

ELEMENT MATERIALS TECHNOLOGY

(formerly PCTEST) 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.element.com

PART 0 SAR CHAR REPORT

Applicant Name: Microsoft Corporation One Microsoft Way Redmond, WA 98052 USA Date of Testing: 01/15/2024 - 03/25/2024 Test Site/Location: Element, Columbia, MD, USA Document Serial No.: 1M2312040120-02.C3K

FCC ID:

C3K2077

APPLICANT:

MICROSOFT CORPORATION

Report Type: DUT Type: Model(s): Part 0 SAR Characterization Portable Computing Device 2077

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Test results reported herein relate only to the item(s) tested.

RJ Ortanez

Executive Vice President

FCC ID: C3K2077	PART 0 SAR CHAR REPORT	Approved by: Technical Manager	
Document S/N: 1M2312040120-02.C3K	DUT Type: Portable Computing Device	Page 1 of 13	
		REV 1.1	

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission from Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact cT.Info@Element.com.

TABLE OF CONTENTS

1	DEV	ICE UNDER TEST	3
	1.1	Device Overview	3
	1.2	Time-Averaging for SAR and Power Density	4
	1.3	Nomenclature for Part 0 Report	4
	1.4	Bibliography	4
2	SAR	AND POWER DENSITY MEASUREMENTS	5
	2.1	SAR Definition	5
	2.2	SAR Measurement Procedure	5
3	SAR	CHARACTERIZATION	7
	3.1	DSI and SAR Determination	7
	3.2	SAR Design Target	7
	3.3	SAR Char	8
4	EQL	JIPMENT LIST	11
5	MEA	ASUREMENT UNCERTAINTIES	12

FCC ID: C3K2077	PART 0 SAR CHAR REPORT	Approved by: Technical Manager
Document S/N: 1M2312040120-02.C3K	DUT Type: Portable Computing Device	Page 2 of 13

1 DEVICE UNDER TEST

1.1 Device Overview

This device uses the Qualcomm[®] Smart Transmit feature to control and manage transmitting power for 2G/3G/4G/5G WWAN operations and Qualcomm[®] FastConnect TAS feature for WLAN technologies in real time and to ensure the time-averaged RF exposure is in compliance with the FCC requirement at all times. Additionally, this device supports BT technologies, but the output power of these modems is not controlled by the Smart Transmit algorithm.

Band & Mode	Operating Modes	Tx Frequency
UMTS 850	Data	826.40 - 846.60 MHz
UMTS 1750	Data	1712.4 - 1752.6 MHz
UMTS 1900	Data	1852.4 - 1907.6 MHz
LTE Band 71	Data	665.5 - 695.5 MHz
LTE Band 12	Data	699.7 - 715.3 MHz
LTE Band 13	Data	779.5 - 784.5 MHz
LTE Band 14	Data	790.5 - 795.5 MHz
LTE Band 26	Data	814.7 - 848.3 MHz
LTE Band 5	Data	824.7 - 848.3 MHz
LTE Band 66	Data	1710.7 - 1779.3 MHz
LTE Band 4	Data	1710.7 - 1754.3 MHz
LTE Band 25	Data	1850.7 - 1914.3 MHz
LTE Band 2	Data	1850.7 - 1909.3 MHz
LTE Band 30	Data	2307.5 - 2312.5 MHz
LTE Band 41	Data	2498.5 - 2687.5 MHz
LTE Band 48	Data	3552.5 - 3697.5 MHz
NR Band n71	Data	665.5 - 695.5 MHz
NR Band n12	Data	701.5 - 713.5 MHz
NR Band n14	Data	790.5 - 795.5 MHz
NR Band n26	Data	816.5 - 846.5 MHz
NR Band n5	Data	826.5 - 846.5 MHz
NR Band n66	Data	1712.5 - 1777.5 MHz
NR Band n25	Data	1852.5 - 1912.5 MHz
NR Band n2	Data	1852.5 - 1907.5 MHz
NR Band n30	Data	2307.5 - 2312.5 MHz
NR Band n41	Data	2506.02 - 2679.99 MHz
NR Band n48	Data	3555 - 3694.98 MHz
NR Band n77	Data	3460.02 - 3540 MHz; 3710.01 - 3969.99 MHz
2.4 GHz WIFI	Data	2412 - 2472 MHz
5 GHz WIFI	Data	U-NII-1: 5180 - 5240 MHz U-NII-2A: 5260 - 5320 MHz U-NII-2C: 5500 - 5720 MHz U-NII-3: 5745 - 5825 MHz U-NII-4: 5845 - 5885 MHz
6 GHz WIFI	Data	U-NII-5: 5945 - 6415 MHz U-NII-6: 6435 - 6515 MHz U-NII-7: 6535 - 6875 MHz U-NII-8: 6875 - 7115 MHz
2.4 GHz Bluetooth	Data	2402 - 2480 MHz

