50)

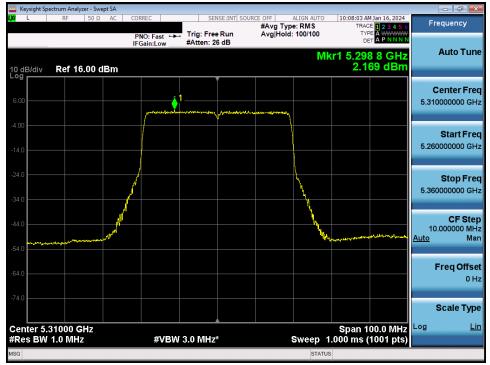
FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 74 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 74 of 155
© 2024 ELEMENT			V11.1 08/28/2023

Plot 7-91. Power Spectral Density Plot MIMO ANT1 (160MHz BW 802. 11ax/be (UNII Band 1/2A) - Ch. 50)

Plot 7-92. Power Spectral Density Plot MIMO ANT1 (802.11a (UNII Band 2A) - Ch. 52)

FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 75 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 75 of 155
© 2024 ELEMENT			V11.1 08/28/2023


Plot 7-93. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11n (UNII Band 2A) - Ch. 64)


Plot 7-94. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax/be (UNII Band 2A) - Ch. 56)

FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 76 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 76 of 155
© 2024 ELEMENT			V11.1 08/28/2023

Plot 7-95. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11n (UNII Band 2A) - Ch. 62)

Plot 7-96. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11ax/be (UNII Band 2A) - Ch. 62)

FCC ID: C3K2077	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 77 of 155
1M2312040120-19.C3K	12/14/2023 - 03/18/2024	Portable Computing Device	Page 77 of 155
© 2024 ELEMENT			V11.1 08/28/2023