FCC ID: C3K2077	PART 0 SAR CHAR REPORT	Approved by: Technical Manager	
Document S/N: 1M2312040120-02.C3K	DUT Type: Portable Computing Device	Page 3 of 13	
		DEV/11	

1.2 Time-Averaging for SAR and Power Density

This device is enabled with Qualcomm[®] Smart Transmit algorithm and Qualcomm[®] FastConnect TAS feature to control and manage transmitting power in real time and to ensure that the time-averaged RF exposure from WWAN and WLAN is in compliance with FCC requirements. This Part 0 report shows SAR characterization of WWAN and WLAN radios. Characterization is achieved by determining P_{Limit} for WWAN and WLAN that corresponds to the exposure design targets after accounting for all device design related uncertainties, i.e., SAR_design_target (< FCC SAR limit) for WWAN and WLAN radios. The SAR characterization is denoted as SAR Char in this report.

The compliance test under the static transmission scenario and simultaneous transmission analysis are reported in Part 1 report. The validation of the time-averaging algorithm and compliance under the dynamic (time- varying) transmission scenario for WWAN technologies are reported in Part 2 report (report SN could be found in Section 1.4 – Bibliography).

1.3 Nomenclature for Part 0 Report

Technology	Term	Description
	Plimit	Power level that corresponds to the exposure design target (SAR_design_target) after accounting for all device design related uncertainties
WWAN, WLAN	P _{max}	Maximum tune up output power
VVLAN	SAR_design_target	Target SAR level < FCC SAR limit after accounting for all device design related uncertainties
	SAR Char	Table containing <i>Plimit</i> for all technologies and bands

1.4 Bibliography

Report Type	Report Serial Number
FCC SAR Evaluation Report (Part 1)	1M2312040120-01.C3K
RF Exposure Part 2 Test Report	1M2312040120-04.C3K
RF Exposure Compliance Summary	1M2312040120-03.C3K

FCC ID: C3K2077	PART 0 SAR CHAR REPORT	Approved by: Technical Manager
Document S/N: 1M2312040120-02.C3K	DUT Type: Portable Computing Device	Page 4 of 13
		REV 1 1

2 SAR AND POWER DENSITY MEASUREMENTS

2.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 2-1).

Equation 2-1 SAR Mathematical Equation

$SAR = \frac{d}{d}$	$\left(\frac{aU}{dU}\right)$	$=\frac{d}{d}$	$\frac{dU}{dU}$
$SAR = \frac{d}{dt}$	dm)	$\int dt$	$\langle \rho dv \rangle$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

σ	=	conductivity of the tissue-simulating material (S/m)
ρ	=	mass density of the tissue-simulating material (kg/m ³)
Е	=	Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

2.2 SAR Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

- 1. The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 2-1) and IEEE 1528-2013.
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

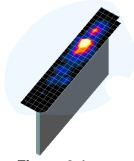


Figure 2-1 Sample SAR Area Scan

 Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 2-1) and IEEE 1528-2013. On the

FCC ID: C3K2077	PART 0 SAR CHAR REPORT	Approved by: Technical Manager
Document S/N: 1M2312040120-02.C3K	DUT Type: Portable Computing Device	Page 5 of 13
		DEV/11

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission from Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact cT.Info@Element.com.

basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):

a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 2-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).

b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points ($10 \times 10 \times 10$) were obtained through interpolation, in order to calculate the averaged SAR.

c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

	Maximum Area Scan Maximum Zoom Scan Spatial Frequency Resolution (mm)			Minimum Zoom Scan			
Frequency	Resolution (mm) (Δx _{area} , Δy _{area})	$(\Delta x_{2000}, \Delta y_{2000})$	Uniform Grid	G	raded Grid	Volume (mm) (x,y,z)	
			∆z _{zoom} (n)	$\Delta z_{zoom}(1)^*$	Δz _{zoom} (n>1)*		
≤ 2 GHz	≤ 15	≤ 8	≤5	≤4	≤ 1.5*Δz _{zoom} (n-1)	≥ 30	
2-3 GHz	≤ 12	≤ 5	≤5	≤4	$\leq 1.5^*\Delta z_{zoom}(n-1)$	≥ 30	
3-4 GHz	≤ 12	≤ 5	≤ 4	≤3	$\leq 1.5^*\Delta z_{zoom}(n-1)$	≥ 28	
4-5 GHz	≤ 10	≤ 4	≤3	≤2.5	≤ 1.5*Δz _{zoom} (n-1)	≥ 25	
5-6 GHz	≤ 10	≤ 4	≤2	≤2	≤ 1.5*Δz _{zoom} (n-1)	≥ 22	
	*Also compliant to IEEE 1528-2013 Table 6						

 Table 2-1

 Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

*Also compliant to IEEE 1528-2013 Table 6

FCC ID: C3K2077	PART 0 SAR CHAR REPORT	Approved by: Technical Manager
Document S/N: 1M2312040120-02.C3K	DUT Type: Portable Computing Device	Page 6 of 13
		DE\/ 1 1

SAR CHARACTERIZATION

3.1 **DSI and SAR Determination**

This device uses different Device State Index (DSI) to configure different time averaged power levels based on certain exposure scenarios. Depending on the detection scheme implemented in the smartphone, the worst-case SAR was determined by measurements for the relevant exposure conditions for that DSI. Detailed descriptions of the detection mechanisms are included in the operational description.

Table 3-1

The device state index (DSI) conditions used in Table 3-1 and 3-2 represent different exposure scenarios.

DSI and Corresponding Exposure Scenarios for Qualcomm[®] Smart Transmit algorithm Scenario **SAR Test Cases** Description Laptop Device transmits in laptop mode when keyboard accessory is attached and at mode or Laptop SAR per KDB an angle ≤210° or no motion is Tablet – No Publication 616217 D04v01r02 Motion detected (DSI = 3)Device transmits in tablet when no Tablet Mode keyboard accessory is attached, Tablet SAR per KDB (DSI=6) motion is detected, or keyboard Publication 648474 D04v01r03 accessory is attached at >210° angle

Table 3-2

DSI and Corresponding Exposure Scenarios for Qualcomm® FastConnect TAS feature

Scenario	Description	SAR Test Cases
Laptop mode or Tablet – No Motion (DSI = 0)	 Device transmits in laptop mode when keyboard accessory is attached and at an angle ≤210° or no motion is detected 	Laptop SAR per KDB Publication 616217 D04v01r02
Tablet Mode (DSI=1)	 Device transmits in tablet when no keyboard accessory is attached, motion is detected, or keyboard accessory is attached at >210° angle 	Tablet SAR per KDB Publication 648474 D04v01r03

3.2 SAR Design Target

SAR design target is determined by ensuring that it is less than FCC SAR limit after accounting for total device designed related uncertainties specified by the manufacturer (see Table 3-3).

Table 3-3 SAR_design_target Calculations				
SAR_design_target				
$SAR_design_target < SAR_regulatory_limit \times 10^{\frac{-Total Uncertainty}{10}}$				
1g SAR (W/kg)				
Total Uncertainty	1.0 dB			
SAR_regulatory_limit	1.6 W/kg			
SAR_design_target	1.0 W/kg			

FCC ID: C3K2077	PART 0 SAR CHAR REPORT	Approved by: Technical Manager
Document S/N: 1M2312040120-02.C3K	DUT Type: Portable Computing Device	Page 7 of 13
		REV 1.1

04/08/2022

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission from Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact cT.Info@Element.com.

3.3 SAR Char

SAR test results corresponding to *Pmax* for each antenna/technology/band/DSI can be found in Part 1 Test Report.

Plimit is calculated by linearly scaling with the measured SAR at the Ppart0 to correspond to the SAR_design_target. When Plimit < Pmax, Ppart0 was used as Plimit in the Smart Transmit EFS and Fast Connect BDF. When Plimit > Pmax and Ppart0=Pmax, calculated Plimit was used in the Smart Transmit EFS and Fast Connect BDF. All reported SAR obtained from the Ppart0 SAR tests was less than SAR_Design_target+ 1 dB Uncertainty. The final Plimit determination for each exposure scenario corresponding to SAR_design_target are shown in Table 3-4 and 3-5.

Device State Index (DSI)	PLimit Determination Scenarios
3	 Plimit is calculated based on: 1g Body Laptop SAR at 0 mm for bottom edge with keyboard accessory attached. Tablet with no keyboard accessory and no motion detected at 25mm for back, top, right and left surfaces.
6	<i>P_{limit}</i> is calculated based on 1g Body Tablet SAR at 0 mm for back, top, bottom, right, and left surfaces with and without keyboard accessory.

Table 3-4
PLimit Determination for Qualcomm [®] Smart Transmit algorithm

Table 3-5 PLimit Determination for Qualcomm® FastConnect TAS feature

Device State Index (DSI)	PLimit Determination Scenarios
0	 The worst-case SAR exposure is determined as the maximum SAR normalized to the limit (i.e. lowest P<i>limit</i>) among: 1g Body Laptop SAR at 0 mm for bottom edge with keyboard accessory attached. Tablet with no keyboard accessory and no motion detected at 25mm for back, top, right and left surfaces.
1	<i>Plimit</i> is calculated based on 1g Body Tablet SAR at 0 mm for back, top, bottom, right, and left surfaces with and without keyboard accessory.

FCC ID: C3K2077	PART 0 SAR CHAR REPORT	Approved by: Technical Manager
Document S/N: 1M2312040120-02.C3K	DUT Type: Portable Computing Device	Page 8 of 13
		REV 1.1

Europuro Socrazio	Maximum	Laptop or Tablet -	Tablet	
Exposure Scenario	Tune-Up	No Motion	10	
Averaging Volume	Output	1g	lg	
Spacing	Power*	0, 25 mm	0 mm	
DSI			3	6
Technology/Band	Antenna	Pmax		
UMTS 850	4	24.0	30.0	17.4
UMTS 1750	1	24.0	26.1	12.6
UMTS 1900	1	24.0	30.0	11.3
LTE Band 71	4	24.0	30.0	16.3
LTE Band 12	4	24.0	30.0	16.8
LTE Band 13	4	24.0	30.0	17.3
LTE Band 14	4	24.0	30.0	17.8
LTE Band 26	4	24.0	30.0	17.4
LTE Band 5	4	24.0	30.0	17.4
LTE Band 66/4	1	24.0	27.9	12.6
LTE Band 25	1	24.0	30.0	11.3
LTE Band 2	1	24.0	30.0	11.3
LTE Band 30	1	22.0	28.6	10.9
LTE Band 41 PC3	1	22.0	27.6	10.5
LTE Band 41 PC2	1	22.4	27.6	10.5
LTE Band 48	2	17.6	30.0	8.9
LTE Band 48	3	17.6	27.4	8.9
NR Band n71	4	24.0	30.0	16.3
NR Band n12	4	24.0	30.0	16.8
NR Band n14	4	24.0	30.0	17.8
NR Band n26	4	24.0	30.0	17.4
NR Band n5	4	24.0	30.0	17.4
NR Band n66	1	24.0	28.7	12.6
NR Band n66	4	24.0	30.0	14.7
NR Band n25/n2	1	24.0	28.7	11.3
NR Band n25/n2	4	24.0	30.0	13.9
NR Band n30	1	22.0	29.1	10.9
NR Band n30	4	22.0	30.0	11.3
NR Band n41 PC3	1	24.0	26.4	10.5
NR Band n41 PC3	4	24.0	29.2	11.8
NR Band n48	2	19.6	29.8	8.9
NR Band n48	3	19.6	27.3	8.9
NR Band n48	5	19.6	30.0	1.0
NR Band n48	8	19.6	30.0	-1.5
NR Band n77 PC3	2	24.0	24.0	8.8
NR Band n77 PC3 3		24.0	26.8	10.9
NR Band n77 PC3 5		22.5	30.0	1.0
NR Band n77 PC3 8		22.5	26.3	-1.5
NR Band n77 PC2	2	25.5	24.0	8.8
NR Band n77 PC2	3	25.5	26.8	10.9
NR Band n77 PC2	5	24.0	30.0	1.0
NR Band n77 PC2	8	24.0	26.3	-1.5

Table 3-6
SAR Characterizations for Qualcomm [®] Smart Transmit algorithm

FCC ID: C3K2077	PART 0 SAR CHAR REPORT	Approved by: Technical Manager
Document S/N: 1M2312040120-02.C3K	DUT Type: Portable Computing Device	Page 9 of 13
		REV 1.1

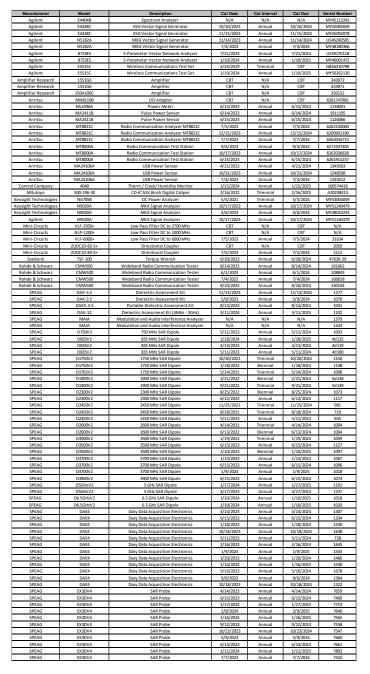
Exposure Scenario	Maximum	Laptop or Tablet - No Motion	Tablet			
Averaging Volume	Tune-Up	1g	1g			
Spacing			Output Power*	0, 25 mm	0 mm	
DSI	Tower	0	1			
Technology/Band	Antenna	Antenna Group	Pmax			
2.4 GHz WIFI	6	AG0	20.5	32.9	13.75	
2.4 GHz WIFI	7	AG1	20.5	32.2	13.5	
5 GHz WIFI	6	AG0	20.0	23.7	7.75	
5 GHz WIFI	7	AG1	20.0	24.5	7.0	
6 GHz WIFI	6	AG0	19.0	20.8	7.75	
6 GHz WIFI	7	AG1	19.0	19.1	7.25	

 Table 3-7

 SAR Characterizations for Qualcomm[®] FastConnect algorithm

Notes:

1. When $P_{max} < P_{limit}$, the DUT will operate at a power level up to P_{max} .


2. MIMO is not included in SAR CHAR due to the two antennas being in separate Antenna Groups.

FCC ID: C3K2077	PART 0 SAR CHAR REPORT	Approved by: Technical Manager
Document S/N: 1M2312040120-02.C3K	DUT Type: Portable Computing Device	Page 10 of 13
		REV 1.1

4 EQUIPMENT LIST

For SAR measurements

Note:

- CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.
- 2. Each equipment item was used solely within its respective calibration period.

FCC ID: C3K2077	PART 0 SAR CHAR REPORT	Approved by: Technical Manager
Document S/N: 1M2312040120-02.C3K	DUT Type: Portable Computing Device	Page 11 of 13
		REV 1.1

04/08/2022

5 MEASUREMENT UNCERTAINTIES

Applicable for SAR Measurements < 6 GHz:

				f(d,k)			c x f/e	c x g/e	
	IEEE	Tol.	Prob.		Ci	Ci	1gm	10gms	
Uncertainty Component	1528 Sec.	(± %)	Dist.	Div.	1gm	10 gms	ui	ui	Vi
					5		(± %)	(± %)	
Measurement System				•					
Probe Calibration	E.2.1	7	Ν	1	1	1	7.0	7.0	~
Axial Isotropy	E.2.2	0.25	Ν	1	0.7	0.7	0.2	0.2	8
Hemishperical Isotropy	E.2.2	1.3	Ν	1	0.7	0.7	0.9	0.9	8
Boundary Effect	E.2.3	2	R	1.73	1	1	1.2	1.2	8
Linearity	E.2.4	0.3	Ν	1	1	1	0.3	0.3	8
System Detection Limits	E.2.4	0.25	R	1.73	1	1	0.1	0.1	8
Modulation Response	E.2.5	4.8	R	1.73	1	1	2.8	2.8	8
Readout Electronics	E.2.6	0.3	Ν	1	1	1	0.3	0.3	8
Response Time	E.2.7	0.8	R	1.73	1	1	0.5	0.5	8
Integration Time	E.2.8	2.6	R	1.73	1	1	1.5	1.5	8
RF Ambient Conditions - Noise	E.6.1	3	R	1.73	1	1	1.7	1.7	8
RF Ambient Conditions - Reflections	E.6.1	3	R	1.73	1	1	1.7	1.7	8
Probe Positioner Mechanical Tolerance	E.6.2	0.8	R	1.73	1	1	0.5	0.5	8
Probe Positioning w/ respect to Phantom	E.6.3	6.7	R	1.73	1	1	3.9	3.9	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	E.5	4	R	1.73	1	1	2.3	2.3	∞
Test Sample Related									
Test Sample Positioning	E.4.2	3.12	Ν	1	1	1	3.1	3.1	35
Device Holder Uncertainty	E.4.1	1.67	Ν	1	1	1	1.7	1.7	5
Output Power Variation - SAR drift measurement	E.2.9	5	R	1.73	1	1	2.9	2.9	∞
SAR Scaling	E.6.5	0	R	1.73	1	1	0.0	0.0	∞
Phantom & Tissue Parameters			_			-			-
Phantom Uncertainty (Shape & Thickness tolerances)	E.3.1	7.6	R	1.73	1.0	1.0	4.4	4.4	∞
Liquid Conductivity - measurement uncertainty	E.3.3	4.3	Ν	1	0.78	0.71	3.3	3.0	76
Liquid Permittivity - measurement uncertainty	E.3.3	4.2	Ν	1	0.23	0.26	1.0	1.1	75
Liquid Conductivity - Temperature Uncertainty	E.3.4	3.4	R	1.73	0.78	0.71	1.5	1.4	∞
Liquid Permittivity - Temperature Unceritainty	E.3.4	0.6	R	1.73	0.23	0.26	0.1	0.1	8
Liquid Conductivity - deviation from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Permittivity - deviation from target values	E.3.2	5.0	R	1.73	0.60	0.49	1.7	1.4	∞
Combined Standard Uncertainty (k=1)	1		RSS	1	1	1	12.2	12.0	191
Expanded Uncertainty k=2					24.4	24.0			
(95% CONFIDENCE LEVEL)									

The above measurement uncertainties are according to IEEE Std. 1528-2013

FCC ID: C3K2077	PART 0 SAR CHAR REPORT	Approved by: Technical Manager
Document S/N: 1M2312040120-02.C3K	DUT Type: Portable Computing Device	Page 12 of 13

Applicable for SAR Measurements > 6 GHz:

licable for SAR Measurements > 6 GHZ:				f(d,k)			c x f/e	c x g/e	
	IEEE	Tol.	Prob.		Ci	Ci	1gm	10gms	
Uncertainty Component	1528 Sec.	(± %)	Dist.	Div.	1qm	10 gms	Ui	U _i	Vi
		(± 70)	Dist.	DIV.	igin	ro gins	(± %)	(± %)	•
Measurement System	1 1			I			(± 70)	(± 70)	1
Probe Calibration	E.2.1	9.3	Ν	1	1	1	9.3	9.3	~
Axial Isotropy	E.2.2	0.25	Ν	1	0.7	0.7	0.2	0.2	~
Hemishperical Isotropy	E.2.2	1.3	Ν	1	0.7	0.7	0.9	0.9	~
Boundary Effect	E.2.3	2	R	1.73	1	1	1.2	1.2	~
Linearity	E.2.4	0.3	Ν	1	1	1	0.3	0.3	~
System Detection Limits	E.2.4	0.25	R	1.73	1	1	0.1	0.1	~
Modulation Response	E.2.5	4.8	R	1.73	1	1	2.8	2.8	~
Readout Electronics	E.2.6	0.3	Ν	1	1	1	0.3	0.3	~
Response Time	E.2.7	0.8	R	1.73	1	1	0.5	0.5	~
Integration Time	E.2.8	2.6	R	1.73	1	1	1.5	1.5	~
RF Ambient Conditions - Noise	E.6.1	3	R	1.73	1	1	1.7	1.7	~
RF Ambient Conditions - Reflections	E.6.1	3	R	1.73	1	1	1.7	1.7	~
Probe Positioner Mechanical Tolerance	E.6.2	0.8	R	1.73	1	1	0.5	0.5	~
Probe Positioning w/ respect to Phantom	E.6.3	6.7	R	1.73	1	1	3.9	3.9	~
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	E.5	4	R	1.73	1	1	2.3	2.3	~
Test Sample Related					-				
Test Sample Positioning	E.4.2	3.12	Ν	1	1	1	3.1	3.1	35
Device Holder Uncertainty	E.4.1	1.67	Ν	1	1	1	1.7	1.7	5
Output Power Variation - SAR drift measurement	E.2.9	5	R	1.73	1	1	2.9	2.9	~
SAR Scaling	E.6.5	0	R	1.73	1	1	0.0	0.0	~
Phantom & Tissue Parameters									
Phantom Uncertainty (Shape & Thickness tolerances)	E.3.1	7.6	R	1.73	1.0	1.0	4.4	4.4	~
Liquid Conductivity - measurement uncertainty	E.3.3	4.3	Ν	1	0.78	0.71	3.3	3.0	76
Liquid Permittivity - measurement uncertainty	E.3.3	4.2	Ν	1	0.23	0.26	1.0	1.1	75
Liquid Conductivity - Temperature Uncertainty	E.3.4	3.4	R	1.73	0.78	0.71	1.5	1.4	~
Liquid Permittivity - Temperature Unceritainty	E.3.4	0.6	R	1.73	0.23	0.26	0.1	0.1	~
Liquid Conductivity - deviation from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	~
Liquid Permittivity - deviation from target values	E.3.2	5.0	R	1.73	0.60	0.49	1.7	1.4	~
Combined Standard Uncertainty (k=1)	11		RSS	1		1	13.8	13.6	19
Expanded Uncertainty k=2						27.6	27.1		
(95% CONFIDENCE LEVEL)							-		

The above measurement uncertainties are according to IEEE Std. 1528-2013

FCC ID: C3K2077	PART 0 SAR CHAR REPORT	Approved by: Technical Manager
Document S/N: 1M2312040120-02.C3K	DUT Type: Portable Computing Device	Page 13 of 13

REV 1.1 04/08/2022 from Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact <u>cT.Info@Element.com</u>.